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CHAPTER 3

Reductions of the Mordell-Weil group

over number fields

1. Introduction

In this chapter we carry out for elliptic curves with complex multiplication the analogue of

Chapter 2 for the multiplicative group. In the previous chapter, say in the multiplicative

case, all modules involved are over Z, whereas in this chapter, say in the elliptic case, the

modules are over the endomorphism ring of an elliptic curve with complex multiplication.

Moving from the principal ideal domain Z to an order in a quadratic number field, which is

not necessarily a principal ideal domain, is where the complications are met in this chapter.

For simplicity, we do assume that the order is maximal, in the sense that it is a Dedekind

domain, but we remark that with some minor alterations the theorems in this chapter remain

valid without the maximality restriction.

For our first theorem, recall Theorem 1.1 from Chapter 1, also known as Schinzel’s

theorem. We state and prove an analogue of this theorem for elliptic curves with complex
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CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

multiplication.

For a field K of characteristic 0, an algebraic closure K of K, an elliptic curve E over

K with endomorphism ring O = EndK(E), and an ideal a of O we write

E(K)[a] = {P ∈ E(K) : a · P = 0}

for the O-module of a-torsion points of E over K, and we write

E[a] = {P ∈ E(K) : a · P = 0}

for the O-module of all a-torsion points. Then for elliptic curves the analogue of the nth

radicals of an algebraic number is obtained by dividing points of the elliptic curve by an ideal

a of O. More precisely, for an O-submodule W of E(K) and a nonzero ideal a of O we

write

W : a = {P ∈ E(K) : a · P ⊂ W}

for the O-module of a-division points of W . Field extensions of K obtained by adjoining

division points are called division fields over K.

Moreover, for a module M over a ring R we write

AnnR(M) = {r ∈ R : rM = 0}

for the two-sided annihilator ideal of M . Then the analogue of Schinzel’s theorem, men-

tioned above, is as follows.

Theorem 11. Let K be a field of characteristic 0, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let W ⊂ E(K) be an O-submodule, and let a be a

nonzero ideal of O. Then K(W : a) is abelian over K if and only if

AnnO(E(K)[a]) ·W ⊂ a · E(K).
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3.1. INTRODUCTION

See Section 3.4 for the proof of this theorem.

Our second main theorem is an analogue of Theorem 2.17(a) for elliptic curves with

complex multiplication. Let K be a number field, and let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain. Let

Ô = lim←−
b

O/b,

where b runs over all nonzero ideals of O, be the profinite completion of O as a ring. A

Steinitz ideal a of O is a closed ideal of Ô. See Definition 3.5 for more details.

Let W be an O-submodule of E(K), and let a be a Steinitz ideal. Then we define

E(K)[a] =
⋃
b

E(K)[b],

E[a] =
⋃
b

E[b],

W : a =
⋃
b

W : b,

where b runs over all nonzero ideals of O dividing a.

Now, the field K(W : a) is Galois over K, and any field automorphism of K(W : a)

over K is determined by its action on W : a. Moreover, the action of O on W : a commutes

with the action of Galois. Hence, we may identify Gal(K(W : a)/K) with a subgroup of the

group of O-automorphisms AutO,W (W : a) of W : a that are the identity on W . Note that

AutO,W (W : a) is the profinite group

lim←−
b

AutO,W (W : b),

where b runs over all nonzero ideals of O dividing a. As Gal(K(W : a)/K) is compact and

AutO,W (W : a) is Hausdorff, the subgroup Gal(K(W : a)/K) of AutO,W (W : a) is closed.
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CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

Theorem 12. Let K be a number field, and let E be an elliptic curve over K with O =

EndK(E) 6= Z a Dedekind domain. Let W ⊂ E(K) be an O-submodule, and let a be a

Steinitz ideal of O. Then the map

ι : Gal(K(W : a)/K) −→ AutO,W (W : a)

is open.

See Section 3.7 for the proof.

We prove this theorem in two steps. As in the case of the multiplicative group, we have

a commutative diagram

0 // Gal(K(W : a)/K(E[a])) //

��

Gal(K(W : a)/K) //

ι

��

Gal(K(E[a])/K) //

��

0

0 // AutO,W+E[a](W : a) // AutO,W (W : a) // AutO,W [a](E[a]) // 0.

In Section 3.5 we prove that the right vertical map is open, and do so effectively. The latter

means that we give an explicit nonzero ideal b of O dividing a such that

AutO,E[b](E[a]) ⊂ Gal(K(E[a])/K).

In Section 3.6 we prove that the left vertical map is open. By combining these two results,

we prove that the middle vertical map is open, as desired.

As an application of the above theorems, we state and prove an analogue of Theorem 6

of Chapter 2, see Theorem 13 below.

Let W be an O-submodule of E(K), let V be an O-submodule of W such that

W/V ∼= O/I

as O-modules, for some nonzero ideal I of O.
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3.1. INTRODUCTION

Throughout this chapter, we use the phrase almost all as a substitute for all but finitely

many. Let ΩK be the set of maximal ideals of OK . Choosing a model of E over a finitely

generated subring of K, we may talk about the reduction of E modulo p for almost all max-

imal ideals p of OK , and denote it by Ep. For the definition of good, bad, ordinary, and

supersingular reduction we refer to [Sil94].

As all elements of O are defined over K, the action of O on the tangent space at the

origin induces an injective ring morphism O −→ K, which extends to an injective map

F −→ K (see [Sil94, Chapter 2]). Throughout this chapter, we identify O and F with their

images in K, so that we have O ⊂ OK and F ⊂ K.

Let S be the subset of ΩK consisting of the primes where Ep is not defined, the primes

of bad reduction for E, the primes of supersingular reduction for E (see [Sil94]), and the

primes dividing I · OK . By [Lan87, Theorem 12, §13.4] the set of supersingular primes has

density zero. As there are only finitely many primes for which Ep is not defined, finitely

many primes of bad reduction for E, and finitely many primes dividing I · OK , the set S has

density zero too.

Now, for every p ∈ ΩK \ S we have a reduction map

πp : W −→ Ep(κ(p))

of O-modules, where κ(p) is the residue field of OK at p. We define

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V },

for which we often simply write A.

