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Introduction

Del Pezzo surfaces are surfaces that can be classified by their degree,
which is an integer between 1 and 9. They are named after Pasquale
del Pezzo, who studied surfaces of degree d in P?, corresponding to del
Pezzo surfaces of degree at least 3; well-known examples are smooth cubic
surfaces in P3. Over an algebraically closed field, del Pezzo surfaces are
birationally equivalent to the projective plane, and therefore they have a
geometric structure that is easy to describe. However, for lower degree
del Pezzo surfaces, this structure is rich enough to provide interesting
questions. Moreover, over a non-algebraically closed field k, del Pezzo
surfaces are in general not birationally equivalent to the projective plane,
and therefore their set of k-rational points can a priori take many forms.

This thesis contains results on both the arithmetic (Chapter 2) and the
geometry (Chapters 3-5) of del Pezzo surfaces of degree 1.

Chapter [I]covers the necessary background, assuming the reader is already
familiar with basic algebraic geometry. Del Pezzo surfaces are defined
there, and it is shown that they contain a finite number of exceptional
curves (also called lines), based on the degree of the surface. A well-
known example of this is the fact that smooth cubic surfaces over C contain
exactly 27 lines. From Section on, the focus is on del Pezzo surfaces
of degree 1. Such a surface, over a field k, can be defined as the set
of solutions in the weighted projective space P(2,3,1,1) with coordinates
x,Yy, z,w to an equation of the form

y? +ar(z,w)ay + az(z,w)y = 23 4 az(z, w)x? + ay(z, w)x + ag(z, w), (1)
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where a; € k[z,w] is homogeneous of degree i for each i. The two main
features of del Pezzo surfaces of degree 1 that are covered are their associ-
ated elliptic surface, which is obtained by blowing up the base point of the
anticanonical linear system, and the connection between their exceptional
curves and the root system Es.

In Chapter 2 which is joint work with Julie Desjardins, we study the
k-rational points on a family del Pezzo surfaces of degree 1, where k is
a number field. These correspond to the solutions to for which all
coordinates are elements in k. Our main result is the following.

THEOREM 1. Let k be a number field, let A, B € k be non-zero, and let
S inP(2,3,1,1) be the del Pezzo surface of degree 1 over k given by

y? =23 + A2% + BuS. (2)

Let € be the elliptic surface obtained by blowing up the base point of the
linear system | — Kg|. Then the set of k-rational points on S is dense in S
with respect to the Zariski topology if and only if S contains a k-rational
point P with non-zero z,w coordinates, such that the corresponding point
on & lies on a smooth fiber and is non-torsion on that fiber.

As mentioned before, if k is a non-algebraically closed field, it is in gen-
eral not true that a del Pezzo surface over k is birationally equivalent to
the projective plane. One measure of ‘how close’ a variety is to being
birational to projective space is unirationality: a variety X over a field k
is k-unirational if there is a dominant map P} --» X for some n. Del
Pezzo surfaces of degree at least 2 have been known to be k-unirational
for any field k, with an extra condition for degree 2 (summarized in Theo-
rem . For minimal del Pezzo surfaces of degree 1, for a long time no
results on unirationality were known, and only recently Kollar and Mella
proved that those with Picard rank 2 are unirational [KMI17]. Outside
this case, the question of k-unirationality for minimal del Pezzo surfaces
of degree 1 is wide open. Even though these surfaces always contain a k-
rational point, we do not have any example of a minimal del Pezzo surface
of degree 1 with Picard rank 1 that is known to be unirational, nor of one
that is known not to be unirational.

For an infinite field k, the k-unirationality of a variety X implies that
the set X (k) of k-rational points is Zariski-dense in X. Partial results on
the Zariski density of the set of rational points on del Pezzo surfaces of
degree 1 are known, though most results either depend on conjectures, or



give sufficient conditions that might not be necessary (for an overview,
see Section [2.1). Theorem (1] is the first result that gives necessary and
sufficient conditions for the set of k-rational points of the family given by
to be Zariski-dense, where k is any number field.

After finishing this thesis, Jean-Louis Colliot-Théléne showed us that we
can generalize the part of the proof where we show that the conditions are
sufficient to any field of characteristic 0 (these conditions are in general
not necessary if k is not a number field). We will include this result in the
paper that is based on Chapter 2.

Chapters [3| and {4| are adaptations of the preprints [vLWa] and [vLWDb],
respectively, which have been submitted to journals. As mentioned before,
a del Pezzo surface of degree d over an algebraically closed field contains
a finite number of exceptional curves, which depends on the degree d.
When studying arithmetic questions, the configuration of these curves
can be important. For example, one of the conditions that the authors of
[SvL14] impose on a del Pezzo surface of degree 1 for the set of rational
points to be dense, is for the existence of a point that is not contained in
six exceptional curves. Moreover, from [STVA14, Corollary 18], it follows
that the set of rational points on a del Pezzo surface of degree 2 is dense
if it contains a point that is not contained in four exceptional curves, and
lies outside a specific closed subset of the surface. A natural question is
therefore the following.

Question 1. Let P be a point on a del Pezzo surface S of degree 1 over
an algebraically closed field. How many exceptional curves of S can go
through P?

The analogue to Question 1 has been known classically for del Pezzo sur-
faces of degree at least 2. As an example, del Pezzo surfaces of degree 3
contain 27 exceptional curves, and the maximal number of intersecting
exceptional curves is 3. The intersection graph of these curves, where
each vertex represents a curve and two vertices are connected if the cor-
responding curves intersect, contains no fully connected subgraph of size
bigger than 3, so the graph immediately gives a sharp upper bound for
the number of intersecting exceptional curves. This is also the case for del
Pezzo surfaces of degree 2, which contain 56 exceptional curves, of which
at most 4 go through a single point. For del Pezzo surfaces of degree 1,
which contain 240 exceptional curves, we do not get a sharp upper bound
outside characteristic 2 just by looking at the intersection graph. The
latter contains fully connected subgraphs of size 16, but we prove that the
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answer to Question 1 is 10 outside characteristics 2 and 3. More precicely,
if S is a del Pezzo surface of degree 1 given by , then S is a double
cover p: S — @ of a cone @ in P3, ramified over a sextic curve, and in
Chapter [4 we prove the following two theorems.

THEOREM 2. Let S be a del Pezzo surface of degree 1, and let P be a
point on the ramification curve of ¢. The number of exceptional curves
that go through P is at most ten if char k # 2, and at most sixteen if
char k = 2.

THEOREM 3. Let S be a del Pezzo surface of degree 1, and let P be a
point on S outside the ramification curve of ¢. The number of exceptional
curves that go through P is at most ten if char k # 3, and at most twelve
if char k = 3.

Chapter 4 is based on work by the same author in [Winl4]; Theorem [2|is
stated there, as well as the weaker version of Theorem (3| that for a point P
ouside the ramification curve, there are at most 12 exceptional curves go-
ing through P and at most 10 in characteristic 0. In Chapter 4 we extend
these results to all characteristics, and we give examples that show that
the upper bounds are sharp in all characteristics except possibly charac-
teristic 5. Moreover, we heavily reduce the use of computer computations
in the proof of [Winl4, Proposition 4.29]; this is done in Section

The 240 exceptional curves on a del Pezzo surface of degree 1 are in one-
to-one correspondence with 240 vectors in R® that form the Eg root sys-
tem. As a consequence of this correspondence, the intersection graph on
the exceptional curves, where edges have weight w if the corresponding
exceptional curves have intersection multiplicity w, is isomorphic to the
graph I where vertices represent the vectors in Eg, and where two vertices
are connected by an edge of weight a if the two corresponding vectors have
dot product a in R8. In order to prove Theorems [2| and [3| we use results
on I' that were already in [Winl4], and are now part of Chapter 3. The
graph I' is too big to let a computer find all the information we needed
there in a reasonable time. However, I has 696,729,600 symmetries (the
automorphism group is the Weyl group Wg), which can be used to reduce
computations.

In Chapter 3 we extend the results on I' that were in [Winl4| to a thor-
ough study of the action of Wg on I'. The root system Eg pops up in many



branches of mathematics and physics (for example Lie groups, sphere pack-
ings, string theory). This chapter can be read separately from the rest of
the thesis, and is also interesting for the reader that wants to know about
the Eg root system without any interest in del Pezzo surfaces. However,
using the relation with del Pezzo surfaces of degree 1, this chapter also
gives a list of all potentially possible configurations of a maximal set of
exceptional curves that all intersect in a point. In Theorem [3.1.3] we prove
that for a large class of subgraphs of I'; any two subgraphs from this class
are isomorphic if and only if there is a symmetry of I' that maps one to
the other. We also give invariants that determine the isomorphism type of
a subgraph. Moreover, in Theorem [3.1.4) we show that for two isomorphic
subgraphs GG1, G5 from this class that do not contain one of 7 specific
subgraphs, any isomorphism between G and Gy extends to a symmetry
of the whole graph I'. These results reduce computations on the graph I
significantly, since they allow us to study many subgraphs by choosing one
representative from their isomorphism class.

In Theorem [I| we require the existence of a point on a del Pezzo surface
of degree 1 that is non-torsion on its fiber in the corresponding elliptic
fibration. This requirement seems to be related to the existence of a
point not being contained in too many exceptional curves: in Section 4 of
[SvL14], where many examples of del Pezzo surfaces of degree 1 are given,
every point on such a surface that is contained in at least 6 exceptional
curves corresponds to a point which is torsion on its fiber. It is therefore
a natural question to ask whether there is a relation between these two
situations.

Question 2. Let S be a del Pezzo surface of degree 1, and let P be
a point on S. If ‘many’ exceptional curves on S intersect in P, is the
corresponding point on the elliptic surface constructed from S then a
torsion point on its fiber?

Of course, the word ‘many’ has to be specified in the above question.
Kuwata proved that for del Pezzo surfaces of degree 2, if we take ‘many’
to be 4, the analogous question has a positive answer; see [Kuw05]. This
number is also the maximal number of exceptional curves that can in-
tersect in a point on the surface. In the case of del Pezzo surfaces of
degree 1, the question is more complicated, since more exceptional curves
can intersect in a single point, and in many different configurations.

In Chapter 5] we prove the following theorem.
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THEOREM 4. Let S be a del Pezzo surface of degree 1, and let P be a
point on S. If at least 9 exceptional curves on S intersect in P, then the
corresponding point on the elliptic surface constructed from S is torsion
on its fiber.

To prove Theorem [d], we use results on the configurations of the 240 lines
on a del Pezzo surface of degree 1 from Chapter 3. Moreover, using results
from Chapter 4, we give examples of surfaces with 6 exceptional curves
that pass through a point P that does not correspond to a torsion point,
proving that in general the answer to Question 2 is negative if we take
‘many’ to be 6 or less. What still remains to be done are the cases of 7
and 8 exceptional curves that intersect in a point.
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Background

This chapter contains the background for the rest of this thesis. We as-
sume that the reader is familiar with basic algebraic geometry, and more
specifically with schemes, divisors, Picard groups, and the process of blow-
ing up a scheme in a point. A classic reference for this is [Har77]. We
introduce del Pezzo surfaces, and we focus especially on del Pezzo surfaces
of degree 1 in Section In Sections [[.4.1], and [1.4.3], we work
with del Pezzo surfaces over any field; most results in Sections [1.2| and
however, only hold over algebraically closed fields.

1.1 Del Pezzo surfaces

DEFINITION 1.1.1. A variety is a separated scheme of finite type over
a field. A variety is nice if it is projective, smooth, and geometrically
integral.

DEFINITION 1.1.2. A curve is a variety of pure dimension 1, and a surface
is a variety of pure dimension 2.

NoTATION 1.1.3. For a field k, we denote by k a fixed algebraic closure
and by k*P the separable closure of k in k. For a ring A, an A-algebra
B, and a scheme X over Spec A, we denote by X x 4 B the base change
X Xgpec 4 Spec B.
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DEFINITION 1.1.4. A del Pezzo surface is a nice surface with ample anti-
canonical divisor. The degree of a del Pezzo surface is the self-intersection
number of the anticanonical divisor.

If X is a del Pezzo surface of degree d, then, since —Kx is ample, there
is an integer m > 0 such that —mKx determines an embedding of X
into some projective space. The degree of X under this embedding is
(-mKx)? = m?*K%, so we have d = K% > 0. Moreover, d is an integer
between 1 and 9 [Man86, 24.3 (i)]. A well-known class of del Pezzo surfaces
consists of those of degree 3, which are exactly the smooth cubic surfaces
in P3.

REMARK 1.1.5. For d > 3, the anticanonical divisor of a del Pezzo surface
of degree d is very ample, and defines an embedding of the surface into a
projective space of dimension d [Kol96, 111.3.4.3, I111.3.5.2]; the image is a
surface of degree d. Del Pezzo surfaces of degree 2 are exactly the smooth
hypersurfaces of degree 4 in the weighted projective space P(2,1,1,1),
and del Pezzo surfaces of degree 1 are exactly the smooth hypersurfaces of
degree 6 in the weighted projective space P(2,3,1,1) (see [Kol96, I11.3.5];
we will show this for the latter in Section .

REMARK 1.1.6. If X is a del Pezzo surface over a perfect field k, then
the base change X = X x; k is a del Pezzo surface too: assume that
—Kx is ample, then we have —Kx - C' > 0 for every irreducible curve
C on X. Now let D be an integral curve on X, and let C be the image
of D on X under the map X — X. The pullback of C to X consists
of the Galois conjugates D1,..., D, of D under the action of the Galois
group G =Gal(k/k). Since —Kx - C > 0, and the intersection pairing is
preserved under base change, we have > ;' | —K+-D; = —Kx - C > 0.
Since G acts transitively on the set {Di,...,D,} [Sta20, Tag 04KY], it
follows that —K< - D > 0. Finally, from (—Kx)? > 0 it follows that
(—K+)* > 0, and therefore —K+ is ample by Nakai-Moishezon [Har77,
Theorem V.1.10].

Del Pezzo surfaces over a separably closed field are birationally equivalent
to the projective plane. To state a more precise version of this we introduce
the notion of general position.

DEFINITION 1.1.7. For r < 8, points P, ..., P. in P? are in general posi-
tion if no three of them lie on a line, no six of them lie on a conic, and no
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eight of them lie on a singular cubic with one of these eight points at the
singularity.

THEOREM 1.1.8. A del Pezzo surface of degree d over a separably closed
field k is isomorphic to either IP}C X }P’,lg, in which case d = 8, or to Pz blown
up at r < 8 k-rational points in general position, in which case d =9 — r.

Proof. Manin proved this for k algebraically closed in [Man86, 24.4]; the
result for k& separably closed followes from [Coo88, Propositions 5 and 7],
see for example [VAQ9, Theorem 2.1.1]. O

The previous theorem and Remark show that a del Pezzo surface
over a perfect field k becomes birationally equivalent to P? after a base
change to the algebraic closure of k; varieties with this property are called
geometrically rational. In Theorem [1.3.6] we state Iskoviskih’s classificaton
of all geometrically rational surfaces.

1.2 The geometric Picard group

Since del Pezzo surfaces are nice, we can identify their Picard group with
their Weil divisor class group [Har77, I1.6.16]. In this section we state some
results about the Picard group of a del Pezzo surface over an algebraically
closed field; in this case we can easily describe the Picard group as a result
of Theorem[I.1.8] We spend particular attention to the exceptional classes
in the Picard group. Our main reference for this theory is [Man86].

Let k& be an algebraically closed field. Let X be a del Pezzo surface of
degree d over k, and assume that X is isomorphic to P? blown up in
r =9 —d points Pi,..., P, in general position. Let Kx be the class in
Pic X of a canonical divisor of X, and for ¢ € {1,...,r}, let E; be the
class in Pic X corresponding to the exceptional curve above F;. Finally,
let L be the class in Pic X corresponding to the pullback of a line in P?
that does not contain any of the points P, ..., P,.

THEOREM 1.2.1. The Picard group Pic X is ismorphic to Z'°~¢. More-

over, the set {L, E1, ..., E,} forms a basis for Pic X, and we have — K x =
3L -, E;.

Proof. This follows from Theorem and [Man86l 20.9.1 and 20.10]. O
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REMARK 1.2.2. By Theorem [1.1.8] our assumptions on X are satisfied
by all del Pezzo surfaces except for a del Pezzo surface of degree 8 that is
isomorphic to P! x P'. The Picard group of such a surface is isomorphic
toZdZ.

For i,j € {1,...,r}, i # j, we have F; - E; =0, L-FE; =0, L?=1, and

F?=-1, —Kx E;=1. (1.1)
Besides Fj, ..., E,, there are more classes in Pic X satisfying (1.1). In
the rest of this section we will list results about these so-called exceptional
classes.

DEFINITION 1.2.3. Let Y be a nice surface with canonical class Ky. An
exceptional class in Pic Y is a class D with D> = D - Ky = —1. An
exceptional curve on Y is an irreducible curve on Y whose class in Pic Y
is an exceptional class.

Every exceptional class in Pic X contains exactly one exceptional curve
on X [Man86l 26.2 (i)].

For d > 3, the anticanonical divisor —Kx determines an embedding ¢ of
X in P? (see Remark . If this is the case, and if C' is an exceptional
curve on X, then its image ¢(C) has degree —Kx - C = 1, hence ¢(C)
is a line on (X ). Therefore one often refers to exceptional curves on del
Pezzo surfaces as lines.

REMARK 1.2.4. By Castelnuovo’s contraction theorem, an exceptional
curve C' on a nice surface Y can be ‘blown down’ in the sense that there
exists a nonsingular projective surface Yy with a point P, and a morphism
f:Y — Yy, such that f is the blow-up of Yy in P, and C = f~1(P)
[Har77, Theorem V.5.7]. If Y is a del Pezzo surface, then Yj is a del Pezzo
surface too [Man86, 24.5.2 (i)], of degree one higher than Y.

ProprosITION 1.2.5. Every geometrically integral curve on X with neg-
ative self-intersection is an exceptional curve, and isomorphic to P'.

Proof. This is in [Man86, 24.3 (ii)]; it follows from adjunction. O

The following proposition tells us exactly what the exceptional classes in
Pic X look like. Recall that d is the degree of X, and r =9 — d.

10
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PROPOSITION 1.2.6. For d < 8, the exceptional classes in Pic X are those
of the form aL —Y;_, b;E; where r =9 —d, and (a,by,...,b,) is given by
taking the first v 4+ 1 entries of any of the rows of the following table for
which the remaining d — 1 entries are zero, and permuting by, ...,b.. So
for d = 1 all rows are used, for d = 2 only rows 1-4, for d = 3,4 rows 1-3,
for d =5,6,7 rows 1-2, and for d = 8 row 1.

b1 by
-1

S
w
=
W~
St
ot
S
=)
(=
J
=
o

ST W N~ O
LW NN N =

NN === O
NN =O O
NN == =O O
NN == =O O
NN == O OO
N = == O OO
[N i e i s Il e M en)

Proof. [Man86), 26.1] O

From this table we find the number of exceptional classes in Pic X, de-
pending on d. Since every exceptional class in Pic X contains exactly one
exceptional curve on X, this equals the number of exceptional curves.

d |1 2 3 4 5
# exceptional classes ‘ 240 56 27 16 10

6 7 8

6 3 1

Table 1.1: Number of exceptional classes in Pic X, depending on the
degree of X.

REMARK 1.2.7. We give a geometric description of the table in Propo-
sition [1.2.6] [Man86l 26.2]: an exceptional class of the form D = aL —

"1 biE;, with (a, b1, ..., b,) a vector given by Proposition is either
one of the E;, where ¢ € {1,...,r} (which is the case if b; = —1), or it is
the class corresponding to the strict transform of a curve in P? of degree
a, going through P; with multiplicity b; for each 3.

Let I be the set of exceptional classes in Pic X, and let Iy be the set
{(61""567”) GIT |\V/7x7é]616j20}

Note that (E1, ..., E,) is an element in [y. We will show that every element
in Iy gives rise to a basis for Pic X.

11
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LEMMA 1.2.8. For (e1,...,e;) € Iy, there is a morphism f: X — P?,
and points Q1, . ..,Q, € P? that are in general position, such that f is the
blow-up of P? at Q1,...,Q,, and, for all i, the element e; is the class in

Pic X of the exceptional curve above Q);.

Proof. Recall that we can blow down an exceptional curve on X and obtain
a del Pezzo surface of degree d + 1 (Remark . Since the exceptional
curves in the classes ey, . . . , e, are pairwise disjoint, after blowing down one
of them the remaining ones are exceptional curves on the resulting surface.
Therefore we can repeatedly blow down the exceptional curves in all the
classes e1,...,e,. It follows that we obtain a morphism f: X — P2,
which is the blow-up in r points Q1,...,Q,. If Q1,...,Q, were not in
general position, then X would contain curves with self-intersection < —2,

contradicting Proposition [1.2.5] O
Let « = (e1,...,e,) be an element in Iy, and Q1,...,Q, € P? as in the
previous lemma. Then we have Kx = —3l + > _i_; ¢;, where [ is the class

of the strict transform of a line in P? not containing any of the Q;, and it
follows that {l,e1,...,e,} forms a basis for Pic X (Theorem [1.2.1]).

REMARK 1.2.9. Let V' be the set of 240 vectors (a, b1, ...,b,) that are in
the table in Proposition (where the b; can be permuted). We have a
map

fiIo — Homge (1, V)

as follows. For ¢« = (ey,...,e;) € Iy, let | be the unique class in Pic X
such that Kx = =3[+ _;_; ;. Then we define f(¢) as follows.

f): I —V, e—(e-lie-e1,...,e-¢p).

The map f(¢) is a bijection with inverse f(:)"'((a,b1,...,b.)) = al —
i1 bie; € I. We conclude that every element of [ gives rise to a bijection
between [ and V.

1.3 Minimality

In this section we consider del Pezzo surfaces over non-algebraically closed
fields. We state a useful classification of minimal del Pezzo surfaces (Theo-
rem [1.3.4). Recall that for a field k£ we denote by k*°" its separable closure.
From [Co088, Proposition 5] it follows that the exceptional curves on a
nice surface over a field k are all defined over k*°.

12
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DEFINITION 1.3.1. A nice surface X over a field k is minimal if there
is no set of pairwise disjoint exceptional curves on X that form an orbit
under the action of Gal(k*"/k) on Pic (X xj k*P).

Note that this definition makes sense when we consider Remark dis-
joint exceptional curves that are conjugate under the action of Gal(k**/k)
can be blown down simultaneously. Since after blowing down one obtains
a surface that has smaller Picard number, this is a finite process that
results in a minimal surface.

If &k = k**, then a minimal del Pezzo surface over k is isomorphic to
either P2 or P! x P!; this follows from the definition of minimality and
from Theorem [1.1.8] For general k, the minimal del Pezzo surfaces are
classified in Theorem We first introduce the following definition.

DEFINITION 1.3.2. A rational conic bundle is a minimal nice geometri-
cally rational surface X with a morphism f: X — C to a nice curve C
of genus 0, such that the generic fiber of f is a smooth curve of genus 0.

The following theorem describes the geometric fibers of a rational conic
bundle.

THEOREM 1.3.3. If X is a rational conic bundle over a perfect field k
with morphism f: X — C, then any reducible fiber of the base change
Tt X xXp k — C xy, k consists of two exceptional curves on X xj k that
intersect in a point and are conjugate under the action of Gal(k/k).

Proof. [Has09, Theorem 3.6] O

We can now classify all minimal del Pezzo surfaces.

THEOREM 1.3.4. Let X be a del Pezzo surface of degree d over a field k.
(i) If d = 3,5,6,9, then X is minimal if and only if Pic X ~ Z.

(ii) If d = 1,2,4, then X is minimal if and only if Pic X ~ 7, or
Pic X ~Z & 7Z and X is a rational conic bundle.

(iii) If d = 8 then X is minimal if and only if Pic X ~ Z, or X ~ C' x (',
where C,C’ are smooth curves of genus 0.

(iv) If d = 7 then X is not minimal.

13
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Proof. [Isk80, Corollary of Theorems 5, 4, and 1, before paragraph 4] [J

REMARK 1.3.5. In case (ii) of Theorem the surface X admits two
representations as a conic bundle; see [Isk8(), Theorem 5].

Theorem [1.3.6] classifies all geometrically rational surfaces.

THEOREM 1.3.6. Let X be a smooth projective geometrically rational
surface over a field k. Then X is birationally equivalent (over k) to one of
the following surfaces.

(i) A quadric in P3;
(ii) a del Pezzo surface;

(iii) a rational conic bundle.

Proof. [Isk80, Theorem 1] O

1.4 Del Pezzo surfaces of degree 1

In this section we focus on del Pezzo surfaces of degree 1, which are the
main objects of study in this thesis. In Section [I.4.1] we show that a del
Pezzo surface X of degree 1 with canonical divisor Kx can be embedded
as a smooth sextic in the weighted space P(2,3,1,1), and we describe the
different maps induced by the linear systems | — 3Kx|, | — 2K x|, and
| — Kx|. In Section we describe how the exceptional curves on a del
Pezzo surface of degree 1 over an algebraically closed field can be identified
with the classical root system Eg. Finally, in Section [1.4.3]| we study the
elliptic surface that arises from a del Pezzo surface of degree 1 by blowing
up the base point of the anticanonical linear system.

1.4.1 The anticanonical model and linear systems

Let X be a del Pezzo surface of degree 1 over a field k& with anticanonical
divisor —Kx. We start this section by recalling some concepts associated
to divisors on X.

DEFINITION 1.4.1. For a divisor D on X, we define £(D) to be the k-
vector space consisting of all the rational functions over k on X with poles
at most at D. We denote its dimension by (D). The complete linear

14
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system |D| associated to D consists of all effective divisors on X that are
linearly equivalent to D.

For a divisor D on X, the map f —— div(f) + D induces a bijection
between the space (L£L(D) — 0)/k* and the complete linear system |D)|.

DEFINITION 1.4.2. A linear system on X is a subset L of a complete linear
system |D| for some divisor D on X, such that the image of L under the
bijection «: |D| — (L(D)—0)/k*, together with 0, is a sub-vector space,
say V, of L(D). The dimension of L is dimV — 1.

DEFINITION 1.4.3. A base point of a linear system L on X is a point
P € X such that P € C for all divisors C € L.

Let L be a non-empty linear system on X, such that L corresponds to the
sub-vector space V C L(D) for some divisor D on X. Then L determines
a rational map ¢r: X --» P}, where n is the dimension of L. If L is
base-point-free, then ¢y, is a morphism.

We describe the anticanonical model of X.

DEFINITION 1.4.4. The anticanonical ring of X is the graded ring

R(X,-Kx)= P L(-mKx),

m>0
and the anticanonical model of X is the scheme Proj R(X,—Kx).

Since —Kx is ample, the ring R(X, —Kx) is non-empty and non-zero, so
the anticanonical model of X is well defined. Moreover, X is isomorphic to
Proj R(X,—Kx) [Kol96l ITI1.3.5]. We construct the anticanonical model
for X, following [CO99].

LEMMA 1.4.5. For all positive integers m we have
1
I(—mKx)=1+ Qm(m + 1)d.

Proof. [Kol96 I11.3.2.5.2]. O

By the previous lemma, we have [(—Kx) = 2. Let {z,w} be a basis
for L(—~Kx). For all m > 1, the elements 2™, 2™ lw, ..., z2w™ 1 w™
are linearly independent in £(—mKx) by [CO99, 2.3]. Therefore, since

15
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[(—2Kx) = 4, we can choose an element z € £L(—2Kx) such that the set
{22, zw,w?, 2} forms a basis for £L(—2K x). The elements 23, 2%w, zw?, w?,
zx,wzr in L(—3K ) are linearly independent [CO99, p.1200]. Since we
have [(—3Kx) = 7 we can therefore choose an element y € L(—3Kx)
to obtain a basis {23, 2%w, zw?, w?, zz, wz,y} of L(—3Kx). Finally, since

[(—6Kx) = 22, the 23 elements

20, 25w, 24w?, 2Bwd, 22wt 2w® w23, 1222, 2w, 2w, 2t z2tw,

2,2 3

rZw, rzw ,xw4,xyz,xyw,y2,yz3,y22w,yzw2,yw3

of L(—6Kx) are linearly dependent. Let h(z,y, z,w) = 0 be a dependence
relation between them. We can rescale z and y such that the coefficients
of the monomials 23 and y? are 1, and write

h=1y?+ a1zy + asy — 2° — asx? — asx — as, (1.2)

where a; € k[z,w] is homogeneous of degree i for each 7 in {1,...,6}.
Let k[z,y, z, w] be the graded k-algebra where x has degree 2, y has de-
gree 3, and z,w have degree 1. Then the anticanonical model of X is
Proj k[x,y, z,w]/(h).

The linear system | — 3K x|

The linear system | — 3K x| induces an embedding of X into P%, with
coordinates {23, 22w, zw?, w3, zz,wxr,y}. This embedding factors through

the anticanonical model of X.

For the rest of this section we identify X with its anticanonical model,
that is, the zero locus of h in P(2,3,1,1), where h is given by (1.2).

The linear system | — 2K x|

Let p : Px(2,3,1,1) --» Px(2,1,1) be the projection to (x : z : w); its
restriction to X is a morphism of degree 2. Let i : Px(2,1,1) — IP’% be
the 2-uple embedding, sending (z : z : w) to (v : 22 : 2w : w?). Write
(e, a1, a2, a3) for the coordinates of P3, then i(Px(2,1,1)) is a cone Q
given by a3 = ajas, with vertex v = (1 : 0 : 0 : 0). The composition
p=to0op: X — IP’% is a double cover of ), and this is the morphism
defined by the linear system | — 2K x|. If char & # 2 then we can do a
coordinate change such that h is given by y? — 23 — ahz? — ajx — afy, and
the morphism ¢ is ramified at the points (z : y : z : w) € X for which

2%+ aha® + ayx + af = 0. (1.3)
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In that case, the branch locus of ¢ is the union of v and the curve B
that is the intersection of the cubic surface in P} defined by with
@, and B is a smooth integral curve of degree six and genus four [CO99,
Proposition 3.1]. In the case char k = 2, the morphism ¢ is ramified at
the points (z : y : z : w) € X for which a;z+ a3 = 0, and the branch curve
of ¢ is smooth if and only if the intersection of the zero loci of a; and a3
in P! is empty [CO00, Remark 2.5].

The linear system | — K|

The linear system | — K x| defines a rational map pu: X --» IF’}C, projecting
to the coordinates z,w. This is not defined in the point O = (1:1:0:0),
which is the unique base point of | — Kx|. Let £ be the blow-up of X in O,
then the rational map p induces a morphism v : £ — IP’,%/,. This gives £
the structure of an elliptic surface; see Section

Some of the rational maps and morphisms described above are shown in
the following commutative diagram.

[—2Kx|

P

1.4.2 Exceptional curves and the Eg root system

Let X be a del Pezzo surface of degree 1 over an algebraically closed field.
Recall that Pic X contains exactly 240 exceptional classes (Table ;
let I be the set of these classes. In this section we describe the relation

17
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between I and the root system Eg. In particular, we show that the group
of permutations of I that preserve the intersection pairing is isomorphic
to the automorphism group of Eg (Corollary , which gives us a
very useful tool when studying configurations of exceptional curves. Root
systems arise in the study of many different objects, such as Lie groups
and the classification of singularities on varieties. We will only treat a
very small fraction of the theory of root systems here and in Chapter [3]
Useful references for more on root systems are [Bou68| and [Hum72].

We start by recalling the definition of a root system.

DEFINITION 1.4.6. Let V be a finite-dimensional vector space over R with
a positive-definite inner product (-,-). A root system in V' is a finite set
R of non-zero vectors, called roots, that satisfy the following conditions:

(i) the roots span V;
(ii) for all » € R, we have A\r € R = \ = £1;

(iii) for all , s € R, we have s — 2r é:ii € R;

iv) for all 7, s € R, the number 2¢% is an integer.
(r,r)

The rank of R is the dimension of V.

DEFINITION 1.4.7.If R is a root system in a vector space V with in-
ner product (-,-), and S is a root system in a vector space W with in-
ner product [,-], then R and S are isomorphic if there is an isomor-
phism of vector spaces ¢: V — W, which sends R to S, and such that
[p(r1), p(r2)] = (r1,72) for all r1,72 € R.

Let A be the Eg lattice, given by

8
Z“i € 2Z} C RS,
=1

This is the unique positive-definite, even, unimodular lattice of dimen-
sion 8 [MHT73, I1.§6]. The set

Es = {a€Alllal =v2}

forms a root system in R®, known as the Eg root system. [Hum72, 12.1].
We will show that Pic X contains a subset R that forms a root system

18
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isomorphic to Eg (Proposition|1.4.8)), and we will give a bijection between
R and I (Remark [1.4.9).

Recall that X is isomorphic to P? blown up in 8 points Pi,..., P in
general position (Theorem . Let Kx be the class in Pic X of a
canonical divisor of X. For i € {1,...,8}, let E; be the class in Pic X
corresponding to the exceptional curve above P;, and let L be the class in
Pic X corresponding to the pullback of a line in P? that does not contain
any of the points Py, ..., P3. Consider the subgroup

K+ ={DcPicX|D-Kx =0} CPic X,

and its subset

R={D e Kx | D?>=-2}.
Let (K)Jg, (-, )) be the vector space R ®7 K+ with inner product (-,
defined as the negative of the intersection pairing in Pic X.

PROPOSITION 1.4.8. The set R is a root system of rank 8 in (K)Jg, (-, ))
Moreover, it is isomorphic to Eg, and every element in R can be given as a
linear combination with integer coefficients of the elements ry,...,r3 € R,
given by

Ei—FEy, By—Es,...,Er— Es, L — By — Ey — F5.

Proof. In [Man86l, Propositions 25.1.1 and 25.2] it is shown that R is a
root system of rank 8; in [Man86, Theorem 25.4 and Proposition 25.5.6]
it is shown that this root system is isomorphic to Eg, and the basis is
given. [

REMARK 1.4.9. Fore € I we have e+ Kx € Ky and (e+Kx,e+Kx) = 2,
and this gives a bijection

I — R, e— e+ Kx.

For ej,es € I we have (e; + Kx,ea + Kx) = 1 — e1 - ea, where - is the
intersection pairing in Pic X.

As a consequence of Proposition and the bijection in Remark
we have the following result.

COROLLARY 1.4.10. The group of permutations of I that preserve the
intersection pairing is isomorphic to the Weyl group Ws, which is the group
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of permutations of Eg generated by the reflections in the hyperplanes
orthogonal to the roots.

Proof. [Man86, 25.1.1 and 23.9] O

Another way of phrasing Corollary[1.4.10]is that the weighted graphs on I
and Eg and their automorphism groups are isomorphic (Corollary [1.4.14]).

DEFINITION 1.4.11. By a graph we mean a pair (V, D), where V is a set
of elements called vertices, and D a subset of the power set of V' such that
every element in D has cardinality 2; elements in D are called edges, and
the size of the graph is the cardinality of V. A graph (V, D) is complete
if for every two distinct vertices vy,vy € V, the pair {vy,va} is in D.

By a weighted graph we mean a graph (V, D) with a map ¢: D — A,
where A is any set, whose elements we call weights; for any element d
in D we call ¢(d) its weight. If (V| D) is a weighted graph with weight
function v, then we define a weighted subgraph of (V, D) to be a graph
(V', D) with map v’, where V' is a subset of V, while D’ is a subset of
the intersection of D with the power set of V', and 1)’ is the restriction of
Y to D'. A clique of a weighted graph is a complete weighted subgraph.
An isomorphism between two weighted graphs (V, D) and (V', D’) with
weight functions v: D — A and v': D' — A’, respectively, consists of
a bijection f between the sets V and V' and a bijection g between the sets
A and A’, such that for any two vertices vy,vy € V, we have {vy,v2} € D
with weight w if and only if {f(v1), f(v2)} € D’ with weight g(w). We
call the map f an automorphism of (V, D) if (V,D) = (V',D’), ¢ = ¢/,
and g is the identity on A.

DerFINITION 1.4.12. By I we denote the complete weighted graph whose
vertex set is the set of roots in Eg, and where the weight function is
induced by the dot product. Similarly, by G we denote the complete
weighted graph whose vertex set is I, and where the weight function is the
intersection pairing in Pic X.

We can rephrase Remark and Corollary in terms of I' and G
as follows.

REMARK 1.4.13. There is an isomorphsim of weighted graphs between G
and I'; that sends a vertex e in G to the corresponding vertex e + Kx
in I', and an edge d = {ej,ea} in G with weight w to the edge 6 =
{e1 + Kx,e2 + Kx} in " with weight 1 — w. The different weights that
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occur in G are 0,1,2, and 3, and they correspond to weights 1,0, —1,
and —2, respectively, in I'.

COROLLARY 1.4.14. The weighted graphs G and I' have isomorphic au-
tomorphism groups, given by the Weyl group Wyg.

1.4.3 The anticanonical elliptic surface

Let k£ be a field, and S a del Pezzo surface of degree 1 over k. In this
section we give more details about the surface £ that was introduced in
Section [1.4.1} it is obtained from S by blowing up the base point O of
the anticanonical linear system | — Kg|. We show that it is an elliptic
surface, and we study the sections of this surface and relate these to the
exceptional curves on S (Proposition . For more theory on elliptic
surfaces, see [Shi90] and [SS10].

DEFINITION 1.4.15. An elliptic surface Y is a nice surface with a sur-
jective morphism f: Y — C, where C is a nice curve, such that the
following holds.

e The morphism f admits a section, that is, a morphism s: C — Y such
that
fos=1idc.

e Almost all fibers of f are elliptic curves.

e No fibers of f contain an exceptional curve of Y.

We call the morphism f an elliptic fibration.

We will now describe the surface £, and show that it is an elliptic surface
over P! (Lemma . We use the same notation as in Section m;
specifically, we identify the surface S with the smooth sextic in Px(2,3,1,1)
with coordinates (x : y : z : w) given by h = 0, where

h=y?+ a1y + azy — 3 — asx® — ayx — ag,

with a; € k[z,w] homogeneous of degree i for each i. The point O is
then given by (1 :1:0 : 0), and the blow-up of S in O is denoted by
m: & — S. We follow [VAZ09, 7.3] to describe &: it is the subscheme of
Pr(2,3,1,1) x P} given by

‘. {y2+a1xy+a3y—x3—a2x2—a4x—a6 =0;

vz —uw = 0,
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where u, v are the coordinates of IP’}C. The projection to P} is the morphism
v: & — P}, which was also introduced in Section Outside the
exceptional divisor of 7, which is given by O = {(1:1:0:0)} x Pl C €,
we have (u:v) = (2 : w). Set t = ¥, which gives z = tw on £. The generic
fiber of v is a cubic curve over the function field k(¢) of P!, and it is the
subset of Py(;)(2,3,1) given by

E: y* +way(t, )y +waz(t, 1)y — 2® — w?as(t, 1)2?

—whay(t, 1)x — wlag(t,1) = 0.

Let Az(t) be the affine open subset w # 0 of Py (2,3, 1) with coordinates
X = %, Y = 2. The intersection of E with Ai(t) is given by

w2
Y2 +a; (1) XY +az(t,1)Y = X3 +as(t, 1) X% 4 as(t, 1) X + ag(t, 1).

Since S is smooth and geometrically rational, the discriminant A of E is
a polynomial in k[t] of degree between 10 and 12 [SS10, 4.3, 4.4, 8.2, 8.3].
In particular, A is not identically 0, so E is an elliptic curve over k(t).
Similarly, for (ug : vo) € P}, the fiber v~ ((ug : vg)) is isomorphic to the
cubic curve in IP’% with affine Weierstrass equation

Y2+ a (uo, v0) XY + as (uo,v0) Y = X? + az(ug, vo) X >
+ aq(up,vo) X + ag(uo, vo). (1.4)

This is an elliptic curve for all (ug : vg) € IP’,lC such that vg # 0 and
A(";—S) = (0. Therefore, all but finitely many fibers of v are elliptic curves,

with zero-point given by the intersection with the exceptional divisor O.
Let K¢ be the canonical divisor on &.

LEMMA 1.4.16. The surface £ is an elliptic surface with elliptic fibration v.
Moreover, every fiber of v is linearly equivalent to —Kg and has self-
intersection 0.

Proof. We already showed that almost every fiber of v is an elliptic curve,
so we only have to show that no fibers of v contain an exceptional curve
on &. Since all fibers of v are given by , they are integral, so the
only way they could contain an exceptional curve is if they are one. Since
v restricted to £ \ O is the map u induced by the anticanonical linear
system | — Kg| (see Section , the fibers of v are linearly equivalent
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to —Kg = m*(—Kg) 4+ O. Since all fibers of v are linearly equivalent and
pairwise disjoint, they have self-intersection 0. Therefore no fiber is equal
to an exceptional curve. We conclude that £ is an elliptic surface with
elliptic fibration v. ]

REMARK 1.4.17. The set of k(t)-rational points on E forms a group, the
Mordell-Weil group of E over k(t) or of £ [Shi90, Theorem 1.1]. This
group is torsion-free and has rank at most 8 over k [Shi90, Theorem 10.4].
The set of sections of v form a group as well, and the map

P = (Xp,Yp) — (s: P\ {(1:0)} — & (t:1)— (Xp(t), Yr(t), 1))

induces an isomorphism between the group of k(t)-rational points on E
and the group of sections of v that are defined over k [Sil94, Proposi-
tion 3.10]. As a consequence of this correspondence, we sometimes talk
about a k-section as a morphism }P’}g — &, and sometimes as a curve on
&, whose generic point is the corresponding k(t)-rational point on FE.

The following definition generalizes the notion of section.

DEFINITION 1.4.18. A multisection of degree d or d-section of £ is an
irreducible curve C contained in £ such that the projection ¢|c: C' — IE”}C
is non-constant and of degree d.

REMARK 1.4.19. Note that a section is a multisection of degree 1, and in
a similar way as with sections, the d-sections of £ correspond to points on
the generic fiber E of £ that are defined over a degree d extension of k(t).

We end this chapter by showing that the exceptional curves on S induce
sections of v, and by giving a characterization of these sections on &.

REMARK 1.4.20. Since exceptional curves on S are defined over a sepa-
rable closure of & (Theorem [1.1.8]), from [VAOS, Theorem 1.2] it follows
that the exceptional curves on S are exactly the curves given by

z=p(z,w), y=q(zw),

where p,q € k[z,w] are homogeneous of degrees 2 and 3. Note that this
implies that an exceptional curve never contains O = (1 : 1 : 0 : 0).
Therefore, for an exceptional curve C' on S, its strict transform 7*(C)
on & satisfies

™) =-1, 7(0) - —Kg=7(C) (7" (-Kg5)+O)=14+0=1,
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so m*(C) is an exceptional curve on & as well. Moreover, since a fiber of v
is linearly equivalent to —Kg¢, the curve 7*(C') intersects every fiber once.
This gives a section of v.

PropPosITION 1.4.21. Let C' be a section of v on £. The following are
equivalent.

(i) C is the strict transform of an exceptional curve on S.
(ii) C' is of the form

z=p(zw), y=q(zw),
where p, q € k[z,w] are homogeneous of degree 2 and 3.
(iii) C' is disjoint from O.

Proof. (i) is equivalent to (ii) by Remark [1.4.20, and (ii) and (iii) are
equivalent by [Shi90, Lemma 10.9]. O
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Density of rational points on
a family of del Pezzo
surfaces of degree 1

In this chapter we study the Zariski density of the set of rational points on
del Pezzo surfaces of degree 1. In Section we give some background and
known results. In Section we state our main result (Theorem
and the main ingredient for its proof (Proposition . We prove the
latter in Section and prove our main theorem in Section Finally,
in Section we give examples. This chapter is based on work with Julie
Desjardins.

2.1 Rational points on del Pezzo surfaces

Let X be a variety defined over a number field k. In arithmetic geometry
we are interested in the set of k-rational points X (k) on X. For example,
we can ask whether X (k) is empty, and if so, if we can explain why. If
X (k) is not empty, we can further ask how big this set is: is it finite?
Infinite? And if it is infinite, what does it look like? Is it dense with
respect to the Zariski topology?
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For del Pezzo surfaces, some (partial) answers to these questions are
known. An overview can be found in [VAQ9, 1.4]; the following results
are stated there. For example, del Pezzo surfaces of degrees 1, 5, and 7
over a field k always contain a k-rational point, and del Pezzo surfaces of
degree at least 5 over a number field k satisfy the Hasse principle, meaning
that if such a surface contains an element in X (k,) for the completion k,
at every place v of k, then it contains a k-rational point. There are also
examples of del Pezzo surface of degrees 2, 3, and 4 over Q without a
Q-rational point even though they do have R-, C-, and Q,-rational points
for all primes p [VA09, Examples 1.4.1-1.4.3].

