

### Division points in arithmetic

Javan Peykar, A.

#### Citation

Javan Peykar, A. (2021, January 5). *Division points in arithmetic*. Retrieved from https://hdl.handle.net/1887/138941

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: <a href="https://hdl.handle.net/1887/138941">https://hdl.handle.net/1887/138941</a>

Note: To cite this publication please use the final published version (if applicable).

#### Cover Page



# Universiteit Leiden



The handle  $\underline{\text{http://hdl.handle.net/1887/138941}}$  holds various files of this Leiden University dissertation.

Author: Javan Peykar, A.

Title: Division points in arithmetic

Issue Date: 2021-01-05

## Stellingen

# behorende bij het proefschrift Division points in arithmetic van Abtien Javan Peykar

- 1. Let K be a number field, let W be a finitely generated subgroup of K\*, and let V ⊂ W be a subgroup such that W/V is finite. Let Ω be the set of maximal ideals of O<sub>K</sub>, and let A(W, V) be the set of p ∈ Ω for which the reduction map from W to the multiplicative group of the residue class field at p is well-defined with a kernel that is contained in V. Then the set A(W, V) has a natural density in Ω, and moreover, this density is a rational number.
- 2. Let K be a number field with algebraic closure  $\overline{K}$ , and let W be a finitely generated subgroup of  $K^*$ . Let  $W^{1/\infty}=\{x\in \overline{K}^*: \text{there exists } m\in \mathbf{Z}_{\geq 1} \text{ such that } x^m\in W\}$ . Then  $\mathrm{Gal}(K(W^{1/\infty})/K)$  embeds as an open subgroup in the profinite group of group automorphisms of  $W^{1/\infty}$  that are the identity on W.
- 3. Let K be a number field with algebraic closure  $\overline{K}$ . Let E be an elliptic curve over K with  $\mathcal{O} = \operatorname{End}_K(E) \neq \mathbf{Z}$  a Dedekind domain. Let  $W \subset E(K)$  be an  $\mathcal{O}$ -submodule, and let  $W : \infty = \{P \in E(\overline{K}) : \text{there exists } a \in \mathcal{O} \setminus \{0\} \text{ such that } a \cdot P \in W\}$ . Then  $\operatorname{Gal}(K(W : \infty)/K)$  embeds as an open subgroup in the profinite group of  $\mathcal{O}$ -module automorphisms of  $W : \infty$  that are the identity on W.
- 4. Let K be a field of characteristic 0, let E be an elliptic curve over K with  $\mathcal{O} = \operatorname{End}_K(E) \neq \mathbb{Z}$  a Dedekind domain, let  $W \subset E(K)$  be an  $\mathcal{O}$ -submodule, and let  $\mathfrak{a}$  be a nonzero ideal of  $\mathcal{O}$ . Let  $\overline{K}$  be an algebraic closure of K, and let  $W : \mathfrak{a} = \{P \in E(\overline{K}) : \mathfrak{a} \cdot P \subset W\}$ . Then  $K(W : \mathfrak{a})$  is abelian over K if and only if

- $\operatorname{Ann}_{\mathcal{O}}(E(K)[\mathfrak{a}]) \cdot W \subset \mathfrak{a} \cdot E(K)$ . This assertion is analogous to a theorem of Schinzel about the multiplicative group (see Theorem 1.1).
- 5. For every order A in a number field K and every prime number  $l > \max\{2, [K: \mathbf{Q}]^2\}$  there is a prime number  $p \leq \max\{2, 4(\log[K: \mathbf{Q}])^2\}$  and a prime ideal  $\mathfrak{p} \subset A$  containing p such that the endomorphism  $A_{\mathfrak{p}}^* \longrightarrow A_{\mathfrak{p}}^*$  given by exponentiation with l is an automorphism of profinite groups, where  $A_{\mathfrak{p}}$  denotes the completion of A at  $\mathfrak{p}$ .
- 6. Let G be a profinite group, let M be a profinite G-module, let  $n \in \mathbf{Z}_{\geq 0}$ , and let  $\mathrm{H}^n(G,M)$  be the nth continuous cochain cohomology group. Let, by functoriality, the  $\widehat{\mathbf{Z}}$ -module structure on M induce a  $\widehat{\mathbf{Z}}$ -module structure on  $\mathrm{H}^n(G,M)$ . Then the annihilator of  $\mathrm{H}^n(G,M)$  in  $\widehat{\mathbf{Z}}$  is a closed ideal of  $\widehat{\mathbf{Z}}$ .
- 7. Let K be a field of characteristic 0, let  $\mu$  be the group of roots of unity in K, and let G be the Galois group of the maximal cyclotomic extension of K over K. Let M be a profinite abelian group on which G acts through its natural embedding in  $\widehat{\mathbf{Z}}^*$ . Then for all  $n \in \mathbf{Z}_{\geq 0}$  the  $\widehat{\mathbf{Z}}$ -module  $\mathrm{H}^n(G,M)$  from the previous *Stelling* is annihilated by the annihilator of  $\mu$  in  $\widehat{\mathbf{Z}}$ .
- 8. Let G be a locally compact topological group, and let M be a topological abelian group. Let  $\mathrm{C}(G,M)$  be the group of continuous functions from G to M, endowed with the compact-open topology. Define a G-module structure on  $\mathrm{C}(G,M)$  by putting  $g\varphi(h)=\varphi(hg)$  for  $g,h\in G$  and  $\varphi\in\mathrm{C}(G,M)$ . Then  $\mathrm{C}(G,M)$  is a topological G-module, and for all  $n\in\mathbf{Z}_{\geq 1}$  the nth continuous cochain cohomology group  $\mathrm{H}^n(G,\mathrm{C}(G,M))$  vanishes.