Then we prove the following theorem about the density d(A(W,V )).

Theorem 13. Suppose that I is not divisible by any prime number that splits completely in

O. Then the following statements hold.
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CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

(a) The set A(W,V ) has a natural density d(A(W,V )) in ΩK .

(b) The density d(A(W,V )) is rational.

(c) The density d(A(W,V )) is positive.

(d) We have d(A(W,V )) = 1 if and only if V = W or W is finite.

The proof of this theorem has a similar structure to that of Theorem 6 in Section 2.1. Note

that computability of d(A(W,V )) is missing in this theorem. There is little doubt that de-

tailed scrutiny of our proofs will lead to a proof that d(A(W,V )) is indeed computable, and

that likewise the assumption on the ideal I can be omitted at the cost of some additional

complications. We leave these issues to the diligence of the interested reader.

The present chapter is organised as follows.

In Section 3.2 we define division in modules over a commutative ring. In Section 3.3

we apply this theory to elliptic curves, and define Steinitz ideals and treat their properties.

Section 3.4 contains the proof of Theorem 11 above. In Section 3.5 we prove the openness

of the right vertical map in the commutative diagram above, and in Section 3.6 we prove that

the left vertical map is open. Section 3.7 contains the proof of Theorem 12. In Section 3.8

we prove part (a) of Theorem 13, and in Section 3.9 we prove part (b) of the same theorem.

The last Section 3.10 consists of the proofs of the last two parts (c) and (d) of Theorem 13.

2. Division in modules

Let O be a commutative ring, and let M be an O-module. Let W be an O-submodule of M ,

and let a ⊂ O be an ideal. Then we define the module of a-division points of W in M as

W :M a = {x ∈M : a · x ⊂ W}.
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3.2. DIVISION IN MODULES

If a = (a) is principal, we simply write W :M a. Moreover, if W = O · x, we simply write

W :M a = x :M a. When the module M is understood, we leave it out of the notation.

We define the module of a-torsion points M [a] as 0: a. Note that M [a] ⊂ W : a and

(W : a)/W = (M/W )[a].

Lemma 3.1. Suppose that a is finitely generated, and let S be a multiplicatively closed subset

of O. Then S−1(W :M a) = S−1W :S−1M S−1a.

Proof. Suppose a is generated by a1, . . . , an ∈ O, where n ∈ Z≥1. Then W : a is the kernel

of the morphism

f : M −→
n⊕
i=1

M/W

of O-modules defined by x 7→ (a1 · x + W, . . . , an · x + W ). By exactness of S−1(−), we

then have that S−1(W : a) is the kernel of

S−1(f) : S−1M −→
n⊕
i=1

S−1M/S−1W.

Observe that the kernel of S−1(f) is exactly equal to S−1W :S−1M S−1a, which proves the

lemma.

Proposition 3.2. Let W and V be O-submodules of M , and let a and b be ideals of O that

are coprime. Then W : ab = W : a +W : b.

Proof. First, observe that the right to left inclusion is straightforward. To prove the other

inclusion, let x ∈ W : ab. As a and b are coprime, there exist a ∈ a and b ∈ b such that

a + b = 1. Note that b · ax ⊂ W and a · bx ⊂ W , so that ax ∈ W : b and bx ∈ W : a. It

follows that x = (a+ b)x = ax+ bx ∈ W : a +W : b.

We say an ideal a of O is invertible if it is projective of rank 1. Moreover, throughout the

rest of this section, and only in this section, we denote the localisation of an O-module N at

a prime ideal p of O by Np.
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Proposition 3.3. Let W be an O-submodule of M , and let a ⊂ O be an invertible ideal.

(a) Then aW : a = W +M [a].

(b) Suppose that aM = M . Then W = a(W : a).

Proof. First, observe that the right to left inclusions of (a) and (b) are straightforward. To

prove the left to right inclusions of (a) and (b), we first prove them in the case that a is

principal. To this end, suppose that a = (a), and let x ∈ aW : a. Then ax = aw for some

w ∈ W , so that x− w ∈ M [a]. It follows that x ∈ W + M [a]. This proves (a) for principal

ideals a.

Let x ∈ W . As aM = M , there is y ∈ M such that ay = x, and hence y ∈ W : a. It

follows that x ∈ a(W : a), which proves (b) for principal ideals a.

Now, suppose a is any invertible ideal. As a is projective of rank 1, it is finitely gener-

ated and its localisation at every prime p ofO is principal inOp. Let p be a prime ofO. Then

(aW )p = apWp. By Lemma 3.1 we have

(a ·W : a)p = apWp :Mp ap.

On the other hand, by exactness of localisation we have

(W +M [a])p = Wp +M [a]p,

where M [a]p = Mp[ap] by Lemma 3.1.

Since we proved the principal case, and ap is principal, we have

apWp :Mp ap = Wp +Mp[ap].

It follows that for every prime p of O we have

(a ·W : a)p = (W +M [a])p.
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3.2. DIVISION IN MODULES

Hence aW : a = W +M [a], which proves (a).

For (b), let p be a prime ideal of O, and observe that (a(W : a))p = ap(Wp : ap). As

ap is principal, it follows that ap(Wp : ap) = Wp. As this holds for every prime p of O, we

conclude that a(W : a) = W .

Proposition 3.4. Let a ⊂ O be an invertible ideal, and suppose that the module M satisfies

M = aM . Let W and V be O-submodules of M . Then

(W + V ) : a = (W : a) + (V : a).

Proof. First, let x ∈ W : a and y ∈ V : a and note that

a(x+ y) ⊂ ax+ ay ⊂ W + V,

so that

x+ y ∈ (W + V ) : a.

This proves the right to left inclusion. To show the reverse inclusion, we first suppose that

a = (a) is principal.

Let x ∈ (W + V ) : a. Then ax = y + z for some y ∈ W and z ∈ V . As M = aM we

have y = au for some u ∈ M . Since au = y ∈ W , we have u ∈ W : a. On the other hand,

the identity

ax = y + z = au+ z

implies that

a(x− u) = z.