Zariski density of rational points

In the rest of this chapter, by density we mean density with respect to
the Zariski topology, unless stated otherwise. To give an overview of what
is known for the Zariski density of the set of rational points on del Pezzo
surfaces, we introduce another property of a variety.

DEFINITION 2.1.1. A variety X over a field k is k-unirational if there is
a dominant rational map P} --+» X for some n.

REMARK 2.1.2. Note that if two varieties are birationally equivalent over
a field k, one is k-unirational if and only if the other one is. Moreover,
if k is infinite, then k-unirationality implies Zariski density of the set of
k-rational points.

THEOREM 2.1.3. Let k be a field. The following hold.

(i) Del Pezzo surfaces of degree at least 3 over k with a k-rational point
are k-unirational.

(ii) Del Pezzo surfaces of degree 2 over k that contain a point that is
neither in the ramification locus of the anticanonical map, nor in the
intersection of four exceptional curves, are k-unirational.

(iii) Del Pezzo surfaces of degree 1 that admit a conic bundle structure
are k-unirational.

Proof. (i) Segre proved this for degree 3 and k = Q in [Seg43] and [Seg51].
Manin proved it for d > 5, as well as for d = 3,4 for large enough cardi-
nality of & [Man86, Theorems 29.4, 30.1]. Kollar finished the case d = 3
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[Kol02], and Pieropan the case d = 4 [Piel2, Proposition 5.19]. Part (ii)
is in [STVA14]; part (iii) is in [KMI7]. O

Of course, if a del Pezzo surface S of degree 1 over a field k is not minimal,
then we can blow down exceptional curves to obtain a del Pezzo surface
S’ of higher degree, and use Theorem [2.1.3] (i) or (ii) hold to determine
whether S’ is k-unirational. Since S and S’ are birationally equivalent,
S is unirational if and only S’ is. The del Pezzo surfaces of degree 1 in
Theorem [2.1.3] are those that are minimal with Picard rank 2; see Theo-
rem Outside this case the question of k-unirationality for minimal
del Pezzo surfaces of degree 1 is wide open. Even though these surfaces
always contain a k-rational point (the base point of the anticanonical lin-
ear system), we do not have any example of a minimal del Pezzo surface
of degree 1 with Picard rank 1 that is known to be k-unirational, nor of
one that is known not to be k-unirational.

If k is infinite, then k-unirationality implies density of the set of k-rational
points. Therefore, for k infinite, Theorem [2.1.3|implies that for a del Pezzo
surface X of degree at least 3, the set X (k) of k-rational points is Zariski-
dense if and only if it is not empty, and if X has degree 2, the set X (k)
is Zariski-dense if it contains a point outside the ramification locus of the
anticanonical map and not contained in the intersection of four exceptional
curves. While unirationality for del Pezzo surfaces of degree 1 is still out
of reach, we can at least try to prove Zariski density of the set of k-rational
points for these surfaces. A strong reason why we expect that the set of
k-rational points on a del Pezzo surface of degree 1 is dense, at least when
k is a number field, is the following conjecture by Colliot-Thélene and
Sansuc.

CONJECTURE 2.1.4. [CT92, Conjecture d] For every geometrically ratio-
nally connected variety over a number field, its set of rational points is
dense in the Brauer—-Manin set for the adelic topology.

Since del Pezzo surfaces of degree 1 are geometrically rationally connected
and have a rational point, this conjecture implies the density of their set
of rational points over number fields [Wit18, Remark 2.4(iii)].

27



2. DENSITY OF RATIONAL POINTS

Known results

Let S be a del Pezzo surface of degree 1 over a field k with char k # 2, 3,
and let £ be the associated elliptic surface obtained by blowing up the
base point of the linear system | — Kg|. We identify S with its anticanon-
ical model in the weighted projective space Px(2,3,1,1) with coordinates
x,y, z,w, and since char k # 2,3, we define S as the zero locus of

Y2 = 2* 4 2 f(z,0) + gz, w),
where f and g € k[z, w] are homogeneous of degrees 4 and 6, respectively.

Previous results on Zariski density of S(k) are obtained by proving that
the set £(k) is dense in &€, which implies the result for S(k). People have
done this either by considering root numbers of fibers, or by constructing
a multisection.

REMARK 2.1.5. If £ contains a section over k other than the exceptional
curve above the base point of | — Kg|, then this section corresponds to a
non-zero k(t)-rational point in the Mordell-Weil group of £, which has no
torsion (Remark . By Silverman’s Specialization Theorem [Sil83,
Theorem C], this gives a non-torsion k-rational point on all but finitely
many fibers of £, thus implying the density of the set of k-rational points
on &£, hence on S.

We briefly state previous results here.

In [VA11], Varilly-Alvarado proves Zariski density of the set of Q-rational
points of S when f = 0 and g = A28 + BwS, with non-zero A, B € Z,
such that either 34/B is not a square, or gcd(A,B) =1 and 9t AB. His
results are conditional under the finiteness of the Tate-Shafarevich group
of elliptic curves with j-invariant 0. Over Q, the latter implies that the root
number of such an elliptic curve E equals (—1)"2K(E) - Varilly-Alvarado
shows that his surfaces have infinitely many disjoint pairs of fibers of £
with opposite root number, thus showing that there are infinitely many
fibers with positive rank.

Ulas and Toghé, prove Zariski density of the set of Q-rational points of S
in the following cases.

e g = 0 and deg(f(z,1)) < 3, or ¢ = 0 and deg(f(z,1)) = 4 with f
not even, or f = 0 and ¢(z,1) is monic of degree 6 and not even [Ula07,
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Theorems 2.1 (1), 2.2, and 3.1].

e g = 0 and deg(f(z,1)) =4, or f =0 and g(z,1) is even and monic of
degree 6, both cases under the condition that there is a fiber of £ with
infinitely many rational points [Ula07, Theorems 2.1 (2) and 3.2].

e S can be defined by y?> = 23 — h(z,w), with h(z,1) = 2° + az® +
b22 + cz +d € Z[z], and the set of rational points on the curve Y? =
X3 +135(2a — 15) X — 1350(5a + 2b — 26) is infinite [Ula08, Theorem 2.1].
e f(z,1) and g(z,1) are both even of degree 4 and there is a fiber of &
with infinitely many rational points [UT10, Theorem 2.1].

Jabara generalized the results from [Ula07] mentioned above in [Jabl2]
Theorems C and D]. Though the proofs of these two theorems are incom-
plete (see [SvL14, Remark 2.7]), they hold for sufficiently general cases.

In [SvL14], Salgado and van Luijk generalize some of the previous results,
proving Zariski density of the set of k-rational points of S for any infinite
field k with char k # 2, 3, assuming that there exists a point @ on a smooth
fiber of £ satisfying several conditions, among which that a multisection
that they construct from () has infinitely many k-rational points.

2.2 Main result

Our main theorem is the following; recall that this is joint work with Julie
Desjardins.

THEOREM 2.2.1. Let k be a number field, let A, B € k be non-zero, and
let S in P(2,3,1,1) be the del Pezzo surface of degree 1 over k given by

y? =23 + A2% + BuS. (2.1)

Let £ be the elliptic surface obtained by blowing up the base point of the
linear system | — Kg|. Then the set of k-rational points on S is dense in S
with respect to the Zariski topology if and only if S contains a k-rational
point P with non-zero z,w coordinates, such that the corresponding point
on & lies on a smooth fiber and is non-torsion on that fiber.

REMARK 2.2.2. Note that the family of surfaces we consider is the same as
the one studied by Vérilly-Alvarado in [VA11]. Moreover, the case A =1
is proven by Ulas in [Ula07] for £ = Q under the same condition that we
have (the existence of a fiber of £ with infinitely many rational points);
we generalize his result to any non-zero A, and to any number field.
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While Salgado and van Luijk prove their result over all infinite fields with
characteristic unequal to 2,3 in [SvLL14], their condition that there exists
a point () such that their multisection has infinitely many rational points
is not easy to verify, nor is it clear to hold for every surface whose set of
rational points is dense, that is, it might not be a necessary condition. For
the family in Theorem we give sufficient and necessary conditions
for the set of rational points of S to be dense.

Let k be an infinite field with char k& # 2,3, let A, B € k non-zero, and
let S be the del Pezzo surface of degree 1 over k given by , with
canonical divisor Kg. Let £ be the elliptic surface obtained by blowing
up the base point of the linear system | — Kg|. The key ingredient of the
proof of Theorem [2.2.1]is Proposition [2.2.60 We recall some notation from
Section [1.4.3] which we will use throughout this chapter.

NOTATION 2.2.3. Let m: £ — S be the blow-upof Sin O =(1:1:0:0)
with exceptional divisor O. Since 7 gives an isomorphism between &£ \ @)
and S\ {O}, we denote a point R € £\ O by the coordinates of w(R) in
P(2,3,1,1). Let v: & — P! be the elliptic fibration on &, which is given
on S by the projection onto (z : w). For R = (xr : yr : zr : wg) € S\{O},
we denote by Rg the inverse image 7~ 1(R) on &, which is a point on the
fiber v=1((2R : wg)).

DEFINITION 2.2.4. For any point R = (zgr : yr : zr : wg) in £ with
YR, 2r 7 0, we define the curve Cr C & as the strict transform of the
intersection of S with the surface given by

3rhehrr — 2yrzny — (vh — 242%)2° + 2B2jw® = 0. (2.2)

REMARK 2.2.5. For R = (2 : yr : z2r : wg) in € with yr,zr # 0, the
curve m(CR) does not contain the point O, so we identify the curve Cr
with 7(Cr) C P(2,3,1,1); see Notation

If R is a point on S with non-zero z-coordinate and such that Rg lies on a
smooth fiber and is non-torsion, then its y-coordinate is non-zero as well,
and every non-zero multiple nRg of Rg on its fiber has non-zero z- and
y-coordinate; therefore we can define C, g, for every non-zero integer n.
We use this in the following proposition. Recall the definition of d-section

(Definition (1.4.18)).

PROPOSITION 2.2.6. Let P be a point in S(k) with non-zero z,w coor-
dinates, such that Pg lies on a smooth fiber and is non-torsion. If k is a
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number field, then there exists an integer n such that one of the following
holds:

(i) Cy,p. has a component that is a section of £ that is defined over k;
(ii) Cyp. Is a 3-section of £ of geometric genus 0;

(iii) Cpp, is a 3-section of £ whose normalization is an elliptic curve
with positive rank over k.

REMARK 2.2.7. Note that case (i) in the previous proposition immedi-
ately implies the density of the set of k-rational points on S, see Re-
mark [2.1.9]

2.3 Creating a multisection
In this section we prove Proposition [2.2.6] We use Notation [2.2.3]

REMARK 2.3.1.Let R = (zr : yr : 2r : wr) be a point in &, with
YR, 2r # 0, and let Cr be the corresponding curve as in Definition
Let A% be the affine open subset of P(2,3,1,1) given by w # 0, with
coordinates X = =5, Y = Y, and T = Z. We describe the intersection

Cr N A3. Write
F=Y?_-X3_- AT® — B, (2.3)
G = 32525 XT — 2yp23Y — (% — 242813 + 2B23,.

We have CrNA3 = Z(F)N Z(G), where Z(F) and Z(G) are the zero loci
of F and G, respectively. Since yr,zr # 0, the projection p: A3 — A?
to the X, T-coordinates has a section given by

e (XT) s ( X, 30323 XT — (v — 2A428)T8 + QBZ%7T> .

2sz%
Note that p induces an isomorphism Z(G) — A? with inverse r. It
follows that Cr N A3 is isomorphic to p(Z(F)), and the latter is defined
by Hr = 0, where
Hp = 4325 X3 — 92} 2L X2T? + (62%,2% — 1242%25) X T?
—12Ba%23 XT + (442528 + 4Ayhz% — 442257 — 285)T°
+ 4Bz} (v — 2429)T° + 4B2%(vh, — B). (2.4)
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We denote by K¢ the canonical divisor of £. Let k be an algebraic closure
of k, and write Cr for the base change Cr X}, k.

LEMMA 2.3.2. Let R = (g : yr : 2 : wr) be a point in € with yr, zr
non-zero, and let Cr be the curve in Definition The following hold.

(i) The curve Cr does not contain a fiber of £.

(i) The curve C is contained in the linear system | — 3K¢ + 30|, and
intersects every fiber of v in three points counted with multiplicity.

Proof. (i). From equation it is clear that Cr does not contain the
fiber w = 0. Moreover, since the coefficient of X3 of Hp as a polyno-
mial in k[T is constant and non-zero, C'r does not contain any fiber with
w # 0, either.

(ii). The linear system | — 3Kg| induces the 3-uple embedding of S into
P (Section . Under this embedding, the curve 7(CR) is given by the
intersection of S with a hyperplane, hence we have 7(Cg) ~ —3Kg. Since
YR, 2r 7 0, the image m(CRr) does not contain the point O, so this implies

Cp = 7 (n(CR)) € |7 (=3Ks)| = | — 3Ke + 30].

Since a fiber F of v is linearly equivalent to —Kg, it has self-intersection
zero (Lemma [1.4.16), and O is a section of v, we have

F-Cr=F (-3Kg+30)=0+3=3.

Since F is irreducible, it follows that, since F is not contained in Cg, the
number of intersection points of F and Cp is 3, counted with multiplicity.
O

Let (3 € k be a primitive third root of unity. Note that, for a curve Cr as
in Definition the morphism of P(2,3,1,1) given by multiplying the
w-coordinate with C32 restricts to an automorphism of Cr = Cgr X}, k.

DEFINITION 2.3.3. Let R = (xR : yr : 2r : wg) be a point in &, with
YR, 2r # 0, and let Cr be the corresponding curve as in Definition [2.2.4
By o we denote the automorphism of Cr given by

o:(z:y:ziw)— (z:y:z2:Gw) = (Gr:y: Gz w) (2.5)

Recall that 7: & — S is the blow-up of S in O, and v: &€ — P! is the
elliptic fibration on £.
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PROPOSITION 2.3.4. Let R = (zp : yr : zr : 1) be a point in £, with
xR € k, yr,2r € k*, and let Cg be the curve in Definition [2.2.4. The
following hold.

(i) The curve CR is singular in R, o(R), and o?(R).

(i) If 7(R) is not contained in an exceptional curve on S = S xy k, then
CR either contains a section that is defined over k, or it is geometrically
integral and has geometric genus at most 1, in which case R, o(R),
02(R) are all double points.

Proof. (i). It is an easy check that R is contained in Cr. Let mp be the
maximal ideal in the local ring of R on £. The point R lies in the affine
space A% C P(2,3,1,1) defined by w # 0 as in Remark The ideal
mp is generated by X —xgr, Y —yr, and T'— zr. Let F,G be as in .
We have £ N A% = Z(F), and using the identity B = y% — 23, — At%, we
can write F' as

F =2yr(Y —yg) — 32%(X — xg) — 6At3(T — zR)
+ (Y —yr)?> — (X —xg)® — 32r(X —2g)* — A(T — 2g)°
— 6Azp(T — 2gr)% — 15At3(T — 2p)*
—20A23(T — 2g)% — 15A2%(T — zr)°.

Set
a=2yr(Y —yr) — 3x%(X —TR) — 6Azl53(T — 2R),

then it follows that « is contained in m%, so the tangent line to £ at R is
given by a = 0.
Similarly, we can rewrite G as

G = —zdha + 32%25(X — 2p)(T — 2z5) — (z% — 242%)(T — 2)?
— (3xhzr — 6AZ5L)(T — 2r)?,

so we conclude that G is contained in m%, hence Cp is singular in R. Since
o is an automorphism of C'g, this implies that Cr is singular in o(R) and
a%(R), as well.

(ii). Assume that 7(R) is not contained in an exceptional curve on S.
We distinguish two cases. First assume that C'g is not irreducible or not
reduced. Since C'p does not contain a fiber and intersects every fiber
with multiplicity 3 (Lemma , this implies that there is a curve that
intersects every fiber with multiplicity one (hence is a section), say Hi,
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such that C'r either contains H; as irreducible component, or Cp is a
multiple of H;. Since Cp is disjoint from the zero section, it follows that
7(Hy) is an exceptional curve on S (Proposition . Therefore, by
our assumption, R is not contained in H;, so C'g is not a multiple of Hq,
and H; is an irreducible component of Cr. Let Hy be the other (not
necessarily irreducible or reduced) component of Cr, which contains R.
If Hs were not irreducible or not reduced, it would either be a double
section or two sections intersecting in R. In both cases, m(R) lies on an
exceptional curve, contradicting our first assumption. We conclude that
H, is irreducible and reduced. Since Cg is defined over k, it is fixed by the
action of the absolute Galois group of k£ on Pic S. The exceptional curves
of S are all defined over the separable closure k*? of k by Theorem m,
so the Galois group Gal(k*?/k) acts on them. Since C'g contains only
one exceptional curve of S, which is Hj, it follows that this component is
invariant under the Galois action, hence it is defined over k. This finishes
the first case. Now assume that Cg is irreducible and reduced. Since Cg
is contained in the linear system | — 3K¢ + 30| by Lemma from the
adjunction formula it follows that its arithmetic genus is %(9 -3)+1=4.
Since the three distinct points R, o(R), 0?(R) are all singular on Cr, we
conclude that they all have multiplicity 2, and the geometric genus of Cr
is at most 1. O

REMARK 2.3.5. In the last proof, we concluded that in the case where
Cr is geometrically integral, the geometric genus of Cp is at most 1. If
it were 0, then Cr would contain exactly one more singular point besides
R, 0(R), 0%(R), say Q. Then o(Q) and ¢%(Q) would be singular points
of C'r as well, so @Q would be a fixed point of 0. We study this case
further here. Note that the points on the intersection of Cr with the
fiber above (1 : 0) are fixed points of 0. Assume that ¢ has a fixed point
Q = (vqQ : yq : 2@ : wg) in Cr\ (Cr N &q.)). From it follows
that there is a A € k such that Myg = yg, \2zg = 20, A\2g = 2¢, and
AZwg = wg. Since wg # 0, the last equation implies A = an—2 for some
n > 0, and it follows that zg = zg = 0. From and the fact that C'g
lies in £ we find

2yrzhyq = 2B2jw); (2.6)
yé = Bw%.

Since B,wg # 0, it follows from (2.7 that yg # 0 and we can write

34



2.3. CREATING A MULTISECTION

2
B= (3}‘3) . Substituting this in lj we find
Q

2yRrzhyq = ( ) 2w}y,
v
3

Since yg, zgr # 0 this implies ygr = ~%, from which it follows that we have
B = y%. Since R is contained in &, 1t follows that y% = x% + A2% + y%,

R}
from which we get A = %. So in this case, the surface S is of the form
R

y? = 2% + —820 + ypuS,
R
and @ = (0:yg:0:1). But then C contains the section
v =22,
D: R 5 (2.8)
Yy = Yyrw-,

contradicting the fact that Cg is irreducible. We conclude that if Cp is
geometrically integral, then it has genus 0 if and only if it has a singular
point on the fiber above (1 : 0).

REMARK 2.3.6. Let R be as in Proposition[2.3.4] If Cr is a geometrically
integral curve of geometric genus 1, then, since C'r intersects every fiber
of v in three points counted with multiplicity (Lemma , this implies
that Cp is a 3-section. Moreover, since R is a double point on Cg, there
is a unique third point of intersection of C'r with the fiber above (zp : 1)
in £, say Q. Since xR, yr, zr are elements in k, the fiber above (zg : 1)
is defined over k, and Cgr and R are both defined over k. It follows that
Q is defined over k. Hence Ep = (Cg,Q) is an elliptic curve defined
over k, where Cp is the normalization of Cr. Let Dg be the sum on Eg
of the points corresponding to o(Q) and ¢%(Q) on Cg. Note that o(Q)
and 02(Q) are either both defined over k or conjugated, so Dp is defined
over k.

NoTATION 2.3.7. If R is as in Proposition and such that Cg is a
geometrically integral curve of geometric genus 1, we denote by Er the
elliptic curve and by Dpg the point on it, both as defined in Remark

Let 7 be the generic point of S, that is, 1 is the point (Z : § : 2 : 1) over the
function field k(S) = k(Z, 7, 2) = Frac(k[z,y, z]/(y? — 23 — A25 — B)) of S.
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Let Oy € Py(s)(2,3,1,1) be the corresponding curve given by (2.2). From
Proposition [2.3.4 and Remark [2.3.5] it follows that C; is geometrically
integral of genus 1. Let £ be the corresponding elliptic curve with point
D, as in Notation In Lemma we give a Weierstrass model for
the curve E,, which we will use in Proposition

Recall that A, B are fixed non-zero elements in k. We define the polyno-
mial

q = 41929394 (2.9)
in the polynomial ring k[Z, Z| as follows.

qr = Tj

g2 = —#% + 843573 + 4AB35;

g3 = 7%+ 8(A2% — B)#3 +16(A%2'2 + AB3);

29512 + (403 + 24A26) 79+ 16 <9AB,§6 B2+ 6A2§12> 76

44
+1928 <A3218 +3A42B3'2 + 2A3226) i3
+ 64(AB32% +242B%3'% 4 A3B3'8).

LEMMA 2.3.8. There exists a unique polynomial § € k[z, Z], and unique
rational functions

_ _ « __B
&p = (q143)%° 7D = (q193)%°

where « and [ are polynomials in k[Z, Z|, such that the leading terms of
d, o and 3, as univariate polynomials in Z, are given by

224j'63

)

_97B38581 i216j42’ %
respectively, and such that the following holds. There is an isomorphism
w between the elliptic curve E;, and the curve with Weierstrass equation
given by

) (2.10)

such that the denominators in the defining equations of w and w™! are all
of the form 2%3%(qaqy )¢ for positive integers a, b, c. Moreover, the point on
corresponding to the point D, on £, is given by

w(Dy) = (£p:7D)- (2.11)

Proof. The magma code that is used in this proof can be found in [Codal.
Let @ be the third point of intersection of C, with the fiber of 7 on the

36



2.3. CREATING A MULTISECTION

base change & x, k(S) over P! x;, k(S). Write Q = (z¢ : yg : 2¢ : 1), with
79, Y, 2g € k(S). Then @ lies in C;, N (A3 xy, k(S)), which is isomorphic
to the curve C’% in A% x; k(S) defined by H, = 0, where H, is given
in after substituting R by n. We find zg by substituting 7' = Z,
B=g>—3— A% in and factorizing, which yields

934 — 8z g?

We conclude that the elliptic curve Ej, as defined in Remark [2.3.6]is iso-

) ~ -4 g2
morphic to the curve (C’%, (%

of C’%. With magma we compute a Weierstrass model for £, which is given
by

,2)), where CN'% is the normalization

(32555

(q2q4)8
where § is a polynomial in k[7, 2] with leading term —27Bz%8#8!. We
verify with magma that the denominators in the defining equations of the
isomorphism w; between £, and the curve |i as wel as those of w| L
are all of the form 2“/(q2q41)b/ for positive integers a’,0’. The change of
coordinates

1 (3:25)2 1 (3:2%)3
§ = (q2q4)2€7 T = wa@
induces an isomorphism wo between the curve ([2.12]) and the curve defined
by
=840 (2.13)

We conclude that w = wpow is an isomorphism between E, and the curve
, and the denominators in the defining equations of w and w™! are
all of the form 2“3b(ng4)c for positive integers a, b, c.

If ¢’ was another polynomial in k[Z, Z] such that E, were isomorphic to
the curve given by +2 = €3 4+ ¢, then we would have §' = v%§ for some
v € k(5), hence §' would not have leading term —27Bz4838! as univariate
polynomial in Z. We conclude that § is the unique polynomial with leading
term —27B2*#8! such that E), is isomorphic to the curve with Weierstrass
model . With magma we compute the sum D on the curve of

the points corresponding to ( §M,C32) and (ng,g%) on

4g* 43°
Cy. We find D = ({p,yp) with {p = m, Yp = ﬁ, where a, 8 are
elements in k[Z, Z] with leading terms as univariate polynomials in Z given
by %2165;42 and %2245:63, respectively. O
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REMARK 2.3.9. Let L be the hypersurface in A% x S defined by

4228 X3 — 9212 X2T? 4 (62527 — 1242228 X T — 12B2?25XT
+ (442325 + 449225 — 44?212 — 2OTO + 4B23 (23 — 242513
+4Bz5(y* — B) =0,

and let \: L — S be the projection to S. Let R = (xg : ygr: zr : 1) be
a point in & with xr € k, ygr, 2r € k*, q(zR, 2r) # 0, and such that Cr
is geometrically integral of genus 1. We identify R with w(R) € S; the
fiber of X\ above R is the curve in A? given by Hp = 0, where Hp is in
(2.4)), hence it is isomorphic to Cr N A3, where A3 is defined by w # 0 in
P(2,3,1,1). Moreover, the curve C, N (A% xj k(S)) is isomorphic to the
generic fiber of A.

Let § and w be as in Lemma and Er, Dp as in Notation [2.3.7] Since

q(wR, zR) is non-zero, the isomorphism w specializes to the fiber A~!(R),
and we obtain an isomorphism between Er and the curve given by

v =€+ (xR, 2R), (2.14)
that sends the point Dy to the point

(€p(zR, 2R); YD(TR: 2R))-

Let P = (zg:yo: z0: 1) be a point on S with zy # 0. Let V be the set
of points R = (xR : yr : 20 : 1) on the fiber of P¢ with xp € k, yg € k*,
such that ¢(zg,z0) # 0 (where ¢ is given in ), and such that Cg is
geometrically integral of genus 1.

ProrosiTIiON 2.3.10. If k£ is a number field, then for all but a finite
number of points R in the set V', the curve Er has positive rank over k.

Proof. Let § be as in Lemma We define the following polynomials
in k[z,&,7].

¢1 = ]-7 ¢2 - 2’}/7 1/}3 - 364 + 125(‘%7 20)67

g = 20 (€8 +200(, 206> — 86(, 20)?)

and recursively,

Voma1 = Pmiatlhy, — Ymo1¥y for m > 2, (2.15)
¢2w2m = 1/17271711/1m¢m+2 - wm—med)?nJrl for m > 3. (2'16)
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Let £p,vyp be as in Lemma For m > 1, we define v, z to be the

rational function

Um(Z, €D (, 20), 7D(Z, 20)) € k(Z).
Write d = q1(Z, 20)q3(%, 20) € k[Z]. From Remark we find

N2 N3 N4

Yoz = BB VY33 = 8 Va5 = PiER

where Ny, N3, N4 are polynomials in k[Z]. Let ¢; be the leading coefficient
of N; for i € {2,3,4}, then we have

deg (N2) =63, deg(N3) =168, deg(N4) =315,

1 3 1
24 64 120
Co = —2% Cc3 = =% cy = too.
4 0> 28 0> 213 0

We claim that for all m > 1 we have

N,
wm,i‘ = deﬂzlv

Where N, is a polynomial in k[Z] with leading coefficient ¢, such that

1 m2—1

deg (N,,) = 21(m? — 1) and Cm =M (2,23) .
Assume that this claim is true (we prove this below). Since k is a number
field, there is an upper bound B = B(k) such that the torsion points on
the fiber of P¢ have order at most B [Mer96]. Let R = (zr: yr : 20 : 1)
be a point in V' such that vy, z(zr) is non-zero for all m < B. Note that,
since zg # 0, this holds for all but finitely many points in V' by our claim.
By Remark the curve Eg is isomorphic to the elliptic curve in A?
given by equation , where zr = z9. We identify Fr with this model.
Let Dg be the point on Er as in Notation [2.3.7) and note that Dpg is
defined over k because R is. Write

Er =E&p(TR,20), YR =7D(TR,20),

then we have Dr = ({r,vR) by Remark and since q(x g, z0) # 0, the
point Dpg is non-zero on Eg.

Note that for m > 1, the polynomial ¥, (zg,&,y) € k[€,7] is the m-th
division polynomial of Eg, as defined in [Sil09, Exercise 3.7], and from
the same reference we know that Dpg is m-torsion for m > 2 if and only if
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2. DENSITY OF RATIONAL POINTS

Ym(TR,ERyYR) = Ym,z(zr) = 0. Since we chose R such that 1y, z(zr) # 0
for all m < B, we conclude that Dg is non-torsion on Er. This, together
with the proof of the claim below, proves the propostion.

Proof claim.

We prove this by induction. Set & > 2, and assume that the claim holds
for m < 2k+1 (note that this is indeed the case for k = 2). Then we have

deg (Nipa Vi) = 21((k +2)* = 1) + 63(k* — 1) = 21(4k* + 4k);
deg (Np1N2,1) = 21((k — 1)2 = 1) + 63((k + 1)? — 1) = 21(4k? + 4k),
so we find
deg(Nep1 Vi) = deg (Ni 1Nty ) = 21((2k + 1) = 1). (2.17)

Completely analogously, we find that the denominators of wk+275¢% ; and
T/’k—l,;ﬁbgﬁ,i are both equal to d*+1)*~1 Combining this with , we
find from the recursion in that the denominator of o141 7 is equal
to d2*1D*=1 that the degree of Nogsq is at most 21((2k +1)2 — 1), and
that the coefficient of the monomial #21((2k+1)*=1) jp Nogyq is given by
ck+gci — ck_lczﬂ, which by induction is equal to

1 _ 1 _
(2 G ereie L gy
— (k= DG S e 1) ) D
2 2
= (0 +2) - (k= 1)(k + 1)) (584
1 2
= (2h 1) (5

Since the latter is non-zero we conclude that it is the leading coefficient
of Noji1, so we find cor1 = (2k + 1)(%28)(2’”1)2*1, and we conclude
deg(Naks1) = 21((2k + 1)2 — 1). This finishes the proof of the claim for
m = 2k + 1; we will now prove it for m = 2k + 2 in a similar way. By
induction, we have

40



2.3. CREATING A MULTISECTION

deg (N?Nip1Nirs) = 42(k* — 1) +21((k +1)* = 1)
+21((k +3)? = 1)
=21((2k +2)* — 1 +3)
deg (N1 Nepa Mo ) = 21((k = 1)* = 1) + 21((k + 1)* = 1)
+42((k +2)? - 1)
=21((2k +2)* — 1 +3),

so we find

deg (Nl?Nk+1Nk+3> = deg (quNkHNx?H)
=21((2k +2)? — 1) +deg (No). (2.18)

Analogously we find that the denominators of both ¢/3@¢k+1,5:1/1k+3@ and

z/;k M@bkﬂmk 2z are equal to d+2°~1g2°~1 " Combining this with
, we find from the recursion in - ) that the denominator of 1,Z)2k+2
is equal to d@*+2)°=1 that the degree of Noj is at most 21((2k+2)2—1),
and that the coefﬁment of the monomial #21((2k+2)*=1) i Noj. 19 is given
by 6(6k6k+16k+3 — ck,lckﬂckw), which by induction is equal to

= (k?(}%)?“ﬂ“”(w (L)1 3 Loy
—(k - )( 51 1(k+1)(2 BB 4 92 (; 82 <k+2)2—2>
Ci (K*(k+1)(k+3) — (k= 1)(k+ 1)(k + 2)2)(328)4’“2*8’“%)

(0
(2 3(2k + 2)(2 )(%*2)22)

\}

1
c

[\

1 1
== (cm + 2><2z3><2’f+2>2—1) = (2k +2)(520)

Since the latter is non-zero we conclude that it is the leading coefficient

of Nojpio, so we find copro = (2k + 2)(32 )(2k+2) , and we conclude
deg(Noki2) = 21((2k +2)? — 1). This ﬁmshes the proof of the claim for
m = 2k + 2. The rest of the claim now follows from induction. O

We are now ready to prove Proposition [2.2.6] Recall that for a point
PeS\{(1:1:0:0)}, we denote by Pg the corresponding point on &.
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2. DENSITY OF RATIONAL POINTS

By the fiber of Pe we mean the fiber of the elliptic fibration v: & — P!
that contains Pg; see also Notation [2.2:3]

PROOF OF PROPOSITION [2.2.6] Let k£ be a number field, and let P be
a point P = (zg : yo : 20 : 1) as in Proposition Since P is defined
over k and Pg has infinite order on its fiber, the set P = {nPs :n € Z\ 0}
contains infinitely many points on the fiber of Ps that are all defined
over k and have non-zero y, z-coordinates. Since the strict transform of
an exceptional curve on S is a section of £ (Remark , there are
at most 240 points in P that are contained in the strict transform of an
exceptional curve on S (Table . Let Vi be the set of these points. Let
V5 be the set of points (xg : yr : 20 : 1) € P such that xp is a root of the
polynomial ¢(%, zo) € k[Z] defined in (2.9); there are at most 25 points in
Va. For all points R in P\ V1, the curve Cf is defined over k, and it either
contains a section defined over k, or is geometrically integral of genus at
most 1, by Lemma[2.3.4] Let V3 be the set in P\ (V4 UVa) for which Cp is
geometrically integral of genus 1, and for which the elliptic curve Er has
rank 0 over k; the set V3 is finite by Proposition We conlude that
the set P\ (V1 U V2 U V3) contains infinitely many points, and all integers
n for which nPg is in this set satisfy the statement in Proposition [2.2.6

2.4 Proof of the main result

In this section we prove Theorem Let A, B, k, S, and £ be as in the
theorem (in particular, k is now a number field), and recall Notationm

PRrROOF OF THEOREM [2.2.1] Let P be a point satisfying the conditions
in Theorem [2.2.1, By Proposition there exists an integer n such
that one of the following holds.

(i) Cpp, has a component that is a section defined over £,

(ii) Cype is a 3-section of £ of geometric genus 0, or

(iii) Cpp, is a 3-section of £ whose normalization is an elliptic curve
with positive rank over k.

Choose such an n and set R = nPs. Note that in case (i) we are done
by Remark In case (ii), the desingularization of Cr is a smooth
curve of genus 0. Since R is not a triple point on Cpg, the latter contains
a rational point given by the unique other point in the intersection of
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Cpr with the fiber of R, hence Cpr has infinitely many k-rational points.
In case (iii), Cr contains infinitely many k-rational points as well. Now
assume we are in case (ii) or (iii). Then Cp contains infinitely many k-
rational points, and since Cr intersects each fiber of £ in 3 points counted
with multiplicity, this implies that C'r intersects infinitely many fibers in
a k-rational point. We show that infinitely many of these points are non-
torsion on their fiber. Note that every smooth fiber is an elliptic curve
over k, hence there is an upper bound B = B(k) such that on all the
fibers, all the torsion points have order at most B [Mer96]. Let m < B be
an integer, and let T}, be the zero locus of the m-th division polynomial
tm € k[x,y,t] of the generic fiber E over the function field k(t). We have
Ym € klz,t], and for any 7 € k, the polynomial ¥, (x,7) € k[z]| has degree
m? [Sil09, Exercise I11.3.7]. So T}, is an m?-section of £. Moreover,
for every smooth fiber &, the intersection of T, with & is exactly the
set of m-torsion points on &, which has size m? [Sil09, Exercise I11.3.7
and Corollary 111.6.4]. It follows that T, intersects every smooth fiber
of £ in m? points, all with multiplicity 1. In particular, the curve Cp is
not a component of T;,, since in all three cases above, Cr intersects the
smooth fiber of P in a point with multiplicity 2. Therefore, the curve Cgr
intersects T;, only in finitely many points. Since all the torsion points
on the fibers of £ are contained in the finite union U,,<pT},, we conclude
that Cr intersects only finitely many fibers in a torsion point. Since we
already showed that Cpr intersects infinitely many fibers in a k-rational
point, this implies that Cr intersects infinitely many fibers in a k-rational
point that is non-torsion on its fiber. We conclude that infinitely many
smooth fibers of £ have infinitely many k-rational points. Since a smooth
fiber & is closed and irreducible in &, it follows that & N E(k) = &. So
E(k) contains infinitely many one-dimensional irreducible subsets, which
implies that it is of dimension 2, and since £ is irreducible we conclude
that £(k) = &, i.e., the set of k-rational points of £ is dense in £. Since £
and S are birationally equivalent, it follows that S(k) is dense in S as well.
Conversely, if S did not contain a point P as in the theorem, then S(k)
would be contained in the union of the torsion locus U,,<pT;, with the
two fibers (1 : 0) and (0 : 1) and the singular fibers, which is a strict closed
subset of S, hence S(k) would not be dense in S.
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2.5 Examples

We conclude this chapter by giving two examples where we prove the den-
sity of the set of rational points on specific del Pezzo surfaces of degree 1.
The rank of the Mordell-Weil group over Q of the surfaces in Examples
and is 0 by [DN) Corollary 2.4 and Figure 5], so in these cases
the density of the set of Q-rational points can not be proven by the exis-
tence of a section over Q (see also Remark .

EXAMPLE 2.5.1. Let £ be a number field and let S be the del Pezzo
surface of degree 1 in P(2,3,1,1) given by

y? =23 +6(272° + w®).

Note that S does not satisfy the conditions of [VA11l, Theorem 1.1] since
327 is a square and ged(6 - 27,6) # 1, hence the density of the set of
Q-rational points could not be proven by Vérilly-Alvarado [VA1ll, Exam-
ple 7.2]. However, the fiber £.;) of the anticanonical elliptic surface £
above (1 : 1) is smooth, and with magma we find that this fiber has rank 2.
So S contains a point that lies on a smooth fiber of £ and has infinite
order, hence S(k) is dense in S by Theorem

We illustrate this by constructing a 3-section as in . With magma
we find two generators for £.1)(Q), given by P = (1 : 13 :1: 1) and
Py =1(22:104:1:1). The curve Cp, is cut out from S by

3z — 26y + 3232° + 1203,

and it has geometric genus 1. We find Cp, N &1,y = {P1,Q1} with
Q1= (—% 2228 1). The elliptic curve E = (Cp,, Q1) is given by
Weierstrass equation

2 =¢3—2.3%.5%. 28368481,

and the point D = 0(Q1)+0?(Q1) has infinite order on E; its £-coordinate

is given by
_11- 33487 - 580020724757

0= (2-12-167-523)2 '
so D has infinite order on F by a result of Lutz and Nagel ([Corollary
VIIL.7.2][Sil09]). We conclude that the 3-section Cp, has infinitely many

k-rational points. Equivalently, we could have used the point P» to create
a 3-section with infinitely many k-rational points: the curve Cp, is cut
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out from S by 1452zxz — 208y — 1032423 + 12w3; it has geometric genus 1,
the third point of intersection of Cp, with the fiber £(.y is given by
Q2 = (%7&3 : —21%1207600583 21 1) , and the point o(Q2) + 0%(Q2) again has
infinite order on the elliptic curve (Cp,, Q2). We conclude that also Chp,
has infinitely many k-rational points.

EXAMPLE 2.5.2. Let £ be a number field and consider the del Pezzo
surface S of degree 1 in P(2,3,1,1) given by

y? = 23 + 24325 + 16uS.

Note that this surface does not satisfy the conditions of [VA11l, Theo-
rem 1.1], so the method there failed in this case [VA1ll Remark 7.4].
Salgado and van Luijk made the observation that this surface contains
the point P = (0 : 4 : 0 : 1), which is 3-torsion on its fiber on £ (more
generally, a surface of the form 32 = 23 + B?w® has the 3-torsion point
(0:8:0:1)). However, this point is contained in 9 exceptional curves,
so their method does not work with P. They did not find another point
for which the computations were doable to show density of S(k) [SvL14]
Examples 7.3 and 4.4 (iii)]. Finally, Elkies showed that the set S(Q) is
Zariski-dense in S, by constructing a multisection with infinitely many
rational points in the linear system | — 3Kg| that contains P as a point of
multiplicity 3 (this idea was generalized to any surface with a torsion point
in the master thesis [Bull8], though under the assumption that at least
one of the infinitely many multisections constructed there has infinitely
many rational points).

We prove the density of S(k) in S using Theorem with magma we
find that the fiber £q.5) above (1 : 5) is smooth and has rank 2, so S
contains a point that lies on a smooth fiber of £ and has infinite order (for
example P = (=63 : —14 : 1: 5)), hence S(k) is dense in S.

45






3

The action of the Weyl
group on the Eg root system

This chapter is an adaptation of the preprint [vLWa], which is at the time
of writing submitted for publication. Some of the results here were already
proved by the same author in the master thesis [Winl4]; we state which
results coincide in the relevant places (at Proposition and Lemma
and in Remarks [3.3.20| and [3.5.1)).

Let X be a del Pezzo surface of degree 1 over an algebraically closed
field k. Recall that the 240 exceptional curves on X are in one-to-one
correspondence with the exceptional classes in Pic X, and as we have seen
in Section these are in one-to-one correspondence with the 240 roots
in the Eg root system. In this chapter we study this root system and, more
specifically, the action of its automorphism group on the roots. The reason
we originally did this is because we wanted to study configurations of
intersecting exceptional curves on X; the results on this are in Chapter
However, since Eg arises in many more areas of mathematics, we thought
it useful to do a more thorough study of this root system. Therefore,
while this chapter contains results that are used in Chapters [4 and [5] it is
also self-contained, and the reader does not need to have any knowledge
of or interest in del Pezzo surfaces or algebraic geometry to be able to
appreciate it. In Remarks|3.2.8] [3.3.6] [3.3.23] [3.4.11] and [3.5.4] we explain
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how some of the results in this chapter translate to the 240 exceptional
classes in Pic X. Everything in these remarks is over the algebraically
closed field k.

3.1 Main results

NoOTATION 3.1.1. Recall the definitions graph, weighted graph, weighted
subgraph, clique, and isomorsphism between two weighted graphs in Defi-
nition [[.4.11] In this chapter we use the same definition for graph, and we
use the term colored graph for weighted graph; we will talk about colors
instead of weights, and define colored subgraph, clique, and isomorphism
between colored graphs analogously. The reason for this terminology is
that it allows us to talk about a monochromatic graph, i.e., a colored
graph where all edges have the same color. Whenever we talk about an
isomorphism of two cliques, we mean an isomorphism of colored graphs.

Let E be the set of roots in Eg. The following definition is analogous to
Definition [1.4.12)

DEFINITION 3.1.2. Let I' be the complete colored graph whose vertex set
is F, of which the color function on the edge set is induced by the dot
product in Eg. The different colors of the edges in I" are —2, —1,0, 1. For
a subset ¢ C {—2,—1,0,1}, we denote by I'. the colored subgraph of "
with vertex set E' and including all edges whose color is an element in c.

Let W be the automorphism group of I' as colored graph; recall that W is
isomorphic to the Weyl group Wy (Corollary . It is clear that if two
cliques in I" are conjugate under the action of W, they must be isomorphic
as colored graphs. The converse is not always true, and in general it can be
hard to determine whether two cliques in I' are conjugate under the action
of W. Dynkin and Minchenko studied in [DM10] the bases of subsystems
of Eg, and classified for which isomorphism classes of these bases being
isomorphic implies being conjugate. They call these bases normal. In this
chapter, we extend this classification to a large set of cliques in I' (more
specifically, cliques of type I, II, III, or IV, as defined below). In Theorem
[3:1-3] we show that with two exceptions, two such cliques are isomorphic
if and only if they are conjugate. One of the exceptions, which is the
clique described in Theorem (i), is one of the bases (of the system
4A;) that was also found as not being normal in [DMI10, Theorem 4.7].
Additionally, in [DM10] the authors determine when a homomorphism of
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two bases of subsytems extends to a homomorphism of the whole root
system. We answer the same question for cliques of type I, II, III, or IV
in Theorem [3.1.4]

Although the classification of different types of cliques and their orbits is
a finite problem, because of the size of I' it is practically impossible to
naively let a computer find and classify the cliques according to their W-
orbit. In fact, we avoid using a computer for our computations as much
as possible.

The Eg root polytope is the convex polytope in R® whose vertices are
the roots in E. By a face of the root polytope we mean a non-empty
intersection of a hyperplane in R® and the root polytope, such that the
root polytope lies entirely on one side of the hyperplane. If the dimension
of this intersection is n then we call this an n-face, and a 7-face is called
a facet. We study the following cliques in I', and their orbits under the
action of W.

(I) Monochromatic cliques

(IT) Cliques whose vertices are the vertices of a face of the Eg root
polytope

(III) Cliques of size at most three

(IV) For all ¢ # {—1,0, 1}, the maximal cliques in I,

More specifically, we prove the following theorem.

THEOREM 3.1.3. Let K1, K9 be two cliques in I', each of type I, II, III,
or IV. Then the following hold.

(i) If both Ky and Ko are of type I with color 0 and of size 4, then K
and Ko are conjugate under the action of W if and only if the vertices
sum to an element in 2A for both K1 and Ks, or for neither.

(ii) If both Ky and Ko are of type I with color 1 and of size 7, then K
and Ky are conjugate under the action of W if and only if the vertices
sum to an element in 2A for both K, and K», or for neither; this is
equivalent to K; and Ko both being maximal cliques or both being
non-maximal cliques, respectively, under inclusion in I'(1}.

(iii) In all other cases, K; and K» are conjugate under the action of W
if and only if they are isomorphic as colored graphs.
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Furthermore, we give conditions for an isomorphism of two cliques of types
I, II, IIT or IV to extend to an automorphism of the Eg lattice A (defined
in Section|1.4.2)). To this end we introduce the following complete colored
graphs.

Here « is either —1 or 1, two disjoint vertices have an edge of color 0
between them, and all other edges have color 1.

THEOREM 3.1.4. Let Ky, Ky be two cliques in I" of types I, I, III, or IV,
and let f: K1 — Ko be an isomorphism between them. The following
hold.

(i) The map f extends to an automorphism of A if and only if for every
ordered sequence S = (eq,...,e,) of distinct roots in K1 such that the
colored graph on them induced by I' is isomorphic to A, B, C,, D, or F,
its image f(S) = (f(e1),..., f(er)) is conjugate to S under the action
of W.

(ii)) If S = (ey,...,er) Is a sequence of distinct roots in K; such that
the colored graph on them induced by I' is isomorphic to either A or B,
then S and f(S) are conjugate under the action of W if and only if the
sets {e1,...,e,} and {f(e1),..., f(er)} are.

(iii) If Ky and Ky are maximal cliques, both in I'(_; 4 or both in

(5 10y, and S = (e1,...,e5) is a sequence of roots in K such that
the colored graph on them induced by I' is isomorphic to C_1 with
e1-eq =ey-e5 = —1, then S and f(S) are conjugate under the action
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of W if and only if both e = e1 + ea + e3 — e4 — e5 and f(e) are in the
set {2f1 + f2 | f1, fo € E}, or neither are.

(iv) If K1 and K» are maximal cliques in I'y_ 1y, and S = (e1, ..., e;)
is a sequence of distinct roots in K such that the colored graph G on
them induced by I' is isomorphic to Cy, D, or F, then S and f(S) are
conjugate under the action of W if and only if the sets {e1,...,e,} and
{f(e1),..., f(er)} are, or equivalently, if and only if the following hold.
o If G = Cy, both Y27y e; and 327_y f(e;) are in {2f1 + fo | f1, f2 € E},
or neither are.

o If G = D, both Y37y e; and 327_y f(e;) are in {2f1+2f2 | f1, f2 € E},
or neither are.

o If G = F, then both 3.%_, e; and Y%_, f(e;) are in 2A, or neither are.

REMARK 3.1.5. Note that to apply Theorem (i) to an isomorphism
f, we have to know whether certain ordered sequences of roots are conju-
gate. Theorem (ii), in combination with Theorem (i) and (ii),
tells us how to verify this when the colored graph on the roots in an or-
dered sequence is isomorphic to A or B. Theorem (iii) and (iv) tells
us how to verify this when the colored graph on the roots in an ordered
sequence is isomorphic to C,, D, or F.

REMARK 3.1.6. In the proof of Theorem [3.1.4] we specify for each type
of K1 and K5 which of the graphs A, B, Cy, D, and F' are needed to
check whether an isomorphism f extends. Of course one can see this
partially from the size and the colors, but it turns out that we can make
stronger statements. For example, surprisingly, an isomorphism between
two maximal graphs in I'g, ; always extends, and even uniquely (Corollary
. In the table in Remark we show the requirements for each
type of K; and Ko.

As we mentioned before, because of the size of I it is practically impossible
to naively let a computer find and classify all cliques of the above types
according to their W-orbit. This holds mainly for the results in Section[3.5]
where we study cliques of type IV. This is the only section where we use
a computer program, but without using results from the previous sections
to minimize the computations it would have been practically undoable.
Checking that two cliques are isomorphic is easily done by hand for types
I, II, and III, since with one exception of size fourteen, they are all of size
at most eight (see Sections and . For type IV we give necessary
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and sufficient invariants to check if two large cliques are isomorphic in
Section [3.5

REMARK 3.1.7. Apart from the work in [DMI0] on bases of subsystems
of Eg, some partial results of Theorems and [3.1.4 were known before.
We list them here and compare them to our results.

The orbits of the faces of the Eg root polytope under the action of W
are described in [Cox30, Section 7.5]. These include all monochromatic
cliques of color 1 (see Proposition . For one of the types of facets, we
give a different, more group-theoretical proof of the fact that they form
one orbit under the action of W, see Corollary [3.3.17]

The orbits of ordered sequences of the vertices in the faces (except for
one type of facets) have been described in [Man86, Corollary 26.8]. We
summarize his results in Proposition [3.2.12

Monochromatic cliques of color 0 are orthogonal sets, and their orbits un-
der the action of W are described in [DM10, Corollary 3.3]. We describe
the action of W on the ordered sequences of orthogonal roots in Proposi-
tion 441

Finally, in [CRS04] the authors give a classification of isomorphism types
of all maximal exceptional graphs (i.e., connected graphs with least eigen-
value greater or equal to —2 that are not generalized line graphs [CRS04,
Section 1.1]). From [CRS04, Corollary 3.6.4] it follows that these graphs
correspond exactly to the maximal cliques in I'yg ;3. Therefore our clas-
sification of isomorphism types of cliques of Type IV for ¢ = {0,1} (see
Appendices [A| and coincides with the classification of isomorphism
types of maximal exceptional graphs in [CRS04, Appendix A6]; see Re-
mark [3.5.32|for a comparison between our method and the one in [CRS04].
However, the classification of the isomorphism types is only part of our
results on the maximal cliques in I'rg 1}. We also give invariants for such
a clique that determine its isomorphism type, and we show that each iso-
morphism class is a full orbit under the action of W (Propositions
and . Moreover, in Corollary we show that every isomor-
phism between two representations of exceptional graphs in Eg extends to
an automorphism of Esg.

We split the chapter into sections that deal with one or more of the types
I, IL, III, or IV. Note that these four types do not exclude each other, and
some results in one section may be part of a result in another section. We
ordered the sections such that each section builds as much on the previous
ones as possible.
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Section states all the needed definitions as well as many known results
about Eg and the action of the Weyl group. We also set up the notation for
the rest of this chapter. The reader who is familiar with root systems, and
with Eg in particular, can skip this section. Section |3.3|contains all results
on the facets of the Eg root polytope, and cliques of type III. Section (3.4
deals with cliques of type I. Section [3.5] classifies all cliques of type IV.
This is the biggest section, and the only section where we use a computer
for some of the results (from Section onwards). The results from this
section are summarized in the tables in the appendices. Finally, we prove

Theorems [3.1.3] and [3.1.4] in Section [3.6]

All computations are done in magma [BCP97]. The code that we used can
be found in [Codb]. We want to thank David Madore, who gave us useful
references for results on Eg and the action of W. Moreover, there is a great
interactive view of Eg on his website http://www.madore.org/~david/
math/e8w.html, which has been very insightful.

3.2 The Weyl group and the Eg root polytope

Let A be the Eg lattice as defined in Section let T’ be the graph
defined in Definition with automorphism group W, and let E be
the set of roots in Eg. In this section we recall some well-known results
about these objects and the Eg root polytope. We also make a first step
in proving Theorems [3.1.3] and [3.1.4], by showing that for two cliques of
type I, IT, III, or IV in I" that are isomorphic as colored graphs, there is a

type that they both belong to (Lemma |3.2.13)).

Useful references for root systems and the Weyl group are [Bou68, Chap-
ter 6], and [Hum?72l, Chapter III].

The subgroup of the isometry group of R® that is generated by the reflec-
tions in the hyperplanes orthogonal to the roots in E' is called the Weyl
group, and denoted by Wg. This group permutes the elements in F, and
since these roots span R®, the action of Wy on F is faithful. The Weyl
group is therefore finite: it has order 696729600 = 24 .35 .5%.7. It is
equal to the automorphism group of the Eg root system [Hum72, Section
12.2], hence also to the automorphism group of the root lattice A, and to
the group W.

LEMMA 3.2.1. The Weyl group acts transitively on the Eg root system.
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Proof. [HumT72, Section 10.4, Lemma C]. O

From the description of A and Eg we see that the roots in E are of two
types. Either they are of the form (i%, e i%), where an even number

of entries is negative (giving 27 = 128 roots), or exactly two entries are
non-zero, and they can independently be chosen to be —1 or 1 (giving
4- () = 112 roots).

The following proposition contains Proposition 3.17 in [Winl4], where the
results are written in terms of exceptional curves on a del Pezzo surface
of degree 1.

PROPOSITION 3.2.2. The absolute value of the dot product of any two
elements in F is at most 2. Let e € ¥ be a root. Then e has dot product
2 only with itself, and dot product —2 only with its inverse —e. There are
exactly 56 roots f € E with e- f = 1, there are exactly 56 roots g € E
with e - g = —1, and there are exactly 126 roots in E that are orthogonal
to e.

Proof. From Cauchy—Schwarz it follows that for e, ¢’ € E we have
le-e'| < llell - [l€']l =2,

and equality holds if and only if e, e’ are scalar multiples of each other.
Since all roots are primitive, it follows that e - ¢/ = 2 if and only if e = ¢/,
and e- e = —2 if and only if e = —¢’. Since W acts transitively on F
(Lemma , to count the other cases it suffices to prove this for one
element in E. Take e = (1,1,0,0,0,0,0,0) € E.

The roots f € E with e- f = 1 are of the form f = (ay,...,as) with
a1+ as = 1. So for these roots we either have a1 = as = %, which gives 32
different roots, or {ai,as} = {0,1}, which gives 24 different roots. This
gives a total of 56 roots.

For f € E, we have e- f =1 if and only if e - —f = —1, so this gives also
56 roots g € F with e-g = —1.

The roots in E that are orthogonal to e are of the form f = (ay,...,as)
with a1 4+ ag = 0. So for these roots we have a; = as = 0, which gives 60
roots, or {aj,as} = {—1,1}, which gives 2 roots, or {aj,a2} = {—%, %},
which gives 64 roots. This gives a total of 126 roots. O

We continue with results on the Eg root polytope. Coxeter described
all faces of the Eg root polytope, which he called the 491 polytope, in
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[Cox30]. The faces come in two types: n-simplices (for n < 7), given by
n + 1 vertices with angle % and distance V2 between any two of them,
and n-crosspolytopes (for n = 7), given by 2n vertices where every vertex
is orthogonal to exactly one other vertex, and has angle % and distance

V2 with all the other vertices. We summarize his results in Proposi-

tions B.2.4] and 3.2.51

LEMMA 3.2.3. Two vertices in the Eg root polytope have distance /2
between them if and only if their dot product is one.

Proof. Fore, f € E we have |le— f[|? =e*—2-e-f+ f*=4—2-e-f. O

PRoPOSITION 3.2.4. For n < 7, the set of n-simplices in the Eg root
polytope is given by

{{e1,...,enp1} |Viie; € E; Vi #ite-e5 =1},

where an n-simplex is identified with the set of its vertices. For n < 6, the
n-simplices in the Eg root polytope are exactly its n-faces.

Proof. The vertices in an n-simplex have dot product 1 by the previous
lemma. The fact that the n-faces are exactly the n-simplices for n <6 is
in [Cox30, Section 7.5], or the table on page 414. O

PROPOSITION 3.2.5. The facets of the Eg root polytope are exactly the
7-simplices and the T-crosspolytopes contained in it. The set of T-crosspo-
Iytopes is given by

{{{el,fl},...,{e7,f7}} ot i e B e B0 }

where a 7-crosspolytope is identified by the set of its 7 pairs of orthogonal
roots.

Proof. The facets are the 7-simplices and the 7-crosspolytopes by [Cox30,
Section 7.5], or see the table on page 414. The dot products follow from
Lemma [3.2.3 O

REMARK 3.2.6. We also show that the 7-simplices and the 7-crosspoly-
topes in the Eg root polytope are facets in Remarks |3.3.7|and [3.3.19]
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COROLLARY 3.2.7. The Eg root polytope has 6720 1-faces, 60480 2-faces,
241920 3-faces, 483840 4-faces, 483840 5-faces, 207360 6-faces, 17280 7-
simplices, and 2160 7-crosspolytopes.

Proof. See [Cox30), p.414]. O

REMARK — ANALOGY WITH GEOMETRY 3.2.8. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field &, with canonical divi-
sor Kx. Recall from Remark that there is a bijection ¢ between the
set I of exceptional curves on X and the set F, such that for ¢1,co € I, we
have ¢(c1) - ¢(c2) =1 — ¢1 - c2 (where the dot on the left-hand side is the
dot product in Eg, and the dot on the right-hand side is the intersection
pairing in Pic X). As a consequence, the group of permutations of I that
preserve the intersection multiplicity in Pic X is isomorphic to the Weyl
group Wg (Corollary . Moreover, ¢ gives an isomorphism of the
weighted graph G on [ as defined in Definition [1.4.12] with T".

It follows that the vertices of a n-simplex in the Eg root polytope corre-
spond to a sequence of n + 1 exceptional classes in I that have pairwise
intersection pairing 0. Moreover, for r pairwise disjoint exceptional curves
e1,...,e., where 1 < r < 7, the exceptional curves that are disjoint from
e1,...,e. correspond to the exceptional curves of the del Pezzo surface of
degree r 4+ 1 that is obtained by blowing down eq,...,e,. We know the
number of exceptional curves on del Pezzo surfaces , and we can use
this to compute the number of n-faces of the Eg root polytope for n < 5.

REMARK 3.2.9. For n < 5, the statement in Corollary also follows
from the last part of Remark [3.:2.8 and Table [I.1} we have

2402‘56:6720, 240';6'27:60480, 240-5(1;2?16

= 241920,

and so on. For n equal to 6 and for the 7-simplices, the statement is in
Proposition [3.4.7 For the 7-crosspolytopes it follows from Lemma [3.3.15
see Remark [3.3.10)

The following propositions state results about the action of the Weyl group
on the faces of the Eg root polytope.

ProprosiTION 3.2.10. For n < 5, the group W acts transitively on the
set of n-faces. There are two orbits of facets.

Proof. In [Cox30), Section 7.5] it is shown that all n-simplices are conjugate
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for n < 5, and that any two facets of the same type are conjugate as well.
We know that there are two types of facets from Proposition 3.2.5] O

REMARK 3.2.11. There are two orbits of 6-faces. We describe them in
Proposition [3.4.7} see also Remark

We know something even stronger, namely, the action of W on the ordered
sequences of roots in faces of the Eg root polytope.

PROPOSITION 3.2.12. For all r < 8 such that r # 7, the group W acts
transitively on the set

RT:{(€17"'7€T‘)EE8|vi%j:€i'€j:1}'

For r =7, there are two orbits under the action of W.

Proof. In Remark [3.2.8] we describe a bijection between E and the set I
of 240 exceptional classes on a del Pezzo surface of degree 1, where two
elements in E have dot product « if and only if the two corresponding
elements in I have intersection product 1 — a. This bijection respects the
action of W, and under this bijection the set R, corresponds to the set of
sequences of length r of disjoint exceptional classes. The statement now
follows from [Man86, Corollary 26.8]. O

The following lemma is the first step in proving Theorems and

LEMMA 3.2.13. Let K1, Ky be two cliques in I' of type I, 11, III, or IV
that are isomorphic. Then there is a type I, II, III, or IV that they both
belong to.

Proof. If a clique is of type I or III, then any clique that is isomorphic
to it is of the same type. If Kj is of type II, then its vertices form a
n-simplex (for n < 7) or an n-crosspolytope (for n = 7) by Proposition
and Proposition In both cases, K> is of the same type, again
by Proposition and Proposition Analogously, if K5 is of type
II then so is K. Finally, if K1 and K9 are both not of types I, II, or III,
then they are automatically both of type IV. O

We conclude this section by stating a lemma that will be used throughout
this chapter. Parts (i)—(iii) are Lemma 20 in [Winl4].

LEMMA 3.2.14. Let H be a group, let A, B be H-sets, and f: A — B a
morphism of H-sets. Then the following hold.
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(i) If H acts transitively on A, then H acts transitively on f(A).

(ii) If H acts transitively on B, then all fibers of f have the same
cardinality.

(iii) If H acts transitively on A and A is finite, then all non-empty fibers

of f have the same cardinality, say n, and |f(A)| = 4],

n

(iv) If H acts transitively on f(A), and there is an element b € f(A)
such that its stabilizer Hy in H acts transitively on f~1(b), then f acts
transitively on A.

Proof.
(i) Take f(a), f(a') € f(A) with a,a’ € A. Assume that H acts tran-

sitively on A, then there is an h € H such that ha = d’. Since f
is a morphism of H-sets, we have hf(a) = f(ha) = f(d'), so H acts

transitively on f(A).

(ii) Take b,b’ € B. Since H acts transitively on B, there is an h € H
such that hb =¥/, so |f~H(0")| = |f~H (kD) = [nf~H(B)| = £~ ().

(iii) Take b,b’ € B such that f~1(b) and f~(¥') are non-empty. Then
we have b, 0’ € f(A). Since H acts transitively on f(A) by (i), it follows
from (ii) that f=%(b) and f~1(¥') have the same cardinality, say n. It is
now immediate that |A| = |f~1(B)| = Dbefayn = n|f(A)], so we find

F(A)] = 4L,

(iv) Take b € f(A) such that H, acts transitively on f~!(b). Take
a,a’ € A. Since H acts transitively on f(A), there are h,h/ € H such
that hf(a) = b and h'f(a’) = b. Then ha and h'a’ are contained in
f~L(b). Since Hy, acts transitively on f~1(b), there is an element g € H,,
with gha = h'a'. So we have W/ "lgha = o' and H acts transitively
on A. O

3.3 Facets and cliques of size at most three

In this section we study the cliques in I' of type III, and the facets of the Eg
root polytope. We give an alternative proof for the fact that W acts tran-

sitively on the set of facets that are 7-crosspolytopes (Corollary [3.3.17)),
and we prove the following propositions.
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PROPOSITION 3.3.1. For a € {£1,—2,0}, the group W acts transitively
on the set
{(e1,e2) € E? | €1 - e3 = a}.

PROPOSITION 3.3.2. For a,b,c € {—2,—1,0,1}, the group W acts tran-
sitively on the set

3
{(e1,e2,e3) € E” | e1-ea =a, ea-e3=b, e1 - e3 = c},
in all cases where it is not empty.

REMARK 3.3.3. Proposition [3.3.1] as well as the cases {a, b, c} = {0,0,0},
{a,b,c} ={0,0, 1} of Proposition [3.3.2] were proved by the same author in
[Winl14]. In particular, the results[3.3.11—[3.3.14] are the same as [Winl4]
results 3.18, 3.19, 3.21, 3.22], and the results f and the first
statement in Proposition are the same as [Winl4, results 3.23 —
3.28]. We decided to restate the results here for completeness, as well as
for the fact that everything in [Winl4] is stated in terms of exceptional
curves on del Pezzo surfaces of degree 1, and this chapter is also meant
for the reader that wants to use the results in terms of the roots of Eg.

Note that these two propositions describe the orbits under the action
of W of sequences of the vertices of cliques in I', hence they also prove
Theorem [3.1.4] for cliques of type III; see Corollary [3.3:34] The proof of
Proposition [3.3.1] can be found below Proposition and the proof of
Proposition [3-3:2] below Lemma[3:3:33] Throughout this section we do not
use any computer programs. More background on the Eg root polytope
can be found in [Cox30] and [Cox49].

We start with some results on the facets of the Eg root polytope that
are 7-simplices. The results on the facets that are 7-crosspolytopes are in
Lemmas [3.3.17 and [3.3.18 Consider the set

U = {(e1,e2,e3,e4,€5,e5,e7,e8) € E° | Vi# j:e;-e; =1}

Note that an element in U is a sequence of eight roots that form a 7-
simplex. Define the following roots, and note that (uq,...,ug) is an ele-
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3. THE ACTION OF THE WEYL GROUP

ment in U.
Uy = (17 170> 070707070); Us = (1,0,0,0,0, 15070)7
uz = (1,0,1,0,0,0,0,0); ug = (1,0,0,0,0,0,1,0);
us = (1,0,0,1,0,0,0,0); ur = (1,0,0,0,0,0,0,1);
uy = (1,0,0,0,1,0,0,0); w=(b4bibi b1

LEMMA 3.3.4. Every element in U generates a sublattice of index 3 of the
root lattice A, and the group W acts freely on U.

Proof. By Proposition [3.2.12] it is enough to check the first statement for
one element in U. The matrix whose i-th row is u; for i € {1,...,8}
has determinant 3, so uq,...,ug are linearly independent and generate a
sublattice of rank 8 and index 3 in A. Take w € W such that there is an
element v € U with w(u) = u. Then w fixes the sublattice generated by
u, so for all x € A we have 3w(z) = w(3x) = 3z. Since A is torsion free,
this implies that w fixes all of A. It follows that w is the identity. We
conclude that the action of W on U is free. O

COROLLARY 3.3.5. Let v = (ey,...,es) be an element in U. Then
%Z?ZI e; Is contained in A.

Proof. By Lemma we know that the roots ej,...,es generate a
lattice M of index 3 in A. Set v = %218:1 e;. Since v-e; = 3 for i €
{1,...,8}, we have %v € MV, where MV is the dual lattice of M. But the
dual lattice AV has index 3 in MV, so it follows that 3- %v = v is contained
in AV. Since A is unimodular, it is self dual, so v is contained in A. O

REMARK — ANALOGY WITH GEOMETRY 3.3.6. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field and Kx its canonical
divisor. Lemma [3.3:4] can be stated in terms of X as follows. For every
set of eight exceptional classes ci,...,cs that have pairwise intersection
pairing 0 there exists a unique class [ such that we have Kx = —3l +Z§:1 Ci
and (I,¢1,...,cg) is a basis for Pic X; one can blow down the exceptional
curves corresponding to ci, ..., cg to eight points in P2, such that [ is the
class of the pullback of a line in P? that does not contain any of these
eight points.

REMARK 3.3.7. Let u = (ey,...,eg) be an element in U. We know that
e1,...,es define a facet of the Eg root polytope. This also follows from

60



3.3. FACETS AND CLIQUES OF SIZE AT MOST THREE

from Corollary Indeed, for v = %Zle e; we have v -¢; = 3 for
i€ {l,...,8}, and we have

fore € E'\ {e1,...,eg}. This implies that the whole Eg root polytope lies
on one side of the hyperplane given by v - x = 3, and the intersection of
the polytope with this hyperplane, which is exactly given by the convex
combinations of eq,...,eg, lies in the boundary of the polytope. Hence
e1,...,es generate a facet of the Eg root polytope, and v is the normal
vector to this facet.

We now prove part of Proposition [3.3.1

LEMMA 3.3.8. For any a € {—2,+£1}, the group W acts transitively on
the set
Ay ={(e1,e2) € E? | ey -e3 = a}.

Proof. The group W acts transitively on A; by Proposition [3.2.12] There
is a bijection between the W-sets A1 and A_; given by

[ A — A_q, (e1,e2) — (e1, —ea).

It follows from Lemma [3.2.14] that W acts transitively on A_;, too. Fi-
nally, we have a bijection

E— A 5 er—(e,—e),

so W acts transitively on A_y by Proposition [3.2.12]and by Lemma
O]

Before we prove the rest of Proposition[3.3.1] we prove Proposition[3.3.2]for

the cases (a,b,¢) = (—1,—1,—1) (Corollary [3.3.10) and (a,b,c) = (0,0,1)
(Lemma [3.3.12)), which we will use later.

LEMMA 3.3.9. For e1,eo € E with e1 - e = —1 there is a unique element
e € E withe-ey =e-ey = —1, which is given by e = —e1 — es.

Proof. Take e1,e9,e € E with e -eg = —1l and e-e; =e-eg = —1. Set
f = e1 +e2+e. Then we have ||f|| = 0, hence f =0, so e = —e; — ea.
Therefore e is unique if it exists. Moreover, we have || — e; — ea|| = V2,
S0 —ej — €9 is an element in E that satisfies the conditions. O
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COROLLARY 3.3.10. The group W acts transitively on the W-set
{(e1,e2,e3) EE3|e; - ea=ey-e3=e1 -e3 = —1}.
Proof. By Lemma [3.3.9] there is a bijection between the sets
{(61,62) S E2 | e] ey = —1}
and
{(e1,e2,e3) € B |e1-ex =ey-e3=e1-e3 = —1},
given by (e1,es) — (e1, e, —e1 — e2). The statement now follows from

Lemma [3.3.8 and Lemma 3.2.14] O

LEMMA 3.3.11. Take e1, eo € E such that e; - eo = 1. Then there are
exactly 72 elements of E orthogonal to e; and es.

Proof. By Lemma [3.3.8]it is enough to check this for fixed e;, es € E with
e; ey = 1. Set e; = (1,1,0,0,0,0,0,0), e2 = (1,0,1,0,0,0,0,0). Then
e1-ea = 1. An element f € F with f-e; = f e = 0 is of the form
f = (a1,...,a8) with a; + az = 0 and a; + ag = 0, hence a; = —ay
and a9 = a3. If f is of the form (i%, e ,:t%), then there are 32 such
possibilities. If f has two non-zero entries, given by +1, then ai,az,as
should all be zero, which gives 40 possibilities. We find a total of 72
possibilities for f. O

LEMMA 3.3.12. Consider the set
B={(e1,e2,e3) € E° | e1-ea = e3-e3=0; e1-e3 = 1},

We have |B| = 967680, and the following hold.
(i) The group W acts transitively on B.
(ii) For every element b = (e1, ea,e3) € B, there are exactly 6 roots that

have dot product 1 with ey, eo and e3. These 6 roots, together with e;
and e3, form a facet in the set U.

Proof. We have |B| = 240 - 56 - 72 = 967680 by Proposition and
Lemma [3.3.11] Set e; = (1,1,0,0,0,0,0,0), ez = (0,0,1,1,0,0,0,0), and
es = (1,0,0,0,1,0,0,0). Then b = (e1, e2,e3) is an element in B. Let W}
be its stabilizer in W and Wb its orbit in B. Let U, be the set

Uy={ecE|e-eg=e-eg=e-e3=1}.
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For e = (ay,...,as) € Uy, we have a1 + a2 = a3 + a4 = a1 + a5 = 1. From
this we find

(57 2212122072 _f)
We conclude that there are 6 roots that have dot product 1 with eq,eg,
and es. It is obvious that these 6 elements, together with e; and es, form
an element of the set U that is defined above Lemma [3.3.41
We have % = |Wb| < |B|. We want to show that the latter is an
equality. The group W} acts on Uy. Let w be an element of W, that fixes
all the roots in Up. Since the roots in {e1, ez} U U form an element in U,
by Lemma [3:3.4) this implies that w is the identity. Therefore the action of
Wy, on Uy is faithful. This implies that W injects into Sg, so |Wp| < 720.
We now have
Wi _ Wi

967680 = 0 < W |Wb| < |B| = 967680,
so we have equality everywhere and therefore we have Wb = B. We
conclude that W acts transitively on B, proving (i). Part (ii) clearly holds
for the element b, and from part (i) it follows that it holds for all elements
in B. O

We proceed to prove the rest of Proposition [3.3.1

LEMMA 3.3.13. Fore; = (1,1,0,0,0,0,0,0) ,e2 = (0,0,1,1,0,0,0,0) € E,
there are 32 elements e in F such thate-eq =0 and e-eg = 1.

Proof. Take e € E with e-e; = 0 and e-eo = 1. Then e is of the form
e = (a1,a2,a3,a4,...,ag) with a; + ag = 0 and az + a4 = 1. If e is of
the form (i%,...,i%), then a1 = —ao and a3z = a4 = % There are 16
such possibilities. If e has two non-zero entries given by +1, then either
a3 =1, a1 =a2 =a4 =0,0r ag =1, a;y = ag = ag = 0. This gives 16

possibilities. We find a total of 32 possibilities for e. 0

PRrRoPOSITION 3.3.14. The group W acts transitively on the set

AO = {(61762) € E2 ’ e ey = 0}.

63



3. THE ACTION OF THE WEYL GROUP

Proof. Consider the set
B ' ={(e1,e2,e3) € E® | e1-ea=e1-e3=0; e3-e3=1}.

Note that there is a bijection between the W-set B’ and the W-set B
in Lemma given by (e, f,g9) — (f,e,g). Therefore, the group
W acts transitively on B’ and we have |B’| = 967680 by Lemma
We have a projection A\: B’ — Ay to the first two coordinates. We
show that A is surjective. Fix the two roots e; = (1,1,0,0,0,0,0,0) and
es = (0,0,1,1,0,0,0,0) in E. Then (e, ez) is an element of Ay. Take
e € E, then (e1,e2,¢e) is in B’ if and only if e-e; = 0 and e- ey = 1.
By Lemma this gives 32 possibilities for e, so |A"!((e1, e2))| = 32.
Since W acts transitively on B’, it follows from Lemma that all
non-empty fibers of A\ have cardinality 32, and |\(B')| = % = 30240.
By Proposition we have |Ag| = 240 - 126 = 30240. We conclude
that A\(B’) = Ap. Hence ) is surjective. Therefore, the group W acts
transitively on Ag by Lemma O

PROOF OF PROPOSITION (3.3.1] This follows from the previous propo-
sition together with Lemma [3.3.8]

Before we continue proving Proposition [3.3.2] we complete our study of
the facets of the Eg root polytope. Define the set

o=t | S D )

FElements in C' are facets that are 7-crosspolytopes by Proposition
We define elements cy,...,c7,dy, ..., d7; note that {{c1,d1},...,{c7,d7}}
is an element in C.
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C1 = (1> 17070707(]’0’0)7
Co2 = (1>O7 17070a0a0’0)7
€3 = (170,071707()’0’0)7

dl = (O>O)1717070a0’0)5
d2 = (0717071707()’0’0 )
d3 = (071,1,0707()’0’0)7

11111111 ds = L1 1 1 1
; 4 — y925 7 9297 99y 95T 9 )
1

LEMMA 3.3.15. For ej,es € E with e; - eo = 0, there are exactly 12
elements e € E with e-e; = e-ey = 1. These 12 elements, together with
e1 and eo, form an element in C, and this is the unique element in C
containing ey, €.

Proof. By Proposition [3.3.14] it is enough to check this for fixed eq, e with
e1-eg = 0. Take e; = ¢1, and ey = dy. For aroot e = (ay,...,ag) in E with
e-c1 =e-dy =1, we have either a1 = a9 = a3 = a4 = %, in which case e
is contained in {c4,...,c7,dy4,...,d7}, or {a1,a2} = {az,as} = {0,1},
which implies e € {cg,c3,da,ds}. Therefore there are 12 possibilities
{cay...,c7,da,...,d7} for e, and we conclude that {{c1,d1},...,{cr,d7}}
is the unique element in C' containing cy, d;. O

REMARK 3.3.16. Since elements in C correspond to 7-crosspolytopes, we
know that |C| = 2160 from Corollary This also follows from the
previous lemma. Recall the set A9 = {(e1,e2) € E? | €1 - e = 0}. By
Lemma for every element (e, e2) in Ag there is a unique element
in C' containing eq, es. But every element in C' contains seven pairs f1, fa

such that (f1, f2) and (f2, f1) are in Ap, so the map Ag — C' is fourteen

to one. Hence we have |C| = % = 24026 — 9160.
COROLLARY 3.3.17. The group W acts transitively on C.

Proof. Consider the set Ag = {(e1,e2) € E? | e1 - e = 0}. The group W

acts transitively on Ay by Proposition By Lemma |3.3.15| there is a
map Ay — C, sending (e1, e2) to the unique element in C' that contains
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e1 and eg. This map is clearly surjective. It follows from Lemma
that W acts transitively on C. O

LEMMA 3.3.18. Every element in C' generates a sublattice of finite index
in A.

Proof. By Corollary it is enough to check this for one element in
C. Take the element {{c1,d1},...,{cr,d7}} in C, where the ¢;,d; are
defined above Lemma [3.3.15l The matrix whose rows are the vectors
c1,-..,¢7,d1,...,d7 has rank 8, so these 14 elements generate a sublattice
L of finite index in A. O

REMARK 3.3.19. Let {{e1, f1},...,{er, fr}} be an element in C, and let
¢ be the set ¢ = {e1,...,e7, f1,..., fr}. We know that the elements in
¢ are the vertices of a facet of the Eg root polytope. We show how this
also follows from the previous lemma. Take i € {1,...,7}, then we have
(e; + fi) -e = 2 for all e € ¢. Since the elements in ¢ generate a full rank
sublattice, this implies that e;+ f; = e;+ f; forall ¢, j € {1,...,7}. So the
vector n = %Zzzl(ei + fi) = e1 + f1 is an element in A with n-e = 2 for
e € s. Take e € F'\ s, and note that e cannot have dot product 1 with both
e; and f; by Lemma It follows that we have n-e < 2, so the entire
Eg root polytope lies on one side of the affine hyperplane given by n-x = 2.
Moreover, this hyperplane intersects the Eg root polytope in its boundary,
and exactly in the convex combinations of the roots ey, ..., e7, f1,..., fr.
Therefore these roots are the vertices of a facet of the Eg root polytope
with normal vector n.

We continue with Proposition and prove it for (a,b,c) = (0,0,0).
Consider the sets

V3 = {(61762763) € E3 |VZ #] N ei -ej = O}
and
‘/;1 = {(61762763764) S E4 | VZ %j e -ej = 0}
We begin by studying V4. To this end, recall the set U defined above
Lemma and define the set

Z ={({e1,e2},{e3,ea},{es,e6},{er,es}) |Vi:e; € E; Vj#i:eze; =1}

REMARK 3.3.20. We have a surjective map U — Z by simply forgetting
the order of e; and e; 1 for i € {1,3,5,7}. Since W acts transitively on U
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(Proposition|3.2.12)), it follows from Lemma|3.2.14|that W acts transitively
on Z. By Lemma[3.3.4] the action of W on U is free, so we have |U| = |[W]|,
Wl _

and |7| =0l = 0 — 01035 . 52. 7

We want to define a map a: Z — V. To do this we use the following
lemma.

LEMMA 3.3.21. For an element z = ({e1,ea},{es,ea},{es5,e6},{e7r,es})
in Z, there are unique roots f1, fa, f3, f4 € E with

fl'eizoa fl'ej:1 fOI'iE{l,2},j¢{1,2};
fo-ei=0, f2'6j21 fori€{3,4},j§é{3,4};
f3-€ei=0, fy-e; =1 forie {56}, j¢{56};
f4'€i:0a f4'ej:1 fOI‘ZG{?,8},]¢{7,8}
For these f1, f2, f3, f4 we have f;- f; = 0 for i # j, and 32;-1:1 fi= 218:1 €;.

Proof. By Lemma the elements ey, ..., es generate a full rank sub-
lattice of A, so an element f € F is uniquely determined by the intersection
numbers f-e; fori € {1,...,8}. We will show existence. Set v = % S8 e
By Corollary m the vector v is an element in A. We have ||v] = V/8,
and v-e; =3 fori € {1,...,8}. Fori e {1,2,3,4}, set fi = v—eg_1 — €9;.
Then || ;]| = v/2, so f; € E. Moreover, f1, fa, f3, f1 satisfy the conditions
in the lemma. O

We now define a map

a Z—>Vv4) ({61)62}7”"{67a68})’_>(f1)f27f37f4)7
where f1, f2, f3, f4 are the unique elements found in Lemma [3.3.21

COROLLARY 3.3.22. If (f1, f2, f3, f1) is an element in the image of «, then
x ="}, f; is a primitive element of A with norm /8.

Proof. Take (f1, fa, f3, f4) in the image of «, and let ({e1, ea}, ..., {e7,es})
be an element Z such that (fi, fo, f3, f1) = a(({e1,e2},...,{e7,es})). Set
= Y}, fi. Then we have 3z = Y%, ¢; by Lemma It follows
that ||3z||> = 72, hence ||z||> = 8. Moreover, for any i € {1,...,8} we
have 3x-e; = 9, hence z-e; = 3. This implies that if we have x = m -2’ for
some m € Z, ' € A, then m|2 and m|3, so m = 1 and x is primitive. [J
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REMARK — ANALOGY WITH GEOMETRY 3.3.23. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and I the set of excep-
tional classes in Pic X. The map « has a nice description in the geometric
setting, through the bijection I — FE, ¢ — ¢+ Kx. Take an element
z = ({e1,ea},{es,eq},{e5,e6},{er,es}) in Z. The roots ey, ..., eg corre-
spond to classes c1,...,cg in I with ¢;-¢; =0 for all i # j € {1,...,8}.
These classes correspond to pairwise disjoint curves on X that can be
blown down to points P, ..., Ps in P? such that ¢; is the class of the ex-
ceptional curve above P; for i € {1,...,8} (Lemma[1.2.8). The conditions
for f; in Lemma [3.3.21] are equivalent to f; being the strict transform on X
of the line in P2 through Py; 1 and Py; for i € {1,2,3,4}. This geometrical
argument immediately proves the uniqueness of f;.

Let 7: V4 — V3 be the projection to the first three coordinates. From the
maps 7 and «, transitivity on V3 will follow (Proposition. Let Y be
the image of a. We will show that Vj has two orbits under the action of W,
given by Y and V4 \ Y (Proposition . The following commutative

diagram shows the maps and sets that are defined.

U

|
NI

LEMMA 3.3.24. The map « is injective.

Proof. Consider the roots in E given by

f1:(1,1,0,0,0,0,0,0), f3:(030307071>17070)7
f2=1(0,0,1,1,0,0,0,0), f1=(1,-1,0,0,0,0,0,0).

Note that v = (f1, fo, f3, f4) is an element in V. Now take an element

({e1,e2},{es,ea},{e5,e6}, {er,es}) in the fiber of a above v, then we have
e1-fi=ex-fi=0ande;- f=es- f; =1foralli+#1; (3.1)
63-f2:e4-f2:0and63‘fi:e4-f,~:1foralli7é2;
es-fs=eg-fs=0andes- f; =eg- f; =1 for all i # 3;
er-fa=es-fr=0ande7- f; =eg- f; =1 for all i # 4.
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Write e; = (ai,...,ag). From (3.1) it follows that we have a; +az = 0

o1 11111 11
and a1 —as =as+aqg =as+ag =1. So ey is (5,—5,5,5,5,5,—5,5) or
1 111111 1

(5, —51515>51 5> 5 —§>, and e is the other. Analogously we find:

{637 64} == {(1707070707 17 07 0) P (17 07 07 07 1707070)}7
{657 66} = {(110707 170a Oa Oa 0) ’ (17 07 17 07 0707070)}7

_Jf1 11111 1 1 11111111
{67768}_ 9295999295929 292y 99y 2519299595959y 929929 9 .

Hence the fiber above v has cardinality one. Since W acts transitively
on Z, we conclude from Lemma that all non-empty fibers of o have
cardinality one, so « is injective. O

REMARK 3.3.25. By the previous lemma, there is a bijection between the
sets Z and a(Z) =Y. Since « is a W-map, it follows that Y is a W-set,
and that W acts transitively on Y by Lemma [3.2.14]

We state two more lemmas before we prove that W acts transitively on V.
LEMMA 3.3.26. Consider the elements in E given by

e1 =(1,1,0,0,0,0,0,0); f1=10,0,0,0,0,0,1,1)
es = (0,0,1,1,0,0,0,0); f2=1(0,0,0,0,0,0,—1,—1).
€3 = (0707 070)1)17070);

Then v = (e1, e, €3, f1) and v' = (e1, ea, es, f2) are elements in V; that are
notinY.

Proof. Tt is easy to check that v and v’ are in V. We have
_ 11111111
61+62+63+f1 =2 <§7§7§a§a§7§7§7§)
and
€1+62+€3+f2 =2 (%7%7%7%7%7%7_%7_%)7
hence both e1 +es+e3+ f1 and e1 +e2+ e3+ fo are not primitive elements
in A and therefore not contained in Y by Corollary [3.3.22 O

LEMMA 3.3.27. For two elements e,es € E with e; - e = 0, there are
exactly 60 roots e € F such thate;-e=e3-e=0.
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Proof. By Proposition[3.3.14] it is enough to check this for two orthogonal
roots e, e3 in E. Set e; = (1,1,0,0,0,0,0,0), e2 = (0,0,1,1,0,0,0,0). An
element f € E with f-e; = f-eg = 01is of the form f = (a1, az,as,...,as)
with a1 = —a9 and a3 = —ay4. If f is of the form (:I:%, . ,:i:%), then there
are 32 such possibilities. If f has two non-zero entries, given by £1, then
there are 28 possibilities. We find a total of 60 possibilities for f. O

Figure [3.1] summarizes the results in Proposition and Lemmas[3.3.9
[3.3.13] and [3.3.27] Vertices are roots, and the number in a subset is its
cardinality. The number on an edge between two subsets is the dot product
of two roots, one from each subset.

Figure 3.1: Graph I’

PROPOSITION 3.3.28. Let v = (f1, f2, f3) be an element of V3. The fol-
lowing hold.

(i) We have |V3| = 1814400, and the group W acts transitively on V3.
(ii) We have |71 (v)| = 26, and |7~ (v) N Y| = 24.

(iii) For {(f1, f2, f3,u), (f1, fo, f3,u/)} = 7~ H(v) \ 'Y, we have u = —u/,
and for (f1, fo, f3,e) € 7 L (v)NY, we have e -u = e - u’ = 0.
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Proof. From Proposition and Lemma it follows that
|V3| =240 - 126 - 60 = 1814400.

Consider the map A = moa: Z — V3. Note that X is a W-map, since both
m and « are. We want to show that A is surjective. Set

fl = (1a1707070307070)7f2 = (070717170a0a070)7f3 = (030707071>17070)'
Then we have v = (fi1, f2, f3) € V3. Define the roots
€1 = (l ~i11il-1 l), 65:(170707170707070)7

€2 = (%7 _%7 29925959 %7 _%) 9 €6 = (1707 17070707070)7

€3 = (17070’0’07 170a0)7 €7 = (%7 %7 %, %7 %a %a *%a *%)
es = (1,0,0,0,1,0,0,0), es=(h5445.3.4.1)

Note that e; - e; =1 for i # j, so ({e1, e2}, {es,es}, {es,e6}, {er,es}) is an
element in Z. We have

f1-61:fl-egzoandfl'eizlforalli€{1,2};
fores=fa-eq=0and fy-e; =1 forall i & {3,4};
f3'€5:f3-€6:0andf3'6i:1fOI"&HiQ{E),G},

so A(({e1,ea},{es,eqat,{es5,e6}, {e7,es})) = v. Hence the fiber of A\ above
v is not empty; we compute its cardinality. We first compute the cardi-
nality of the fiber of m above v. For an element f = (ay,...,as) € E, we
have (fl,fQ,fg,f) € Vy if and only if ap +ay = az +a4 = as + ag = 0.
This gives 16 possibilities for f with a; € {i%} for i € {1,...,8}, and
10 possibilities for f where the two non-zero entries are £1. We conclude
|71 (v)| = 26. Set g1 = (0,0,0,0,0,0,1,1), g2 = (0,0,0,0,0,0, -1, —1),
then v = (f1, f2, f3,91) and v = (f1, f2, f3,92) are both elements in
7 1(v). By Lemma we know that the fibers of a above u and
v/ are empty. Since « is injective, this implies [A7!(v)| < 24. Since A~1(v)

is not empty, by Lemma [3.2.14) we have |\(Z)| = % Combining
this, we find
2] 2]

2]
< 21— |\(2)] < |V3| = 1814400 = =L,

So we have equality everywhere, hence |A\~!(v)| = 24, and |\ (Z)| = |V3],
So A is surjective. Since W acts transitively on Z, we conclude from
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Lemma that W acts transitively on V3, too. This proves (i). To
prove (ii), note that we showed that |7~!(v)| = 26 and |A\~!(v)| = 24, and
since « is injective, we have the equality |7~!(v) N Y| = [A\71(v)| = 24.
Since 7 is a W-map, and W acts transitively on V3, the result holds for
all elements in V3. Finally, (iii) is an easy check for the element v, after
writing down the 26 elements in 77! (v). Since W acts transitively on V3,
this holds for all elements in V3. ]

ProprosiTION 3.3.29. The set V; has two orbits under the action of W,
which are Y and V4 \'Y. We have |Y| = 43545600 and |V4 \ Y| = 3628800.
An element (ey,...,eq) is in V4 \ 'Y if and only if Zle e; € 2A.