As z ∈ V , it follows that x− u ∈ V : a. Then

x = u+ (x− u) ∈ (W : a) + (V : a),

which proves the statement for principal ideals a.
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Now, suppose a is any invertible ideal, and let p be a prime of O. By Lemma 3.1 we

have

((W + V ) : a)p = (W + V )p : ap.

By exactness of localisation, we have (W + V )p = Wp + Vp. As ap is principal, we have

(Wp + Vp) : ap ⊂ (Wp : ap) + (Vp : ap) = (W : a)p + (V : a)p = ((W : a) + (V : a))p.

Hence (W + V ) : a ⊂ (W : a) + (V : a), which proves the proposition.

3. Dividing points on elliptic curves

Throughout this section, let K be a field of characteristic 0, let K be an algebraic closure of

K, let E be an elliptic curve over K with O = EndK(E) 6= Z a Dedekind domain, and let

F be the fraction field of O. In this chapter, for an ideal a of O and W an O-submodule

of E(K), the module of a-division points W : a of W , defined in the previous section, is

taken inside M = E(K). For any field extension L of K and nonzero ideal a ⊂ O, we

write E(L)[a] for the module of a-torsion points of the O-module E(L), and E(L)tor for the

O-module of all torsion points of E over L. For simplicity, we write E[a] for E(K)[a], and

Etor for E(K)tor.

Definition 3.5. Let Ô = lim←−b
O/b, where b runs over all nonzero ideals ofO, be the profinite

completion of O as a ring. A Steinitz ideal a of O is a closed ideal of Ô. One easily checks

that the set of open ideals of Ô is in bijection with the set of nonzero ideals of O. Therefore,

we often identify an open Steinitz ideal with the ideal it corresponds to in O.

Let a be a Steinitz ideal of O. For an O-submodule W of E(K), we define

W : a =
⋃
b

(W : b),
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3.3. DIVIDING POINTS ON ELLIPTIC CURVES

where b runs over all nonzero ideals of O dividing a. Consistently with our notation for

ideals of O, we write E[a] for the a-torsion 0: a =
⋃

bE[b], where b runs over all nonzero

ideals of O dividing a. Note that both W : a and E[a] are O-modules. In fact, the canonical

module structure ofO on Etor extends naturally to a module structure of Ô on Etor. Then the

Ô-module E[a] is canonically an Ô/a-module.

Remark 3.6. For a nonzero ideal a of O, there is a unique factorization of a into prime

ideals of O. The same can be done for Steinitz ideals. Indeed, an ideal of a product
∏

i∈I Ri

of topological Hausdorff rings Ri is closed if and only if it is of the form
∏

i∈I Ji, where Ji

is a closed ideal of Ri for each i ∈ I . For a maximal ideal p of O, let

vp : F −→ Z ∪ {∞}

be the p-adic valuation, and letOp be the completion of O at p. The nonzero ideals ofOp are

powers of the maximal ideal pOp and closed. Now, observe that

Ô =
∏
p

Op

as profinite rings. Hence, putting p∞Op = {0}Op, we may represent a Steinitz ideal a

uniquely as

a =
∏
p

pvp(a)Op.

For simplicity, we often leave out Op from the notation.

For a nonzero ideal a of O, we write a∞ for the ideal

∏
p

p∞Op ×
∏
p′

Op′ ⊂ Ô =
∏
q

Oq,

where p runs over the maximal ideals of O dividing a, and p′ runs over the other maximal

ideals of O, and q runs over all maximal ideals of O.
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Note that for any O-submodule W ⊂ E(K) and Steinitz ideal a of O, the module E[a] is

contained in W : a, and K(W : a) is Galois over K(W ).

Let W be a finitely generated O-submodule of E(K) and let a be a Steinitz ideal of

O. The field K(W : a) is Galois over K, and any field automorphism of K(W : a) over K

is determined by its action on W : a. Moreover, the action of O on W : a commutes with

the action of Galois. Hence, we may identify Gal(K(W : a)/K) with a subgroup of the

group of O-automorphisms AutO,W (W : a) of W : a that are the identity on W . Note that

AutO,W (W : a) is the profinite group

lim←−
b

AutO,W (W : b),

where b runs over all nonzero ideals of O dividing a. As Gal(K(W : a)/K) is compact and

AutO,W (W : a) is Hausdorff, the subgroup Gal(K(W : a)/K) of AutO,W (W : a) is closed.

Endow F/O with the canonical O-module structure, and note that this structure natu-

rally extends to an Ô-module structure.

Proposition 3.7. Let a be a Steinitz ideal of O. Then the following statements hold.

(a) E[a] ∼=O (F/O)[a] = {x ∈ F/O : ax = 0} and Etor
∼=O F/O.

(b) EndO(E[a]) ∼=O Ô/a as O-algebras, and for a Steinitz ideal a′ of O divisible by a the

restriction map AutO(E[a′]) −→ AutO(E[a]) is surjective.

(c) The field K(E[a]) is abelian over K.

Proof. The second statement of (a) follows from Theorem 3 in [Len96]. The first statement

follows directly from the second one, since O-module isomorphisms respect the O-torsion.

This finishes the proof of (a).

For the first statement of (b), let b a nonzero ideal of O dividing a. One easily sees

that (F/O)[b] ∼=O O/b as O-modules, and EndO(O/b) ∼=O O/b as O-algebras. Then (a)
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3.3. DIVIDING POINTS ON ELLIPTIC CURVES

implies

EndO(E[b]) ∼=O EndO((F/O)[b]) ∼=O EndO(O/b) ∼=O O/b

as O-algebras. Using E[a] = lim−→b
E[b], where b runs over all nonzero ideals of O dividing

a, we obtain

EndO(E[a]) = EndO(lim−→
b

E[b]) ∼=O lim←−
b

EndO(E[b]) ∼=O lim←−
b

O/b ∼=O Ô/a,

as O-algebras. This proves the first statement of (b).