Proof. From Remark it follows that Y is an orbit under the ac-
tion of W on Vj. Therefore O = V4 \ Y is also a W-set. Consider the
restriction 7|p of m to O. Let e, eq,es, f1, f2 be as in Lemma
and set v = (e1,e2,e3), u = (e1,ea, €3, f1), and u' = (e1, e, e3, f2). Then
we have v € V3, and u,u’ € 7|5'(v) by Lemma From Propo-
sition (3.3.28 we know that |7~1(v) Y| = 24, so |r|5!(v)| = 2. This

implies 7|, (v) = {u,u'}. Consider the element r in T given by the
reflection in the hyperplane that is orthogonal to fi. Since ey, e, e3 are
contained in this hyperplane, the reflection r is contained in the stabi-
lizer Wy, in W of v. Moreover, since fo = —f1 , the reflection r inter-
changes f1 and f2, hence W, acts transitively on 7r\51 (v). Since W acts
transitively on V3 by Proposition we conclude that W acts transi-
tively on O from Lemma [3.2.14 From Proposition [3.3.28] it follows that
Y| = |V3| - 24 = 43545600, and |O| = |V3| - 2 = 3628800. It follows from

Corollary|3.3.22 that for every element (g1, g2, g3, 94) € Y the sum Z?Zl gi
is primitive. On the other hand, u = (e, ez, €3, f1) is an element in O,

and we have e; +e2 +e3+ f1 =2 (%, %, %,%,%,%, %, %) € 2A. Since W

acts transitively on O, this finishes the proof. O

Now that we proved that W acts transitively on V3, there is one last case
of Proposition that we prove separately (Lemma [3.3.33]). We state

two auxiliary lemmas first.

LEMMA 3.3.30. Let r be a positive integer, and let G be a graph with
vertex set {vi,...,vp,w; ..., w,}, and edge set {{v;,w;} | i € {1,...,7}}.
Let A be the automorphism group of G. For an element a € A and for
i € {1,...,r}, define an integer a; by a; = 1 if a(v;) € {v1,...,v,.}, and
a; = —1 otherwise. There exists an isomorphism ¢: A = u% x S, where
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wo is the multiplicative group with two elements and S, the symmetric
group on r elements, acting on u4 by permuting the coordinates, given by

o(a) = ((a1,...,ar), (i = j for a(v;) € {vj,w;})).

Proof. Let a be an element in A. Note that for all 7, the image a(v;) of v; is
only connected to a(w;), so there is a j such that {a(v;), a(w;)} = {v;,w;}.
Therefore we have a group homomorphism v: A — S,., given by

ar— (i j for a(v;) € {vj,w;}).

Note that ~ is surjective, and its kernel consists of all elements a € A such
that, for all ¢ € {1,...,r}, either a(v;) = v;, or a(v;) = w;. We conclude
that the kernel of v is isomorphic to the group u5. So we have a short
exact sequence

11— — A58, — 1.

Moreover, we have a section S, — A, g — {v; — Vg(s), Wi — wg(i)}, SO
the statement follows.

LEMMA 3.3.31. Let ¢ = {{e1, f1,},...,{er, fr}} be an element in the
set C that is defined above Lemma and denote by s the set of
roots {ei,...,e7, f1,..., fr}. Let A the automophism group of the colored
graph associated to s, and let ¢: A = u5 x S; be the isomorphism given
in Lemma [3.3.30. Let Wy be the stabilizer in W of s. Then there is an
injective map Wy — A, whose image has index 2 in A, and its image
after composing with o is given by

7
{<<m1,...,m7>,g> € 1] 5 | Hmi—l}.

=1

Proof. Elements in W respect the dot product between roots, so we have
a map : Wy, — A. If an element w € W fixes every element in s,
then it fixes a sublattice of A of finite index by Lemma [3.3.18] and since
A is torsion free this implies that w is the identity. So the action of
Wy on s is faithful, hence § is injective, and |3(Ws)| = |Ws|. Since W
acts transitively on C' by Corollary and |C| = 2160 by Remark

3.3.16, we have |W;| = |[W,| = % = % = 322560. Moreover, we have

|A| = 2771 = 645120, so |B(W,)| = |W,| = 322560 = % - |A|. Hence B(Wj)
is a subgroup of index two in A. We will now determine which subgroup.

Note that ||e; —ea|| = v/2, s0 e; —e2 is an element e € E, and the reflection
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in the hyperplane orthogonal to e gives an element in W, say r12. Note
that e; + fi1 = ea + fo by Remark so e; — ez = fo — f1. Therefore
r19 interchanges e; with ey and f; with fo. Moreover, since all roots in
{es,...,e7, f3,..., fr} are orthogonal to e, the element ris acts trivially
on them. Analogously, for ¢,5 € {1,...,7}, i # j, the reflection r;; is an
element in Wy that interchanges e; and e;, and f; with f;. Let v: A — Sy
be the projection of ¢(A) to S7, then it follows that v(5(W;)) = S7. Now
consider for ¢,5 € {1,...,7},i # j, the element e; — f;. Again, this is an
element in F/, and the reflection ¢;; in the hyperplane orthogonal to it is an
element in W, interchanging e; with f;, and e; with f;, and leaving all other
roots in s fixed. It follows that the composition ¢;;07;; is an element in W,
with @(B(ti; oriy)) = ((=1,-1,1,1,1,1,1),id) € puf x S;. By composing
the automorphisms ¢;; or;; for different 4, j, we see that ¢(8(W.)) contains
all elements ((my1,...,mz),g) € us x Sy with [['_; m; = 1. Therefore, the
reflections r;j,¢;; generate a subgroup of A of order 7!- 2% = %A, and we
conclude that this is all of Wj. L]

COROLLARY 3.3.32. Let K1 and K be cliques in I" whose vertices corre-

spond to a 7-crosspolytope in the Eg root polytope, and let f: K1 — Ko

be an isomorphism between them. Then f extends to an automorphism

of A if and only if for every subclique S = {e1,...,e7} of Ky of 7 vertices

that are pairwise connected with edges of color 1, the vectors Zzzl e; and
T_1 f(e;) are either both in 2A, or neither are.

Proof. Consider the set H = {c1...,¢7,d1,...,dr}, where the elements
are defined above Lemma Note that the vertices in H correspond
to a T-crosspolytope, and since W acts transitively on the set of cliques
corresponding to 7-crosspolytopes (Corollary , there are elements
«, B in W such that a(K;) = B(K2) = H. So o foa ! is an element
in the automorphism group Aut(H) of H. Of course, f extends to an
element in W if and only if Bo f oa~! does. Moreover, since a and /3 are
automorphisms of A, the two sums Y27, f(e;) and 7_;(Bo foa~1)(e;)
are either both in or both not in 2A. We conclude that we can reduce to
the case where K1 = Ky = H, and f is an element in Aut(H).

Let Wy be the stabilizer of H in W. By Lemmal[3.3.31] there is an injective
map ¢: Wy — Aut(H), whose image has index 2 in Aut(H). Of course,
for all elements w in the image of 1, and for all cliques S = {s1,...,s7} as
in the statement, the sums 3.7 s; and Y./_, w(s;) are either both in, or
both not in 2A. We will show that this completely determines the image
of 1, that is, we will show that every element in Aut(H) \ ¢ (Wp) does
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not have this property for all cliques S as in the statement. To this end,
consider the element h in Aut(H) that exchanges ¢; and d;, and fixes all
other vertices. Since h exchanges an odd number of ¢; with d;, it is not in
the image of ¢. Note that S = {c1,...,c7} is a clique as in the statement.
The sum 21'7:1 ¢i =(5,3,3,3,—1,1,1,1) is an element in 2A, and its image
under h, which is 37_; h(c;) = di + S i = (4,2,4,4,—1,1,1,1), is not.
Since all elements in Aut(H)\ ¢(Wpg) are compositions of h with elements
in Wy, we conclude that for all elements a in Aut(H) \ ¢»(Wpg), the sum
S27_1 a(c;) is not an element in 2A. Since the image of 1 consists exactly
of those elements in Aut(H) extending to an element in W, this finishes
the proof. O

LEMmMA 3.3.33. The group W acts transitively on the set
B = {(e1,e2,€e3) € E3 |e1-ea=0, ea-e3=e1-e3=1}.
Proof. By Proposition and Lemma [3.3.15] we have
|B| = 240 - 126 - 12 = 362880.

Let ¢, s, A be as defined in Lemma and note that b = (eq, f1,e2) is
an element in B. Let W), be the stabilizer in W of b. Then we have

Wi _ W]

|Wh| Wb > B 1920.

We want to show that this is an equality.
Since c is the unique element in C' containing ey, fi; by Lemma the
stabilizer W} of b acts on the set s. If an element w € W, fixes all the
roots in s, then it fixes a full rank sublattice of finite index in A, and
since A is torsion free this implies that w is the identity. Therefore the
action of Wy on s is faithful, so there is an injective map W, — Wi,
Note that fo is uniquely determined in s as the root that is orthogonal
to eg, so every element in W, fixes ey, es, f1, fo, hence W}, acts faithfully
on s = {es,...,er, f3,...,fr}. Let A’ be the automorphism group of
the colored graph associated to s’. We know there is an isomorphism
¢+ A" — u3 x S5 by Lemma Since elements in W}, respect the
dot product, we have an injective map 3': W, — A’. Let B: Wy — A
be the injective map from Lemma [3.3:31] together with the injective maps
Wy, — Ws and A" — A, we have the following commutative diagram.
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Wbcﬂ—>A’L;>,ug>455

[ L 1

WSLA%M%NSG

By Lemma [3.3.31] the image (3(W5)) is a subset of index 2 in u} x Sy,
((

given by subset { ((m1,...,m7),g) € uh x Sy | [Tieymi = 1} . Intersecting

this subset with u3 x S5 gives a subset of index 2 in uj x Ss, so by the
diagram above, the image ¢'(3'(W})) has index at least 2 in u3 x S5. We
find [Wp| < - 255! = 1920, so together with the inequality above we

conclude that [IW,| = 1920. We find [Wb| = {ipl = 362880 = |B|, and W/

acts transitively on B. O

We can now prove Proposition [3.3.2]

ProoF oF PROPOSITION [3.3.2] Note that for a,b, ¢ fixed and o any
permutation of them, there is a bijection between the sets Vg ;. and
Vo(a),o(b),0(c), S0 if we prove that W acts transitively on one of them,
then W also acts transitively on the other by Lemma Therefore,
we only consider the sets Vg . where a <b <ec.

There are 4 different sets with a = b = ¢. There are 12 different sets
where two of a, b, ¢ are equal to each other and unequal to the third, and
4 different sets with a, b, ¢ all distinct. So there are 20 different sets V5 .
with a < b <ec.

o If V, 5 is a non-empty set with a = —2, then every element (eq, e2, €3)
in Vg has e; = —eg, so b = —c. Therefore the set Vg3 . is empty for
(a,b,c) in

{(=2,-2,-2),(=2,-2,—1), (-2, -2,0), (-2, -2, 1),
(=2,-1,-1),(-2,-1,0), (=2,0,1), (=2, 1,1)}.

e We have proved that W acts transitively on the sets V_; _; _; (Corollary

3.3.10), Vb,0,0 (Proposition|3.3.28)), V5 0,1 (Lemma|3.3.12)), V5 1,1 (Lemma
3.3.33), and Vi 1,1 (Proposition [3.2.12)).
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e We have the following bijections.

{(e1,e9) €E* | ey ey = -1} — Voo 11, (e1,e2) —> (—e1,e1,e€2);
{(e1,e2) € E? ler-ea =0} — Vg, (e1,e2) — (—e1,e1,€2);
Vo1 — Vo -1, (e1,e2,e3) — (e1, —e3,€2);
Vigp — Vo1, (e1,e2,e3) — (e1, —e2,€3);
Vo,01 — V-1,0,0, (e1,e2,e3) — (—e1,e3,€2);
Vo1 — Voio, (e1,e2,e3) — (—e3,e2, —€1);
Voi,-1,-1— Vi, (e1,e2,e3) — (e1,e2, —e3).

We proved that W acts transitively on the six different sets on the left-
hand sides. From Lemma it follows that W acts transitively on
Voo 11, Vo200, Vo110, V-1,-1,1, V=100, V-1,01, and V_1 11, too.

Since we proved that V, . is either empty or W acts transitively on it for
20 different sets, we conclude that we proved the proposition.

The following corollary proves Theorem for cliques of Type III.

COROLLARY 3.3.34. Let K1 and Ky be two cliques of type I, and let
f: K1 — K5 be an isomorphism between them. Then f extends to an
automorphism of A.

Proof. Since W acts transitively on the set of ordered sequences of n
roots for 1 < n < 3 by Propositions [3.3.1] and [3.3:2] there exists an
automorphism w € W of A such that w restricted to K; equals f. O

3.4 Monochromatic cliques

In this section we study the cliques of type I, that is, cliques in I'{_sy,
I'y_1y, g0y, and I'yyy. We describe the orbits under the action of W of
sequences of roots that form a clique, thus obtaining the results in The-
orem for cliques of type I (see Corollaries [3.4.5| and [3.4.9). We also
describe all maximal cliques per color. For I'y_5y and I'(_yy, everything
follows from the previous sections. For I'fy; we have Proposition @
already; we show moreover that there are no cliques of size bigger than
eight, and describe the maximal cliques in Proposition [3.4.7} Finally, in
this section we prove that W acts transitively on ordered sequences of
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length 7 of orthogonal roots for r > 5. The result is in Proposition
Throughout this section we do not use any computer.

Cliques in I'{_9,

The maximal size of a clique in I'{_sy is two, since such a maximal clique
consists of an element in E and its inverse (see Proposition . There
are therefore 120 such cliques. In Lemma we showed that W acts
transitively on the set of ordered pairs {(e1,e2) € E? | e; = —ea}, so W
acts transitively on the set of maximal cliques in I';_o;.

Cliques in I'{_y

In I'y_yy, the maximal size of a clique is three, and there are no maxi-
mal cliques of smaller size, by Lemma From Proposition and
Lemma @ it follows that there are Mgii% = 2240 maximal cliques. By
Corollary [3.3.10] the group W acts transitively on the set of sequences
{(e1,e2,e3) € B3 | e1-ea =ey-e3 =e1-e3 =—1}, so W acts transitively
on the set of maximal cliques in I'y_;;. By Lemma @, the group W
acts transitively on the set {(e1,e2) € E? | e1 - ea = —1}, so W acts also
transitively on the set of cliques of size two in I'y_y3, of which there are

2056 — 6720 (Proposition [3.2.2).

Cliques in T'yg)

Cliques in T'jgy are studied in [DMI0], where they are called orthogonal
subsets. In their paper, the authors show that the maximal size of cliques
in I'(g is eight [DM10l Table 1], that two cliques of the same size r are
conjugate if r # 4, and that there are two orbits of cliques of size 4 [DM10),
Corollary 2.3]. In the previous section we showed that W acts transitively
on the set of ordered sequences of length at most 3 of orthogonal roots, and
that there are two orbits of sequences of length 4. In this section we use this
to conclude the same results as in [DM10] for cliques of size r < 4, and we
compute the number of these cliques. Moreover, we study the action of W
on ordered sequences of length > 5 of orthogonal roots (Proposition,
and compute the number of cliques of size > 5 (Proposition .

The following proposition deals with the cliques of size at most 4.

PRroOPOSITION 3.4.1.

(i) There are 15120 cliques of size two in I'ypy, and the group W acts
transitively on the set of all of them.
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(ii) There are 302400 cliques of size three in Iy, and the group W' acts
transitively on the set of all of them.

(iii) There are 1965600 cliques of size four in I'ygy, and they form two
orbits under the action of W: one of size 151200, in which all cliques
have vertices whose roots sum up to a vector in 2A, and one of size
1814400, in which all cliques have vertices whose roots sum op to a
vector that is not in 2A.

Proof.
(i) We have shown that the group W acts transitively on the set
A(] = {(61,62) € E2 ’ e1 ey = 0}

(Proposition [3.3.14)), and |Ag| = 240 - 126 = 30240 (Proposition |3.2.2)).
It follows that there are 303%“0 = 15120 cliques of size two in I'(gy, and
the group W acts transitively on the set of all of them.

(ii) The group W acts transitively on the set
‘/3 = {(61)62763) S E3 ‘ V@ #] L€ '6]' = 0}7

and we have |V3| = 1814400 (Proposition [3.3.28| (i)). It follows that
there are 181;& = 302400 cliques of size three in I'g}, and the group
W acts transitively on the set of all of them.

(iii) By Proposition [3.3.29| there are two orbits under the action of W
on the set

V4 = {(61762763764) S E4 | \V/l?éj 1€ € :O}’

one of size 3628800 where all elements have coordinates that sum up to
a vector that is in 2A, and one orbit of size 43545600 where all elements
have coordinates that sum up to a vector that is not in 2A. Since the
orbit in which an element is contained does not depend on the order of
its coordinates, we conclude that this also gives two orbits with the same
properties under the action of W on the set of all cliques of size four in
T(o}, of sizes 2925890 = 151200 and 4352000 = 1814400, respectively. [

We continue by studying the sequences of orthogonal roots of length
greater than four. Recall the set V,; and its orbits under the action of W,
given by Y of size 43545600 and O = V4 \ Y of size 3628800 (shown in
Proposition |3.3.29)).
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LEMMA 3.4.2. For an element y = (ey,...,e4) € Y, define the set
Cy={ecE|e-e=0"forie{l,2,3,4}}.
The following hold.

(i) The set Cy is the union of four sets { fi,—fi},{f2, —fa}, {f3, —f3},
and { f4, —fa}, with f; - f; =0 for i # j. For such a set { f;, — f;}, there
is exactly one triple {e;,,e;,,e;,} of elements in y such that the per-
mutations of (e;,, e, €is, fi) (or equivalently of (e;,, ei,, €is, — fi)) form
elements in O. Moreover, for j # i, and j1, j2, j3 such that the permu-
tations of (e, , €j,, €5, fj) form elements in O, the sets {e;, , e;,, €, } and
{€ej,,€j,, €5, } are different.

(ii) The stabilizer of y is generated by the reflections in the hyperplanes
orthogonal to f; for i € {1,2,3,4}.

Proof. Since W acts transtively on Y, it suffices to show this for a fixed
element y € Y. Set

e1 = (1,1,0,0,0,0,0,0), e3 = (0,0,0,0,1,1,0,0),
es = (0,0,1,1,0,0,0,0), es = (1,-1,0,0,0,0,0,0).

Then (e1, ea, €3, €4) is an element in V3 and since Y7, e; ¢ 2A, it is an
element in Y as well by Proposition Take e = (a1,...,ag) € E
such that e-e; =0 for i € {1,2,3,4}. Then we have a; + a2 = a1 —ay =
as + a4 = as + ag = 0. We find the following possibilities.

+fi :i(0a050707070317_1)7 + f3 :j:(0,0,l,—l,0,0,0,0),
:thZi(OaOaOaOa]-a_]-aOaO)v if4:i(070a0a0a0503131)‘

It is an easy check that f; - f; = 0 for ¢ # j, and for ¢,k € 1,2,3,4, the
sum (Z#i ej) + fi is contained in 2A if and only if ¢ = k. This proves (i).
We continue with (ii). Take i € {1,2,3,4}. Since f; is orthogonal to the
elements in y the reflection r; in the hyperplane orthogonal to f; is an
element of W,,. For i # j, the reflections 7; and r; commute, since f; and
fj are orthogonal. Therefore the elements 71,72, 73,74 generate a subgroup
of W, of order 16. Since we have

W[ 696729600
Y| 43545600

’Wy| =
they generate the whole group W,. O
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COROLLARY 3.4.3. Set n5 =1, ng =3, ny =7, and ng = 14. Let K be
a clique of size r € {5,6,7,8} in [toy. Then the number of sets of four
vertices ey, ez, e3,e4 in K such that the permutations of (e, e, €3, e4) are
elements in O is equal to n,.

Proof. First let K be a clique of size 5 in I'jgy. Assume in contradiction
that there are two distinct subsets, say y1,y2, of four vertices in K that
form an element in O. Then there are three vertices of K, say eq, es, e3,
that are contained both in y; and yo. Write y; = {e1,e2,e3, f1} and
y2 = {e1,e9,e3, f2}. By applying Proposition (iii) to the triple
(e1,e9,€3), it follows that f; = —fa, so fi1 - fo = —2. But this gives a
contradiction, since fi, fo are both in K. So the number of sets of four
vertices in K that form an element in O is at most 1, which means that
there is at least one subset {g1,¢2, 93,94} of K of four roots such that
(91,92,93,94) is an element in Y. For the fifth element in K, say gs, it
follows from the previous lemma that there is exactly one triple {ga, 93, 9~ }
of elements in {gi, ..., g4} that it forms an element in O with. We conclude
that there is exactly 1 set of four vertices in K that form an element in O;
this proves the statement for r = 5.

We proceed by induction. Take s € {6,7,8}. Assume that the statement
holds for 5 <r < s, and let K = {e1,...,es} be a clique of size s in I'{p.
By induction we know that {ej,...,es_1} contains ns_; subsets of size four
that form an element in O. That means that there are (sf) —mn4_1 subsets
of size four in {ey,...,es_1} that form an element in Y. By Lemma
each of these (311) — ng_1 subsets contains exacty three elements that,
together with ey, form an element in O. Let dy, d2, d3 be three elements in
{e1,...,es—1} such that (di,ds,ds, es) is an element in O. Then for every
element d € {e1,...,es_1} \ {d1,da,ds}, the set {di,ds,ds,es,d} forms a
clique of size 5 in I'{gy, and since ns = 1, it follows that (di, dz2,ds, d) is an
element in Y. This means that every set of three roots in {ej,...,es—1}
that forms an element in O with ez forms an element in Y with all other
roots in {ey,...,es—1}. Since every set of three roots in {e1,...,es_1} is
contained in (s — 1) — 3 subsets of size four of {e;,...,es—1}, this gives
("a)=ns

1

yo distinct sets of three that form an element in O with e;. In

(*4)=nsa

total this gives ng_1 + p sets of four vertices in K that form an
element in O. This is exactly equal to ns for s =6,7,8. O

For 1 <r <8, let V,. be the set

Vi={(e1,..,er) € B |Vi# j:ei-ej =0}
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PROPOSITION 3.4.4. For 5 < r < 8, two elements (e1,...,e.), (fi,---, fr)
in V. are in the same orbit under the action of W if and only if for all
1 <i<j<k<l<r, the elements (e;, ej,ex, ) and (fs, f;, fr, fi) are
conjugate in V under the action of W.

Proof. For 5 < r < 8, define the relation ~ on V, by (e1,...,e;) ~
(fi,...,fr) if and only if for all 1 < i < j < k < I < r, the elements
(ei,ej,ex,er) and (fi, fj, fr, fi) are conjugate in V4. Note that ~ is an
equivalence relation on V,., and the group W acts on the equivalence
classes. Our goal is to show that each equivalence class is an orbit in
V. under the action of W. We do this by induction on r.

For r = 5, let X5 C V5 be an equivalence class with respect to ~. We
distinguish two cases. If for every element in X5 the first four coordi-
nates form an element in Y, we let p: X5 — Y be the projection to the
first four coordinates. Note that this is surjective by Lemma [3:4:2] Set
y = (y1,...,y4) €Y. Since the elements in the fiber p~!(y) are equivalent
under ~, there are exactly two elements (y1,...,vy4, f), (Y1, --,91,—f) in
p~Y(y) by Lemma (i). Moreover, the stabilizer W, acts transitively
on these two elements by Lemma (ii). From Lemma it follows
that W acts transitively on X5. If, on the other hand, for every element
in X35 the first four coordinates form an element in O, then it follows from
Corollary [3.4.3] that the last four coordinates of every element in X5 form
an element in Y. We now let p: X5 — Y be the projection to the last
four coordinates, and the proof is the same.

Now assume that r > 5, and that each equivalence class in V,._; is an
orbit under the action of W. Let X, be an equivalence class in V,., and
pr: X, — V,_1 the projection to the first » — 1 coordinates. Then W
acts on p,(X,), and p,(X,) is contained in an equivalence class X,_; with
respect to ~ in V,_;. Since W acts transitively on X,_; by hypothesis,
it follows that p,(X,) = X,_1, and W acts transitively on p,(X,). Since
r > 5, by Corollarythere exist i, j,k,l € {1,...,r — 1} such that for

all elements (e1,...,e,) € X, we have (e;, e;,ex, ) € Y. Fixsuch 4, j,k,1,
and let v = (v1,...,v,—1) be an element in p,(X,). Then (v;,vj, vk, v;)
is an element in Y. Let (vi,...,v,—1, f), (v1,...,0,—1,9) be elements in
the fiber p, !(v). Since (v1,...,v,_1, f) is equivalent to (v1,...,v,_1,9)

with respect to ~, by applying Lemma to (vi,vj, v, v;) we see that
f = —g, and the fiber p, ! (v) consists of the two elements (vy,...,v,_1, f)
and (v1,...,v,—1,—f). Moreover, the reflection in the hyperplane orthog-
onal to f fixes v1,...,v,_1, hence is an element in the stabilizer of v that
switches f and —f. So the stabilizer of v acts transitively on p, !(v), and
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again from Lemma we conclude that W acts transitively on X,.. [

COROLLARY 3.4.5. Let K1 and K3 be cliques in I'(gy, and f: K1 — Ko
an isomorphism between them. Then f extends to an automorphism of A
if and only if for every subclique S of size 4 in Kj, the image f(S) in Ky
is conjugate to S under the action of W.

Proof. If K1 and Ks have size < 3, then it follows from Corollary [3.3:34]
that f always extends. From Proposition it follows that if K; and
K5 have size at least four, the isomorphism f extends to an element in W
exactly when f sends every sequence of four roots that form an element
in Vj to a conjugate element in V;. By Proposition [3.3:29] there are two
orbits of ordered sequences of four pairwise orthogonal roots, that do not
depend on the order of the roots. We conclude that if S and f(S) are
conjugate under the action of W for every set S of four vertices in Ki,
there exists an automorphism w € W of A such that w restricted to K3

equals f. O

THEOREM 3.4.6. In I'(g), the following hold.

(i) There are no maximal cliques of size smaller than eight.

(ii) There are 3628800 cliques of size five, 3628800 cliques of size six,
2073600 cliques of size seven, and 518400 cliques of size eight.

(iii) The group W acts transitively on the cliques of size 5.
Proof.

(i) We know that every root in E is orthogonal to 126 other roots
(Proposition [3.2.2). Moreover, we know that in 'y, every clique of
size 2 extends to a clique of size 3 (Lemma , and every clique
of size 3 extends to a clique of size 4 (Proposition (ii)). Since
ns =1< (i) by Corollary every clique of size 5 in I'(g contains
both a subclique whose vertices form an element in O, and a subclique
whose vertices form an element in Y. Since W acts transitively on O
and on Y, and V4 = O UY, this means that every clique of size 4 in
['4py extends to a clique of size 5. Moreover, by Lemma m (i), every
extension of a clique of size 4 whose vertices form an element in Y is
contained in a clique of size 8. Since every clique of size at least 5
contains a clique of size 4 whose vertices form an element in Y, there
are no maximal cliques of size smaller than 8.
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(ii) By Lemma if we fix an element y = (e1, e2,e3,e4) € Y, there
are exactly 8 elements in V5, and 8-6 elements in Vg, and 8-6-4 elements
in V7, and 86 -4 -2 elements in Vg, that have e; as the ¢** coordinate
for i € {1,2,3,4}. We call this number m, for r = 5,6,7,8. For all
5 <r <8, for S a clique of size r, it follows from Corollary [3.4.3] that
S contains (j) — n, cliques of size 4 that, together, form 4! - ((}) — n;)
different elements in Y'; for such a subclique of size 4 in S, the other
r — 4 elements can be permuted in (r — 4)! ways. For all 5 < r <8, let

D, be the set of cliques of size r in I'ggy. It follows that we have

Y] m,
() = ne) - (r =40

D=1

We find the following results.

Y] -8 Y]-8-6
— — 3628800, |Dg| = """ — 3628800
’ 5’ 4|.4 7’ 6’ 4!'12.2 b
Y]-8-6-4 Y]-8-6-4-2
D=1 "2 7 9073600, |Dg| = 2272 _ 518400.
D7l 41928 3! » | D 4156 - 41

(iii) Let K1 = {e1,...,e5}, Ko = {f1,..., f5} be two cliques in I'{p.
We have ns; = 1 by Corollary [3.4.3] so without loss of generality we
can assume that e1,es, e3,eq and f1, fo, f3, f4 are the unique four ele-
ments in K; and Ko, respectively, that form an element in O. Then

(e1,e2,€3,€e4,e5) and (f1, fo2, f3, f4, f5) are conjugate under the action of
W by Proposition [3:4.4] hence so are K; and Ko. O

Cliques in I'(yy

We know that cliques in I'(y) form k-simplices that are k-faces of the Eg
root polytope (Proposition , hence Corollary states how many
cliques of size n there are in I'fyy for n < 8. Moreover, we know that W
acts transitively on these cliques for n < 8, n # 7 (Proposition .
Proposition [3.:4.7] shows that there are no cliques of size bigger than eight
in I'(1y, and that there are two orbits of cliques of size seven (which was
already known, for example by [Cox30] and [Man86]); it shows that all
maximal cliques are of size 7 or 8.

PROPOSITION 3.4.7. In I'(yy, the following hold.

(i) There are only maximal cliques of size 7 and 8.

84



3.4. MONOCHROMATIC CLIQUES

(ii) There are two orbits of cliques of size 7 in I';1y; one of size 138240,
which is given by non-maximal cliques, and one of size 69120, which is
given by maximal cliques. A clique of size seven in I'gyy is maximal if
and only if the sum of its vertices is an element in 2A.

(iii) There are 17280 cliques of size 8.

Proof. Consider the clique of size six in I'(;y given by {e1,...,es}, where
we define

er = (1,1,0,0,0,0,0,0), es=(1,0,0,0,1,0,0,0)
es = (1,0,1,0,0,0,0,0), e5=(1,0,0,0,0,1,0,0)
es = (1,0,0,1,0,0,0,0), e = (1,0,0,0,0,0,1,0).

Since W acts transitively on the set of cliques of size smaller than 6 in I'¢yy
by Proposition [3.2.12] it follows that every clique of size smaller than 6 in

I'f1y is contained in a clique of size 6 in I'f1y. The elements in F that have
dot product one with all ey, ..., eg are given by ¢; = (%, %, %, %, %, %, %, %) ,
¢z =(1,0,0,0,0,0,0,1),and cs = (1,0,0,0,0,0,0,—1). Note that ¢;-co = 1
and c3-c1 =c3-c =0, s0 {eq,...,eq,c1,c2} is a maximal clique of size 8
in I'¢yy, and {e1, ..., e6,c3} is a maximal clique of size 7 in T'yy. Since W
acts transitively on the cliques of size 6 in I'(1y by Proposition all
maximal cliques in I';;y are of size 7 or 8. This proves part (i). Moreover,
it follows that every non-maximal clique of size 7 is contained in a unique
clique of size 8, so there are % = 17280 cliques of size 8. This proves
part (iii). We will now prove (ii). From part (i) it follows that there
exist maximal and non-maximal cliques of size 7 in I';y. It is obvious
that they can not be in the same orbit under the action of W. Moreover,
there are two orbits of ordered sequences of length 7, hence at most two
orbits of cliques of size 7 by Proposition [3:2.12] We conclude that the
orbits are given exactly by the maximal cliques and the non-maximal
cliques. Since there are 483840 cliques of size 6 (Corollary , from
the above it follows that there are w = 138240 non-maximal cliques,
and % = 69120 maximal cliques. Now consider the set {e1,...,e7},
where the elements are defined above Lemma This is a clique of
size 7 in I'(yy, and it is not hard to check that it is maximal. Moreover,
we have

7
> ei=1(5,3,3,3,1,1,1,1) € 2A.
i=1
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Since W acts transitively on all maximal cliques of size 7 in I'(y}, for all
such cliques the sum of the vertices is an element in 2A. On the other
hand, consider the set d = {dy,...,d7} as defined above Lemma
This is a non-maximal clique of size 7 in I'fy}, since the union of d with the

11111 1 1 1Y . : :
root (—5, 513r3150 "3 —5,—5) is a clique of size 8 in I';;y. Moreover,

we have -

D di=1(2,4,4,4,1,-1,-1,-1) ¢ 2A.

i=1
Since W acts transitively on all non-maximal cliques of size 7 in I'(1y, for
all such cliques the sum of the vertices is not an element in 2A. O

REMARK 3.4.8. Note that 138240 + 69120 = 207360, which is the total
number of cliques of size 7 by Corollary [3.2.7]

COROLLARY 3.4.9. Let K1 and K5 be cliques in F{l}, and f: K1 — Ko
an isomorphism between them. If K1 and Ko have size unequal to 7, then
f extends to an automorphism of A. If K; and Ky have size 7, then f
extends if and only if the sum of the vertices of K1 and the sum of the
vertices of Ko are either both in 2A, or both not.

Proof. Another way of saying that the morphism f extends is that if
{e1,...,e,} is the set of vertices in K7, then the sequences (eq,...,e,) and
(f(e1),..., f(er)) are conjugate. By Proposition for r <8, r#7,
there is only one orbit of ordered sequences of length 7 of roots that have
pairwise dot product 1. This implies that f extends to an element in W
if K1, K» have size unequal to 7. Furthermore, by the same proposition,
there are two orbits of ordered sequences of roots of length 7. By Propo-
sition [3:4.7] there two orbits of cliques of size 7, that are distinguished by
whether the sum of the 7 roots is an element in 2A or not. We conclude
that the two orbits of ordered sequences are distinguished in the same
way. This implies that f extends if and only if the sum of the vertices in
K, and the sum of the vertices in f(K;) = Kz are both in 2A or both
not. O

REMARK 3.4.10. We know that the cliques of size 7 in I';1y are 6-faces
of the Eg root polytope. We can describe the two orbits of these cliques
in this framework as well. A 6-face of the polytope is an intersection
of two facets. There are two types of facets of the Eg root polytope:
7-crosspolytopes and 7-simplices (Proposition . Since the maximal
cliques of size 7 in I';1y are not contained in a 7-simplex, these are exactly
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the intersections of two 7-crosspolytopes.

Consider the set ¢ = {c1,...,¢7,d1,...,dr}, defined above Lemma
Note that d = {di,...,dr} is a non-maximal clique of size 7 in I'(;; that
is contained in the 7-crosspolytope with vertices in ¢, but also in the
7-simplex with vertices d U {(—%, %, %, %,%,—%,—%,—%)}. It follows
that every non-maximal clique of size 7 in I';yy is the intersection of a
7-crosspolytope with a 7-simplex.

From this it also follows that two 7-simplices in the Eg root polytope never
intersect.

REMARK — ANALOGY WITH GEOMETRY 3.4.11. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and I the set of
exceptional classes in Pic X. Through the bijection between I and FE,
cliques in I'fqy are related to sets of exceptional classes that are pairwise
disjoint. These are called exceptional sets, and can be blown down so that
we obtain a del Pezzo surface of higher degree (Lemma[L.2.8)). Since a del
Pezzo surface has degree at most 9 (in which case it is isomorphic to P?),
it is clear that the maximal size of a clique in I';1y is eight. We can also
describe the two orbits of size 7 in this setting; cliques that are maximal
correspond to exceptional sets that blow down to a del Pezzo surface of
degree 8 that is isomorphic to P! x P!, and cliques that are not maximal
correspond to exceptional sets that blow down to a del Pezzo surface of
degree 8 that is isomorphic to P! blown up in one point [Man86, remark
below Corollary 26.8].

3.5 Maximal cliques

In this section we describe all maximal cliques in I'; for ¢ # {—1,0,1}
(cliques of type IV), and their orbits under the action of W. Note that
I'_10,1 is the graph I' after removing all edges between roots and their
inverses. This means that the maximal cliques in I' 1 o1 are all of size
120: for each root you can either choose the root or its inverse. Therefore

2120

there are maximal cliques in I'_1 o 1, which gives at least Hl%w =

1907810427151244719477695595 orbits in the set of maximal cliques under
the action of W. Because of the size of these cliques and their orbits, we
did not compute the orbits.

In the first two subsections of this section we describe all maximal cliques
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in oy, I 1y, Proy, Ty Ty, —1y 2,1y, T'y—2,0), and F{—Q,ﬁ =T.

Cliques in I'y_5 1y and I'{_5 1} are monochromatic (Lemma [3.5.5)), and
maximal cliques in I'y_, gy are in bijection with maximal cliques in I'(g
(Lemma . Therefore, everything before Section follows from
results in Section [3.4] and is done without a computer. From Section
onwards, we used magma for some computations. The code that we used
can be found in [Codb].

REMARK 3.5.1. Because of the relation to del Pezzo surfaces, the max-
imal cliques in I'y_5 gy and I'f_; g are of special interest to us, which is
explained in Remark [3.5.4] For these two graphs we have extra results in
Sections [3.5.2] and [3.5.3} we compute the structure of the largest cliques
in the graphs in Propositions[3.5.9/ and [3.5.23] and we show that for these
largest cliques, their stabilizer in W acts transitively on the clique itself
(Corollaries |3.5.12 and [3.5.25)).

Most of the results in Section were already proven in terms of del
Pezzo surfaces by the same author in [Winl4]; results - cor-
respond to results 4.8, 4.10, 4.11, and 4.16-4.20 in [Winl4]. Moreover,
Proposition and Corollary are the same as Proposition 4.27
and Corollary 4.28 in [Winl4]. We decided to repeat these results here
for completeness, and to rephrase the results in terms of the roots in Eg.
Besides this, the techniques in Sections and show how one could
prove similar results for graphs with other colors.

The main results of this section are summarized in the tables in Ap-

pendix [A] and Remark

NoTATION 3.5.2. To denote cliques of I' in a compact way, we order the

root system E as follows. Roots of the form (i%, e i%) are ordered lex-

icographically and denoted by numbers 1—128; for example, (—%, ey —%)

is number 1, and (%, ceey %) number 128. Roots that are permutations of
(+£1,£1,0,0,0,0,0,0) are ordered lexicographically and denoted by the

numbers 129 — 240; for example, (—1,—1,0,0,0,0,0,0) is number 129,
and (1,1,0,0,0,0,0,0) is number 240.

The table in Appendix [A] contains the following information.

NoTATION 3.5.3.

Graph: a graph I'. where c is a set of colors in {—2,—1,0,1}.

88
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K: a clique in I'.; we denote vertices by their index as in Notation [3.5.2
|K|: the size of K.

|Wik|: the size of the stabilizer of clique K in the group W.

| Aut(K)|: the size of the automorphism group of K as a colored graph.

#0O: the number of orbits of the set of all maximal cliques of size |K| in
I'. under the action of W.

For each graph I'., the list of cliques in I in the table in Appendix [A] gives
exactly one representative for each orbit of the set of maximal cliques in I,
under the action of W. The proofs of these results are in Proposition|3.5.6

Corollary [3.5.16] Proposition [3.5.28] Lemma [3.5.30, Proposition [3.5.33]

and Proposition [3.5.35

The following remark shows the connection between del Pezzo surfaces
and cliques in I'y_5 gy and I'r_1 o).

REMARK — ANALOGY WITH GEOMETRY 3.5.4. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and let I be the set
of exceptional classes in Pic X. The question that led us to study the
Eg root system was how many exceptional curves on X go through the
same point (see Chapter[4} the following is also stated in Proposition
and Remark [1.2.5)). Recall that the linear system | — 2K x| realizes X as
a double cover of a cone in P3, ramified over a sextic curve B that does
not contain the vertex of the cone (see Section . There are 120
hyperplanes that are tritangent to B, and such a hyperplane pulls back to
the sum of two elements in I that intersect with multiplicity 3. It follows
that two elements in I intersecting with multiplicity 3 correspond to curves
on X intersecting in 3 points on the ramification curve. Conversely, if an
element ¢ in I corresponds to a curve on X that goes through a point P
on the ramification curve, then the unique element ¢ € I with ¢-c¢ =3
corresponds to a curve on X going through P as well.

Through the bijection I — F, ¢ — ¢+ Kx, cliques in I" that correspond
to sets of pairwise intersecting lines on X have edges of colors —2, —1,0.
Since elements in I with intersection multiplicity 3 correspond to two roots
in E with dot product —2, it follows that a set of lines on X that all go
through one point on the ramification curve forms a clique in I'f_5 ¢y, and
a set of lines on X that all go through one point outside the ramification
curve forms a clique in I'f_; ¢}. This motivates why we have studied these
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3. THE ACTION OF THE WEYL GROUP

two graphs extensively, and especially the biggest cliques in them (with
respect to number of vertices).

3.5.1 Maximal Cliques in F{,Q}, F{,l}, F{l}, F{,27,1}, F{,Q}l},
and I't_5 10,1}

LEMMA 3.5.5. Cliques in I'{_5 _1} and in I'{_5 1} are monochromatic.

Proof. For an element e € F, its inverse —e is the unique element inter-
secting it with multiplicity —2 (Proposition . Take e, f € E with
e-f=—1, then —e- f =1, hence ¢, f, —e do not form a clique in I'f_5 _1;.
Therefore all cliques in I'y_, _; are monochromatic. Analogously, the
cliques in I'{_5 1} are monochromatic. O

ProproOSITION 3.5.6. For

ce {{_2}’ {_1}7 {1}’ {—2, _1}7 {_27 1}7 {_27 —1,0, 1}}7

the table in Appendix [A] gives the complete list of orbits of the maximal
cliques in I'., as well as a correct representative for each orbit, the size of
its stabilizer in W, and the size of its automorphism group.

Proof. We showed in Section F)El that all maximal cliques in I';_5y have
size 2, and that they form one orbit of size 120. We also showed that all
maximal cliques in I'{_1y have size 3, and they form one orbit of size 2240.
In Proposition [3.4.7 we showed that there are two orbits of maximal cliques
in T'(1y; one of size 69120, which consists of cliques of size 7, and one of
size 17280, which consists of cliques of size 8. For I'f_5 _1y and I'{_5 1} we
proved that all cliques are monochromatic in Lemma [3.5.5, so the maxi-
mal cliques and their orbits are found by looking at the monochromatic
subgraphs I'y_oy, I'r_1y, and I'qy.

It is an easy check that for these five graphs, the cliques in the table are
correct representatives of the orbits. The sizes of their stabilizers are found
by dividing the order of W by the size of their orbit. Since all the cliques
in these five graphs are monochromatic, their automorphism group is the
permutation group on their vertices.

Finally, note that I'y_5 _ o 13 = I'. The only maximal clique in I'y_5 _; o 13
is therefore the whole graph, which forms an orbit of size 1 under the ac-
tion of W. O
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3.5.2 Maximal cliques in I'jpy and I'{_5

The following lemma describes the maximal cliques in I'f_3 o}.

LEMMA 3.5.7. In T'y_5 ), the following hold.

(i) The maximal size of a clique in T'y_y¢y is 16, and there are no
maximal cliques of smaller size.

(ii) The set of maximal cliques in I'y_2) is given by

{{61,...,68,—61,...,—68}|Vi:€i€E; Vi#j:ei-ej:(]}.

Proof. By Theorem [3.4.6, all maximal cliques in I';gy are of size 8. Let

{e1,...,es} be a maximal clique in I'fpy. Then {es, ..., es,—€1,..., —es}
is a clique in T'y_y ¢y of size 16. Now assume that {ci,...,c,} is a clique
in I'_5 gy of size bigger than 16. Since edges of color —2 connect a root
and its inverse, the clique {ci, ..., ¢} contains a subclique of size at least

r

[5] with only edges of color 0. But this would give a clique in I'yy of

size at least [%W =9, contradicting Theorem [3.4.6f We conclude that the
maximal size of a clique in I'y_5 oy is 16. Now assume that S is a maximal
clique in I'y_5 of size smaller than 16. Let K be the biggest (with
respect to number of vertices) subclique of S with only edges of color 0.
Let K’ be a maximal clique in T'py containing K, so K’ has size 8. Then
the clique consisting of all vertices of K’ and their inverses is a clique in
['y_o ) of size 16 that strictly contains S, contradicting the maximality
of S. We conclude that there are no maximal cliques of size smaller than
16 in T'y_5 gy, concluding the proof of (i). Part (ii) is now obvious. O

To show that the group W acts transitively on the maximal cliques in
I'(_2,0}, we use the following lemma, which builds on results in previous
sections. Recall the set Y as defined above Lemma [3.3.21]

LEMMA 3.5.8. The following hold.

(i) For every element y = (e1,...,e4) € Y, there is a unique maximal
clique in I'y_5 gy containing ey, ..., €4.

(ii) Every maximal clique in I'y_ oy contains exactly 896 distinct subsets
of four roots ey, ..., e4 such that (e1,...,e4) is an element in Y.
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Proof.

(i) From Lemma it follows that an element in Y is contained in a
unique clique of size 8 in I'(py. But such a clique extends uniquely to a
maximal clique in I'f_5 oy by adding all inverses of the roots.

(ii) By Lemma 3.5.7 a maximal clique in I'y_5 oy consists of eight pair-
wise orthogonal roots and their inverses. Let K be such a clique. Eight
pairwise orthogonal roots in K contain (i) — 14 = 56 distinct sub-
sets of four roots that form an element in Y by Corollary Let
D = {e1,ea,e3,e4} be such a subset. If we replace a root in D by its
inverse, then the roots in D still form an element in Y. This gives
56 - 24 = 896 distinct subsets of K of that form an element in Y. Since
a set of four roots that contains both a root and its inverse never forms

an element in Y, these are all of them. O
Let S be the set of all cliques of size 16 in I'{_5 ¢}. By Lemma this
is exactly the set of maximal cliques in I'{_5 ¢y. By Lemma [3.5.8/ we have

a surjective map
s:Y —S.

COROLLARY 3.5.9. The group W acts transitively on S, and we have
|S| = 2025.

Proof. Since the map s is surjective and W acts transitively on Y (Propo-

sition [3.3.29)), it follows from Lemma 3.2.141 that W acts transitively on S.
From Lemma [3.5.8|it follows that |S| = % = 2025. O

Let K be an element of S, and W its stabilizer in W. Now that we fully
described all maximal cliques in I'{_5 5y and the action of W on the set
of these maximal cliques, we finish the study of I'y_5 gy by studying the
action of Wx on K, and concluding that W acts transitively on cliques of
sizes 6,7,8 in I'fpy in Proposition Consider the sets

Ji={(e1,e9,e3) € K3 | e -ea =e1-e3=eg-e3 =0},

and
Jo = {(61,62) € K? | e1 ey = 0}

ProprosiTiON 3.5.10. The group Wg acts transitively on J.
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Proof. From Lemma we know that K consists of eight pairwise or-
thogonal roots and their inverses, so we have |J1| = 16 - 14 - 12 = 2688.
Fix an element ¢ = (e, e2,e3) in J;. We want to show that its orbit Wi
has size 2688, hence is equal to J;. Let Wi, be the stabilizer in Wi of ¢.

We have |Wgkt| = |‘V¥/VK||, and

wi _ W Wk|
Wk Wkl [Wk,|

By Corollary |3.5.9 we have |W = |WK| = 2025. Moreover, we have

Wi _ Wl Wil
|WK,L| |WL| ‘WL,K‘

By Proposition [3.3.28 we have 2 = [ = 240 - 126 - 60 = 1814400.

W] —
We now compute “LVW‘ |W,K|. From Proposition [3.3.28 we know

that there are 24 roots e € E such that (e1,es,es,e) is an element in Y.

Since W, acts transitively on those 24 roots by Proposition the

orbit W, K contains the cliques s((e1,ea,es,e)) for all 24 roots e. Now

fix e and set y = (e1,e2,e3,¢), and L = s(y). From Lemma (i) we know

that L contains exactly eight roots f such that (e, ez, e3, f) is an element

in Y. Therefore, they determine the same unique clique of size sixteen
24

as e. We conclude that there are 5 = 3 different cliques containing ¢.

So we have |W,K| > 3, and we find % > 1814400 - 3 = 5443200.

It follows that ‘%{ I‘ > 54240322500 = 2688. Since on the other hand we

have |W = |Wkt| < |J1| = 2688, we have equality everywhere and we
conclude that Wit = Ji. This finishes the proof. O

COROLLARY 3.5.11. The group Wy acts transitively on Jo.

Proof. We have a projection map A: J; — Ja to the first two coordinates.
Since K consists of eight pairwise orthogonal roots and their inverses, if
we fix two elements eq, ey such that (ej,ez) € Jo, there are 16 — 4 = 12
elements e € K such that (e1,e2,e) is contained in J;. Therefore, \ is
surjective. From Proposition [3.5.10] and Lemma [3:2.14] it follows that
Wk acts transitively on Js. O

COROLLARY 3.5.12. The group Wy acts transitively on K.
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Proof. We have a projection map \: Jo — K to the first coordinate. For
every element e in K there are 14 elements ¢ such that (e, c) € Jo, so A is
surjective. From Corollary and Lemma it follows that Wy
acts transitively on K. O

PRroPOSITION 3.5.13. For n € {2,3,5,6,7,8}, the group W acts transi-
tively on the set

D, ={{e1,...,en,—€1,...,—en} |Viie; € E; Vi# j:e;-ej =0}.

Proof. For n = 2,3,5, this follows from the fact that W acts transitively
on the cliques of size n in I'jgy (Propositions [3.4.1| and |3.4.6)), and the
fact that there is a surjective map from the set of cliques in I'ygy of size
n to D,. The case n = 8 is Corollary [3.5.90 From Proposition it
follows that the stabilizer W in W of K acts transitively on the set

{(61,62,—61, —62) S K4 | el ey = 0}

Since K consists of eight pairwise orthogonal roots and their inverses,
the cliques of six pairwise orthogonal roots and their inverses in K are
the complements of the cliques of two orthogonal roots and their inverses
in K, so this implies that Wi acts transitively on the set of cliques of six
pairwise orthogonal roots and their inverses in K, too. The statement now
follows for n = 6 by Corollary [3.5.9] The case n = 7 is proved analogously
since we showed that Wi acts transitively on K. O

REMARK 3.5.14. There are two orbits under the action of W on the set
{{e1,...,eq,—€1,...,—es} |Viies € E; Vi# j:e;-e;=0}.

Indeed, this follows from Proposition and the fact that there is a
surjective map from the set of cliques of size 4 in I'fg) to this set.

As we mentioned before, the fact that W acts transitively on the set
of cliques of size r for 1 < r < 8 in I'ygy is in [DM10]. The following
proposition shows how it follows from our results about I';_5 gy as well.

ProrosITION 3.5.15. for n = 6,7,8, the group W acts transitively on
the cliques of size n in T'(g}.

Proof. We know that W acts transitively on the set

D, ={{e1,...,en,—€1,...,—e,} |Viies € E; Vi# j:e;-ej =0}
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from Proposition [3.5.13| Let F), be the set of cliques of size n in I'rgy. We
have an obvious map f: F, — D,, which adds adds the inverses to all

roots in an element in F),. Let D = {ey,...e,, —e€1,...,—e,} be an element
in D,, and consider its fiber f~!(D) in F,. This consists of all cliques
{tei1,...,£e,}, where for each root either itself or its inverse is chosen.

The stabilizer Wp of D acts on f~!(D). Note that for i € {1,...,n},
the reflection in the hyperplane orthogonal to e; switches e; and —e; and
fixes all other roots in D, hence it is an element in Wp. Therefore, Wp
acts transitively on f~!(D), and by Lemma W acts transitively
on F,. ]

COROLLARY 3.5.16. The table in Appendix [4] gives the complete list of
orbits of the maximal cliques in I'tgy and I'(_5 )y, as well as a correct
representative for each orbit, the size of its stabilizer in W, and the size
of its automorphism group.

Proof. Al maximal cliques in I'f_ ¢, are of size 16 (Lemma and
there is only one orbit of them, of size 2025 (Corollary . It is an
easy check that the clique in the table is a representative of this orbit. Its
stabilizer size is % = 344064. Its automorphism group is isomorphic

to p§ x Sg by Lemma [3.3.30] hence has size 2% - 8!. In Theorem we
showed that all maximal cliques in I'fgy have size 8, and that there are

518400 of them. In Proposition [3.5.15] we showed that W acts transitively
on the set of these cliques. Therefore the stabilizer of the clique in the

table has size 51‘?2(‘]0 = 1344. Tts automorphism group is the symmetric
group on the 8 vertices. 0

We finish this subsection by proving Theorem [3.1.4] for maximal cliques
in ]_—‘{_270}.

LEMMA 3.5.17. Let K, and Ky be two maximal cliques in I'y_5 g, and
let f: K1 — Ko be an isomorphism between them. Then f extends to
an automorphism of A if and only if for every subclique S of four pairwise
orthogonal roots in K1, the image f(S) in Ko is conjugate to S under the
action of W.

Proof. By Corollary the group W acts transitively on the set of
maximal cliques in I'{_5 gy. Therefore there is an element o in W such that
a(K1) = K. Soa~lof is an element in the automorphism group Aut (K1)
of Ky. Of course, f extends to an element in W if and only if o= ' o f
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does. Moreover, for every set S of four pairwise orthogonal roots, f(S) and
(et o f)(S) are conjugate. We conclude that we can reduce to the case
where K7 = Ko, and f is an element in Aut(K). By Lemma we can
choose a subclique H = {ej,...,es} of K of eight pairwise orthogonal
roots, such that we have K; = {ej,...,eg,—e1,...,—eg}. Let Aut(H)
be the automorphism group of H as colored graph, and let (Aut(Ky))gy
be the stabilizer of H in Aut(K;). Since for every element e € K; we
have e € H or —e € H, an element in Aut(H) determines a unique
element in (Aut(K1))m, and conversely, every element in (Aut(K1))g,
when restricted to H, determines a unique element in Aut(H). So we
have an isomorphism ¢: Aut(H) = (Aut(K1))g. Let f be an element in
Aut(K1). Using Lemma write f = a or|k,, where a is an element
in ¢(Aut(H)), and r is a composition of reflections r; in the hyperplanes
orthogonal to e; for certain ¢ € {1,...,8}. By definition, r|g, extends to
the element r in W, and r(S) and S are conjugate for all cliques S of four
orthogonal roots, so the statement in the lemma is true for f if and only
if it is true for a. Of course, if a extends to an automorphism of A, then a
and a(S) are conjugate for all subcliques S of K of four orthogonal roots.
Conversely, assume that a(S) and S are conjugate for all such S. Then
in particular, for every subclique S’ of size 4 in H, the sets a|g(S’) and
S’ are conjugate. From Corollary it follows that a|y extends to an
element in W. Write w for an element in W with w|g = a|g. Then w|g,
and a are both elements in (Aut(K))gy, that are identical on H, hence
also on K;. We conclude that w|g, and a are the same, so a extends to
w € W. This finishes the proof. O

3.5.3 Maximal cliques in I'(_;

Consider the following twelve elements in F.

. 111 1 1 1 1 1

tl - (17 1705050507070)a t7 — (_ia 299257 9257 957 9 _57_5)
— . _ 11 111 11 1

ty = (070a1a170707070)a t8 - <_§7§7_§7§>§7_§>§7_§)
. _ 1 11 11 111

t3:(070707071717070)7 t9* (_Qv_iaﬁv_ivﬁa_ivﬁaﬁ)
. _ (1 1 1 11 1 1 1

ts = (0,0,0,0,0,0,—1,1); to = (5’_5’_57_575’_57_57_5)
te=(-1 -1 11 11 1 _1)y. , _ (1 1 11 1 111
5 — 2' 7957 99997 95997 957 9 )y U1l — \957 9y 95957 997 95959
bo— (11 1 1 _1111). " 111 1 1111
6 — 299297 997 997 9999959 ) 12 = \3,7%y5y7 957995195 9
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One can easily check that these twelve elements form a clique in I'{_y oy,
depicted below (where edges of color 0 are not drawn). We call this
clique T.

t1o

The existence of this clique implies that the maximal size of cliques in
I'y_10) is at least twelve. We will show that this is in fact the maxi-
mum. Moreover, we will show that all cliques of size twelve in I'y_; o)
are isomorphic, and that W acts transitively on the set of cliques of size
twelve (Propositions [3.5.23| and |3.5.24). To describe all maximal cliques
of smaller size in I'y_; gy and their orbits under the action of W, we use
magma for part of the computations.

LEMMA 3.5.18. Take ej,ez,e3 € E with e; -e3 = ey -e3 =e1-e3 = —1.
For e € E with e # ej,ea,e3, we have e -e; # 1 for all i = 1,2,3 if and
only ife-eg=e-eg=e-e3=0.

Proof. Take eq,e9,e3 € E with e1 - es = eg-e3 =e1-e3 = —1. Then we
have [|e; + e2 + e3|| = 0, so €1 + e3 + e3 = 0. For an element e € E with
e # e1,eg,e3 we have e-e; € {—2,—1,0,1} for i =1,2,3,s0 e-e; # 1 for
i=1,2,3 implies e-e; <0 fori=1,2,3. Bute-(e;+ea+e3)=e-0=0,
sowe have e-e; # 1 fori=1,2, 3 ifand only ife-e; =0 fori=1,2,3. O

LEMMA 3.5.19. The maximum size of a clique in I'(_; oy that contains
e1,e9,e3 € E withe; -eo =0 and ey - e3 = ey -e3 = —1, is ten.

Proof. Define elements e; = (1,1,0,0,0,0,0,0), ez = (0,0,1,1,0,0,0,0),
and e3 = (—1,0,—1,0,0,0,0,0). By Lemma [3.3.33] it is enough to prove
that the maximal size of all cliques in I'y_; 5) containing ey, ez, e3 is ten.
Let A be the set

{e€ E|forie{1,2,3}:e-¢; € {—1,0}}.

For an element e = (aj...,ag) in A, we have a; + az in {—1,0}, az + a4
in {—1,0}, and —a; — a3 in {—1,0}. This gives the following possibilities
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for (ala az, as, G4):

(a1,a2,a3,a4) = (—%, +3, 1, —%) (16 roots)
(%, —%, :t%, —%) (16 roots)
(%,—%,—%,%) (8 roots)
0, — —1) (1 roots)
(0,0, 17 —1) (1 root)
(1,-1,0,0) (1 root)
(0,—1,0,0) (8 roots)
(0,0,0,—1) (8 roots)
(0,0,0,0) (24 roots)

We conclude that the cardinality of A is 83. As it is too tedious to compute
the maximal size of the cliques in I'y_; gy with only vertices in A by hand,
we compute this with magma. This number is seven, which implies that
the maximal size of a clique in I';_; ) containing €1, ez and eg is ten. [

LEMMA 3.5.20. The maximum size of a clique in I'{_; ¢y that contains a
clique of five pairwise orthogonal vertices is ten.

Proof. Consider the set
%:{{617---765} IVZGZEE, VZ%JQ%ZO}

The group W acts transitively on V5 by Theorem [3.4.6] so it suffices to
take

€1 = (17 170707())07070); €4 = (O>O>O>O707O71a 1)7
= (0707 17 170>O7070); €5 = (07070’0707071a _1)a
=(0,0,0,0,1,1,0,0);

and show that a clique in I'y_; ) containing eg,...,e5 has size at most
ten. Let A be the set

{ee E|forie{l,...,5}:e-e € {-1,0}}.
For an element e = (ay,...,a3) € A, we have a; + a;+1 € {—1,0} for

i €{1,3,5,7}, and a7 — ag € {—1,0}. If e is of the form (:l:%, . .,:l:%),
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then a7 + ag, ay —ag € {—1,0} implies that a7 = —%. Moreover, for
i € {1,3,5}, we have either a; = a;41 = —% or a; = —a;+1. This gives

three possibilities for each tuple (a;,a;11) for i € {1,3,5}, and ag is then
determined since an even number of the entries of e should be negative.
We find 3% = 27 possibilities.

If e has two non-zero entries that are +1, then a7 + ag, ay —ag € {—1,0}
implies that either (a7,as) = (—1,0), or (ar,as) = (0,0). Moreover, for
i € {1,3,5} we have {a;,a,41} = {—1,0} or {a;,a;41} = {-1,1}. It is
easy to check that this gives 24 possibilities.

We find that the cardinality of A is 51. As it is too tedious to compute the
maximal size of the cliques in I'f_; gy with all vertices in A by hand, we
compute this with magma. The maximal size of a clique in I'{_; oy with all
vertices in A is five, so the maximal size of a clique in I'{_; ¢y containing
e1,...,es5 is ten. OJ

We recall some known Ramsey numbers.

THEOREM 3.5.21. (Ramsey Numbers). For two integers l, k, let R(l, k)
be the least positive integer n such that every undirected graph with n
vertices contains either a clique of size four or an independent set of size

five. Then we have R(3,3) =6, R(3,4) =9, and R(4,5) = 25.

Proof. See |[GRS90), Table 4.1] for R(3,3) and R(3,4), and [MR95] for
R(4,5). 0

PROPOSITION 3.5.22. Every clique in I';_y oy of size bigger than ten con-
tains a subclique of size four with only edges of color 0.

Proof. Let K be a clique in I'y_; gy of size bigger than ten. Consider the
subgraph K’ of K whose vertex set consists of all vertices of K, and whose
edge set is obtained by taking only the edges in K of color —1. We con-
sider different cases depending on the number of connected components
of K'.

If K’ has at least four connected components, then we can take four ver-
tices, each from a different connected component, and these vertices form
a clique of size four with only edges of color 0 in K.

Now assume that K’ has at most three connected components. We first
show that every connected component of K’ that contains a clique of size
three is a clique of size three in itself. To this end, assume that K’ con-
tains a clique of size three, given by {ej, ez, e3}. By Lemma we have
e1 + ex + e3 = 0. If e is another vertex of K'| then e -¢; € {—1,0} for
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i€{1,2,3}, and e- (e; + e2 + e3) = 0, from which it follows that e-e; =0
for i € {1,2,3}. We conclude that the vertices ey, e2, e3 form a connected
component of K’. Since there are at most three connected components by
assumption, and K’ has more than ten vertices, we conclude that not all
components contain a clique of size three. Now remove a vertex from every
connected component in K’ that is a clique of size three (of which there
are at most two), then we are left with a subgraph of K’ with at least 9
vertices, and no cliques of size three left. Hence by Theorem there
must be a set of four vertices that are pairwise disjoint in K’, meaning
that they form a clique with edges of color 0 in K. O

Let V3, Vi, Z, , m and Y be as in the diagram above Lemma [3.3.24]

PRrRoPOSITION 3.5.23. The following hold.

(i) Let v = (e1, e, e3,e4) be an element in Vy. Then eq, ea, e3 and e4 are
contained in a clique of size bigger than ten in I't_; gy if and only if v
is an element of Y.

(ii) Every maximal clique of size at least eleven in I'y_; oy is of the form

€1y...,€4, v’l#]ezej:fzszfh
fla'°'7f4a \V/Zelfl:—]_7
_el_fl,...,—€4—f4 v@#]ezfj:()

(iii) The maximal size of a clique in T'y_ oy is twelve, and there are no
maximal cliques of size eleven in I'{_y oy.

(iv) For an element v € Y, there are eight cliques of size twelve in Ity
containing the elements of v.

v) For K a clique of size twelve in I';_{ gy, we have
{-1,0}
IK*NVy| = |K*NY]| = 1944.

Proof. Let K be a clique of size bigger than ten in I'y_; ;. We know
that K contains a subclique of size four with only edges of color 0 from
Proposition Let {e1,ea,e3,e4} be such a subclique in K. Let e be
another element in K. By Lemmas [3.5.19] and [3.5.20] there is exactly one
iin {1,2,3,4} such that e-e; = —1, and e-e; = 0 for i # j € {1,2,3,4}.
It follows that e - (e; + e2 + e3 + e4) = —1, hence 221:1 e; ¢ 2A. Tt follows
from Propositionthat (e1,e2,e3,€e4) is an element in Y. Conversely,
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the tuple (t1,t2,t3,14) is an element in Y and it is contained in the clique

T (page , so by Proposition [3.3.29] every element in Y is contained in
a clique of size twelve in I'y_; ¢y. This proves (i).

Recall the clique T' defined above Lemma [3.5.18] We define the following
sets for i € {1,2,3,4}.

E:{eEE

€'ti: 17
e-t;=0forje{1,2,3,4}, j#i [

Let K be a clique in I'y_; ) of size at least eleven. Such a K exists,
since the clique T is an example. By Proposition the clique K
contains four vertices that form an element of Vj, and by part (i) this is
an element of Y. By Proposition we can without loss of generality
assume that K contains the four vertices ti,t9,t3,t4. By Lemma [3.5.19]
and Lemma for every element ¢ in K \ {ti,to,t3,t4} there is an
i€{1,2,3,4} such that ¢t -t;, = —1l and ¢t - t; = 0 for i # j € {1,2,3,4}.
Therefore we have

K\{t17t25t37t4}: U KHE
1€{1,2,3,4}

Fix i € {1,2,3,4}. For an element f € F; we have f-t; = —1, so by
Lemma [3.3.9] there is a unique element g € E with f-g =t;-g = —1, given
by g = —t; — f. Note that this element is also in Fj, since (—t; — f)-t; =0
for j € {1,2,3,4} with j # i. So for i € {1,2,3,4}, the set F; is the
union of different sets {f, —t; — f}, and we claim that K N Fj is contained
in one of these sets. To prove this, fix ¢ and f € K N F;. Assume by
contradiction that there is an element h € (K N F;) \{f, —ti— f}. Then h
is in Fj, so h - f # —1 by uniqueness of g. But h, f are both elements in
K, so this implies h - f = 0. But then we have h-t; = f-t; = —1 and
h-f =0, so by Lemma the clique K has size at most ten, which
gives a contradiction. So for i € {1,2,3,4}, there are f; € F; such that
KNF; C{fi,—t; — fi}, and we have

K< U {tfi,—ti— fi}-
i€{1,2,3,4}
Fix such f; € F; for i € {1,2,3,4}. Note that for i # j € {1,2,3,4}
we have f; - f; = 0, because if this were not the case then K would
contain a triple ¢;, f;, f; with ;- f; = f; - f; = —1, f; -t; = 0, which
contradicts the fact that K has size bigger than ten by Lemma [3.5.19
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Hence Uie{17273,4}{t@', fi, —ti — fi} forms a clique in T';_; oy of the required
form, and if K is maximal, it is equal to this clique. This proves part (ii),
and part (iii) follows directly.

We proceed by proving (iv). Note that (¢1,t2, t3,t4) is an element in Y. We
count the number of cliques of size twelve in I'{_; oy containing ?1,...,%4.
By (ii), we know that such a clique is of the form U,c 1 2.3 4y {5 fis —ti— fi},
where f; and —t; — f; are elements in F; for i € {1,2,3,4}. By simply
considering all elements in E we find

% ?

Since |Fy| = 8, there are four choices for the set {f1, —t1 — f1}. Fix fi,
and write f; = (—%,—%,ag,...,ag). Then fo, —to — fo are elements in

N[ D[

1 1
Fl = <_§7 _§7a37 a4, as, ae, ar, CLS) {(15,(16} =

a7 = as

)

{CL3,CL4} = _%7
_1
2

F5 that are orthogonal to fi by (ii). Again, by considering all elements in
E we find

{blvbQ}: _%7% )

1 1
F2: (blyb27_Ea_iab57b6ab77b8) {b5,b6}: —%,% s
by =

Let f = (b1,...,bs) be an element in Fy. Then f is orthogonal to f; if and
only if 0 = 2?25 a;b; = 2(asbs +a7by), which holds if and only if 2—? = —Z—;.
This gives two choices for the tuple (bs,b7), and together with the two
choices for (b1,b2) we find four elements in F5 that are orthogonal to fi.
This gives two choices for the set { fo, —ta— fo}. Fix one. Then f3, —t3— f3,
and fy, —t4— f4, are elements in F3 and Fy respectively, that are orthogonal
to f1 and fy. It is an easy check that this determines the sets { f3, —t5— f3}
and {f4, —t4 — f1} uniquely. So for f; we had four choices, for fo we had
two, and the set {f3, —t3 — f3, fa, —t4 — fa} is determined after choosing
J1, f2. We conclude that there are 4-2 = 8 cliques of size twelve in I'y_; o)
containing t1,...,ts. By Proposition [3.3.29] this holds for every element
in Y. This proves (iv).

Let K be a clique of size twelve in T'y_; ;. Using the notation in (ii),
write

S

8

K= {61,...,64,f1,...,f4,—€1 —fl,...,—€4—f4}.
It follows from (ii) that the sets of four pairwise orthogonal roots in K are
given by

{{a1,a2,a3,a4} | a; € {e;, fi, —e; — fi} for i € {1,2,3,4}}.
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This gives 3% = 81 such sets, and these give rise to 81 - 4! = 1944 elements
in K*NVy. From (i) it follows that K*NV, = K*NY. This proves (v). [

PROPOSITION 3.5.24. Let T be the set of all cliques of size twelve in
L' 10y, and R an element in 7. The following hold.

(i) We have |T| = 179200, and the group W acts transitively on T .

(i) The stabilizer Wg in W of R acts transitively on R*NY.

Proof. Let T be the clique {t1,...,t12}, as defined above Lemma [3.5.18
Define the set

S ={((e1,e2,e3,€4),K) €Y X T | €1,...,e4 € K}.

We have projections A: S — Y and u: S — 7.

From the previous proposition we know that the fibers of A have cardi-
nality 8, and the fibers of p have cardinality 1944. Therefore we have
S| = [Y] - 8 = 348364800 (Proposition , and |T| = {S = 179200.
We will show that W acts transitively on .S, which implies that it acts
transitively on 7 by the projection p. Consider the clique T' € T, and
set y = (t1,t2,t3,t4) € T*NY. Then (y,T) is in the fiber of A above y.
The stabilizer W, in W of y acts on this fiber. We show that this action

is transitive, that is, that the orbit W,T" is equal to the whole fiber. We

have |W,T| = ”%?’:L', and |W,| = % = % = 16. Note that tq,to, 13,14

are all orthogonal to the four roots

er1 =(1,-1,0,0,0,0,0,0), ez = (0,0,1,—-1,0,0,0,0),
es = (0,0,0,0,1,—1,0,0), es = (0,0,0,0,0,0,1,1).

Therefore, for i € {1,2,3,4}, the reflection r; in the hyperplane orthogonal
to e; is contained in the stabilizer W,. Since the subgroup generated by
these four reflections has cardinality 16, we conclude that this is the whole
group W,. We can now compute that for every element r in W, we have
rT # T, except for the identity and the composition of alll f(‘)ur reflections
Wy — 16 _ 8.

W, = 2

Since the fiber of A above y has cardinality 8, we concl|udyéT‘that W, acts
transitively on this fiber. Since W acts transitively on Y, we conclude from
Lemma [3:2.14] that W acts transitively on S. Finally, from the surjective
projection p and Lemma it follows that W acts transitively on 7.
This proves (i). Since W acts transitively on S, the stabilizer Wg in W

r1,72,73,74. S0 |Wyr| = 2, and we have |W,T| =

103



3. THE ACTION OF THE WEYL GROUP

of the clique R acts transitively on the fiber x4 ~!'(R). Since there is a
bijection u~!'(R) — R*NY given by the projection A, the group W acts
transitively on R* N'Y by Lemma [3.2.14] This proves (ii). O

COROLLARY 3.5.25. Let R be a clique of size twelve in I't_ gy. Let Wg
be its stabilizer in W. Then Wg acts transitively on R.

Proof. We have a surjective map R* 'Y — R projecting on the first
coordinate, so this follows from Lemma and the previous proposi-
tion. O

Now that we described all the largest cliques (with respect to number of
vertices) in I'y_ g}, we continue to describe all other maximal cliques.
Since the size of the stabilizer of a clique is the same for every two cliques
that are in the same orbit, we make the following definition.

DEFINITION 3.5.26. The stabilizer size of an orbit is the size of the sta-
bilizer of any of the elements in the orbit.

As one can see in the table in Appendix [A] for a set ¢ that contains 0
in combination with either —1 or 1, there are many maximal cliques in
T'. with small stabilizer sizes, which means large orbits. This means that,
even though we use magma to find all cliques and orbits, computations can
become very large and time consuming. Therefore we use the following
lemma throughout.

LEMMA 3.5.27. Let H be a finite group acting on a finite set X and
consider its induced action on the power set of X. Let A and S be subsets
of X and let m denote the number of H-conjugates of A that are contained
in S. Then the number of H-conjugates of S that contain A equals

m - | H 4|
|Hg|

where H 4 and Hg denote the stabilizer subgroups of A and S, respectively.

Proof. Let Z denote the H-subset of the product HA x HS consisting of
all pairs (B,T) with B € HA and T € HS satisfying B C T. The group
H acts transitively on the codomains of the projection maps 7: Z — HA
and p: Z — HS. This implies that all fibers of m have the same size, say
r, as the fiber above A, which is the number of H-conjugates of S that
contain A, that is, the number that we are looking for. All fibers of p have
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the same size as the fiber above S, which equals m. Hence, we can express
the size of Z as both |HA|-r and |HS|-m. Since the orbits HA and HS
have size |H|/|H 4| and |H|/|Hg|, respectively, we find

- m-|HS|  m-|Hy
|HA| |Hs|

O

Note that for A = ), we recover the well-known fact that the length of the
orbit of S equals the index [H : Hg].

The following proposition describes all maximal cliques and their orbits
in ]‘—‘{7170}'

PRrRopPosITION 3.5.28. For two maximal cliques K1 and Ky of the same
size in I'(_y gy, the following are equivalent.

(i) K1 and Ko are conjugate under the action of W.
(ii) K1 and Ky are isomorphic.
(iii) K1 and Ko have the same stabilizer size.

(iv) The automorphism groups of K and Ky have the same cardinality,
and, if this cardinality is 16 and Ky and Ko have size 9, then K; and
K5 both contain a monochromatic clique of size 7 and color 0, or they
both do not.

Moreover, the table in Appendix [A] gives a complete list of representa-
tives of the orbits of the maximal cliques in I'y_; oy, as well as for each
representative its stabilizer size and the size of its automorphism group.

Proof. The implications (i)=-(ii), (i)=-(iii), (i) =(iv), and (ii)=(iv) are
immediate. We will show (iii)=(i) and (iv)=-(i), which together with the
immediate implications prove all equivalences. To this end, we first show
that the table is complete and correct as stated. From Propositions
andwe know that the maximal size of all cliques in I'y_; o} is twelve,
that there are 179200 cliques of size twelve, and that these cliques form
one orbit under the action of W, proving the equivalences for K1, Ks of
size at least 12. The clique of size 12 in the table is the clique 7" that is de-
fined above Lemma The size of its stabilizer in W is % = 3888.
From the description of T" we see that its automorphism group is isomor-
phic to the semidirect product S§ x Sy, where Sy acts on S§ by permuting
the four coordinates. This group has order 6 - 24 = 31104.
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To find maximal cliques in I't_; gy of size smaller than 12, note that
there are no maximal cliques in I';_; gy of size 11 by Proposition

so we only have to look at the cliques of size at most ten. To make
computations easier, we first show that every maximal clique in I'y_; gy
contains at least one edge of color 0. We know that the only max-
imal cliques in I'y_;y are the cliques of size three. Define the three
elements ¢; = (1,1,0,0,0,0,0,0,0,0), e2 = (—1,0,1,0,0,0,0,0), and
es = (0,-1,-1,0,0,0,0,0), then {e1, ez, e3} is a maximal clique in I'{_y3.
Note that for e, = (0,0,0,0,0,0,1,1), the set {ey, ea, €3, e4} forms a clique
in I'y_; 0}, hence {e1,e2,e3} is not a maximal clique in T'y_; g}. Since
the group W acts transitively on the set of maximal cliques in I'y_j,
(Corollary , it follows that all maximal cliques in I';_;; are not
maximal in I'_y gy. Thus we can assume that the maximal cliques in
I'y_1,0) contain at least one pair of orthogonal roots. Fix the two roots
a = (1,1,0,0,0,0,0,0), c2 = (0,0,1,1,0,0,0,0). Since W acts transi-
tively on the pairs of orthogonal roots, every maximal clique in I'f_; gy is
conjugate to a clique containing cy, co, so by considering only the maxi-
mal cliques in I'y_; gy that contain ¢; and c2, we find representatives for
all orbits of the maximal cliques in I';_; gy under the action of W. This
reduces computations, since there are only 136 roots that have dot prod-
uct —1 or 0 with both ¢; and ¢y, which is quickly computed with magma,
as well as the number of maximal cliques containing ¢, cs. We find the
following.

r | Number of maximal cliques of size r
in I'y_; oy containing ¢; and ¢y

<7 0
8 261600
9 2779392
10 228408

We now turn to the table in the appendix. One can easily check with
magma that the sets in the table for I't_; ¢} are indeed maximal cliques
in I't_; g); in Remark @ For each of these cliques we compute the
automorphism groups with magma. We see that apart from the cliques

L; ={19,41, 48,50, 65, 150,172,214, 240}
and

Lo = {41,48,50, 55, 65, 78, 178, 214, 240}
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of size 9, which both have an automorphism group of size 16, every two
cliques of the same size in the table have a different automorphism group.
One can check that Lo contains a subclique with only edges of color zero
of size 7, and L; does not, so Ly and Lo are not isomorphic. This shows
that any two cliques of the same size in the table are not isomorphic, and
therefore not conjugate.

We claim that every maximal clique in I'{_; g} is conjugate to one of
these cliques in the table. To this end, set A = {c1,c2}, and let Wy
be the stabilizer of A in W. From Proposition [3.4.1] it follows that
Wyl = % = % = 46080. We now show how to proceed for the
cliques ofJ size 8, the proof for sizes 9 and 10 goes completely analogously.
For each of the five cliques of size 8 in the table we compute the size of its
stabilizer (144,128,16,14, and 8) and the number of conjugates of A con-
tained in it (21,20,20,21, and 21, respectively), with magma. Lemma
now gives us the number of conjugates of each clique that contain A. This
sums up to the number 261600 we find in the table above, proving our
claim.

We have showed that the table in the appendix gives exactly one repre-
sentative for each orbit of the maximal cliques in I';_ g}, so K7 and K>
are both conjugate to an element in the table. If either (iii) or (iv) holds,
then by looking at the table we see that this implies that K; and K>
are conjugate to the same clique in the table, and in particular, they are
conjugate to each other, implying (i). This finishes the proof. O

REMARK 3.5.29. In the proof of Proposition we found 261600
cliques of size 8 in I'{_; ) containig both ¢; = (1,1,0,0,0,0,0,0) and
c2 =(0,0,1,1,0,0,0,0). One can check for any two of them whether they
are conjugate with magma, but this takes a very long time. To reduce
computations, we first sort the cliques by size of their stabilizer. We then
go through each set of cliques with the same stabilizer size by taking one
clique, and removing all cliques that are conjugate to it from the set.

3.5.4 Maximal cliques of other colors

In this subsection we prove Theorem [3.1.3|and for all maximal cliques
in I'c with ¢ € {{-1,1},{-2,-1,1},{0,1},{-2,—-1,0},{—2,0,1}}. We
make use of magma in all cases. The following lemma deals with the cases
for which this is straightforward.

LEMMA 3.5.30. For ¢ € {{-1,1},{—2,—1,1}}, and for two maximal
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cliques K1 and K of the same size in I'., the following are equivalent.

(i) K1 and Ko are conjugate under the action of W.
(ii) K1 and Ky are isomorphic.
(iii) Ky and Ky have the same stabilizer size.

(iv) The automorphism groups of K1 and Ks have the same cardinality.

Moreover, for ¢ € {{—1,1},{—2,—1,1}}, the table in Appendix [A] gives
a complete list of representatives of the orbits of maximal cliques in I,
as well as for each representative its stabilizer size and the size of its
automorphism group.

Proof. In these two graphs there are not so many maximal cliques, and we
can ask magma to compute them, compute the orbits under the action of W,
and a representative of each orbit directly. The results are in the table.
The size of the stabilizers is found by dividing the order of W by the size
of the orbit. The automorphism group of the cliques is also easily found
with magma. Since cliques of the same size in the table have automorphism
groups of different size, they are not isomorphic. The equivalence of the
statements (i), (ii), (iii), and (iv) now follows from the table. O

COROLLARY 3.5.31. For ¢ € {{—1,1},{—2,—1,1}}, let Ky and K2 be
two maximal cliques in I'., and f: K1 — Ko an isomorphism between
them. Then f extends to an automorphism of A.

Proof. Since K; and K3 are isomorphic, from Lemma [3.5.30]it follows that
they are both conjugate to the same clique in the table in de appendix;
call this clique H. Then there are elements «, 5 in W such that we have
(K1) = B(K2) = H. So B0 foa~!isan element in the automorphism
group Aut(H) of H. Of course, f extends to an element in W if and only
if 3o foa~! does. We conclude that we can reduce to the case where
K, = Ky = H, and f is an element in Aut(H).

For each clique H in the table, we construct the map Wy — Aut(H) from
the stabilizer Wy to the automorphism group Aut(H) given by restriction
in magma. For all these cliques, this is a surjective map. It follows that
every element in Aut(H) extends to an element in W. O

The final three cases are much more work, because of the large numbers of
maximal cliques and their sizes. The most extreme case is that of maximal
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cliques of size 29 in I'(g 1y and T'{_51}; we will treat this separately in

Section B.5.41

REMARK 3.5.32. Recall that the classification of isomorphism classes of
maximal cliques in I'fg;; has already been done in [CRS04], where the
authors classify all maximal exceptional graphs (Remark . We com-
pare their methods to ours. For maximal cliques in I'rg 1y of size unequal
to 29, we find the different isomorphism types by showing that each such
clique contains a pair of orthogonal roots, fixing a pair (e, ez) of orthog-
onal roots, and using magma to compute the set of all maximal cliques in
I'y0,1y of size unequal to 29 that contain e; and e3. We cut this set op into
smaller sets based on the stabilizer size of the cliques, and in each smaller
set we compute with magma the different orbits under the action of W. It
turns out that each orbit is also a full isomorphism class, and that for each
clique K, both the combination of the stabilizer size with the number of
pairs or inverse roots contained in K, as well as the combination of the
cardinality of the automorphism group with the number of pairs or inverse
roots contained in K, are invariants that determine the isomorphism type
of K (Proposition [3.5.35). For the maximal cliques of size 29 we do a sim-
ilar computation: we show that each maximal clique of size 29 contains a
monochromatic 5-clique of color 0, or a monochromatic 4-clique of color 1
for which the sum of the corresponding root is a double root in A, or a
monochromatic 4-clique of color 1 for which this sum is not a double root
in A. We fix one clique for each of these three types, and use magma to
compute the set of all maximal cliques in T'(g 1y of size 29 that contain
at least one of these fixed cliques. We then cut this big set up in smaller
sets using for each clique K the stabilizer size and the number of maximal
monochromatic subcliques of color 1 of size r, for all » € {1,...,8}, that
are contained in K. Each smaller set turns out to be an orbit under the
action of W, as well as a full isomorphism class (Proposition .

In [CRS04], the authors use a different way to search for all maximal ex-
ceptional graphs. They prove that every exceptional graph arises as an
extension of an exceptional star-complement, and construct a list of 443
graphs that arise as the exceptional star complements for maximal ex-
ceptional graphs. In [CRS04, Chapter 6], the authors find all maximal
exceptional graphs with a computer search, by extending each of the 443
exceptional star complements. Since an exceptional graph can arise as ex-
tensions of different star complements, or as different extensions from the
same star complement, being an extension of a certain star complement is
not an invariant that differentiates between isomorphism types of graphs.
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Therefore the authors of [CRS04] do an isomorphism check in all 443 sets
of extensions from the 443 start complements (as an example they state
that for one star complement there were 1048580 extensions, giving 457
isomorphism types).

Since we use different methods, it is nice to see that our results coincide,
and an alternative approach for finding all orbits of maximal cliques in
I't0,1y could be to use the isomorphism types of these graphs that were
already known in [CRS04], and compute the orbits per isomorphism type.
It is not obvious that this would have been faster, however, since we would
still have to check if two cliques are conjugate for every two cliques of a
certain isomorphism type, which can be many.

ProprosiTION 3.5.33. For two maximal cliques K1 and Ky of the same
size in I'(_y _1 gy, the following are equivalent.

(i) K1 and Ko are conjugate under the action of W.
(ii) K1 and Ko are isomorphic.

(iii) K1 and Ko have the same stabilizer size, and, if the stabilizer size
is 32 and Ky and K5 have size 10, then K1 and K5 both contain a pair
of inverse roots, or they both do not.

(iv) The automorphism groups of K1 and Ky have the same cardinality,
and, if this cardinality is 80 and Ky and Ks have size 9, or this cardi-
nality is 64 and K1 and Ko have size 10, then K1 and Ko both contain
a pair of inverse roots, or they both do not.

(v) K1 and Ko have the same stabilizer size and their automorphism
groups have the same cardinality.

Moreover, the table in Appendix [A] gives a complete list of representa-
tives of the orbits of maximal cliques in I'{_5 _; gy, as well as for each
representative its stabilizer size and the size of its automorphism group.

Proof. This proof follows the same steps as the proof of Proposition|3.5.28
See also Remark on how we found the representatives of each orbit
that are written in the table.

Cliques in I'y_5 _; gy without an edge of color 0 are monochromatic and not
maximal in I'y_y _; gy (this follows from the results on I'y_ 1y, ['t_9 0y,
and F{_LO}). Therefore, to find the maximal cliques in F{_Qv_lvo}, we only
consider cliques that contain two orthogonal roots, and we can choose
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these arbitrarily since W acts transitively on the set of pairs of orthogonal
roots. Define the roots

- 11 1 1 _1 1 _1_1
€1 = (—57—57—57—57—57—57—57—§> and

— 1 1 1 11111
C2=\"2"2> "2 "222:22)"

We find the following.

r Number of maximal cliques of size r
in I'y_5 1 oy containing e; and ey
<7 0
8 192480
9 1961088
10 743536
11 111680
12 8290
13 2100
14-15 0
16 15
> 17 0

We turn to the table in the appendix. One can check that all the sets in
the table for I'y_5 1 ¢y are indeed maximal cliques in I'f_5 _1 gy. For each
of these cliques we compute the automorphism group with magma. As one
can see in the table, except from two cliques

L, ={1,8,26,47,51,86, 121,128, 228},
Ly ={1,8,26,47,51, 86,124, 125, 228}
of size 9 that both have an automorphism group of size 80, and two cliques
M, =1{1,8,26,31,43,46,84, 98,103, 125},

M, ={1,8,26,31,43,46,84, 101, 226, 238}

of size 10 that both have an automorphism group of size 64, any two cliques
of the same size have different automorphism groups and are therefore not
isomorphic. Moreover, L contains the roots 1 and 128, which are each
other’s inverse, whereas Lo contains no pairs of inverse roots. And M;
contains the roots 26 and 103, which are each other’s inverse, and Ms
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contains no pairs of inverse roots. So also L1, Lo, M1 and M» are pairwise
not isomorphic. We conclude that any two of the cliques in the table are
not isomorphic, hence not conjugate.