For the second part, we first prove the statement for a′ =
∏

p p
∞ where p runs over all

maximal ideals of O. Then we have E[a′] = Etor and Ô/a′ = Ô. The above implies that

there are canonical isomorphisms

AutO(Etor) −→ Ô∗

and

AutO(E[a]) −→ (Ô/a)∗

which make the diagram

AutO(Etor)

��

// Ô∗

��

AutO(E[a]) // (Ô/a)∗

(∗)

commutative, where the vertical arrows are the restriction maps. Moreover, using the identity

Ô ∼=
∏

pOp, one easily checks that the diagram

Ô∗

��

∼= //
∏

pO∗p

��

(Ô/a)∗ ∼=
//
∏

p(Op/p
vp(a))∗

(∗∗)

is commutative, where p runs over all maximal ideals of O, and p∞ equals the zero ideal of

Op. Since Op is a local ring, the map O∗p −→ (Op/p
vp(a))∗ is surjective. By commutativity
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CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

of (∗∗), we have that Ô∗ −→ (Ô/a)∗ is surjective. Then commutativity of (∗) implies that

AutO(Etor) −→ AutO(E[a]) is surjective, as desired.

Now, the case for general a′ follows directly from the fact that Ô∗ −→ (Ô/a)∗ factors

via Ô∗ −→ (Ô/a′)∗.

For (c), note that Gal(K(E[a])/K) is a subgroup of AutO(E[a]). By (b) we have

AutO(E[a]) = EndO(E[a])∗ ∼= (Ô/a)∗.

As the last group is clearly abelian, the subgroup Gal(K(E[a])/K) is abelian also, so that

K(E[a]) is abelian over K.

For a module N over a ring R, we write AnnR(N) = {r ∈ R : ∀x ∈ N : rx = 0} for the

annihilator ideal of N .

Proposition 3.8. (a) There is an inclusion-reversing bijection

ψ : {Steinitz ideals of O} −→ {O-submodules of Etor}

of sets, given by sending a Steinitz ideal a to E[a]. Moreover, its inverse is also

inclusion-reversing, sending an O-submodule M of Etor to the Ô-annihilator

AnnÔ(M) = {r ∈ Ô : r ·M = 0}

of M .

(b) Let a and a′ be Steinitz ideals of O. Then a = AnnÔ(E(K)[a′]) if and only if E[a] =

E(K)[a′].

Proof. For (a), define the map

ϕ : {Steinitz ideals of O} −→ {O-submodules of F/O},
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3.3. DIVIDING POINTS ON ELLIPTIC CURVES

by sending the Steinitz ideal a to (F/O)[a] = {x ∈ F/O : a · x = 0}. We will show that ϕ

is a bijection.

For any fractional ideal a of O we write a−1 for its ideal inverse

O :F a = {x ∈ F : a · x ⊂ O}.

As O is Dedekind, there is a bijection of the set of nonzero ideals of O with the set of

fractional ideals of O containing O given by the ideal inverse. Moreover, one easily checks

that the map from the set of finite O-submodules of F/O to the set of fractional ideals of O

containingO defined by sendingM ⊂ F/O to the fractional ideal AnnO(M)−1 is a bijection,

and its inverse sends a fractional ideal a of O containing O to a/O. Composing the above

two bijections, we obtain another bijection, which is in fact the restriction of ϕ to the subset

of open Steinitz ideals of O. Thus ϕ restricts to a bijection of the subset of open Steinitz

ideals of O with the subset of finite O-submodules of F/O.

Now, let a be a Steinitz ideal, and note that

(F/O)[a] =
⋃
b

(F/O)[b] =
⋃
b

b−1/O,

where b runs over all nonzero ideals of O dividing a. Then

AnnÔ((F/O)[a]) = AnnÔ

(⋃
b

b−1/O

)
=
⋂
b

AnnÔ(b−1/O) =
⋂
b

bÔ = a.

Conversely, let M be an O-submodule of F/O. One easily checks that

M =
∑
p

p−e(p)/O,

where p runs over the maximal ideals of O, and e(p) ∈ Z≥0 ∪ {∞}, and p−∞ =
⋃
i≥0 p

−i.

Hence, we have

AnnÔ(M) =
∏
p

pe(p)Op,
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where p runs over the maximal ideals of O. Then one easily sees that

(F/O)
[
AnnÔ(M)

]
=
∑
p

p−e(p)/O,

where p runs over the maximal ideals of O, which shows that ϕ is a bijection.

By Proposition 3.7(a) there is an isomorphism f : Etor −→ F/O of O-modules. This

induces a bijection

{O-submodules of F/O} −→ {O-submodules of Etor},

which composed with ϕ gives us ψ, independent of the choice of the isomorphism f . As ϕ

is a bijection, it follows that ψ is a bijection. One easily checks that ψ and its inverse are

inclusion-reversing, which finishes the proof of (a).

For (b), let a and a′ be Steinitz ideals of O. Observe that for an O-submodule M of

Etor, part (a) implies that

a = ψ−1(M)⇔ ψ(a) = M.

Hence

a = AnnÔ(E(K)[a′]) = ψ−1(E(K)[a′])⇔ E[a] = ψ(a) = E(K)[a′],

as desired.

4. Abelian division fields

Throughout this section let K be a field of characteristic 0, let K be an algebraic closure of

K, let Kab be the maximal abelian extension of K contained in K, let E be an elliptic curve

over K with O = EndK(E) 6= Z a Dedekind domain, let F be the fraction field of O, let Ô

be as in Definition 3.5, and let W ⊂ E(K) be an O-submodule.

In this section we prove the following theorem.
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Theorem 3.9. Let a be a Steinitz ideal of O, and let w = AnnÔ(E(K)tor). Then

(E(K) : a)Gal(K/Kab) = (E(K) : (w + a)) + E[wa].

To prove this theorem, we first prove the following analogue of Schinzel’s theorem (see

Theorem 1.1) for elliptic curves with complex multiplication.

Theorem 3.10. Let a be a nonzero ideal of O. Then K(W : a) is abelian over K if and only

if AnnO(E(K)[a]) ·W ⊂ a · E(K).

Remark 3.11. In the rest of this section, we write w = AnnÔ(E(K)tor), and for a Steinitz

ideal a we write wa = w + a. By Proposition 3.8(a) we have for a Steinitz ideal a and an

O-submodule M of Etor the equivalence

a = AnnÔ(M)⇔ E[a] = M.