As in the proof of Proposition [3.5.28] we prove for each size r in the table
above, using Lemma, and magma, the number of maximal cliques of
size r containing e; and e that are conjugate to one of the cliques in the
table in the appendix. This gives exactly the number of maximal cliques
of size r containing e; and e in the table above. So every maximal clique
in I'r_9 0,1 containing e; and e3 is conjugate to a clique in the table in the
appendix, hence the same holds for every maximal clique in I'f_5 o 1. We
conclude that the table in the appendix gives a unique representative for
each orbit of the set of maximal cliques under the action of W. Finally,
for each clique in the table, we compute the size of its stabilizer in W.
We see that except for Ny = {1,8,26,31,43,86,106,115,224,234} and
Ny = {1,8,26,31,43,46, 84,101, 226, 238}, two cliques of the same size in
the table have different stabilizer sizes. In N7, we have roots 43 and 86,
and these are each other’s inverse; in Ns, there are no two roots that
are each other’s inverse. Finally, N1 and Ny have different automorphism
groups.

The equivalence of statements (i) — (v) follows in a similar way as in the
proof of Proposition [3.5.28 The implications (i)=-(ii), (i)=-(iii), (i)=-(iv),
(i)=(v) and (ii)=(iv) are immediate. Since both K; and K3 are conjugate
to one of the cliques in the table, if any of (iii) — (v) are true, by looking
at the table we see that this implies that K; and K, are conjugate to
the same clique in the table, and in particular, they are conjugate to each
other, implying (i). This proves that all 5 statements are equivalent. [

We can now prove Theorem [3.1.4] for maximal cliques in I'{_; gy and
Iy _1,0}; the statement is the same for these two graphs. Recall the
following graphs that are defined in the introduction, where any two dis-
joint vertices have an edge of color 0 between them.

A C_1

LEMMA 3.5.34. Let Ky and K3 be two maximal cliques, both in I';_; o
or both in T'y_5 10y, and let f: K1 —> K3 be an isomorphism between
them. The following hold.
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(i) The map f extends to an automorphism of A if and only if for every
ordered sequence S = (e1,...,e,) of distinct roots in K such that the
colored graph on them induced by T is isomorphic to A or C_1, its image
f(S) = (f(er),..., f(er)) is conjugate to S under the action of W.

(ii)) If S = (e1,...,es5) is a sequence of distinct roots in K; such that
the colored graph on them induced by T' is isomorphic to C_; with
e1-e4 =ey-e5 = —1, then S and f(S) are conjugate under the action

of W if and only if both e = e; + ea + e3 — e4 — e5 and f(e) are in the
set {2f1 + f2 | f1, f2 € E}, or neither are.

Proof. Since K1 and K> are isomorphic, it follows from Propositions|3.5.28
and [3.5.33] that they are both conjugate to the same clique in the table
in the appendix; call this clique H. Then there are elements «, 5 in W
such that a(K7) = B(K2) = H, so Bo foa~! is an element in the auto-
morphism group Aut(H) of H. Of course, f extends to an element in W
if and only if 8o f oa~! does. Moreover, for every sequence S as in the
statement, f(S) and (8o f o a™1)(S) are conjugate. We conclude that
we can reduce to the case where K1 = Ko = H, and f is an element in
Aut(H). Let g: Wy — Aut(H) be the map from the stabilizer of H
to the automorphism group that restricts elements in Wy to H, and Ty
a set of representatives of the classes in the cokernel of g. Since f is a
composition of (restrictions of) elements in Wy with an element in T},
we can reduce further to the case where f is an element in 7.

For each of the 56 cliques H in the table at I't_; gy and I'{_5 1}, we
compute the map g: Wy — Aut(H) with magma. In all cases, this map
is injective. This means that for all cliques with [Wg| = | Aut(H)|, every
element in the automorphism group of H extends to a unique automor-
phism of A. We see in the list that this holds for the first five cliques
and the 11th, 12th, 15th, and 16th clique in I'r_ gy, and the first five
cliques and the 8t 10th, 11th 13th q7th ogth osrd 54 24th (lique
inT g 10}

For each clique H of the remaining 34 cliques, we compute the following
with the function CokernelClassesTypeCminusl [Codb|. First, we create
a set Ty of representatives of the classes of the cokernel of the map from
Wg to Aut(H). We then check for each ¢ in T, and for all sequences
S = (e1, e, €3,¢€4,€5) of distinct roots in H such that the colored graph
on S is isomorphic to C_; with e; - e4 = ey - e5 = —1, whether S and ¢(5)
are conjugate. For all ¢ and S for which this is the case, we verify that
either e = e; + €2 + e3 — eq — e5 is in the set F' = {2f1 + fo | f1, fo € E'}
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and t(e) is not, or vice versa. This proves part (ii).

For H equal to the 701080 1380 /1480 and 180 —237d clique in T'y_; g
and the 7th, gth qoth q4th jgth jgth qgth ogst oond osth ogth
and 315t clique in I'{_5 1 g}, the check we just described gives us for
all ¢t in Ty a sequence S with distinct roots in H and graph isomorphic
to C_1, such that S and ¢(S) are not conjugate. For the remaining 7
cliques in the table, we do an almost analogous check with the function
CokernelClassesTypeA in magma [Codb], where S is now a clique whose
graph is isomorphic to A. For all 7 cliques H, for all elements in T}z, there

exists such an S with S not conjugate to ¢(S). This finishes the proof
of (i). O

ProposITION 3.5.35. For ¢ € {{0,1},{—2,0,1}}, and K;, K2 two max-
imal cliques of the same size r # 29 in T';, the following are equivalent.

(i) K1 and Ko are conjugate under the action of W.
(ii) K1 and Ky are isomorphic.

(iii) K1 and Ko have the same stabilizer size, and they contain the same
number of pairs of orthogonal roots.

(iv) The automorphism groups of Ky and Ky have the same cardinality,
and K1 and K5 contain the same number of pairs of orthogonal roots.

Moreover, the table in Appendix[A] gives a complete list of representatives
of the orbits of maximal cliques in I'., as well as for each representative
its stabilizer size and the size of its automorphism group.

Proof. We show that the table is correct and complete for each ¢. The
steps in the proof are the same as those in the proofs of Propositions|3.5.28
and [3.5.33] and the equivalence of statements (i) — (iv) follows in the same
way as in these propositions. See also Remark on how we found the
representatives of each orbit that are written in the table.

e c=1{0,1}

We know that the maximal cliques in I'fyy form two orbits; one with
cliques of size 7 and one with the cliques of size 8 (Proposition .
Note that the clique of size 7 in T'(;y in the table is contained in the
clique of size 22 in I'(y 1), and the clique of size 8 in I'(y is contained
in the clique of size 33 in I'fy ;). This means that there are no maximal
cliques with only edges of color 1 in I'yg 1. We fix two orthogonal roots

er= (-5 -5 -5 -5 5 -5 -51), 2 = (-1,0,0,0,-1,0,0,0). With
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magma we compute that there are only 136 roots that have dot product 0
or 1 with e; and eo, and we find the following.

r Number of maximal cliques of size r
in I'yp 1y containing e; and eg

<21 0

22 3120
23-27 0

28 21120

30 16263276

31 2792800

32 655680

33 105120

34 18800

35 0

36 304
> 37 0

For each set K in the table in Appendix [A] one can check that it is in-
deed a maximal clique in I'yg ;3. We compute the automorphism groups
of all cliques. As we see in the table, for all sizes except 30, two cliques
of the same size have a different automorphism group, so they are not
isomorphic, hence not conjugate. For size 30, all cliques whose automor-
phism groups have the same cardinality have a different number of pairs
of orthogonal roots that they contain; for example, the cliques of size
30 with stabilizer size 48 contain (in order of appearence in the table)
171, 179, 180, 183, 198 subsets of two orthogonal roots. This shows that
no two cliques in the table are isomorphic, hence not conjugate. Moreover,
using the stabilizer size and the number of subsets of orthogonal roots of
each clique K in the list, we can find the number of conjugates of K that
contain {ej, ea} with Lemma Adding all these numbers up we re-
cover the numbers in the table above, which shows that every maximal
clique in I'y_; ¢y of size unequal to 29 is conjugate to one of the cliques in
the list. We conclude that the table in Appendix [A]is complete. Finally,
we see that for each clique in the table, the stabilizer size and the cardinal-
ity of the automorphism group is the same. Therefore, by what we showed
above, different cliques of the same size and with the same stabilizer size
in the table have a different number of subsets of two orthogonal roots.
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ec={-20,1}

We start with cliques in I'y_5 o 1} containing an edge of color —2. We fix a
root e and compute the maximal cliques in I'f_5 o 1} containing e and —e.
We find the following.

r Number of maximal cliques of size r
in 'y 591 containing e and —e
<12 0
13 370440
14 250236
15 0
16 77895
17-18 0
19 7019208
20 861840
21 120960
22 44352
23 0
24 4032
25-28 0
> 30 0

Since there are no maximal cliques of size bigger than 29 containing an
edge of color —2, we conclude that all the maximal cliques in I'gg 1} of size
at least 29 are also maximal cliques in I'y_5 g ;3. This leaves us with the
maximal cliques in I'(g 1y of size 22 and 28. Looking at the table in the
appendix, we see that for both sizes there is only one orbit, and it is an easy
check that for the listed representatives Lo of size 22 and Log of size 28 of
both these orbits, there are no roots that can be added to extend the clique
inI't_59,1). Therefore Loy and Log are still maximal in I'(_5 g 1. We now
turn to the cliquesin I'y_5 o 1) in the table. First of all, one can check easily
with magma that these are indeed maximal cliques in I'y_5 g 13. For K and
K> of size 28 or > 30, everything is exactly the same as for I'(g 13, and we
showed that the proposition holds in these cases. For the other cliques,
we see that for all sizes except 13, 19, and 20, two different cliques of
the same size have different automorphism groups. For sizes 13, 19, and
20, we compute, completely analogously to what we did for ¢ = {0,1},
that the number of subsets of two orthogonal roots in two different cliques

116



3.5. MAXIMAL CLIQUES

whose automorphism groups have the same cardinality is different. For
example, the cliques of size 19 whose automorphism group has size 96,
contain (in order of appearence in the table) 91, 95, 94, 98, 103 subsets
of two orthogonal roots. This proves that all the cliques in the table are
pairwise not isomorphic, hence not conjugate. Again using Lemma [3.5.27]
we can check that every maximal clique in I'f_5 1y that is conjugate to
one of the cliques in the table, showing that the table is complete. Finally,
except for the cliques

Ly = {1,8,12, 14, 15,20, 22, 23, 36, 38, 39, 128,
136,137, 138, 139, 149, 160, 169}

and

Ly = {1,8,12,14,50,68,70,74,128,136, 137, 154,
169, 170,176,177, 181,182,215}

of size 19, any two different cliques of the same size that have the same
stabilizer size have the same cardinality of their automorphism groups as
well. We already showed that this means that they contain a different
number of pairs of orthogonal roots. We compute that L; contains 109
such pairs, and Lo contains 79. Therefore we can conclude that different
cliques of the same size and with the same stabilizer size in the table have
a different number of subsets of two orthogonal roots. O

Cliques of size 29 in I'yp ;) and I'(_5 1y
Cliques of size 29 in I'(g 1)

The graph I'g 1 contains a surprisingly large number of maximal cliques of
size 29, so we will treat this case separately in this section. As before, we
say that the stabilizer size of an orbit is the size of the stabilizer of any of
the elements in the orbit (Definition |3.5.26)).

PROPOSITION 3.5.36. In the graph I'g 1 there are 62825152320 maximal
cliques of size 29. They form 432 orbits under the automorphism group W'.
The multiset of their stabilizer sizes is

{1(8)72(81)7 4(107) 6(5) 8(50) 10, 12041 14 16(28) 18(2) 20(5) 24(28) 32(4)
36,481 60,64, 72(T) 963 120,128,144 192(7 240©) 360,
384 4322 720 11523 1440, 1920, 40320, 51840, 103680},
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where the superscripts indicate the multiplicity of the elements in the
multiset. For two maximal cliques K1 and Ky of size 29 in I'yq ), the
following are equivalent.

(i) K1 and K» are conjugate under the action of W.
(ii) K1 and Ky are isomorphic.

(iii) Ky and Ky have the same stabilizer size, and the same number
of maximal monochromatic subcliques of color 1 of size r, for all r €

{1,....8).

(iv) The automorphism groups of K; and Ko have the same cardinal-
ity, and Ky and Ky have the same number of maximal monochromatic
subcliques of color 1 of size r, for all r € {1,...,8}.

Moreover, the table in Appendix[B| gives a complete list of representatives
of the orbits of maximal cliques of size 29 in I'(q 1}.

The number of cliques mentioned in Proposition [3.5.36] is too large to fit
in most computers’ memory: even if we were to use only 30 bytes per
clique to store the vertices in the clique, then all cliques together would
still require close to two terrabytes of storage. Instead of doing this, we
will use the fact that each 29-clique contains a monochromatic 5-clique of
color 0 or a monochromatic 4-clique of color 1.

Proof. The Ramsey number R(4,5) equals 25 (Theorem [3.5.21)). This
implies that a 29-clique in I'{g 1} contains a 5-clique of edges of color 1
or a 4-clique of edges of color 0. Under the action of the automorphism
group W there is only one orbit of 5-cliques with only edges of color 1 (see
Proposition [3.2.12); we call these cliques of type K5(1)), and there are two
orbits of 4-cliques with pairwise orthogonal roots (see Proposition ;
we call the 4-cliques of which the sum is a double root of type K§(0) and
those of which the sum is not a double of type K3(0)). Therefore, if we fix
a representative clique for each of these three orbits, then each 29-clique
is conjugate to a 29-clique that contains one of our three cliques of size 4
or 5.

We pick the clique A = {1,2,129,130,131} of type K5(1). There are
109 other vertices that are connected with color 0 or 1 to each of the 5
vertices of A. With magma, we count that the graph on these 109 vertices
with only edges of color 0 or 1 has exactly ny = 127168449 maximal
cliques of size 24. After adding to each the vertices of A, this yields n;

118



3.5. MAXIMAL CLIQUES

maximal 29-cliques that contain A in the graph I'p;. Similarly, for the
cliques By = {1,8,26,31} and By = {1,8, 26,43} of type K$(0) and K%(0),
respectively, we count with magma that there are ny = 16685128 maximal
29-cliques in I'g 1 that contain By, and n3 = 504 maximal 29-cliques that
contain Bs.

One can easily verify with magma that the 432 cliques of size 29 in the
table in Appendix E are maximal cliques in I'g;. For each clique K of
size 29, for each integer 1 < r < 8, we can consider the number y, of
maximal monochromatic subcliques of K of color 1 of size . These eight
invariants together pin down 430 out of the 432 cliques in the table. Only
the sequence (x1,x2,---,x8) = (0,0,0,0,0,4,138,17) occurs twice: for
the 67-th and 299-th cliques in the table. These two cliques have 16 and
18 subcliques of type K§(0), respectively, so they are not isomorphic. We
conclude that any two cliques in the table are not isomorphic, hence not
conjugate. So there are at least 432 orbits of maximal 29-cliques. We know
that there are 483840 cliques of size 5 in I'y from Corollary @ so the

% = % = 1440. The table also lists for each

clique ¢ the number of subcliques of type K5(1), as well as the stabilizer
size, so we can use Lemma [3.5.27] to calculate the number of conjugates of
¢ that contain A. Summing over all these 432 cliques, we obtain exactly
the number n1, so we conclude that all nq; maximal 29-cliques in I'g ; that
contain A are accounted for in these 432 orbits. Similarly, the stabilizers
of By and By have sizes 4608 and 384, respectively. The table lists the
number of subcliques of type K¢(0) and K2(0) for every given clique c,
so we can use Lemma [3.5.27] again to calculate the number of conjugates
of ¢ that contain B; for ¢ = 1,2. Summing over all 432 cliques, we find
again that all maximal 29-cliques containing By or By are accounted for
in these 432 orbits.

We conclude that there are 432 orbits of 29-cliques in I'g 1, as claimed,
and since no two cliques in the table are isomorphic, this proves (i) < (ii).
The multiset of stabilizer sizes follows from the table. The length of the
orbit of any clique c¢ is % Summing over all 432 cliques in the table, we
find that the total number of 29-cliques is also as claimed. Finally, as we
saw before, the invariant y, is different for all cliques except for the 67-th
and 299-th cliques in the table. These two cliques have stabilizer size 4
and 8, respectively, so the stabilizer size, together with the x, form a set
of invariants that uniquely determine each of the 432 orbits of maximal
29-cliques. This proves that (i) is equivalent to (iii). The stabilizer of a
clique maps to the automorphism group of this clique as a colored graph.

stabilizer of A has size
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In all 432 cases, the clique generates a full rank sublattice of our lattice, so
this map is injective. It turns out that in all cases, it is in fact a bijection.
This proves (iii) < (iv). O

COROLLARY 3.5.37. Let K1 and Ky be two maximal cliques in I'(q 1},
and f: K1 — K5 an isomorphism between them. Then f extends to a
unique automorphism of A.

Proof. Since K1 and K> are isomorphic, it follows from Propositions|3.5.35)
and [3.5.30] that they are conjugate to each other; this means that they
are both conjugate to the same clique in the tables in de appendix; call
this clique H. Then there are elements «, f in W such that we have
a(Ky) = B(Ks) = H, so Bo foa™! is an element in the automorphism
group Aut(H) of H. Of course, f extends to an element in W if and only
if Bo foa~! does. We conclude that we can reduce to the case where
K, =Ky = H, and f is an element in Aut(H).

In Proposition [3.5.35] we computed the stabilizers and the automorphism
groups of all cliques in I'g 1) of size unequal to 29, and we did the same
for cliques of size 29 in Proposition [3.5.36] In magma we construct for each
clique in the table the map between the stabilizer and the automorphism
group that is given by restriction. In all cases, this is an isomorphism. We
conclude that all automorphisms of the cliques in the table extend to an
element in W. O

The table in Appendix [B] contains the results of the previous proposition,
with a representative of each orbit. The notation in the table means the
following.

NoTATION 3.5.38.

K: a clique in I'fg 1y; we denote vertices by their index as described in

Notation B.5.21
|Wk|: the size of the stabilizer of clique K in the group W.
#K5(1): the number of cliques of size 5 with only edges of color 0 in K.

#K§(1): the number of cliques in K of four roots that sum up to a double
root in A, with only edges of color 1.

#K%(1): the number of cliques in K of four roots that do not sum up to
a double root in A, with only edges of color 1.
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REMARK 3.5.39. In the proof of Proposition |3.5.36, we found more than
127 million cliques of size 29 that contain A = {1,2,129,130,131}. To find
that they represent exactly 432 different orbits, one might naively try to
just verify for each pair whether they are conjugate. This takes too much
time; as described in Remark we divided the big set into smaller
sets according to the stabilizer sizes.

Cliques of size 29 in I‘{_Q,m}

It is an easy check that all 432 cliques of size 29 in I'{g;y in the table
are maximal in I'r_5 oy as well. We conclude that the orbits of maxi-
mal cliques of size 29 in I'y_5 4} are exactly the 432 that we found in
I't0,1}, and the orbits of maximal cliques of size 29 that contain an edge
of color —2.

As we did in Proposition [3.5.35] we fix a root e and compute all maximal
cliques of size 29 in I'y_5 ¢ 1} that contain e and —e with magma. There are
56 of these, and they form one orbit under the action of the stabilizer W,
of e. Since W acts transitively on pairs of inverse roots, we conclude that
all maximal cliques of size 29 in I'y_5 o 13 that contain an edge of color —2
are in the same orbit; call this orbit A. One can easily check with magma
that the clique of size 29 that is written in the table for I';_5 g 1y is maxi-
mal, and moreover, it contains the roots 1 and 128, that are each other’s
inverse. We conclude that it is a representative of A. The stabilizer and
automorphism group are computed with magma.

We finish with the proof of Theorem for maximal cliques in I'y_5 o1}
This is very similar to the proof of Lemma [3.5.34] Recall the graphs A,
C1, D, and F as defined before Theorem [3.1.4]

LEMMA 3.5.40. Let K3 and Ky be two maximal cliques in I'y_5 1y, and
f: K1 — K an isomorphism between them. The following hold.

(i) The map f extends to an automorphism of A if and only if for every
subclique S = {ey,...,e.} of Kj that is isomorphic to A, Cy, D, or F,
its image f(S) in Ky is conjugate to S under the action of W.

Let S be a subclique of K.

(ii) If S is isomorphic to Cy, then S and f(S) are conjugate if and only
if both Y2°_, e; and Y.°_; f(e;) are in the set {2f1 + fo | fi, f2 € E}, or

neither are.
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(iii) If S is isomorphic to D, then S and f(S) are conjugate if and only
if both Y°2_, e; and Y.°_, f(e;) are in the set {2f) + 2f> | fi, f2 € E},

or neither are.

(iv) If S is isomorphic to F', then S and f(S) are conjugate if and only
if both 2, e; and 3-8, f(e;) are in 2A, or neither are.

Proof. This proof is very similar to the proof of Lemma so we will
sketch what we did, and we refer to the other proof for details.

We reduce again to the case K1 = Ko = H, with H one of the 54 cliques
in the list for I'y_5 1) in the appendix, and f a representative of a class
of the cokernel of the map g: Wy — Aut(H), where Wy is the stabilizer
of H in W, and Aut(H) is the automorphism group of H.

For each clique H of those 54 in the table, we check with magma that the
map ¢g: Wy — Auty is injective; for the 13th, 15th, and 17th _ 54th
cliques it is an isomorphism. It follows that for those cliques, every auto-
morphism extends to an element in W, so we are done. Here we refer to
Corollary @l for the cliques that are the same as in I'(g 13-

For each clique H of the remaining 14 cliques in the list, we do the following
in magma with the three functions that we name CokernelClassesTypeF,
CokernelClassesTypeD, and CokernelClassesTypeCl [Codb]. We con-
struct a set T of representatives of the classes of the cokernel of the map
from Wy to Aut(H). We then check for each ¢ in Ty, and for all subcliges
S ={e1,...,e -} of H that are isomorphic to F' (or D, or C, respectively),
whether S and ¢(S) are not conjugate. For all ¢ and S for which this is the
case, we verify that Y ;_; e; is in 2A (or in the set {2f1 +2f2 | f1, f2 € E},
or in the set {2f1 + fa2 | f1, f2 € E'}, respectively), and >_i_; t(e;) is not,
or vice versa. This proves (ii), (iii), and (iv).

For H equal to the 4th, Sth, lOth, 14th, and 16th clique, for each non-
trivial element ¢ in T there is a subclique S of H that is isomorphic to F',
and such that ¢ and ¢(S) are not conjugate. Similarly, for each clique H
of the remaining 9 cliques in the list, for each non-trivial element ¢ of T,
there is a subclique S of H that is isomorphic to either C1, D, or A, and
such that S and ¢(S) are not conjugate. This finishes the proof of (i). [

3.6 Proof of the main theorems

We now put together all the results that form the proofs of Theorem [3.1.3]
and Theorem which are both stated in the Section [3.1
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PROOF OF THEOREM [3.1.3] Part (i) is Proposition [3.4.1] (iii), and part
(ii) is Proposition (if). We proceed with (iii). Of course, if K; and
Ky are conjugate under the action of W, they are isomorphic as colored
graphs, since W respects the dot product. Now assume that K; and K
are isomorphic as colored graphs. We will show that they are conjugate
under the action of W. First of all, by Lemma [3.2.13] we can assume that
there is a type I, II, III, or IV, that both K; and K5 belong to. Therefore
we continue to prove the result per type.

For type I, the results for colors —2 and —1 are at the beginning of Sec-
tion the results for color 0 are in Propositions (iii), and
[3:5.15] and the results for color 1 are in Proposition [3.2.12}

For type II, from Proposition [3.2.5| we know what the cliques look like,
and the results are then in Proposition [3.2.12] and Corollary [3.3.17]

For type 111, the results follow from Propositions and

Finally, for type IV, the results follow from Propositions

Lemma Propositions [3.5.33hnd [3.5.35] and Section

ProoF oF THEOREM [3.1.4] By Lemma [3.2.13] we can assume that
there is a type I, II, III, or IV, that both K; and K5 belong to. Therefore
we continue to prove (i) per type. First of all, if Kj and Ky are of type
III, then f always extends; this is shown in Corollary

If K1 and Ky are of type I, they are monochromatic. If they have color
—2 or —1, then they are of type III (see Section [3.4). For color 0 the proof
is in Corollary [3.4.5] and for color 1 in Corollary [3.4.9]

For type II, by Proposition K7 and K3 are either monochromatic
of color 0, hence of type I, or they are both sets of the vertices of a 7-
crosspolytope, in which case the statement is in Corollary

If K1 and K> are of type IV, they are maximal cliques in a graph I'., where
there are 14 different possibilities for c¢. For ¢ € {{—2},{—1}, {0}, {1}}, the
cliques K7 and K3 are of type I, which we already covered (note that for K
and Ky maximal in I'fyy, there is always an automorphism extending f!).
For ¢ in {{—2,—1},{—2,1}}, the cliques K; and K3 are of type I as well
(Lemma [3.5.5)). For ¢ = {—2,0}, the proof is in Lemma For c in

{{-1,1},{—2,—1,1}}, an isomorphism of maximal cliques always extends,
see Corollary The same holds for ¢ = {0, 1}, see Corollary
For ¢ € {{-1,0},{-2,—1,0}}, the statement is in Lemma [3.5.34]

For ¢ = {—2,0, 1} the statement is Lemma

Finally, for ¢ = {—2,—1,0,1} there is one clique, which is T" itself, and
every automorphism of I' is an element in W. This finishes (i).

Part (ii) follows from Propositions [3.3.29) and [3.4.1| for type A, and it

123



3. THE ACTION OF THE WEYL GROUP

follows from Propositions [3.2.12|and [3.4.7| for type B. Finally, part (iii) is

in Lemma [3.5.34] and part (iv) is in Lemma [3.5.40

REMARK 3.6.1. From Theorem it follows that for an isomorphism
f of two cliques K; and Ky of types I, II, III, or IV, one can determine
whether f extends to an automorphism of A by checking for all subcliques
of K7 of the form A, B, C,, D, or F, if f restricted to an associated
ordered sequence extends. However, one never has to check all subcliques
of those six forms. The following table shows for each type of K7 and Ko
which subcliques are sufficient to check.

Type Subtype All isomor- A/B|C1|Cy|D|F
phisms extend

I oy b

I 'y b

I Loy X

I 'y X

II k-simplex, k <7 b

II T-crosspolytope X

111 all b

v gy X

v Iy X

v F{O} X

v F{l} X

v F{72,71} X

v T2} X

v T oy b

v i1y X X

v | VY X

v o013 X

v Fia 10 X b

v Ty o 11y X

v INEDYRS! X X | x| x

IV F{—2,—1,0,1} X
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4

Concurrent exceptional
curves on del Pezzo surfaces
of degree 1

This chapter is an adaptation of the preprint [vLWDh], which is at the
moment of this writing submitted for publication. Moreover, part of this
chapter is already in the master thesis [Winl4] by the same author. We
decided to copy those parts here for completion. See Remark for a
comparison with [Win14].

Recall that a del Pezzo surface of degree d over an algebraically closed field
contains a fixed number of exceptional curves, depending on d (Table .
The configuration of these curves can play a role in arithmetic questions;
we have seen this in Chapter For example, one of the conditions on
the point @) that is used to show that the set of rational points on a del
Pezzo surface of degree 1 is dense in [SvL14], is for @ not to lie on 6
exceptional curves, if its order is 3 or 5. Another example is found in
[STVA14, Corollary 18], where Salgado, Testa and Vérilly-Alvarado show
that a del Pezzo surface of degree 2 is unirational if and only if it contains
a point that is not contained in 4 exceptional curves, and lies outside the
ramification curve of the anticanonical map. In this chapter we study the
configuration of the exceptional curves on a del Pezzo surface of degree 1,
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4. CONCURRENT EXCEPTIONAL CURVES

and determine the maximal number of these curves that can go through
one point.

4.1 Main results

We call a set of exceptional curves concurrent in a point on the surface if
that point is contained in all of them. It is well known that on del Pezzo
surfaces of degree 3, the number of exceptional curves that are concurrent
in a point is at most 3. This can be seen by looking at the graph on the
27 exceptional curves, where two vertices are connected by an edge if the
corresponding exceptional curves intersect. For all del Pezzo surfaces of
degree 3 this gives the same graph G. A set of concurrent exceptional
curves corresponds in this way to a complete subgraph of G, and the
maximal size of complete subgraphs in G is 3. On a del Pezzo surface
of degree 2, the number of concurrent exceptional curves in a point is at
most 4. As in the case for degree 3, this can be derived directly from the
intersection graph on the 56 exceptional curves. A geometric argument
why 4 is an upper bound is given in [TVAV(09], in the proof of Lemma 4.1.
An example where this upper bound is reached is given in [STVAT4],
Example 2.4. For del Pezzo surfaces of degree 1, the situation is more
complex. Contrary to the case of del Pezzo surfaces of degree > 2, for
char k # 2, the maximal size of complete subgraphs of the intersection
graph on the 240 exceptional curves, which we will show is 16, is not
equal to the maximal number of exceptional curves that are concurrent in
a point.

Let X be a del Pezzo surface of degree 1 over an algebraically closed field
k, and let Kx be the canonical divisor on X. The linear system | — 2K x|
gives X the structure of a double cover of a cone @ in P3, ramified over
a sextic curve that is cut out by a cubic surface (Section . Let ¢ be
the morphism associated to this linear system. In this chapter we prove
the following two theorems.

THEOREM 4.1.1. Let P € X (k) be a point on the ramification curve of .
The number of exceptional curves that go through P is at most ten if
char k # 2, and at most sixteen if char k = 2.

THEOREM 4.1.2. Let Q € X (k) be a point outside the ramification curve
of p. The number of exceptional curves that go through () is at most ten
if char k # 3, and at most twelve if char k = 3.
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Using the ramification divisor of ¢, we obtain with a simple geometrical
argument an upper bound of 12 outside characteristic 2 for Theorem [4.1.1]
which was pointed out to us by Niels Lubbes. An anonymous referee even
suggested that with some more work, this same argument can be improved
to give the upper bound of 10 outside characteristic 2. See Remark

In [SvIL14, Example 4.1], for any field of characteristic unequal to 2, 3, or 5,
a del Pezzo surface of degree 1 is defined that contains a point outside the
ramification curve that is contained in 10 exceptional curves. This shows
that the upper bound for char k # 2,3,5 in Theorem is sharp. In
Section |4.5| we show in all characteristics except for characteristic 5 in the
case of Theorem that the upper bounds in Theorems and
are sharp. Theorems [4.1.1] and [4.1.2 are proved by using results on the
automorphism group of the graph on the 240 exceptional curves, and by
Propositions [£:3.6] and [£.4.6] which are purely geometrical and show that
certain curves in P? do not go through the same point.

REMARK 4.1.3. Most of the results in Section are proved by the same
author in the master thesis [Winl4]; more specifically, Theorem and
Proposition [4.3.6)are equal to Theorem 1 and Proposition 4.22 in [Winl4],
and Lemma @l is almost the same as Lemma 4.21 in [Winl4]. We de-
cided to include these results here for completeness.

In [Winl4], Theorem is stated for char k = 0. In this chapter we
extend this to a result for all characteristics. Moreover, we added several

geometrical arguments (Lemmas —14.4.13] Proposition |4.4.15)), that

heavily reduce the usage of magma in the proof of Proposition [£.4.6], which
is key to Theorem

Examples[4.5.1]and[4.5.2)are the same as Exmples 4.24 and 4.23 in [WinI4],
where it was shown that the upper bounds of Theorem are sharp in
characteristic 0. In Section [£.5] we give extra examples, showing that the
upper bounds in Theorem are sharp in all characteristics, and that
the upper bounds in Theorem [.1.2] are sharp except possibly in charac-
teristic 5.

We use magma [BCP97] for our computations, which is the case only in

Propositions [:3.6)and [£.4.6] The proofs of Propositions[4.2.2] [4.4.2] [4.43]
and [f.4.4 rely on results in Chapter [3] that also make use of magma.

We want to thank Niels Lubbes for useful discussions, and Igor Dolgachev
for useful comments. We also want to thank an anonymous referee for
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4. CONCURRENT EXCEPTIONAL CURVES

giving useful remarks that improved the quality of the paper, and a second
anonymous referee for suggesting a shorter proof of the upper bound of
10 outside characteristic 2 on the ramification curve.

4.2 The weighted graph on exceptional classes

We use the same notation as in Definition [1.4.12] and in Chapter we
denote the set of exceptional classes in Pic X by I; by G we denote the
complete weighted graph whose vertex set is I, and where the weight
function is the intersection pairing in Pic X.

When two exceptional curves intersect in a point on X, their correspond-
ing classes in Pic X are connected by an edge of positive weight in G.
Therefore, an upper bound on the number of exceptional curves on X
that are concurrent in a point is given by the maximal size of cliques in
G that have only edges of positive weight. To study these cliques, we
use the correspondence between the set I and the root system Eg as in
Remark In particular, if ' is the weighted graph where the vertices
are the roots in Eg and the weights are induces by de dot product in Eg,
there is an isomorphism of weighted graphs between G and I', that sends
a vertex ¢ in G to the corresponding vertex ¢ + Kx in I', and an edge
d = {c1,c2} in G with weight w to the edge 0 = {¢1 + Kx,c2 + Kx} in
I' with weight 1 — w (Remark . The different weights that occur
in G are 0,1,2, and 3, and they correspond to weights 1,0, —1, and —2,
respectively, in I". From the bijection between I' and G we immediately
obtain the following results.

LEMMA 4.2.1. (i) Let e be an exceptional class. Then there is exactly
one exceptional class f with e - f = 3, there are 56 exceptional classes
f with e- f =0, there are 126 exceptional classes f withe- f =1, and
56 exceptional classes f withe- f = 2.

(ii) For two exceptional classes e, e with ey - eg = 2, there is a unique
exceptional class f such that ey - f =ex- f = 2.

(iii) For every pair e1,es of exceptional classes such that ej - ea = 1,
there are exactly 60 exceptional classes f with e1 - f = eo - f =1, and
32 exceptional classes f withe;- f=1andes- f=0.

(iv) For ey, es two exceptional classes with ej - eo = 3, and f a third
exceptional class, we have ey - f = 1 ifand only ifes-f =1, andey-f =0
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if and only if ex - f = 2.

Proof. Using the fact that two exceptional classes have intersection pair-
ing a if and only if their corresponding roots in E have inner product
1 — a, we see that (i) is Proposition (ii) is Lemma and (iii)
is Lemma and Lemma Finally, (iv) follows from the fact
that two classes eq, es with e] - e = 3 correspond to two roots in F with
inner product —2, which implies they are each other’s inverse as vectors

(Proposition [3.2.2)). O

We also obtain a first upper bound for the number of exceptional curves
that are concurrent in a point on X.

PROPOSITION 4.2.2. The number of exceptional curves that are concur-
rent in a point on X is at most 16.

Proof. Cliques with edges of positive weight in G' correspond to cliques
with edges of weights —2,—1,0 in I". The maximal size of such cliques
in T" is 16 by Proposition and Appendix [A] O

DEFINITION 4.2.3. For an exceptional class e in Pic X, we call the unique
exceptional class €/ with e - ¢’ = 3 its partner.

The graph in Figure [£.1] is a translation of Figure 3.1 and summarizes
Lemma Vertices are exceptional classes, and the number in a subset
is its cardinality. The number on an edge between two subsets is the inter-
section pairing of two classes, one from each subset. For i, j € {1,2,3}, the
exceptional class €} is the partner of the class e;, and for e;-e; = 2, the class
e;,j is the unique one that intersects both e; and e; with multiplicity 2.
Let ¢ be the morphism associated to the linear system | — 2K x|, which
realizes X as a double cover of a cone @ in P3. We want to distinguish
cliques in G corresponding to exceptional curves that intersect in a point
on the ramification curve of ¢ from those intersecting in a point outside
the ramification curve of . To this end we use Proposition
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Figure 4.1: Graph G

PROPOSITION 4.2.4.

(i) If e is an exceptional curve on X, then y(e) is a smooth conic, the
intersection of ) with a plane in P? not containing the vertex of Q.
Moreover ¢|.: e — ¢(e) is one-to-one.

(ii) If H is a hyperplane section of () not containing the vertex of @,
then p*H has an exceptional curve as component if and only if it has
at least three (maybe infinitely near) singular points. If this is the case,
then ¢o*H = e; + ey with e;, es exceptional curves, and ej - es = 3.
Every exceptional curve arises this way.

Proof. [CO99, Proposition 2.6 and Key-lemma 2.7]. O

REMARK 4.2.5. Let e be an exceptional curve on X, and let €' be its
partner. Let H be a hyperplane section of @ with *H = e + €', which
exists by Proposition m (ii). Since ¢|f is one-to-one for f = e, e’ by
part (i) of the same proposition, it follows that ¢(e) = ¢(¢) = H. So
every point on H has two preimages under ¢, except for the points with
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a preimage in e Ne’. We conclude that the points where e intersects the
ramification curve of ¢ are exactly the points in e N ¢/, hence are also
contained in ¢/. Conversely, if a set of exceptional curves is concurrent in
a point P, and this set contains an exceptional curve and its partner, then
P lies on the ramification curve of .

4.3 Proof of Theorem 4.1.1]

In this section we prove Theorem [£.1.1] We first determine which cliques
in G may correspond to sets of exceptional curves intersecting on the
ramification curve of ¢ (Remark . We then show that the auto-
morphism group of G acts transitively on certain cliques of that form
(Proposition 4.3.3)), which allows us to reduce to specific curves on X. In
Proposition which is key to the proof of Theorem we show

that seven curves in P? in a specific configuration are not concurrent.

REMARK 4.3.1. From Remark it follows that there is a bijection
between planes in P that are tritangent to the branch curve of ¢ and do
not contain the vertex of (), and pairs of exceptional curves ey, es with
e1 - ea = 3. Using this, we can find an upper bound for the number of
exceptional curves that are concurrent in a point on the ramification curve.
Let P be a point on the branch curve of ¢. From Lemma 4.5 in [TVAV09],
it follows that over a field of characteristic unequal to 2, there are at most
7 planes that are tangent to the branch curve at P and two other points.
Moreover, Niels Lubbes gave us the insight that exactly one of those planes
contains the vertex of ), so we find an upper bound of 6 planes that are
tritangent to the branch curve, that contain P, and that do not contain
the vertex of (). This gives an upper bound of 12 exceptional curves that
contain the point ¢ ~!(P) on the ramification curve of ¢, if char k # 2.

Consider the map A\: R — P!, where R is the ramification curve of ¢,
and P! parametrizes the planes through the tangent line to R at ¢~ !(P):
A sends each point z in R\ ¢! (P) to the unique plane containing z. This
map has degree 4, and if char k # 2, then R is smooth, and A extends to
a morphism. The upper bound of 7 planes that was found in Lemma 4.5
in [TVAV(9] comes from the fact that the ramification divisor of A has
degree 14. An anonymous referee gave us the hint that this idea could
even be used to give the upper bound of 10 in char k # 2 directly, by
showing that a morphism of degree 4 to P! can not have 7 ramification
patterns all equal to (2,2). Therefore there are at most 6 planes that are
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tangent to P and two other points on the branch curve of ¢. Since one of
them is the plane through the vertex of @), this gives the upper bound of
10 exceptional curves through ¢ ~!(P). We are currently working out the
details of this argument.

REMARK 4.3.2. From Remark [4.2.5] it follows that a maximal set of ex-
ceptional curves that are concurrent in a point on the ramification curve
consists of exceptional curves and their partners, hence has even size.
Moreover, from Lemma (iv) it follows that such a clique only has
edges of weights 1 and 3. We conclude that all cliques in G corresponding
to a maximal set of exceptional curves that are concurrent in a point on
the ramification curve are of the following form.

Vi: e, e, € I e; is the partner of e; }

. Y SN S S
Vi#jiei-ej=¢€-€; =¢ e; =1

/ /
K, = {{61,...,en,el,...,en}
j

Let W be the group of permutations of I that preserve the intersection
pairing, and recall that W is isomorphic to the Weyl group of the Eg root

system (Corollary [1.4.10)).

PRroPOSITION 4.3.3. For n € {2,3,5,6,7,8}, the group W acts transi-
tively on the set K.

Proof. This is Proposition [3.5.13 O

We now set up notation for Lemma this lemma will be used in
Propositions and Lemma is used in Proposition |4.3.6

Let P2 be the projective plane over k with coordinates z,v,z, and let
R1,..., Ry be nine points in P2, with R; = (z; : y; : ;) for i € {1,...,9}.
For i € {1,2,3,4}, we define Mon; to be the decreasing sequence of
ri = ("1?) = (i + 1)(i + 2) monomials of degree i in z,y,z, ordered
lexicographically with z > y > z, and for 57 € {1,...,r;}, let Mon;[j] be
the j™ entry of Mon;. For 6 € {z,y,z}, let Mon? be the list of deriva-
tives of the entries in Mon; with respect to §. We will define matrices
M, N, L, H. Note that each row is well defined up to scaling. This means
that for all these matrices, the determinant is well defined up to scaling,

so asking for the determinant to vanish is well defined.
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M = (aiaj)i,j€{1,2,3} with a; ; = Mony [j] (R;);
N = (bi,j)i,je{l,...,ﬁ} with b;; = Mona[j](R;);

Mongs[j](R;) fori<8
L= (Ci’j)i7je{1,...710} with ¢; ; = ¢ Mon3[j](Rg) fori=9
Monj[j](Rs) for i =10

For a7, ag, a9 € {x,y, 2z}, we define the matrix

Harag,00 = (di:j)i,je{l,...,ﬁ} )

Mony[j](R;) fori<9
Mon,"[j](R7) fori=10
Mon]"[j](R7) fori=11
with d; ; = Momf8 [/](Rg) fori=12 ,
Mon®[j](Rs) for i =13
Monf‘9 [7](Rg) for i =14
Mon}°[j](Rg) for i =15

where for ¢ € {7,8,9}, we have {8;,vi} = {z,vy,2} \ {a;}, with 8; > 7,
with respect to lexicographic ordering.

LEMMA 4.3.4. The following hold.
(i) The points Ry, Ro, and R3 are collinear if and only if det(M) = 0.

(ii) The points Ry, ..., R are on a conic if and only if det(N) = 0.

(iii) If the points Ry,. .., Rg are on a cubic with a singular point at Rg,
then det(L) = 0. If yg # 0, then the converse also holds.

(iv) For all ar,as,ag, if the points Ri,..., Ry are on a quartic that
is singular at Ry, Ry and Ry, then det(Ha, ag,0o) = 0. If for all i in
{7,8,9}, the «;-coordinate of R; is non-zero, then the converse also
holds.

Proof.

(i) The determinant of M is zero if and only if there is a non-zero element
in the nullspace of M, that is, there is a non-zero vector (mjy, ma, ms)

133



4. CONCURRENT EXCEPTIONAL CURVES

such that for all ¢ € {1,2,3}, we have mya;1 + moa;2 + m3a;3 = 0.
But this is the case if and only if the line defined by mix + moy + msz
contains all three points.

(ii) This proof goes analogously to the proof of (i).

(iii) The determinant of L is zero if and only if there is a non-zero
vector (I1,...,l10) in k¥ such that for all i € {1,...,10}, we have
lic;1 + - + lLiocijo = 0. This is the case if and only if the cubic C
defined by A = 319, 1;Monj|i] contains all eight points Ry, ..., Rg, and
moreover, the derivatives A, A, of A with respect to 2 and z vanish in
Rg. So if Ry,...,Rg are on a cubic with a singular point at Rg, the
determinant of L vanishes. Conversely, if det(L) = 0 and yg # 0, since
we have zA; + yAy + 2\, = 3], this implies that also the derivative A,
of A with respect to y vanishes in Rg, hence C is singular in Rg.

(iv) Take a7,ag,a9 € {z,y,z}. The determinant of Hy; ag.aq IS zero
if and only if there exists a non-zero vector given by (hi,...,h15) such
that for all ¢ € {1,...,15}, we have hid;; + --- + hisd; 15 = 0. This
is the case if and only if the quartic K defined by A = 3212, h;Mony|i]
contains Ry, ..., Ry, and moreover, for i € {7,8,9}, the derivatives Ay
for 6 € {z,y,z} \ {a;} vanish in R;. So if Ri,..., Ry are on a quartic
that is singular at R7, Rg and Ry, the determinant of H, og,q, vanishes.
Conversely, if det(Ha, ag,00) = 0 and the aj-coordinate of R; is non-zero
for i € {7,8,9}, then, since we have xA; + yA, + 2z, = 4\, this implies
that also Ay, vanishes in R; for i € {7,8,9}. So K is singular in Ry, R,
and Rg. L]

We recall that k is an algebraically closed field, and P? is the projective
plane over k.