Therefore, we have E[w] = E(K)tor. Moreover, we have

E[wa] = E[w + a] = E[w][a] = E(K)tor[a] = E(K)[a],

so Proposition 3.8(b) implies

wa = AnnÔ(E(K)[a]).

Proposition 3.12. The field K(E(K) :w) is abelian over K.

Proof. By Remark 3.11 we have E[w] = E(K)tor.

Now, let

ϕ : Gal(K(E(K) :w)/K) −→ Hom((E(K) :w)/E(K), E[w])

be the map defined by

σ 7→ [Q+ E(K) 7→ σ(Q)−Q].
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As E[w] ⊂ E(K), the map ϕ is a group morphism. A field automorphism of K(E(K) :w)

over K is determined by its action on E(K) :w. Hence ϕ is injective. As the codomain is

clearly abelian, it follows that Gal(K(E(K) :w)/K) is abelian.

Proof of Theorem 3.10. We first prove the ‘if’ part. To this end, recall by Remark 3.11 that

wa = w + a = AnnÔ(E(K)[a]). Suppose that wa · W ⊂ a · E(K). We will prove that

K(W : a) is abelian over K. To this end, let Q ∈ W : a, and note that

awaQ ⊂ aE(K).

Then Proposition 3.3(a) implies waQ ⊂ E(K) + E[a]. Since a is an ideal of O, the ideal wa

is open and we may consider it as an ideal of O. Then Proposition 3.4 implies

Q ∈ (E(K) :wa) + E[a] :wa,

whereE[a] :wa = E[awa]. By Proposition 3.7(c) we know thatK(Etor) is abelian overK, so

in particular K(E[awa]) is abelian over K. On the other hand, by Proposition 3.12 we know

that K(E(K) :wa) is abelian over K. It follows that K((E(K) :wa) + E[awa]) is abelian

over K, so that K(Q) is abelian over K. We conclude that K(W : a) is abelian over K.

Now, we prove the ‘only if’ part. Suppose that K(W : a) is abelian over K. We will

show that wa ·W ⊂ a ·E(K). To this end, suppose first that a = (a) is principal. Let P ∈ W ,

and recall that we write P : a instead of (O · P ) : a. As P : a ⊂ W : a and K(W : a) is abelian

over K, the field K(P : a) is abelian over K. Write G for its Galois group Gal(K(P : a)/K),

and let Q ∈ P : a be such that aQ = P .

The natural O-module structure and G-module structure on E[a] are compatible with

each other, so E[a] is an O[G]-module. By Proposition 3.7(b) we have

EndO(E[a]) ∼= O/aO.
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It follows that for every σ ∈ G we can choose c(σ) ∈ O such that σ acts on E[a] by

multiplication with c(σ). We fix such c(σ) ∈ O. Now, for every σ ∈ G we have

aσ(Q) = σ(P ) = P = aQ.

Therefore, for every σ ∈ G there is Tσ ∈ E[a] such that σ(Q) = Q + Tσ. Let σ, τ ∈ G, and

observe that

τσ(Q)− σ(Q) = στ(Q)− σ(Q) = σ(Q) + σ(Tτ )− σ(Q) = c(σ)Tτ .

Moreover, we have

c(σ)Tτ = c(σ)Q+ c(σ)Tτ − c(σ)Q = c(σ)τ(Q)− c(σ)Q = τ(c(σ)Q)− c(σ)Q.

Thus, we have τσ(Q)− σ(Q) = τ(c(σ)Q)− c(σ)Q, which is equivalent to

τ(c(σ)Q− σ(Q)) = c(σ)Q− σ(Q).

As the latter holds for all σ, τ ∈ G, we conclude that

c(σ)Q− σ(Q) ∈ E(K)

for all σ ∈ G. Multiplying by a on both sides, we obtain

(c(σ)− 1) · P ∈ aE(K),

for all σ ∈ G. Let

d = (a) +
∑
σ∈G

(c(σ)− 1)O,

and note that

d · P ⊂ (a) · E(K).
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We will now show that d = AnnO(E(K)[a]). To this end, observe that Proposition 3.8

implies that d = AnnO(E(K)[a]) if and only if E[d] = E(K)[a]. Note that a ∈ d, so

E[d] ⊂ E[a]. Let T ∈ E[a], and observe that

T ∈ E(K)[a]⇔ ∀σ ∈ G : σ(T ) = T ⇔ ∀σ ∈ G : (c(σ)− 1)T = 0⇔ T ∈ E[d],

that is, we have E[d] = E(K)[a]. Hence d = AnnO(E(K)[a]).

Now, we have shown that for every P ∈ W we have

AnnO(E(K)[a]) · P ⊂ (a) · E(K),

which implies that

AnnO(E(K)[a]) ·W ⊂ (a) · E(K).

This proves the statement for principal ideals a.

Now, suppose a is any nonzero ideal. We will show that waW ⊂ aE(K). Since O is

Dedekind, there is an ideal b of O such that a + b = O and ab is principal. Moreover, by

Proposition 3.2 we have

bW : ab = bW : a + bW : b,

and

bW : b = W + E[b]

by Proposition 3.3(a). As E[b] is abelian over K, and by assumption, the field K(W : a) is

abelian over K, the field K(bW : ab) = K((bW : a) +E[b]) contained in K((W : a) +E[b])

is abelian over K. Then, because ab is principal, the above proof for principal ideals shows

that wab · bW ⊂ abE(K).

By Remark 3.11 we have E[wa] = E(K)[a] and E[wab] = E(K)[ab]. Moreover, we

have

E[wab + a] = E[wab] ∩ E[a] = E(K)[ab] ∩ E[a] = E(K)[a] = E[wa].
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Thus wab + a = wa by Proposition 3.8.

Recall from the above that wabbW ⊂ abE(K), so that

wa · bW = (wab + a) · bW = wabbW + abW ⊂ abE(K),

where we used that abW ⊂ abE(K). As a + b = O, we have

waW = wa(a + b)W = waaW + wabW.

Moreover waaW ⊂ waaE(K) ⊂ aE(K), and wabW ⊂ abE(K) ⊂ aE(K). Hence, we

have

waW = waaW + wabW ⊂ aE(K) + aE(K) ⊂ aE(K),

as desired.

Proof of Theorem 3.9. We first prove the right to left inclusion. By Proposition 3.12 and

Proposition 3.7(c), we have

(E(K) :w) + Etor ⊂ E(Kab).

By Remark 3.11 we have

E[w] = E(K)tor ⊂ E(K),

so that (E(K) : (w+a))+E[wa] is contained inE(K) : a and in (E(K) :w)+Etor. Therefore,

we have

(E(K) : (w + a)) + E[wa] ⊂ (E(K) : a) ∩ E(Kab) = (E(K) : a)Gal(K/Kab),

which proves the right to left inclusion.

We prove the other inclusion in two steps. First, we prove the inclusion for a a nonzero

ideal of O. To this end, let

X = (E(K) : a)Gal(K/Kab).
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As E[a] ⊂ X , Proposition 3.3(a) implies that

aX : a = X + E[a] = X.

Moreover, it is clear that aX ⊂ E(K) is an O-submodule. Now, as K(aX : a) = K(X) is

abelian over K, Theorem 3.10 implies that

wa · (aX) ⊂ aE(K),

where wa = w + a (see Remark 3.11). It follows that

wa ·X ⊂ aE(K) : a = E(K) + E[a],

where the equality follows from Proposition 3.3(a). Thus

X ⊂ (E(K) + E[a]) :wa = (E(K) :wa) + (E[a] :wa),

where the equality follows from Proposition 3.4. Observe that

E[a] :wa = E[awa] ⊂ E[aw].

Hence, we have

X ⊂ (E(K) : (w + a)) + E[aw],

as desired.

Now, suppose a is any Steinitz ideal, and note that

(E(K) : a)Gal(K/Kab) =
⋃
b

(E(K) : b)Gal(K/Kab)

⊂
⋃
b

((E(K) : (w + b)) + E[bw])

=
⋃
b

(E(K) : (w + b)) +
⋃
b

E[bw],
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where b runs over all nonzero ideals of O dividing a. At last,⋃
b

(E(K) : (w + b)) ⊂ E(K) : (w + a)

and
⋃

bE[bw] ⊂ E[aw], so that

(E(K) : a)Gal(K/Kab) ⊂ E(K) : (w + a) + E[aw],

as desired.

5. Galois representation on torsion points

Throughout this section, let K be a number field, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let F be the fraction field of O, let OK be the ring

of integers of K, and let c be the conductor of E over K (see [Sil94, §IV.10]). Remark that c

is a nonzeroOK-ideal. For an extension of prime ideals q/p in an extension of rings we write

e(q/p) for the ramification index of q over p, if it exists.

As all elements of O are defined over K, the action of O on the tangent space at the

origin induces an injective ring morphism O −→ K, which extends to an injective map

F −→ K (see [Sil94, Chapter 2]). Throughout this chapter, we identify O and F with their

images in K, so that we have O ⊂ OK and F ⊂ K.

For p a maximal ideal of O, define ip ∈ Z≥0 as follows. For primes q of OK dividing

p, let iq ∈ Z≥0 be such that

iq =

1 if vq(c) = 0 and e(q/p) 6= 1,

vq(c)
2

if vq(c) > 0 or e(q/p) = 1,

where vq is the q-adic valuation (cf. Remark 3.6), and observe that

iq = 0⇔ [e(q/p) = 1 and q - c].
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By Theorem 6 in [ST68] we have for all primes q of OK that vq(c) is divisible by 2. Hence

iq is an integer. Let p be the characteristic of O/p, let

mq = max

{⌈
iq

e(q/p)

⌉
,

⌊
e(p/p)

p− 1

⌋
+ 1

}
,

and let

ip,q =


⌈

iq
e(q/p)

⌉
if p - e(q/p),

mq + e(p/p) · vp(e(q/p)) if p| e(q/p).

Then put ip = minq ip,q, where q runs over the primes of OK dividing p. Now, observe that

for maximal ideals p of O not dividing c ·∆K/F , where ∆K/F is the discriminant of K over

F , we have ip = 0. Thus, for almost all maximal ideals p of O we have ip = 0.

For an O-module N and O-submodule N ′ of N we write AutO,N ′(N) for the group of

O-automorphisms ofN that are the identity onN ′. Moreover, observe that for a Steinitz ideal

a of O the group Gal(K(E[a])/K) may be identified with a subgroup of AutO,E(K)[a](E[a])

(see also the text before Proposition 3.7).

In this section, we prove the following theorem.

Theorem 3.13. Let a be a Steinitz ideal of O.

(a) Then Gal(K(E[a])/K) is open in AutO(E[a]).

(b) Let P be the set of maximal ideals of O dividing a that satisfy vp(a) ≥ ip. Then the

subgroup
∏

p∈P AutO,E[pip ]

(
E[pvp(a)]

)
of AutO(E[a]) is open, and moreover, we have∏

p∈P

AutO,E[pip ]

(
E[pvp(a)]

)
⊂ Gal(K(E[a])/K)

as subgroups of AutO(E[a]).

General notation. Let L be a number field, and let a be a nonzero ideal of OL. Then we

write OL,a for the a-adic completion of OL, and La = L ⊗OL
OL,a. If a = (a) is principal,
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we simply write OL,a instead of OL,a, and La instead of La. Note that OL,a =
∏

pOL,p and

La =
∏

p Lp where p runs over all primes of OL dividing a.

Suppose that a = p is a prime ideal. Then by abuse of notation we also write p for the

maximal ideal of the ring of integers of the local field Lp. For i ∈ Z≥0 we write Up,i or ULp,i

for the ith unit group of Lp, that is,

Up,0 = (OL,p)∗

and for i ≥ 1

Up,i = 1 + piOL,p.

We write IL for the idèle group of L.

Let L′/L be an extension of number fields, and let q be a prime of OL′ dividing p.