LEMMA 4.3.5.If Ry,...,R; are seven distinct points in P? such that
Ry, ..., Rg are in general position, and the line L containing R; and Ry
contains none of the other points, then there is a unique cubic containing
all seven points that is singular in Ry, which does not contain L.

Proof. The linear system of cubics containing Ry, ..., R7 is at least two-
dimensional. Requiring that a cubic in this linear system is singular in R;
gives two linear conditions, defining a linear subsystem C of dimension at
least 0, so there is at least one cubic containing Ry, ..., Ry that is singular
at Rl.
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Let D be an element of C; we claim that D does not contain the line L
that contains R; and R7. Indeed, if D were the union of L and a conic
C, then R; would be contained in C since it is a singular point of D.
Since the points Ro, ..., Rg are not on L by assumption, they would also
be contained in C, contradicting the fact that Rj,..., Rg are in general
position. So D does not contain L. Note that this implies that D is
smooth in Ry, since if it were singular, then D would intersect L with
multiplicity at least 4, hence D would contain L.

Now assume that there is more than one element in C. Then there are two
cubics D; and Ds that contain Rj,..., Ry with a singularity at R;, and
whose defining polynomials are linearly independent. By what we just
showed, they are not singular in Ry. For ¢ = 1,2, let [; be the tangent
line to D; at R7. If the equations defining [y and ls are not linearly
independent, then there is an element F' of C that is singular in Ry, giving
a contradiction. We conclude that the equations defining [ and [y must
be linearly independent. Therefore, there is an element G in C such that
the line L through R; and R; is the tangent line to G at R7;. But then
L intersects G in four points counted with multiplicity, so it is contained
in G. This contradicts the fact that G is in C. We conclude that there is
a unique cubic through Ry, ..., R; that is singular in R;, and which does
not contain the line through R; and R7. O

PROPOSITION 4.3.6. Assume that the characteristic of k is not 2. Let
Q1,...,Qs be eight points in P? in general position. For i € {1,2,3,4},
let L; be the line through Q2; and Q2;—1, and for i,j € {1,...,8}, with
i # j, let C; j be the unique cubic through Q1, ..., Qi—1,Qi+1, ..., Qs that
is singular in Q, which exists by Lemmal[4.3.5, Assume that the four lines
Li, Ly, L3 and Ly are concurrent in a point P. Then the three cubics
Crg, Cg 7, and Cg 5 do not all contain P.

Proof. First note that if P were equal to one of the @);, then three of
the eight @; would be on a line, which would contradict the fact that
Q1,...,Qs are in general position. We conclude that P is not equal to
one of the @);. Moreover, if P were collinear with any two of the three
points @1, @3, @5, say for example with ()1 and (3, then, since P is also
contained in L; and Lo, it would follow that L; and Lo are equal, giving
a contradiction. So @1, @3, Qs and P are in general position.

Let (2 : 3y : z) be the coordinates in P?. Without loss of generality, after
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applying an automorphism of P? if necessary, we can define
Q1 =(0:1:1); QRz=(1:0:1)
Qs=(1:1:1); P=(0:0:1).
Then we have the following.
L is the line given by x = 0;
Lo is the line given by y = 0;
L3 is the line given by x = y.
Since L4 contains P, and is unequal to L1 and Lo, there is an m € k* such

that L4 is the line given by my = z. Since @2, Q7 and Qg are not in Lo,
and )4 is not in Ly, there are a,b, c,u,v € k such that

QRQa=(0:1:a); Qr=(m:1:v);
Qi=(1:0:0); Qs=(m:1:¢).
Q= (1:1:u);

We define A% to be the affine space with coordinate ring Tg given by
Ts = k[a,b,c,m,u,v]. Points in A® correspond to configurations of the
points Q1, ..., Qs.

Assume by contradiction that C7g, Cs7, and Cg5 all contain P. This
assumption gives polynomial equations in the variables a, b, ¢, m, u, v, and
hence defines an algebraic set Ag in AS. We define Sy to be the algebraic
set of all points in A% that correspond to the configurations where three of
the points @1, ..., Qs lie on a line, or six of the points lie on a conic. We
want to show that Ag is contained in Sy, which proves the proposition.
Note that the line containing P and ()5, which is L3, does not contain any
of the points Q1,Q2,Q3, R4, Qs. From Lemma after substituting
(Ri,...,R7) = (Q5,Q1,Q2,Q3,Q4, Qs, P), it follows that there is a unique
cubic D containing @1, Q2, @3, Q4,Qs5, Qs and P that is singular in Qs,
and that D does not contain L3. By uniqueness, D must be equal to Cj 5,
and therefore also contains Q7. By Lemma [4.3-4] the equation expressing
that Q7 is contained in D (or equivalently, that P is contained in Cg5) is
given by det(L) = 0, where L is the matrix used in the lemma, associated
to the pOthS (Rl, ey Rg) = (Ql, QQ, Qg, Q4, Q7, Qg, P, Q5) We have

det(L) = —m(m —1)(c—v)(b—1)(a — 1) f,
where f = av + 3, with
a=a—ac—bc+bm, B=>bla—1)m?+blc—2a)m+ad+c—1).
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The first five factors of det(L) define subsets of Sp, and do not corre-
spond to configurations where @)1, ..., Qg are in general position. There-
fore, Cs5 contains P if and only if f = 0. Define the algebraic set
V = Z(«), and let (ag, by, co, mo, up,v9) be an element in V' N Ag. Then
we have a(ag, by, co, mo, ug,v0) = f(ao, bo, co, mo, ug,vp) = 0, so we find
B(ag, bo, co, mo, up,v9) = 0. But o and S do not depent on v, so this
implies that we have f(aq, b, co, mo,up,v’) = 0 for every v'. So every
element in V' N Ag corresponds to a configuration of @1, ..., Qs such that
every point (m : 1 : ') on Ly is also contained in D. But if this is the
case, then D consists of Ly and a conic, which is singular, since @5 is a
singular point of D that is not contained in L4. Since L4 contains none
of the points @1, Q2, @3, @4, these four points are then on the singular
conic, which implies that Q5 is collinear with at least two other points.
We conclude that V' N Ag is a subset of Sg.

Analogously, the fact that C7g contains P is expressed by det(L') = 0,
where L’ is the matrix denoted by L in Lemma with

(R17 o 7R8) = (Qla Q27 Q37 Q47 Q57 Q67 P7 Q8)
We have

det(L') = —m(u—1)(m —1)(b—1)(a — 1)g,
where g = yu + ¢ with

y=bm?+ (1 —bc—c)m?*+(c* —2c+1m+a(l —c) +c* —c,

and

§ = —abm?® + (abc + ab + ac — a + b — 2bc)m>+
(ab — 2abc + a + 2bc? — b — ac® + 2¢% — 2¢)m
+ a(be — b+ 2¢® — 2¢) — b + be — 263 + 262,
The first five factors of det(L’) correspond to configurations where the
eight points are not in general position, so C7g contains P if and only if

g = 0. Define U = Z(v). By the same reasoning as for V"N Ay (now using

the fact that D does not contain the line L3), we have U N Ay C Sp. Set
,_ =B =0
« v

/
v and u =

Define A* to be the affine space with coordinate ring Ty = k[m, a, b, ¢], and
let K4 be its fraction field. Let Y € A* be the set defined by a = v = 0.
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Consider the ring homomorphism v¢: Ty — K, defined by
(m,a,b,c,u,v) — (m,a,b,c,u’,v").

This defines a morphism i: A*\Y — AS\(V U U), which is a section of the
projection A — A% to the first four coordinates. Set A = Ao\ (V U U).
Then we have Ay C Sy if and only if A C Sy. Moreover, A, is contained
in Z(f,g), and since f and g are linear in v and u respectively, we have
i1 (A)) = A). Set Ay = i~'(A)) and S = i71(Sp), then A C Sp is
equivalent to A; C 57.

Let L” be the matrix denoted by L in Lemma with

(Rla cee 7R8) = (Q17Q2>Q37Q47Q5aQ67P> Q7)

Similarly to C7 g, the fact that Cg7 contains P is expressed by the van-
ishing of the determinant of L”. We compute this determinant and write
it in terms of the coordinates of A* using . We find the expression

— 2abm(m — 1)3(b—1)(a — 1)(a+b— 1) fi fof3, (4.1)

with
fi=ac—a+bem—bm?—c+em+c—m,

fa = abm? — 2abm + ab — ac® + 2ac — a — be? + 2bem — bm?,

and

f3= abem? — 2abem 4 abe — abm? + abm? + abm — ab — ac®m + 2ac?
+ aem? — 3ac — am?® + am + a + 2bc®*m — bc? — 3bem? + be + bm?

+bm? —bm — 263 + 3¢®m + 3¢ — em? — dem — ¢+ m? + m.

Expression defines the set A; in A% Since char k # 2, we have
(4.1) = 0 if and only if at least one of the non-constant factors of
equals zero. We show that all non-constant factors of expression (|4.1))
define components of S7. If a = 0, then @2, (Y3 and ()5 are contained in
the line given by x — z = 0. Similarly, b = 0 implies that @1, Q4 and Q5
are on the line given by y — 2 = 0, and @ + b — 1 = 0 implies that Q2, Q4,
and @5 are on the line given by bx + ay — z = 0. If m = 0 then Ly = Lo,
and m = 1 implies Ly = L3, so in both cases there are four points on a
line. If a = 1 or b = 1, then two of the eight points would be the same. Set
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(Ry,...,Rg) = (Q3,...,Qs), and let N be the corresponding matrix from
Lemma We compute the determinant of N and find that fifaofs3
divides det(N). This means that fi1, fo, as well as f3 define components

of S1, more specifically, they define configurations where Q3. . .., Qg are on
a conic. We conclude that all irreducible components of A; are contained
in S1, which finishes the proof. O

REMARK 4.3.7. Note that, theoretically, we could have proved Proposi-
tion with a computer, by checking that Ag is contained in Sy using
Groebner bases. However, in practice, this turned out to be too big for
magma to do.

We can now prove Theorem We use the following notation.

NOTATION 4.3.8. Let Py, ..., P be eight points in general position in P?
such that X is isomorphic to P? blown up these points. For i € {1,...,8},
let E; be the class in Pic X corresponding to the exceptional curve above
P;, and let L be the class in Pic X corresponding to the pullback of a line
in P? that does not contain any of the points P, ..., P.

Recall that a maximal set of exceptional curves that are concurrent in
a point on the ramification curve consists of curves and their partners

(Remark [4.3.2)).

ProoF oF THEOREM [4.1.7] First note that by Proposition the
number of exceptional curves through any point in X is at most sixteen
in all characteristics; this proves the case char k = 2.

Now assume char k # 2. Consider the clique K = {ey,...,es,€},..., €5}
in G, where

er =L — Ey — Ey;
ex = L — E3 — FEy;
es = L — E5 — Fg;
eq = L — F7 — Eg;
es =3L—F1— Fy— F3— Ey— E5 — Eg — 2E5;
6 = 3L — Ey — Ey — Es — B4 — 2E5 — Ey — Eg,

and €] is the partner of e;, for all ¢ € {1,...,6}. By Remark
the classes e, ..., e4 correspond to the strict transforms of the four lines
through P; and P4y for i € {1,3,5,7}, and e, eg, €5 correspond to the

139



4. CONCURRENT EXCEPTIONAL CURVES

strict transforms of the unique cubics through the points Pi,..., P, Ps,
and the points Pi,..., Ps, P7, Pg, and the points Py, ..., Ps, Py, respec-
tively, that are singular in Pg, and Ps, and P, respectively.
Now let K’ be a clique in G with only edges of weights 1 and 3, con-
sisting of at least six sets of an exceptional class with its partner. Let
f1. fits - {fs, f6}} be a set of six such sets in K’. Since W acts tran-
sitively on the set of cliques of six exceptional classes and their partners by
Proposition after changing the indices and interchanging f;’s with
their partner if necessary, there is an element w € W such that f; = w(e;)
and f/ = w(e}) for i € {1,...,6}. For i € {1,...,8}, set E = w(E;).
Since the E! are pairwise disjoint, by Lemma we can blow down
1,...,E% to points Q1,...,Qs € P? that are in general position, such
that X is isomorphic to the blow-up of P? at Q1,...,Qs, and E! is the
class in Pic X corresponding to the exceptional curve above @); for all 3.
By Remark the sequence (E1,..., E{) induces a bijection between
the exceptional curves on X and the 240 vectors in Proposition such
that the element f; corresponds to the class of the strict transform of the
line through Q9;—1 and @; for i € {1,...,4}, the elements f5 and fg corre-
spond to the classes of the strict transforms of the unique cubics through
the points Q1,...,Qs, Qs and Q1,...,Qs5,Q7,Qs, respectively, that are
singular in Qg and Qs respectively, and f/ is the unique class in I in-
tersecting f; with multiplicity three for all i. From Proposition [4.3.6] it
follows that the curves on X corresponding to f1,..., fg, ff and fi are not
concurrent.
We conclude that a set of at least six exceptional curves and their part-
ners is never concurrent. Since any maximal set of exceptional curves
going through the same point on the ramification curve forms a clique
consisting of curves and their partners, hence of even size, we conclude
that this maximum is at most ten. O

4.4 Proof of Theorem 4.1.2l

In this section we prove Theorem The structure of the proof is sim-
ilar to that of Theorem .11} we first determine the cliques in G that pos-
sibly come from a set of exceptional curves that are concurrent outside the
ramification curve of ¢ (Remark , and show that their maximal size
is 12 (Proposition. Then we show that the group W acts transitively

on these cliques of size 12 (Proposition [4.4.3)) and 11 (Proposition {4.4.4)),
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and finally we show that ten curves in P? in a specific configuration are
not concurrent in Proposition [£:4.6 This final proposition is again key to

the proof of Theorem

REMARK 4.4.1. From Remark we know that cliques in G corre-
sponding to exceptional curves that intersect each other in a point outside
the ramification curve have no edges of weight 3. We conclude that these
cliques contain only edges of weights 1 and 2.

PROPOSITION 4.4.2. The maximal size of cliques in G with only edges of
weights 1 and 2 is 12, and there are no maximal cliques with only edges
of weights 1 and 2 of size 11.

Proof. We use the correspondence with the graph I' in Chapter [3| where
the corresponding cliques have only edges of colors —1 and 0; the statement

is Proposition [3.5.23] O

PROPOSITION 4.4.3. The group W acts transitively on the set of cliques
of size 12 in G with only edges of weights 1 and 2.

Proof. This is Proposition O

PROPOSITION 4.4.4. The group W acts transitively on the set of cliques
of size 11 in G with only edges of weights 1 and 2.

Proof. By Proposition [£.4.2] any clique of size 11 with only edges of
weights 1 and 2 is contained in a clique of size 12 with only edges of
weights 1 and 2. By Corollary for such a clique K of size 12, the
stabilizer Wy acts transitively on K, which implies that W also acts
transitively on the set of cliques of size 11 within K. Since W acts transi-
tively on the set of all cliques of size 12 with only edges of weights 1 and 2
by Proposition [£.4.3] the statement follows. O

Now that we know which cliques in G to look at and what their maximal
size is, we show that ten curves in P? in a specific configuration are not
concurrent in Proposition [4.4.6

REMARK 4.4.5. It is well known that two distinct points in P? define a
unique line, and five points in P? in general position define a unique conic.
Now let Ry, ..., Rg be eight distinct points in P? in general position. The
linear system Q of quartics in P? has dimension 14. For three distinct
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points R;, Rj, Ry € {Ry, ..., Rg}, requiring a quartic to contain Ry, ..., Rg
and be singular in in R;, R;, R; gives 84-3-2 = 14 linear relations. Since the
eight points are in general position, the 14 linear conditions are linearly
independent, so this gives a zero-dimensional linear subsystem of Q. Hence
there is a unique quartic containing all eight points that is singular in
R;, R, Ry.

Let Ry,...,Rg be eight points in P? in general position. Remark
allows us to define the following curves.

L is the line through R; and Ry;

Lo is the line through R3 and Ry;

(1 is the conic through R;, R3, R5, Rg and Rr;

(Y is the conic through R;, R4, R5, Rg and Rsg;

Cjs is the conic through Ro, R3, Rs, R7 and Rg;

Cy is the conic through Ro, R4, Rg, R7 and Rg;

D; is the quartic through all eight points, singular in R;, R7 and Rsg;
Dy is the quartic through all eight points, singular in R, Rs and Rg;
D3 is the quartic through all eight points, singular in R3, Rg and Rsg;
D, is the quartic through all eight points, singular in R4, Rs and Ry.

PROPOSITION 4.4.6. Assume that the characteristic of k is not 3. Then
the ten curves Ly, Ly, C1,...Cy, D1,..., D4 are not concurrent.

REMARK 4.4.7. As in the case of Proposition [£.3.6] in theory we could
prove Proposition [4.4.6] with a computer by using Groebner bases, but in
practice, this is undoable since the computations become too big (see also
Remark . In the case of Proposition m the computations become
even bigger, since we now have 10 curves to check, four of which are of de-
gree 4, in contrast to the 7 curves of degrees at most 3 in Proposition [4.3.6]

Before we write down the proof of Proposition we make some re-
ductions. In P2, we can choose four points in general position. Fix these
and call them Q1, @5, g, and R. We are interested in those configura-
tions of five points Q2, @3, @4, Q7 and Qg in P? such that the following 11
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conditions hold.

0) The points Q1, ..., Qs are in general position.

1) There is a line through R, Q1, Qo.

2) There is a line through R, @3, Q4.

3) There is a conic through R, Q1,Q3, Qs5, Qs, Q7.

4) There is a conic through R, Q1,Q4, @5, Qs, Qs.

5) There is a conic through R, Q2, @3, Qs5, Q7, Qs.

6) There is a conic through R, Q2, Q4, Qs, Q7, Qs.

7) There is a quartic through all nine points, singular in Q1, Q7, @s.
8) There is a quartic through all nine points, singular in Q2, Q5, Qs.
9) There is a quartic through all nine points, singular in @3, Q¢, @s.
10) There is a quartic through all nine points, singular in Q4, @5, Q7.

We will prove Proposition by showing that there are no such config-
urations: all of the configurations satisfying 1-10 violate condition 0.

We consider the space (P2)5. Within this space, we define the following
two sets.

Y = {(Qg, Q3,Q4,Q7, Q) € (P*)° | conditions 1-5 are satisﬁed} .
S = {(QQ,Q3,Q4,Q7, Qg) € (P?)° | three of Q1,...,Qs are collinear} .

Note that for an element (Q2, Q3, Q4, @7, Qs) in S, condition 0 is violated.
Let Fi be the linear system of conics through R, Q1,Qs5,Qs. Note that
this is a one-dimensional linear system that is isomorphic to P!. Let F be
the linear system of lines through R, which is also isomorphic to P!. We
will show that there is a bijection between Y \ S and a subset of FZ x F3
in Proposition We start with two lemmas.

LEMMA 4.4.8. If (Q2,Q3,Q4,Q7,Qg) is a point in Y \ S, then we have
Q; # R fori=2,3,4,7,8.

Proof. Take a point @ = (Q2,Q3,Q4,Q7,Qs) in Y \ S. Since @ is an
element of Y, by condition 1 the points R,Q1,Q2 are on a line. That

means that if R = Q; for i = 3,4,7,8, the points Q;, @1, Q2 would be on a
line, contradicting the fact that @ is not in S. Moreover, by condition 2,
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the points R, ()3, Q4 are on a line, so if R = ()9 then ()9, Q3,4 are on a
line, again contradicting the fact that @ is not in S. O

The following result is well known, but we include a proof, as we could
not find a reference for this exact statement.

LEMMA 4.4.9. If S1,...,S5 are five distinct points in P2, such that the

four points S1,...,S4 are in general position, then there is a unique conic
containing S1,...,Ss, which is irreducible if all five points are in general
position.

Proof. The linear system of conics containing 51, . .., Sy is one-dimensional

and has only these four points as base points. Requiring for a conic in
this linear system to contain the point S5 gives a linear condition, and
since S5 is different from Si,...,5, this condition defines a linear sub-
space of dimension at least zero. If there were two distinct conics in this
subspace, they would intersect in 5 distinct points, so they would have a
common component, which is a line. Since no 4 of the points Sq,..., S5
are collinear, there are at most 3 of the 5 points on this line. But then
the other two points uniquely determine the second component of both
conics, contradicting that they are distinct. We conclude that there is a
unique conic containing S1,...,S5. If, moreover, S5 is such that all five
points are in general position, then no three of them are collinear by def-
inition, so the unique conic containing them cannot contain a line, hence
it is irreducible. ]

NoTATION 4.4.10. Let (Q2,Q3, Q4, @7, Qs) be a point in Y\ S. Note that
by condition 3, there is a conic through the points R, @1, @3, @5, Qs, and
Q7, and by Lemma [4.4.9] it is unique, since R, Q1, @5, Q¢ are in general
position. We call this conic A;. By the same reasoning and condition 4,
there is a unique conic containing the points R, Q1,Q4, Qs5, Qg, Qg. We
call this conic Ay. By Lemma[4:4.8] the points Q3, Q7, Qs are all different
from R, so we can define the line M; through X and @3, the line My
through R and Q)7, and the line M3 through R and Qs.

Recall that Fj is the linear system of conics through R, @1, Qs5,Qs, and
F5 the linear system of lines through R. We define a map

©: Y\ S — FIxF3,
(Q2,Q3,Q4,Q7,Q8) — (A1, Ay, My, My, M3).
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Note that ¢ is well defined by the definitions of Ay, As, M1, Mo, M3 in
Notation [£.4.10] We want to describe its image. To this end, define the
set

B, By irreducible
By # B
N1, No not tangent to B
N1, N3 not tangent to B»
Ny # N2, N3
Q1,Q5,Q6 & N1, Na, N3

U= (BlvBQaN17N2aN3)€F12XF23

LEMMA 4.4.11. The image of ¢ is contained in U.

Proof. Take a point Q = (Q2,Q3,Q4,Q7,Qs) € Y \ S and consider its
image under ¢ given by ¢(Q) = (A1, Ag, M1, M, M3). Since @ is not
in S, by Lemma [£.4.9] the conics A; and A are unique and irreducible.
Moreover, if they were equal to each other, then they would both contain
the points R, @3, 4, which are collinear by condition 2, contradicting the
fact that they are irreducible.

The line M; is tangent to A; only if R is equal to @3, the line M, is
tangent to A; only if R is equal to Q)7, and the line M3 is tangent to As
only if R is equal to Qg, all of which are impossible by Lemma Note
that by condition 2, the line My contains @4, so M; is tangent to Ay only
if R = @4, which is again impossible by Lemma If My or M3 were
equal to My, then either Q7 or Qg is contained in M7, which also contains
the points R, @3, Q4. But this can not be true since @ is not in S. If M;
or Ms contained any of the points @1, Qs5, Qg, then this line would have
three points in common with Ay, which implies that A; contains a line,
contradicting the fact that A; is irreducible. Similarly, if M3 contained
Q1,Qs, or Qg, then As would contain M3, contradicting the irreducibility
of A,. O

We want to define an inverse to ¢. We set up the following notation for a
point in U.

NoOTATION 4.4.12. Let uw = (B, B2, N1, N2, N3) be a point in U. Since
the conics By and By are irreducible, they do not contain any of the lines
Ny, No, N3, and moreover, since Ny, Ny are not tangent to By, and N, N3
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are not tangent to By, we can define the following five points in P?2.

S3 = the point of intersection of By with N; that is not X.
S4 = the point of intersection of By with N; that is not X.
S7 = the point of intersection of By with Ny that is not X.
Ss = the point of intersection of By with N3 that is not X.

LEMMA 4.4.13. Let u = (By, B2, N1, N2, N3) be a point in U. Define the
points Sz, Sy, S7, Ss as in Notation[d.4.12. There is a unique conic through
R, S3,Qs5, 57, and Sg, which does not contain the line through R and Q.

Proof. Note that Ss and S7 are different from R by definition, and they
are different from Q1, 5, Qg since Q1, @5, Q¢ are not contained in N1, nor
in Ny, by definition of U. If S3 were equal to S7, then N7 and Ny would
both contain R and S5, hence they would be equal, contradicting the fact
that w is an element of U. So R,S3,(@s5,S7 are all distinct, and since
they are all contained in By, they are in general position because Bj is
irreducible. We will show that Sg is different from any of these four points.
By definition, Sy is different from R. If Sg were equal to S3, then By and
B would both contain R, Q1,Qs5, Q¢ and S3. But since S3 is different
from R, Q1,Qs5,Qg, there is a unique conic through these five points by
Lemma So this would imply By = Bs, contradicting the fact that u
is in U. Hence Sy is different from S3, and similarly, Sg is different from
S7. Finally, Sg is different from @5, since the line N3 does not contain @)s.
We conclude that by Lemma [£.4.9] there is a unique conic C' through the
points R, S3,Q5,S7, and Ss. Note that R, S3, @5, S7 are all distinct from
Q1. If C contained the line L through R and @, then C would be the
union of two lines (one of them being L). This means that either L would
contain one of the points S3, Qs5, .S7, or the points S3, 5, 57 are all on the
second line. But since R, Q1,S3, Q5,57 are all in By, which is irreducible,
both of these cases would be a contradiction. We conclude that C' does
not contain L. ]

NoOTATION 4.4.14. Let u = (B1, B2, N1, N2, N3) be a point in U, and
let Ss, S4,S7,Ss be the corresponding points as in Notation [£.4.12] We
define a fifth point S5 to be the point of intersection of the conic through
R, S3,Qs, .57, Sg with the line through R and )1, that is not R. Note that

Sy is well defined by Lemma

Using Notations 4.4.12] and [4.4.14] for any point w in U we have now
defined an element (S2, S3, Sy, S7,Ss) of (P2)%, and it is easy to see that
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for such a point conditions 1-5 are satisfied, hence it is an element of Y.
This leads us to define the following map.

b U — Y,
(B1, B2, N1, N2, N3) — (S2, 53, S4, 57, S3).

Let T be the set 1~ 1(9).

PROPOSITION 4.4.15. The map Y|g\p: U\T — Y \ S is a bijection,
with inverse given by .

Proof. Let u = (B, B2, N1, N2, N3) be an element in U \ T'. Write ¢(u) =
(S2, 83, 54,57, Ss) and p(¢(u)) = (BY, By, N1, N4, Ni). Since 1(u) is not
in S by definition of T', no three of the points @)1, Q5, Q¢, S2, S3, 54, S7, S
are collinear. Therefore, B] and B) are the unique and irreducible conics
through @1, S3, Qs5, Qs, S7 and through @1, Sy, Q5, Qg, Ss, respectively, by
Lemma Since B and Bjy both contain ()1, @5, Qg, and By contains
S3 and S7 and Bj contains Sy and Sg by definition of 1 (u), we conclude
that Bf = By and B} = Bsy. The line V] is defined as the line containing R
and S3, which are both contained in N; as well by definition. We conclude
that N{ = Np, and similarly Nj = N, and N§ = N3. We conclude that
¢(1(u)) = u. This proves injectivity of ¥|;n7. We now prove surjectivity.
Take Q = (Q2, Q3, Q4. Q7, Qs) € Y'\S; write p(Q) = (A1, Az, M1, My, M3)
and 1/1(A1,A2,M1,M27M3) = (Q/27 ngﬁvalﬁQé) The point Qg is de-
fined by taking the second point of intersection of A; with the line M;
through R and Q3. Since A; is irreducible (¢(Q) is in U by Lemma[4.4.11]),
it does not contain Mj, so Q5 = Q3. Similarly, we have Q% = Qr,
Q) = Q4, and Q5 = Qs. Therefore there is a unique conic C' contain-
ing the points R, Q3,Qs,Q7, Qs by Lemma [1.4.13] Since there is a conic
through R, Qs3,Q5,Q7, Qs and Q2 by condition 5, we conclude that C
contains ()2 by uniqueness. Since the line L through R and ); is not
contained in C' by Lemma and since L contains Q2 by condition 1,
it follows that ()2 is the second point of intersection of L and C. Hence
Q% = Q2. We conclude that ¥ (¢(Q)) = @, and hence ¢(Q) is contained
in U\ T, and ¥\ 7 is surjective.

Since Ynr: U\NT — Y\ S is a bijection and we showed that for all ele-
ments v € U \ T we have ¢(¢(u)) = u, we conclude that ¢ is the inverse
function. O

We now prove Proposition The computations are verified in magma;
see [Codd| for the code. Recall that we fixed eight points Ri,...,Rg in
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4. CONCURRENT EXCEPTIONAL CURVES

general position P? and ten curves Li, Ly, C1,...,Cy, D1, ..., Dy, above

Proposition [£.4.6

PROOF OF PROPOSITION [4.4.6l We assume that these ten curves con-
tain a common point P, and will show that this contradicts the fact that
Rq,...,Rg are in general position. First note that if P were equal to
one of the eight points Ry,..., Rs, then one of the conics would contain
six of the eight points, which would contradict the fact that Ri,..., Rg
are in general position. Moreover, if P and any two of the three points
R1, R5, Rg lie on a line L, then the conic C7 would intersect L in P and
the two points. But this implies that C is not irreducible, and since C}
contains five of the points Rq,..., Rg, this implies that at least three of
them are collinear, contradicting the fact that Rj,..., Rg are in general
position. We conclude that R;, Rs, Rg and P are in general position.

Let (z : y : z) be the coordinates in P2. Without loss of generality, after
applying an automorphism of P? if necessary, we can choose Ri, Rs, Rg,
and P to be any four points in general position in P?. We now distinguish
between char k # 2 and char k = 2.

Assume char k # 2. Set

Ry=(1:0:1); Rs=(0:—-1:1);
Rs;=(0:1:1); P=(-1:0:1).
It follows that the line Li, which contains Ry and P, is given by y = 0.
The linear system of quadrics through R;, Rs, Rg and P is generated by

two linearly independent quadrics, and we take these to be 22 + y% — 22
and zy. Let [,m € k be such that

C, is given by 2% + y? — 22 = 2lzy;
Cy is given by 22 + y? — 2% = 2may.

Since R3, R4, R7, and Rg are not contained in L, there are s,t¢,u € k such
that

the line Lo is given by sy = = + z;
the line L3 through P and Ry is given by ty = = + z;
the line Ly through P and Rg is given by uy = = + z.

We want to show that all possible configurations of the five points Ra, R3,
R4, Ry, and Rg in P? such that all ten curves contain P, are such that
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4.4. PROOF OF THEOREM

Ry,...,Rg are not in general position. By Proposition all con-
figurations of Ro, R3, R4, R7, Rg such that Ly, Lo, Cy,Cs, (3 contain the
point P and no three of the points Ri,..., Rg are collinear are given in
terms of the conics C; and Cs and the lines Lo, L3, L4y. By computing the
appropriate intersections we find

Rs = (752+1:2l725:2l575271>;
Ry = (—32—1—1:2m—2s:2ms—32—1);
Ry = (—t2+1:21—2t:21t—t2—1);
Rg = (7u2+1:2m72u:2mu7u271).
By Lemma[4.4.13] there is a unique conic containing Rs3, R5, R7, Rs, and P,
and we compute a defining polynomial and find
(2l2u + 212 — 2lmu — 2lm — lsu — ls — ltu — It + lu® + 2lu + | + mst
+ms + mt — 2mu — m + st — su — tu + u2) z? + (212u2 + 21%u
+2lmst — 2lmsu — 2lmtu — 2lmu — Istu + Ist — lsu +Is — ltu + It
+2lu2+lu+l+mstu+mst—msu—ms—mtu—mt—mu—m) xy
+2(u+ 1)+ 1)l —m)xz + (lstu + st + lu® 4 lu — mstu — msu — mtu
—mu + st — su — tu + u2) v+ (u+ 1)+ 1)(s+ 1)1 — m)yz + (lsu
+ls+ltu+lt—lu2—|—l—mst—ms—mt—m—st+su+tu—u2) 22,

Intersecting this conic with the line L; gives besides P the point Rs, and
we find

Ry = (—(Isu+1s + ltu + It — lu® +1 — mst —ms —mt —m
— st +su+tu—u?):0: (2% = 2im —Is — It)(u + 1) + lu?
+ 2lu + 1 + mst +ms + mt — 2mu — m + st — su — tu + u’).

We define A® to be the affine space with coordinate ring T5 = k[l, m, s, t, u].
Following all the above, points in A® correspond to configurations of the
points Ri,..., Rg. The fact that the ten curves contain P gives polyno-
mial equations in these five variables, and hence defines an algebraic set
Ag in A%, We define Sy to be the algebraic set of all points in A® that
correspond to the configurations where the points R1,..., Rg are not in
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4. CONCURRENT EXCEPTIONAL CURVES

general position. We want to show that Ag is contained in Sy, which
would prove the proposition. In what follows we will show that indeed
every component of Ay is contained in Sy.

Note that by construction of Ry, ..., Rg, the curves Ly, Lo, C1,Co, C3 con-
tain P. We will add conditions for Cy, D1, ..., D4 to contain P, too. We
start with Cy. The equation expressing that P is contained in Cy, is given
by det(N) = 0, where N is the matrix in Lemma corresponding to
(R2, R4, Rg, R7, Rg, P). This determinant is given by

det(N) =16(u+1)(t+1)(s+ 1)(s —u)(m —u)(m — s)(I — t)(I — m) f1 f2,

where

fi=Cu+ 12 —lmu—Im—lsu—1s — ltu — It + lu® + lu + mst + ms

+mt—mu+3t—su—tu+u2,

fo = at?® + btu + cu® + dt + eu + f,

a=(s+1)(m—-1)(m+1), b=d=—-e=2s(m—1)(I+1),
c=(s-1(I-1)(1+1), f=0-m)(ls—1—ms—m+2s).

Let F» C A® be the affine variety given by fo» = 0. Every component of
Ap is contained in one of the components of the algebraic set given by
det(N) = 0. With magma it is an easy check that apart from fs, all non-
constant factors of det(INV) define configurations of Ry, ..., Rg where three
of the points are collinear (see [Codc]; fi = 0 corresponds to Rg, R3, R4
being collinear), and hence they define components of Sy. Therefore, it
suffices to prove that Ag N Fy is contained in Sj.

Since fo is quadratic in ¢ and u, the projection 7 from F5 to the affine
space A3 with coordinates [, m, s has fibers that are (possibly non-integral)
affine conics. Let A be the discriminant of the quadratic form that is the
homogenisation of fo with respect to ¢ and u, which is given by

A = dacf — ae® — b2 f + bde — cd?;

the singular fibers of 7 lie exactly above the points (I, m, s) € A3 for which
A = 0. We compute the factorization of A in Z[l, m, s], and find

A=4(s—1)(s+1)(m—-1)(m+1){-1)(+ 1) —m)g,
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4.4. PROOF OF THEOREM

with ¢ = ls — 1 —ms —m+ 2s. All non-constant factors of A except for g,
when viewed as elements of T, define components of Sy in A®. Therefore,
the fibers under 7 above the zero sets of these factors in A® are contained
in Sy. We will show that the same holds for the inverse image under 7 of
the zero set Z(g) C A3 of g, which is given by the zero set Z(f2,g) in AS.
Note that we can write

fo=(s— 1)1+ 1)(u—t)as + (t — 1)gaz,

with a; = (I=1)(u+1)—(m+1)(t—1) and ag = (I+1)(u+1)—(m+1)(t+1).
Therefore, the set Z(fa2,g) is given by g = (s — 1)(I + 1)(u — t)a; = 0, so
Z(f2,9) is the union of four algebraic sets:

Z(fQ’g):Z(gas—1)UZ(gvl+1)UZ(gau_t)UZ(gaal) CA5‘

Note that s — 1,1+ 1, and u — t define components of Sy, so the first three
terms in this union are contained in Syp. With magma, we check that the
irreducible polynomial v = (m —wu)(l —1)g+ (I — s)(m — 1)a; corresponds
to a configuration where the six points R3, ..., Rg are contained in a conic,
and hence it defines a component of Sy. Since 7 is contained in the ideal
in Z[l,m, s,t, u] generated by g and ay, it follows that Z(g, a;) is also con-
tained in Sy. We conclude that all the singular fibers of 7 lie in Sy.

The generic fiber Fy,, of 7 is a conic in the affine plane A? with coordi-
nates ¢t and u over the function field k(I, m, s), where [, m, s are transcen-
dentals. This fiber contains the point (¢,u) = (I,m). We can parametrize
F>, with a parameter v by intersecting it with the line M given by
v(t — 1) = (u— m), which intersects Fy, in the point (I,m) and a sec-
ond intersection point that we associate to v. Consider the open subset
F} C Fy given by the complement in F of the singular fibers of 7 and
the hyperplane section defined by ¢t —1 =0, so F; \ Fj C Sp. In what fol-
lows, we use the idea of this parametrization to construct an isomorphism
between Fj and an open subset of the affine space A* with coordinates
l,m,s,v.

Consider the ring T3 = k[l,m, s, t,v], and let ¢ be the map ¢: T5 — T
that sends u to v(t — 1) +m and I, m, s,t to themselves. Then we have
o(f2) = (t = 1)(at + 3), where

o = 2sv? —1?0® —2lmsv+2sv+m?s +m? — 2msv — sv® 4+ 2sv — s +v? — 1,

and
B = Bsv? — 13v? — 20%msv + 20%mu + Im2s — Im? — 2lmsv — Lsv?

+2lsv — ls + % + 1+ 2m?s — 2mu + 2sv — 2s.
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The map ¢ induces a birational morphism 1: A3 — A® where AJ is the
affine space with coordinate ring 75'. Moreover, 1 is an isomorphism on
the complements of the zero sets of t — [ in its domain and codomain. Set

G=Z(at+B)\ Z(t - 1) C Ay,

then v induces an isomorphism G = F,\ Z(t —1). In particular, ¢ induces
an isomorphism from G\ Z(A) to F;. We want to show that G \ Z(aA)
equals G\ Z(A); to do this it suffices to show that ¢»(GNZ(«)) is contained
in a union of singular fibers of 7. Note that we have GNZ(a) = GNZ(«, 5).
Let (lp, mo, So,to,v9) be a point in G N Z(«, ), then, since o and B do
not depend on ¢, the point (ly, mo, so,t,v9) is contained in Z(at + () for
all t. It follows that the fiber on Fy in A%(¢,u) under 7 above the point
(lo,mo, s0) € A3 contains the line u = vo(t — ly) + mo, hence is singular.
Moreover, this fiber contains the point 1 ((ly, mo, So, to, vo)). We conclude
that ¢ (GNZ(«)) is contained in a union of singular fibers of Fy. It follows
that

(G Z(ah)) = $(G\ Z(A)) = F.
Consider the ring Ty = k[l,m, s,v], and let K4 be its field of fractions.
Consider the ring homomorphism p: 7 — K4 that sends ¢ to %’6, and
[,m, s,v to themselves. This induces a birational map

i: AT — Z(at + ) C A3,

where A% is the affine space with coordinate ring 7. The map 7 induces an
isomorphism from A*\ Z(a) to Z(at + )\ Z(«); this isomorphism sends
the zero set of A in A*\ Z(a) to the zero set of A in Z(at + B) \ Z(a),
and the zero set of t — [ in Z(at + 8) \ Z(«) corresponds to the zero set of
al + B in A*\ Z(a). Hence, we have an isomorphism

A*\ Z(aA(al + B)) = G\ Z(aA).
We conclude that we have an isomorphism
Yoi: AY\ Z(aA(al + B)) — Fj.

Recall that our aim is to show that Ag N Fy is contained in Sy. Since
we showed that all components of Fy \ F} are contained in Sp, we have
Ag N Fy C Sy if and only if Ag N Fy C Sp. Moreover, after setting

Ay =i (@ (AgN Fy)) and Sy =i Yy~ H(So N FY)),
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4.4. PROOF OF THEOREM

showing Ag C Sy is equivalent to showing A; C S;.

For ¢ in {1,2,3,4}, the expression stating that P is contained in D; is
given by det(H;) = 0, where H; is the matrix denoted by Hg, ag,00 it
Lemma [4.3.4] associated to

(RQ,R3,R4,R5,R6,R1,R7,R8) for i =1;
(Rl,Rg,R4,R7,R8,R2,R5, 6) for i = 2;
(R1, Ro, R4, R5, R7, R3, Rg, Rg) for i = 3;
(R1, R2, R3, R¢, Rs, R4, R5, Ry7) for i = 4,

where we set a7 =z, ag = ag =y for i € {1,2}, and oy = ag = ag =y
for i € {3,4}. For i € {1,2,3,4}, let B; C F» C A® be the locus of points
corresponding to configurations of Ry,..., Rg such that D; contains P.
Then we have Ag N Fy = (i, Bi, so Ao N Fy = (i, (B; N F3), and hence
Ay =N i YW (B;NFS)). Note that B; is defined by fo =det(H;) = 0.
Fori € {1,2,3,4}, we compute the determinant of H; and its factorization
in Z[l, m, s,t,u] in magma. For all 7, this factorization has a constant factor
that is a power of 2, and there is exactly one irreducible factor h; that
does not define a component of Sy; it follows that Z(f2, h;)\ So = B; \ So.
Note that for i € {1,2,3,4}, the set i L(v "1 (Z(f2,hi) \ Z(aA(t —1))) is
defined in A*\ Z(aA(al + ) by the numerator of p(p(h;)); we compute
the factorization of this numerator in Z[l,m, s,v]. Again, for all i, this
factorization has as constant factor a power of 2, and contains exactly
one irreducible factor that does not define a component of Sy; we call this
factor g;. It follows that for i € {1,2,3,4}, the set i 1(xp"1(B; \ Sp)) is
contained in Z(g;), so A; \ Sy is contained in Z(g1, 92, g3, 94). Computing
g1, 92, g3, g4 takes magma over an hour, and these polynomials are too big
to write down here; you can find them in [Codd|. Set

§=(s—1—ms—m+2s)21—m)(l —s)(I+1)(m—1)(s+ 1)-
(1—=1)(m+1)(s — 1)v?

We check that all factors of § € Z[l, m, s,v] define components of S; (the
first factor corresponds to both Rg, R3, R5 and Ra, Ry, Rg being collinear).
We will show that § is contained in the ideal Z of T generated by g1, g2, g3,
and g4. We use a Grébner basis for 7 to check this. In magma, we define the
ideal 7 in the ring Ty with k = Q with the ordering s > v > m > [. With
the function G,b:=GroebnerBasis(I:ReturnDenominators) we compute
the reduced Grobner basis G for Z; after using this function, magma uses
G as a generator set for Z. We then use G to check that ¢ is contained in
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7, again over Q. This finishes the proof for char & = 0; We continue the
proof for char k = p > 0 with p # 2, 3.

The element d can be written as a linear combination of the elements in G
with coefficients in Ty. Let C be the set of these coefficients (obtained by
the function Coordinates(I,f)). In the proces of computing G, magma
makes divisions by integers, which are stored in the set b. Let P be the set
containing the prime divisors of all elements in b, and all prime divisors
of the denominators of the coefficients of the elements in G, and all prime
divisors of the denominators of the coefficients of the elements in C'. Then
for a prime p & P, the reductions modulo p of the elements in G are well
defined. Moreover, since P contains all prime divisors of the elements in b,
the reductions modulo p of the elements in G still form a Grobner basis for
the ideal J generated by the reductions modulo p of g1, g2, g3, g4. Finally,
the reduction modulo p of § is contained in 7, since the prime divisors of
the denominators of the coefficients of the elements in C are in P. This
finishes the proof for char k = p > 0 with p # 2,3, p ¢ P.

For all finitely many p € P\ {2, 3}, let T be the ring F,[l,m, s, v], let & be
the reduction of § modulo p, and for i € {1, 2, 3,4}, let g; be the reduction
of g; modulo p; then it is a quick check in magma that § is contained in
the ideal (91,92, 73,9a) of Ty. We conclude that for char k # 2,3, the set
A1\ S is contained in the union of the varieties defined by the factors of
d, so Ap \ S1 is a subset of S;. We conclude that A; is contained in 5.
This finishes the proof for char k # 2.