For the extension L′q/Lp of local fields, we sometimes write e(L′q/Lp) for e(q/p). We write

NIL′ / IL : IL′ −→ IL for the idèle norm. Let p be the characteristic of p, and embed L′∗p in IL′

by putting 1’s at the primes not over p. Then we write

NL′p/Lp =
∏
p

∏
q

NL′q/Lp : L
′∗
p −→ L∗p

for the restriction of the idèle norm to L′∗p , where p runs over the primes of OL dividing p,

and q runs over the primes of OL′ dividing p.

Let a be a nonzero ideal of O. By Proposition 3.7 we have

E[a] ∼=O (F/O)[a] = a−1/O ∼= O/a,

so that AutO(E[a]) ∼= (O/a)∗. Moreover, the latter isomorphism is compatible with the

restriction maps AutO(E[a]) −→ AutO(E[a′]) and canonical maps (O/a)∗ −→ (O/a′)∗ for

a′ an ideal of O dividing a. Hence, we have

AutO(E[a∞]) = lim←−
i

AutO(E[ai]) ∼= O∗a ,
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where for simplicity we write Oa for OF,a. We define the map ϕa as the following composi-

tion of canonical maps

Gal(K(E[a∞])/K) −→ AutO(E[a∞])
∼−→ O∗a ,

and note that ϕa is injective. As K(E[a∞]) is contained in the maximal abelian extension

Kab of K (see Proposition 3.7(c)), the global reciprocity law induces a surjective morphism

ψa : IK −→ Gal(K(E[a∞])/K) of topological groups. We define ρa as the composition

ρa = ϕa ◦ ψa : IK −→ O∗a .

Now, let a = (0), and define ϕa, ψa and ρa by doing exactly the above while replacing Oa

with Ô. If a = (a) is principal, we simply write a subscript a instead of a subscript a in the

above notation, and if a = (0), we simply write no subscript.

As we remarked earlier, for a prime q of OK dividing the conductor c, Theorem 6

in [ST68] implies that vq(c) is divisible by 2. We write

1 +
√
c =

∏
q

U
q,

vq(c)

2

⊂ (OK,c)∗,

where q runs over all primes of OK dividing c.

As F is a quadratic imaginary field contained in K, the field K is totally complex.

Proposition 3.14. Let F ∗ be endowed with the discrete topology. Then there is a unique

continuous group morphism ε : IK −→ F ∗ such that ε(x) = NK/F (x) for all x ∈ K∗, and

such that for each prime number p and each a ∈ IK

ρp(a) = ε(a) NKp/Fp((ap)
−1) ∈ O∗p,

where ap = (aq)q ∈
∏

qK
∗
q and q runs over the maximal ideals of OK dividing p. Moreover,

the kernel of ε contains

(1 +
√
c)×

∏
q

Uq,0×
∏
r

K∗r ,
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where q runs over all finite primes ofOK not dividing c, and r runs over all infinite primes of

K.

Proof. For the first part of the theorem see [Ser72, Theorem 5] or [ST68, §7]. For the second

part see [ST68, Theorem 6 and Theorem 11].

Lemma 3.15. Let p be a prime number, let L be a finite extension of Qp, let L′ be a finite

extension of L, and let eL = e(L/Qp).

(a) Suppose that e(L′/L) = 1. Then for all i ∈ Z≥0 we have

UL,i = NL′/L(UL′,i),

where NL′/L : L′∗ −→ L∗ is the norm function.

(b) Let i ∈ Z≥1, and let m = max
{⌈

i
e(L′/L)

⌉
,
⌊

eL
p−1

⌋
+ 1
}

. Put

i0 =

di/ e(L′/L)e if p - e(L′/L),

m+ eL · vp(e(L′/L)) otherwise.

Then

UL,i0 ⊂ NL′/L(UL′,i),

where NL′/L : L′∗ −→ L∗ is the norm function.

Proof. If e(L′/L) = 1, then [Ser79, Chapter V, §2] implies that for every i ∈ Z≥0

UL,i = NL′/L(UL′,i),

which proves statement (a) and also statement (b) in the case that e(L′/L) = 1.

Now, suppose that i > 0. By transitivity of the norm and the above case, we may

assume that L′/L is totally ramified. Let Lt be the maximal tamely ramified extension of L
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inside L′, let e(L′/L)t = [Lt : L] be the tame part of e(L′/L), and let e(L′/L)p = [L′ : Lt]

be the wild part of e(L′/L).

Note that for x ∈ L we have

NL′/L(x) = x[L′:L] = xe(L′/L).

Let p be the maximal ideal of the ring of integers OL of L and let q be the maximal ideal of

OL′ . Then p ⊂ qe(L′/L) implies that(
UL,d i

e(L′/L)
e

)e(L′/L)

⊂ NL′/L(UL′,i).

As for l ∈ Z≥1 the groups UL,l are pro-p-groups, we have(
UL,d i

e(L′/L)
e

)e(L′/L)p
=
(

UL,d i
e(L′/L)

e

)e(L′/L)

⊂ NL′/L(UL′,i).

Suppose that p does not divide e(L′/L). Then e(L′/L)p = 1, so

UL,d i
e(L′/L)

e =
(

UL,d i
e(L′/L)

e

)e(L′/L)p
⊂ NL′/L(UL′,i),

which proves the lemma in the case that p - e(L′/L).

Now, suppose that e(L′/L)p 6= 1. Since m ≥ i
e(L′/L)

, we have

(UL,m)e(L′/L)p ⊂
(

UL,d i
e(L′/L)

e

)e(L′/L)p
⊂ NL′/L(UL′,i).

Moreover, by [Ser79, Chapter XIV, Proposition 9] we have for every integer l > eL
p−1

that

(UL,l)
p = UL,l+eL .

Hence, since m > eL
p−1

, we have

UL,i0 = UL,m+eL · vp(e(L′/L)) = (UL,m)e(L′/L)p ⊂ NL′/L(UL′,i),

which proves the lemma in the final case that p | e(L′/L).
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Proof of Theorem 3.13. We first prove (b) for the Steinitz ideal a =
∏

p p
∞, that is, we first

show that ∏
p

AutO,E[pip ](E[p∞]) ⊂ Gal(K(Etor)/K),

as subgroups of AutO(Etor), where p runs over all maximal ideals of O. To this end, let

U = (1 +
√
c)×

∏
q

Uq,0×
∏
r

K∗r ,

where 1 +
√
c is defined above Proposition 3.14, where q runs over all finite primes of OK

not dividing c, and r runs over all infinite primes of K.