Assume char k = 2.

Since the points R, Rs5, Rg, P as defined in the previous case are not in
general position over a field of characteristic 2, we redefine these points
here. The proof then goes completely analogous to the previous case; see
[Codd] for the code in magma where we verify everything over the field
k = Fy of two elements. Set

Ry =(1:0:1); Re
Rs =(0:1:0); P

(0:1:1);
(1:0:0).

These four points are in general position in P2. We take 22 + zz + yz
and zy for the two generators of the linear system of quadrics through
Rl, R5, R6 and P.

We now do all the steps as in the previous case, and everything works
analogously. In fact, checking that all singular fibers of the analog of 7
from the previous case are contained in the analog of Sy can be done
even more directly in magma than as described in the previous case. We
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obtain again an algebraic set A; C A%, where A* is the affine space over
Fy with coordinates [,m, s,v, and A; is the algebraic set corresponding
to the configurations where the ten curves Lq, Lo, C1,...,C4,D1,..., Dy
all contain the point P. Again, we want to show that A; is contained in
S1, where S; C A* is the algebraic set defined by the polynomials that
correspond to the eight points Ry, ..., Rg not being in general position.
Completely analogously to the case char k # 2, from the conditions that P
is contained in Dy, Do, D3, Dy, we now obtain four polynomials g1, g2, g3, g4
in Fa[l,m, s,v] (see [Codd]). Again, we have A1\ S1 C Z(¢1, 92,93, 94)-
Set

6 = (Is+ms+m+s)(lv+m~+1)(I+m) (I14s5) (m=+s) (1+1) (m+1)m3(s+1)lvs.

It is a quick check with magma that ¢ is contained in Z. Moreover, it is
again a quick check that all factors of § correspond to three points being
collinear, and hence define a component of S;. We conclude again that A;
is contained in Sj. ]

We can now prove Theorem Recall Notation [£.3.8|

ProoF oF THEOREM [4.1.2] Recall that every set of exceptional curves
without partners corresponds to a clique in G with only edges of weights 1
and 2, so by Lemma [£.4.2] the number of exceptional curves that are
concurrent in a point outside the ramification curve of ¢ is at most twelve.
This proves the case char k = 3.

Now assume that char k& # 3. Consider the eleven classes in C' given by

e1 = L—E, — Ey;

€2 =L — E3 — Ey;

e3 = 2L — E) — B3 — Es — Eg — Er;

¢4 = 2L — E) — By — Es — Eg — Fg;

es = 2L — By — E3 — Es — Ey — Fg;

6 = 2L — By — Ey — Eg — 7 — Eg:

e =4L — 2K — FEy — E3s — Ey— B — Eg — 2E7 — 2Eg;
es=4L — F1 —2Fy — E3 — By — 2F5 — 2Eg — By — Eg;
eg=4L — FhW — FEy —2F3 — By — E5 — 2FEg — E7 — 2Eg;
e =4L — F1 — F5y — E3 —2FE4 — 2E5 — Eg — 2E7 — Eg;
€11 = 5L — 2F) — 2Fy — 23 — 2F, — 2B — Eg — 7 — 2Fx:
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It is straightforward to check that they form a clique with only edges of
weights 1 and 2 in G. By Remark [I.2.7 we know that ey, ..., e cor-
respond to the classes in Pic X of the strict transforms of the curves
Li,Lo,Cq,...,Cy, D1, ..., Dy, defined as above Proposition [4.4.6] with re-
spect to P; instead of R; for i € {1,...,8}.

Let K = {c1,...,c11} be a clique of size eleven in G with only edges
of weights 1 and 2. By Proposition [£.4.4] after changing the indices if
necessary, there is an element w € W such that ¢; = w(e;) for i in
{1,...,11}. Set E! = w(E;). Then, since the E! are pairwise disjoint,
by Lemma we can blow down EY, ..., E} to points Q1, ..., Qg in P?
that are in general position, such that X is isomorphic to the blow-up of
P? at Q1,...,Qs, and E! is the class in Pic X that corresponds to the
exceptional curve above @; for all i. By the bijection in Remark [1.2.77]
the elements c1, ..., c1g are the classes that correspond to the strict trans-
forms of Ly, Lo, C1,...,Cy, D1, ..., D4 defined as above Proposition [4.4.6
with respect to @; instead of R; for ¢ € {1,...,8}. Since char k # 3, it
follows from Proposition [4.4.6] that the curves corresponding to ¢y, ..., ¢io
are not concurrent. We conclude that the number of concurrent excep-
tional curves in a point outside the ramification curve of ¢ is less than
eleven. O

4.5 Examples

4.5.1 On the ramification curve

This section contains examples that show that the upper bounds in The-
orem are sharp. Example is a del Pezzo surface over a field of
characteristic 2 with 16 concurrent exceptional curves, Example isa
del Pezzo surface over any field of characteristic unequal to 2,3,5,7,11, 13,
17,19 with 10 concurrent exceptional curves, and Example contains
examples of ten concurrent exceptional curves on del Pezzo surfaces in the
remaining 7 characteristics.

EXAMPLE 4.5.1. Set f = 2° + 2% + 1 € Fy[z], and let F = Fa[x]/(f) be
the finite field of 32 elements defined by adjoining a root a of f to Fa.
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Define the following eight points in IP’%.

Qr=(0:1:1); Q= (1:1:1);
Qo= (0:1:a"); Qs = (@ : a0 : %),
Q3= (1:0:1); Q7 = (a® a1 1);
Qi=(1:0:a"); Qs = (@ :1:0ad)

With magma we check that the determinants of the appropriate matrices in
Lemma are all non-zero, so these eight points are in general position.
Therefore, the blow-up of P? in {Q1,...,Qs} is a del Pezzo surface S. We
have the following four lines in P2.

The line Lq through @1 and @2, which is given by x = 0;
the line Lo through Q3 and @4, which is given by y = 0;
the line L3 through ()5 and ()¢, which is given by z = y;
the line L, through @7 and (Jg, which is given by y = ax.

Let C;; be the unique cubic through Q1,...,Qi—1,Qi+1,...,Qs that is
singular in ;. Set (Ry,...,Rs) = (Q1,Q3,Q4,Q5,Qs, Q7, Qs,Q2), and
let L be the corresponding matrix from Lemma Then the equation
defining C' 5 is the determinant of L', where L' is equal to L after replacing
the first row by Mong. Similarly, we compute the defining equations of
C34, Cs6, Crg and Cg 7, and find the following.

Cio: x3+a24a:2y—|—a28x2z+a30xy2+a9$yz+a26xz2+a13y3+a6y22 =0

Cz4: 2 +a22?y+atzy? +atlayz+ o e +2 + 0?22 +al?yz2 = 0

)

Cs.6: 2% + ala?y + a®222 + a®zy? + aPzyz + o122 +alTy?

+ a2 + a®y2? =0

Crs: 3+ oszy + o®2?z + a17:cy2 + ozwa:yz + a0z2% + a16y3

+aby?z + a®y2? =0

Csr: 23 + a2y + o222 + a2 + a'02yz + P22 + 163

+aby?z + a®y2? =0
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Let eq,...,eg be the strict transforms of the eight curves
Ly, ... Ly, C12,C34,C56,Crs,

and let cg be the strict transform of Cg 7. Since these nine curves all contain
the point (0:0: 1), the exceptional curves ey, ..., es, cg are concurrent in
a point P on S. Let 1 be the morphism associated to the linear system
| —2Kg|. Since eg-cgs = 3, the point P lies on the ramification curve of ¢
by Remark Therefore, by the same remark, for i € {1,...,7}, the
partners of eq,...,er contain P, too. We conclude that there are sixteen
exceptional curves on S that are concurrent in P.

EXAMPLE 4.5.2. Let k be a field of characteristic unequal to 2,3,5,7,11,
13,17, 19. Define the following eight points in P5.

=(0:1: Q5= (1:1:1);
=(0:5: Qs = (4:4:5);
:(1 0: 1) Qr=(-2:2:1);
Qi=(-1:0:1); Qs=(2:-2:1)

With magma we compute the determinants of the matrices in Lemma [£.3.4]
that determine whether three of the points are on a line, or six of the
points are on a conic, or seven of them are on a cubic that is singular at
one of them. These determinants are non-zero for char k& # 2,3,5,7,11,
13,17,19, so the points are in general position. Therefore, the blow-up of
IF’% in {Q1,...,Qs} is a del Pezzo surface S. We define the lines Li, L, L3
as in Example We define Ly to be the line containing Q7 and Qs,
which is given by x = —y.

Let C7g be the unique cubic through Q1,...,Qs, Qs that is singular in
@s, and Cg7 the unique cubic through @1, ..., Q7 that is singular in Q7.
As in Example we compute the defining equations for C7 g and Cg 7,
and we find

Crg: 3 — §x2y — xy +1 :Uyz — 3+ %yQZ — %yz2 =0,

Cyr: 3+ fx2y +4 wy — ldzyz — 2% + 15y 40y2z + 25y22 =0.
On S, we define the four exceptional curves ej,...,e4 to be the strict
transforms of Ly, ..., Ly, and e, e the strict transforms of C7 g and Cy 7,

respectively. Since Ly, ..., Ly, C78,Cs 7 all contain the point (0 : 0 : 1),
the six exceptional curves ey, ..., es, ef are concurrent in a point P in S.
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Let 1 be the morphism associated to the linear system | — 2Kg|. By
Remark since e5 - e = 3, the point P lies on the ramification curve
of ¥, and for i € {1,...,4}, the partners of ej,...,e4 contain P, too. We
conclude that there are ten exceptional curves on S that are concurrent
in P.

EXAMPLE 4.5.3. For p € {3,5,7,11,13,17,19}, we construct a del Pezzo
surface over a field of characteristic p with ten exceptional curves that are
concurrent in a completely analogous way to the one in Example
Let p be a prime, and F,, be the finite field of p elements. Let f, € F,,[z] be
an irreducible polynomial. Let a be a root of f,,, and F = F,[z]/(f,) the
field extension of [F, obtained by adjoining « to IF,,. For a,b,c,m,u,v € F,
define the following eight points in IP’I%.

Q1=(0:1:1); Qs=(1:1:1);
Q2=(0:1:a); Qs=(1:1:¢);
Qs=(1:0:1); Qr=(m:1:u);
Qi=(1:0:0); Qs =(m:1:v).

Let z,y, z be the coordinates of IP’I%. We define again the lines L1, Lo, L3
as in Example and the line Ly by z = my. Note that Ly,..., Ly
all contain the point (0 : 0 : 1). Let C7g be the unique cubic through
Q1,...,Qs, Qs that is singular in (g, and Cg 7 the unique cubic through
Q1, ..., Q7 that is singular in Q7. For all fixed (p, fp, a, b, ¢, m, u, v) that we
describe below, we check as we did in Example that the eight points
are in general position, and compute the defining equations for C7 g and
Cg,7. In all cases, the point (0 : 0 : 1) is also contained in C7g and Cy 7,
and as in Example this implies that there are 10 exceptional curves
on the del Pezzo surface obtained by blowing up IP’]QF in Q1,...,Qs, that
are concurrent in a point on the ramification curve.

e For p = 3 we take
Ip =23 +2x+1, (a,b,¢c,m,u,v) = (a,a?,a'® a8 o?,
e For p =5 we take
fo=2%+42+2, (a,b,c,m,u,v) = (' ot a'? o® a3 o).
e For p = 7 we take

fr= 22+ 6x+3, (a,b,c,m,u,v)=(3,a%, 0%, ot a® a?).
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e For p = 11 we take
=22+ 7x+2, (a,b,¢c,m,u,v) = (%, o, 4,052 a1l ab).
e For p = 13 we take
fp= 22+ 122+ 2, (a,b,¢c,m,u,v) = (%, a’® a8 o al32 1)
e For p = 17 we take
fp =22+ 162 +3, (a,b,c,m,u,v) = (a™ a'% o o2 ol o?0).

e For p = 19, we take F = 9, and (a, b, ¢, m,u,v) = (2,2,14,8,7,12).

All these examples are generated in magma by generating random values
for the elements a, b, ¢, m, u, v in each case, until the points defined by the
values are in general position.

4.5.2 QOutside the ramification curve

In this section we give examples that show that the upper bound in The-
orem [£.1.2] is sharp. Example [£.5.4] gives a del Pezzo surface of degree
one over a field of characteristic 3 with twelve exceptional curves that are
concurrent in a point outside the ramification curve. In Example we
give a del Pezzo surface over a field of characteristic unequal to 5 that
contains ten exceptional curves that are concurrent in a point outside the
ramification curve. This surface is isomorphic to the one in Example 4.1
in [SvL14] if the characteristic of k is unequal to 2 and 3. We do not give
an example in characteristic 5, since we have not found one; it might very
well be that the maximum in this case is less than ten.

EXAMPLE 4.5.4. Let f = 2% + 2z + 1 be a polynomial in Fs3[z]. Let a be
a root of f, and let F = F3[x]|/f be the field of 27 elements obtained by
adjoining o to F3. Let IP’IQF be the projective plane over F, and define the
following eight points in this plane.

Q=(1'0'1)' Qs =(0:1:1);
=(®:0:a'®); Qs=(0:2:1);
— (0 0¥ : 0?) Qr = (a®: 0® : 2)
— (0% a1 18, Qs = (0 : a7 : 0.

With magma we check that no three of these points are on a line, no six of
them are on a conic, and no seven of them are on a cubic that is singular
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at one of them, by checking that the appropriate determinants of the
matrices in Lemma are non-zero. Therefore, the blow-up of IP’H% in
these eight points is a del Pezzo surface S of degree one.

Let Lq be the line containing (21 and ()2, which is given by y = 0. Let Lo
be the line containing Q3 and @4, which is given by a?3y = = + 2. For
five points @Q;,, ..., Qi, we find the equation of the conic containing these
points by computing the determinant of the matrix N in Lemma [4.3.4]
with (Ra,...,Re) = (Qiy,- .., Qis), and where the first row is replaced by
the list Mons. We obtain the following conics in IP’I%.

Cr: 2?4+ a2y + y? + 222 = 0, containing Q1, Q3, @5, Qs, Q7.
Co: a® + a'%zy +y* +22* = 0, containing Q1, Q1, @5, Qo Qs.
Cs: 22 +a®rz+a'y? +allyz+al®2? = 0, containing Qs, Q3, Qs5, Q7, Qs.
Cy: 2?4+ zy+aPrz+a?0y? +abyz4+al®2? = 0, cont. Qa,Q4, Qs, Q7, Qs.
Similarly, we compute defining equations for the quartics D1, Do, D3, Dy

containing all the eight points with singularities in Q)1, @7, Qs, and Q2, Qs,
Qs, and @3, Q6, Us, and Q4, Qs, Q7, respectively. We find

Dq: atzt + ozH:L‘3y + al?z?z + a24;v2y2 + aleQyz + atbx222 + 0416xy3

+ a21$y22 + a”xyzz T+ a4 a6y4 + a12y3z + a25yz3 T+ al94 = 0,
Dsy: attrt + x3y + a3, + a4m2y2

s + a'2zy2? + 0Be2® + oyt + aBy?? + a2t = 0,

+ a4x2yz + a?lz?2? + a253:y3

Ds: ot 4+ a4x3y +a2053, + a9x2y2

tall eyt ley+aTz oty bl TP st ay? 2 4oty +a3 2t = 0,

+ 04193:2yz + alz?2? + 04213:y3

Dy: a9zt + a22x3y + a8z + a20x2y2 + 04213021/2 + ax’2? + any?’

+a20:vy22+a1033y22+a53323+0z23y4+a20y3z+a3y222+a7yz3+a2124 = 0.
Finally, in a similar way we compute the defining equations of the quintics
G1 and G2, which contain all eight points and are singular in @1, Q2, @3,

Q4,Qs5,Qg, and Q1, Q2, @3, Q4, Qs, Q7, respectively. We obtain

Gi: azd + a8x4y + 22tz + a21:173y2 + a203:3yz + a2 + a5m2y3

Fa®a2y?z 4 022022 + o228 4+ aPayt + al2eyBs + 20y2?

+ aBry2? + o?x2t + oy’ + abytz + ByP2? + P + a2 =0,
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Go: otz + atlzty + a'lziz + o 23y? + o923y z + 2322 + ax?y?

+ oz25a:2y22 + a2x2yz2 + at02%23 + a17xy3z + a15xy2z2 + ozgxyz:3
B2t 4 ay® 4 alyts 4 ol lyB22 4 00228 4+ aPyzt 4+ a2® =0,
Now consider the point P = (2 : 0 : 1) in PZ. Tt is an easy check that
P is contained in all twelve curves L1, Lo, C4,...,Cy, D1,..., Dy, G1,Go.
Therefore, the twelve exceptional curves on S that are the strict transforms
of these twelve curves in IP’?F are concurrent in a point Q on S. Let ¥ be
the morphism associated to the linear system | — 2Kg|. Since none of
the twelve exceptional curves intersect each other with multiplicity 3, the

point @ is outside the ramification curve of .

EXAMPLE 4.5.5. Let k be a field of characteristic unequal to 5. For § an
element in k*, let S be the del Pezzo surface of degree one in P(2,3,1,1)
with coordinates x,y, z, w over k given by

y? 4 (B + Dayw + Byw® = 23 + Bruw? — 2Pw.

For char k # 2,3, this surface is isomorphic to the surface in [SvI.14]
Example 4.1]. The blow-up of S in the point (1 : 1: 0 : 0) has the structure
of an elliptic surface over P! with coordinates z,w. The fiber above z = 0
contains a point of order 5, which is given by @ = (0 : 0 : 0 : 1); in
fact, the cubic curve E : y? + (8 + 1)ay + By = 23 + B? is the universal
elliptic curve over the modular curve Y;(5) = Spec (k[5,1/A(E)]) with
A(E) = —B5(32+118—1) that parametrizes elliptic curves over extensions
of k with a point of order 5 [CE11l, Proposition 8.2.8].

Choose [ such that S is smooth in all characteristics; for example, we
can set § = 2 in characteristic 11, and S = 1 in all other characteristics.
Let p,o be elements of a field extension of k such that p?> = p + 1, and
(B+ p°)o® = 1. Consider the curve C,, in P(2,3,1,1) defined by

r=o222wt + pazw57

y=—a2w® + (p+ 1)o? 22w,

Then C, , is an exceptional curve in S, defined over k(p, o). It is easy to
see that @ is contained in C,,. There are ten pairs (p, o), so we conclude
that there are ten exceptional curves through @ over a field extension of k.
Finally, let ¢ be the morphism associated to | —2Kg|. Since the points on
the ramification curve of ¢ are exactly the points on S that are 2-torsion
on their fiber, we conclude that @) is outside the ramification curve.
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5

Exceptional curves and
torsion points

The del Pezzo surface of degree 1 in Example contains a point that
is contained in the intersection of 10 exceptional curves, and whose corre-
sponding point on the elliptic surface associated to the del Pezzo surface
(obtained by blowing up the base point of the anticanonical linear sys-
tem, see Section is torsion on its fiber. This example comes from
[SvL14, Section 4], where we find several examples of a point on a del
Pezzo surface of degree 1 that is contained in the intersection of at least
6 exceptional curves, and, in all cases, corresponds to a point that is tor-
sion on its fiber. Moreover, we do not know any example of a point that
is contained in more than 6 exceptional curves and that corresponds to
a point that is not torsion on its fiber. A natural question is therefore
whether a point on a del Pezzo surface of degree 1 that is contained in
‘many’ exceptional curves always corresponds to a point that is torsion on
its fiber (where ‘many’ of course needs to be specified). In this final and
short chapter we give a positive answer to this question where we take
‘many’ to be 9 (Theorem , using results from Chapter We also
show that if we take ‘many’ to be 6, the answer to this question is negative
in most characteristics, by providing a counterexample that comes from
Chapter [4] (Example [5.1.5). Computations were done in magma [BCP97],
and the code that we used can be found in [Code].
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5.1 Main results

Let S be a del Pezzo surface of degree 1 with canonical divisor Kg, and let
& be the associated elliptic surface obtained by blowing up the basepoint
O of the linear system | — Kg|. For a point P in S\ {O}, we denote by Pg
the corresponding point on £, and by the fiber of Ps we mean the fiber of
the elliptic fibration £ — P! that contains Pe. The main result of this
chapter is the following.

THEOREM 5.1.1. If at least 9 exceptional curves on S are concurrent in
a point P, then Pe is torsion on its fiber.

REMARK 5.1.2. For del Pezzo surfaces of degree 2, the situation is simpler,
and a result similar to our theorem is known [Kuw05l, Proposition 7.1]. A
del Pezzo surface of degree 2 is a double cover of P? ramified along a
smooth quartic curve. On such a surface, a point is contained in at most 4
exceptional curves, and this happens exactly when its projection to P? is in
the intersection of 4 bitangents of the quartic curve. In [Kuw05], Kuwata
gives a construction for an elliptic surface by blowing up twice on the del
Pezzo surface, and he shows that for a point contained in 4 exceptional
curves, the corresponding point on the elliptic surface is torsion on its
fiber. The situation in Theorem [5.1.1] is more complex, since there are a
priori many different sets of 9 or more exceptional curves on a del Pezzo
surface of degree 1 that can be concurrent in a point.

REMARK 5.1.3. Theorem [5.1.1] seems intuitively true by the following
argument, which was pointed out to us by several people. Let P be a point
on S that is contained in at least 9 exceptional curves, say Lq,..., L.
These curves correspond to sections L, ..., L, of the elliptic surface £
associated to S (Remark , which in turn correspond to elements in
the Mordell-Weil group of £ (i.e., the Mordell-Weil group of the generic
fiber, which is an elliptic curve over the function field k(t) of P'). This
Mordell-Weil group has rank at most 8 over k (Remark , so in this
group there must be a relation a1[~/1 +-- -—I—anjin =0, where ay,...,a, € Z
are not all zero. Since all n exceptional curves contain the point P, this
specializes to (a1 + - - + a,)Pg = 0 on the fiber of P on £. If one reasons
too quickly, it seems that this proves that Pg is torsion of order dividing
a1+ - -+ay, on its fiber. However, it might be the case that a1+ - -+a, = 0,
so this does not prove Theorem[5.1.1] The key part in our proof is therefore
that we show, using results from Chapter|3] that there is always a relation
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between L1, ..., L, in the Mordell-Weil group of £ that specializes to a
non-trivial relation on the fiber of Pg; see Lemma [5.2.2]

REMARK 5.1.4. Recall that S can be embedded in the weighted projective
space P(2,3,1,1) as the set of solutions to the equation

v+ arzy + asy — 3 — asx? — agxr — ag = 0, (5.1)
where a; € k[z,w] is homogeneous of degree i for each 7 in {1,...,6}.
The linear system | — 2K | of the bi-anticanonical divisor of S induces a

morphism ¢, which is the composition of the projection to P(2,1,1) and
the 2-uple embedding in P3; this morphism realizes S as a double cover of
a cone in P? ramified over a sextic curve (see also Section . It follows
that points on S that are on the ramification curve of ¢ correspond to
points on £ that are 2-torsion on their fiber.

The following example shows that if S is defined over a field of character-
istic 0, for a point P on S that is contained in 6 exceptional curves, the
point Pg is not guaranteed to be torsion on its fiber.

EXAMPLE 5.1.5. Let k be a field of characteristic 0, and consider the eight
points in ]P’z given by

Pr=(1:0:1); P, = (889 :0:823);
P3; = (2600 : 101 : 2551); Py = (325:12:287);
Ps=(0:1:1); Ps:=(0:—-1:1)

P; = (4005 : 2464 : 3499); Py =(195:22: —113).

We check that these points are in general position, by verifying that the
determinants of the matrices in Lemma [3.3.12] that determine whether
three of the points are on a line, or six of the points are on a conic, or
seven of them are on a cubic that is singular at one of them, are non-
zero. Let X be the blow-up of P? in these points, which is a del Pezzo
surface of degree 1. Let Ly be the line through P, and P», which is given
by y = 0, and let Ls be the line through P; and P,, which is given by
5ly = x + z. Finally, let C7 be the conic through Pi, Ps, P5, Ps, P7, let
Cs be the conic through Py, Py, Ps, Ps, Pg, let Cs be the conic through
Py, Ps, P5, P7, Pg, and Cy the conic through P», Py, Ps, P;, and Ps. Note
that Ly, Lo, C1, ..., Cy are 6 of the 10 curves in Proposition[4.4.6} using the
proof of this proposition, we chose Pi, ..., Ps such that these 6 curves are
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concurrent in a point. The conics C1,...,Cy are defined by the following
equations.

Cy: 2 +y? — 2% = zy;

Co: 2 419 — 22 = 6ay;
Cs: 82322 — 1884xy — 6622 — 3739y + 4628y 2 — 88922;
Cy: 82322 — 4038y — 6622 + 3139y + 22502 — 88922

Indeed, the curves Li, Ly, C1,...,Cy4 all contain the point (=1 : 0 : 1),
so the strict transforms of these six curves, which are exceptional curves
on X, are concurrent in a point P on X. Let C be the pencil of cubics
through P, ..., Ps. This has a unique base point, which is

B = (3453493845425 : —16508630016087 : 20919196389638).

The fiber of P¢ on the elliptic surface £ is given by the element of C that
contains P, and it is an elliptic curve with base point B. With magma it
is quick to check that the point Pe¢ is non-torsion on its fiber; see [Codel
for the code that we used.

REMARK 5.1.6. The previous example also holds if the characteristic of k
is p for all but a finite number of primes p. In fact, the only characteristics
for which this does not hold are the ones for which P,..., Py are not
in general position, which form a set of 42 primes. Using the proof of
Proposition it is not hard to generate similar examples that hold in
some of those 42 characteristics; for example, the eight points in P? given
by

Qi=(1:0:1); Qs=(0:1:1);

Q2 = (—236857: 0:402962); Q= (0:—1:1);

Q3 = (666 : 5: —301); Q7 = (—2337353334 : 1829935 : 2432407789);
Q4= (222:5:143); Qs = (—101872359 : 3659870 : 141722269);

are in general position in all but 55 characteristics, and this gives, to-
gether with Example [5.1.5] an example of six exceptional curves that are
concurrent in a point P such that Pg is not torsion on its fiber for each
characteristic except for 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 71, 101,
and 113.

From Theorem and Example it is clear that there are still open
questions: if a point P on S is contained in 7 exceptional curves, is the
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point Pg then torsion on its fiber? And what about points contained in 8
exceptional curves? We have not yet found a proof nor a counterexample
to these questions.

5.2 Proof of the main theorem

In this section we prove Theorem [5.1.1] We first describe a pairing on
the Mordell-Weil group of £, and use this pairing to state and prove two
lemmas.

Let Ly, ..., L, be at least 9 exceptional curves on S that are concurrent in
a point P that lies outside the ramification curve of . Let Ly, ..., L, be
the corresponding sections on €. Let (-, -);, be the symmetric and bilinear
pairing on the Mordell-Weil group of £ as defined in [Shi90, Theorem 8.4];
that is, for C1,Co in E(k(t)), we have (C1,C2)r = —(pr(C1) - ©n(C2)),
where ¢ : E(k(t)) — Pic £ is the map given in [Shi90, Lemmas 8.1
and 8.2], and - is the intersection pairing in the Picard group of £. We
call (-, ), the height pairing on E(k(t)).

LEMMA 5.2.1. For two exceptional curves in Pic S, the height pairing of
the corresponding sections in the Mordell-Weil group of £ is the same as
the dot product of the roots in the root system Eg associated to these
exceptional curves under the bijection in Remark[1.4.9

Proof. Let C1,C5 be two sections of £ that are strict transforms of ex-
ceptional curves c1,co in S. Since € has no reducible fibers, by [Shi90),
Lemma 8.1] we have

on(C1) - n(C2) = ([C1] = [O] = F) - ([C2] - [O] — F),

where [C1], [C2], [O] are the classes of C}, Cq, and the zero section, respec-
tively, and F' is the class of a fiber. This gives

or(C1) - on(Ca) = [C1] - [C2] — 1,

where we use that the zero section is an exceptional curve, and it is disjoint
from C7 and Cy. We conclude that we have (C1,C), = 1 — [C1] - [Ca].
Since C1, Cy are disjoint from O, the intersection pairing of C; and Cs in
Pic £ is the same as the intersection pairing of ¢; and ¢y in Pic S. The
statement now follows from the bijection in Remark O
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Let M be the height pairing matrix of Ly, ..., L,, that is, M is the n x n
matrix with Mij = <Lu Lj>h for 1,] € {1, e TL}

LEMMA 5.2.2. The kernel of the matrix M contains a vector (ai,...,an)
in Z"™ with a1 + -+ a, # 0.

Proof. Recall the complete weighted graphs G and I' as defined in Defini-
tion[[.4.12] Since P lies outside the ramification curve of ¢, the exceptional
curves L1, ..., L, correspond to a clique of size n in G that is contained in
a maximal clique in G with only edges of weights 1 and 2 (Remark ,
which corresponds to a maximal clique C'in I'(_; ¢y by the bijection given
in Remark [T.4.13] Since n > 9, the clique C has size at least 9. The
table in Appendix [A] contains all isomorphism types of maximal cliques in
I'¢_1,0y of size at least 9 (Proposition; there are 11 maximal cliques
of size 9, which we call ay,...,a;; in the order that they appear in the
table, there are 6 maximal cliques of size 10, which we call 5, ..., 8¢ in
the order that they appear in the table, and there is 1 maximal clique
of size 12, which we call . For each of these 18 cliques, whose elements
correspond to roots in Eg, we compute its Gram matrix, which is the ma-
trix where the entry (i,7) is the dot product of the roots corresponding
to the i-th and j-th vertex in the clique after choosing an ordering on
the vertices. With magma we find the generators for the kernels of these
matrices (see [Code]). The results are in Table Let r be the number
of vertices of C'; and let N be the Gram matrix of C; then the kernel of N
is equal to one of the 18 kernels in the table, after rearranging the order of
the vertices in C if necessary. Since n > 9, we see from Table that for
any subset of n vertices in C, there is a vector (ay,...,a,) in the kernel of
N which is 0 outside the entries corresponding to the n vertices, and such
that a; + -+ + a, # 0. By Lemma this gives a vector in the kernel
of M as claimed. O

PRrROOF OF THEOREM [5.1.1] Let P be a point on S. If P is contained
in the ramification curve of the morphism induced by the linear system
of the bi-anticanonical divisor, then Pg is torsion (Remark , and we
are done. Now assume that P is not contained in this ramification curve,
and that there is a set of at least 9 exceptional curves that are concurrent
in P. Let Ky,..., K, be the corresponding sections of £, and let N be
the height pairing matrix of these sections. Let (ai,...,a,) € Z" be a
vector in the kernel of N such that a; + --- + a, # 0, which exists by
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Clique Basis for the kernel
a1 {(1,1,0,0,0,0,1,0,1),(0,0,1,1,1,1,0,2,0)}
Q9 {(1,0,1,0,0,1,0,0,1),(0,0,0,1,1,0,1,0,0)}
Qs {(1,1,1,0,0,1,0,0,1),(0,0,0,1,1,0,1,1,0) }
Qy {(1,1,0,1,0,0,1,0,1),(0,0,1,0,0,1,0,1,0) }
Qs {(2,1,1,0,2,0,0,1,1),(0,0,0,1,0,1,1,0,0) }
6 {(1,1,1,1,1,1,1,1,1)}
a7 {(1,1,1,0,1,1,1,1,1)}
asg {(0,1,1,2,2,2,1,1,0)}
Qg {(2,1,1,1,1,2,2,2,2))}
10 {(2,2,0,3,1,4,2,3,1)}
a11 {(6,3,1,4,4,2,2,5,3)}
51 {(1,0,1,0,0,2,1,0,0,1),(0,1,0,1,2,0,0,1,1,0) }
B {(1,1,0,0,0,0,0,0,1,1),(0,0,0,0,1,1,1,1,0,0) }
B3 {(1,1,0,1,0,0,0,1,0,1),(0,0,1,0,1,1,1,0,1,0) }
B4 {(1,1,0,1,0,1,0,0,1,1),(0,0,0,0,1,0,1,1,0,0) }
Bs {(1,1,0,0,0,0,0,0,1,1),(0,0,1,1,1,1,2,2,0,0) }
Be {(2,1,3,0,2,0,2,0,1,1),(0,0,0,1,0,1,0,1,0,0) }
~ {(1,1,0,0,0,0,0,0,0,0,0,1),(0,0,1,0,0,1,0,0,0,0, 1,0),

)
(0,0,0,1,0,0,0,1,1,0,0,0),(0,0,0,0,1,0,1,0,0,1,0,0)}

Table 5.1: Bases

Lemma Then we have for all ¢ € {1,...,n} we have that

ar (K, Ki)p + -+ an (K, Kp)p = 0,

and since the height pairing is bilinear this implies

(Kiya1K1 4+ asKo + -+ -+ anKy)p =0 for alli € {1,...,n}, (5.2)

which implies

<a1K1 +aoKo+ -+ anK,,a1 K1 +asKs+ -+ anKn>h =0.

From the latter we conclude that a1 Ky + ao Ko + - - - + a, K, is torsion in
the Mordell-Weil group of £ [Shi90, Theorem 8.4], and since the torsion
subgroup is trivial [Shi90, Theorem 10.4], we conclude that

a K1+ a2 Ko+ -+ a, K, =0.
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5. EXCEPTIONAL CURVES AND TORSION POINTS

Since for all 7 in {1,...,n}, the section K; contains the point Pg¢, we have,
on the fiber of Pg, the equality (a;+- - -+a,)Ps = 0. Since a1 +- - -+a, # 0,
this implies that Pg is torsion on its fiber. O
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Appendix A

Orbits of maximal cliques

The following pages contain a table summarizing part of the results of
Section 3.5l We recall the Notation B.5.3

NOTATION.

Graph: a graph T'. where ¢ is a set of colors in {—2,—1,0, 1}.

K: a clique in T'.; we denote vertices by their index as written below.
|K|: the size of K.

|Wik|: the size of the stabilizer of clique K in the group W.

| Aut(K)|: the size of the automorphism group of K as a colored graph.
#0O: the number of orbits of the set of all maximal cliques of size |K| in

T'. under the action of W.

Roots of the form <j:%, .. .,:l:%) are ordered lexicographically and de-
noted by numbers 1 — 128; for example, (—%, ceey —%) is number 1, and

(%,...,%) number 128. Permutations of (£1,%1,0,0,0,0,0,0) are or-
dered lexicographically and denoted by the numbers 129 — 240; for exam-
ple, (—-1,-1,0,0,0,0,0,0) is number 129, and (1,1,0,0,0,0,0,0) is num-

ber 240.
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Appendix B

Maximal cliques of size 29
in F{O,l}

The following pages contain a table summarizing the results in Proposi-

tion 3.5.36 We recall Notation [3.5.38]

NOTATION.

K': a clique in I'g 1y; we denote vertices by their index as written below.
|Wik|: the size of the stabilizer of clique K in the group W.

#K5(1): the number of cliques of size 5 with only edges of color 0 in K.

#K{(1): the number of cliques in K of four roots that sum up to a double
root in A, with only edges of color 1.

#K5(1): the number of cliques in K of four roots that do not sum up to
a double root in A, with only edges of color 1.

Roots of the form (:I:%, . .,:I:%) are ordered lexicographically and de-

noted by numbers 1 — 128; for example, (—%, ce —%) is number 1, and

(%,...,%) number 128. Permutations of (£1,%1,0,0,0,0,0,0) are or-
dered lexicographically and denoted by the numbers 129 — 240; for exam-
ple, (—1,-1,0,0,0,0,0,0) is number 129, and (1,1,0,0,0,0,0,0) is num-

ber 240.
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Summary

This thesis contains results on the arithmetic and geometry of del Pezzo
surfaces of degree 1. These are exactly the smooth surfaces in the weighted
projective space P(2,3,1,1) with coordinates z,y, z,w given by an equa-
tion of the form

v? + a1(z,w)zy + az(z,w)y = 2° + az(z,w)2? + a4(z, w)x + ag(z, w),

where a; € k[z,w] is homogeneous of degree i. Such a surface contains 240
curves with negative self-intersection, called exceptional curves.

In Chapter 1 we give the necessary background, assuming the reader is
familiar with algebraic geometry. Two main points that we cover are the
elliptic surface that is constructed from a del Pezzo surface of degree 1 by
blowing up the base point of the anticanonical linear system, and the con-
nection between the exceptional curves on a del Pezzo surface of degree 1
and the Eg root system.

In Chapter 2, which is joint work with Julie Desjardins, we prove that
for a del Pezzo surface S over a number field k, of the form

y? =23 4+ A8 + Bu®

with A, B € k non-zero, the set S(k) of k-rational points on S is dense
with respect to the Zariski topology if and only if S contains a point with
non-zero z,w coordinates such that the corresponding point on the elliptic
surface constructed from S lies on a smooth fiber and is non-torsion on
that fiber. We do this by constructing an infinite family of multisections,
and showing that at least one of them has infinitely many k-rational points.
This is the first result that gives necessary and sufficient conditions for the
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set of k-rational points of this family to be Zariski-dense, where k is any
number field.

In Chapter 3, which is an adaptation of the preprint [vLWal, we study
the action of the Weyl group Wy on the Eg root system. The 240 roots in
Eg are in one-to-one correspondence with the 240 exceptional curves on
a del Pezzo surface of degree 1, and we use results from this chapter in
Chapters 4 and 5. However, this chapter is also interesting for the reader
that wants to know about the Eg root system without any interest in
del Pezzo surfaces of degree 1. We define the complete weighted graph I’
where each vertex represents a root, and two vertices are connected by
an edge of weight w if the corresponding roots have dot product w. The
group of symmetries of I' is the Weyl group Wg. We prove that for a large
class of subgraphs of I', any two subgraphs from this class are isomorphic
if and only if there is a symmetry of I' that maps one to the other. We
also give invariants that determine the isomorphism type of a subgraph.
Moreover, we show that for two isomorphic subgraphs G, G2 from this
class that do not contain one of 7 specific subgraphs, any isomorphism
between G and G2 extends to a symmetry of the whole graph I'. These
results reduce computations on the graph I' significantly.

In Chapter 4, which is an adaptation of the preprint [vLWD|, we study
the configurations of the 240 exceptional curves on a del Pezzo surface of
degree 1, using results from Chapter 3. We prove that a point on a del
Pezzo surface of degree 1 is contained in at most 16 exceptional curves in
characteristic 2, at most 12 exceptional curves in characteristic 3, and at
most 10 exceptional curves in all other characteristics. We give examples
that show that the upper bounds are sharp in all characteristics, except
possibly in characteristic 5.

Finally, in Chapter 5 we show that if at least 9 exceptional curves in-
tersect in a point on a del Pezzo surface S of degree 1, the corresponding
point on the elliptic surface constructed from S is torsion on its fiber.
This is less trivial than some experts thought. We use a list of all possible
configurations of at least 9 pairwise intersecting exceptional curves com-
puted in Chapter 3, and with an example from Chapter 4 we show that
the analogue statement is false for 6 or fewer exceptional curves.



Samenvatting

Dit proefschrift bevat resultaten over de meetkunde en arithmetiek van del
Pezzo oppervlakken van graad 1. Dit zijn de gladde oppervlakken in de
gewogen projectieve ruimte P(2,3,1, 1) met codrdinaten z,y, z, w gegeven
door een vergelijking van de vorm

v? + a1(z,w)zy + az(z,w)y = 2° + as(z, w)2? + a4(z, w)x + ag(z, w),

waar a; € k[z,w] homogeen van graad ¢ is. Zo'n oppervlak bevat 240
krommen met negatieve zelfdoorsnijding, zogenaamde exceptionele krom-
men.

In Hoofdstuk 1 staat de voorkennis die nodig is voor de rest van het
proefschrift. We nemen aan dat de lezer bekend is met algebraische
meetkunde. Twee belangrijke onderwerpen die we hier behandelen zijn het
elliptisch oppervlak dat ontstaat door het basispunt van het antikanonieke
lineaire systeem op een del Pezzo oppervlak van graad 1 op te blazen, en
de relatie tussen the exceptionele krommen op een del Pezzo oppervlak
van graad 1 en het wortelsysteem Eg.

Hoofdstuk 2 komt voort uit een samenwerking met Julie Desjardins. We
bewijzen in dit hoofdstuk dat voor een del Pezzo oppervlak S van graad 1
over een getallenlichaam k, van de vorm

y? =23 + A28 + Bu©

met A, B € k ongelijk aan nul, de verzameling S(k) van k-rationale punten
op S dicht ligt in de Zariksi topologie dan en slechts dan als S een punt met
z,w codrdinaten ongelijk aan nul bevat, zodanig dat het corresponderende
punt op het elliptisch oppervlak dat uit S wordt geconstrueerd op een
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gladde vezel ligt en daar niet torsie is. We doen dit door een oneindige
familie van multisecties te construeren, en te laten zien dat ten minste
één van deze multisecties oneindig veel k-rationale punten bevat. Dit is
het eerste resultaat dat zowel noodzakelijke als voldoende voorwaarden
geeft voor het dicht liggen van de verzameling k-rationale punten op deze
familie oppervlakken, waarbij k& een willekeurig getallenlichaam is.

Hoofdstuk 3 is een aangepaste versie van het artikel [vLWal]. In dit
hoofdstuk bestuderen we de werking van de Weyl groep Wg op het wor-
telsysteem Eg. De 240 wortels in Eg hebben een één-op-één relatie met de
240 exceptionele krommen op een del Pezzo oppervlak van graad 1, en we
gebruiken resultaten uit dit hoofdstuk in Hoofdstukken 4 en 5. Toch is dit
hoofdstuk ook apart te lezen, en interessant voor de lezer zonder interesse
in del Pezzo oppervlakken maar met een interesse in Eg. We definiéren
de gewogen graaf I', waarin elk knooppunt een wortel vertegenwoordigt,
en twee knooppunten verbonden zijn door een tak van gewicht w dan en
slechts dan als de twee bijbehorende wortels inproduct w hebben. De
groep van symmetrieén van I' is de Weyl groep Ws. We bewijzen dat voor
een grote klasse van deelgrafen van I', twee deelgrafen isomorf zijn dan en
slechts dan als er een symmetrie van I' is die de ene deelgraaf op de an-
dere afbeeldt. We geven ook invarianten die het isomorfismetype van een
deelgraaf vastleggen. Daarnaast laten we zien dat voor twee isomorfe deel-
grafen G1 en Gy uit deze klasse die niet een van 7 specifieke deelgrafen
bevatten, elk isomorfisme tussen G; en Ga uitbreidt tot een symmetrie
van I'. Deze resultaten kunnen gebruikt worden om berekeningen in de
graaf I' drastisch te reduceren.

Hoofdstuk 4 is een aangepaste versie van het artikel [vLWDb]. In dit
hoofdstuk bestuderen we de configuraties van de 240 exceptionele krom-
men op een del Pezzo oppervlak van graad 1, waarbij we resultaten uit
Hoofdstuk 3 gebruiken. We bewijzen dat een punt op een del Pezzo op-
pervlak van graad 1 bevat is in ten hoogste 16 exceptionele krommen
in karakteristiek 2, in ten hoogste 12 exceptionele krommen in karakter-
istiek 3, en in ten hoogste 10 exceptionele krommen in alle andere karak-
teristieken. We geven bovendien voorbeelden waarmee we laten zien dat
deze bovengrenzen worden behaald in alle karakteristieken behalve miss-
chien in karakteristiek 5.

Tot slot bewijzen we in Hoofdstuk 5 dat als ten minste 9 exceptionele
krommen allemaal in een punt op een del Pezzo oppervlak S van graad 1
snijden, dat het corresponderende punt op het elliptisch oppervlak gecon-
strueerd uit S torsie op zijn vezel is. Dit blijkt niet zo triviaal te zijn
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als sommige experts dachten. We gebruiken een lijst die in Hoofdstuk 3
is gemaakt van alle mogelijke configuraties van ten minste 9 exceptionele
krommen die elkaar paarsgewijs snijden, en met een voorbeeld uit Hoofd-
stuk 4 laten we zien dat de equivalente stelling niet waar is voor 6 of
minder exceptionele krommen.
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