For an ideal b of O, let ψb, ϕb and ρb be as defined above Proposition 3.14. Recall

that if (b) is principal, we simply write ψb, ϕb and ρb for these maps, and if b = (0) we have

(0)∞ = a and simply write ψ, ϕ and ρ.

We claim that ρ =
∏

p ρp where p runs over all maximal ideals of O.

Indeed, we have Ô =
∏

pOp as profinite rings, so that Ô∗ =
∏

pO∗p as profinite groups.

Moreover, for a maximal ideal p of O we have the following commutative diagram

IK

ρ

%%

id

��

ψ
// Gal(K(Etor)/K)

ϕ
//

��

Ô∗

��

IK ψp

//

ρp

99
Gal(K(E[p∞])/K) ϕp

// O∗p

where the two right vertical maps are the canonical maps. The claim now follows from the

universal property of products.

Now, by Proposition 3.14 we have for all prime numbers p that ρp(U) = NKp/Fp(Up),

where Up is the pth component of U . Then for a maximal ideal p of O one easily sees that

ρp(U) =
∏
q

NKq/Fp(Uq),
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where q runs over all primes of OK dividing p, and Uq is the qth component of U .

Let p be a maximal ideal of O, and let q be a maximal ideal of OK dividing p. If

vq(c) = 0, we have Uq = Uq,0 by definition of U , so iq ≥ 0 implies that

Uq ⊃ UKq,iq .

On the other hand, if vq(c) > 0, we have

Uq = U
q,

vq(c)

2

= Uq,iq

by definition of U and iq. Thus, in both cases the inclusion UKq,iq ⊂ Uq holds. Moreover, the

equivalence

iq = 0⇔ [e(q/p) = 1 and q - c]

holds. Then Lemma 3.15, where L′ = Kq, L = Fp, and i = iq, implies that

UFp,ip,q ⊂ NKq/Fp(Uq).

Thus, for all maximal ideals p ofO and q ofOK dividing p, we have by definition of ip

that

UFp,ip ⊂
∏
q

NKq/Fp(Uq),

which implies that the image of ρp, and also of ϕp, in O∗p contains UFp,ip .

Since ρ(U) =
∏

p ρp(U) and the image of ϕ contains ρ(U), the inclusions

im(ϕ) ⊃ ρ(U) ⊃
∏
p

UFp,ip

hold, where p runs over all maximal ideals of O.

Now, under the isomorphism Ô∗ −→ AutO(Etor) the subgroup
∏

p UFp,ip corresponds

to the subgroup ∏
p

AutO,E[pip ](E[p∞])
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of AutO(Etor), where p runs over all maximal ideals of O. Thus, we have∏
p

AutO,E[pip ](E[p∞]) ⊂ Gal(K(Etor)/K),

where p runs over all maximal ideals of O.

At last, observe that for a maximal ideal p of O the subgroup

AutO,E[pip ](E[p∞])

is open in AutO(E[p∞]). Simultaneously, we have ip = 0 for almost all maximal ideals p of

O. Therefore, the subgroup ∏
p

AutO,E[pip ](E[p∞])

is open in ∏
p

AutO(E[p∞]) = AutO(Etor),

where p runs over all maximal ideals of O. Consequently, the group Gal(K(Etor)/K) is

open in AutO(Etor). This proves (a) and (b) for the Steinitz ideal a =
∏

p p
∞, where p runs

over all maximal ideals of O.

Let a be a Steinitz ideal. Then the diagram

Gal(K(Etor)/K) //

��

AutO(Etor)

��

Gal(K(E[a])/K) // AutO(E[a])

is commutative, where the vertical maps are the surjective restriction maps (see Proposition

3.7(b)). As the vertical maps are open, commutativity of the diagram implies that the com-

position

Gal(K(Etor)/K) −→ Gal(K(E[a])/K) −→ AutO(E[a])

is open. Hence Gal(K(E[a])/K) −→ AutO(E[a]) is open, which proves (a).
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Let P be the set of maximal ideals p of O dividing a with multiplicity at least ip, that

is, let

P = {p ⊂ O : p maximal, p|a, vp(a) ≥ ip}.

Using Proposition 3.7(b) we see that the image of the subgroup
∏

p AutO,E[pip ](E[p∞]),

where p runs over all maximal ideals of O, under the restriction map

Gal(K(Etor)/K) −→ Gal(K(E[a])/K)

is equal to ∏
q∈P

AutO,E[qiq ](E[qvq(a)]),

which proves (b).

6. Kummer theory

Throughout this section, let K be a number field, let K be an algebraic closure of K, let E be

an elliptic curve over K with O = EndK(E) 6= Z a Dedekind domain, let F be the fraction

field of O, and let U ⊂ E(K) be an O-submodule.

In this section we prove the following theorem (see the text before Theorem 3.13 for

the definition of the automorphism groups mentioned).

Theorem 3.16. Let a be a Steinitz ideal of O. Then the canonical map

Gal(K(U : a)/K(E[a])) −→ AutO,U+E[a](U : a)

is injective and open.

Notation. Let a be a Steinitz ideal of O. Then we write

Sata(U) = (U : a) ∩ E(K) = (U : a)Gal(K/K),
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and

Cyca(U) = (U : a) ∩ E(K(E[a])) = (U : a)Gal(K/K(E[a])).

In some cases, we expand our notation to Sata(U,K) and Cyca(U,K) to clarify the base field

K. When a = ∞O =
∏

p p
∞, where p runs over all maximal ideals of O, we leave out the

subscript a from the notation.

Definition 3.17. For an O-module M we write rkO(M) for the O-rank dimF (M ⊗O F ) of

M , where F is the fraction field of O.

Observe that rkO(U) is finite.

Proposition 3.18. Let n = rkO(U).

(a) Let a be a nonzero ideal of O. Then U : a is finitely generated over O of O-rank n.

(b) Let a be a Steinitz ideal of O. Then for any finite extension K ′/K the O-module

Sata(U,K
′) is finitely generated over O of O-rank n.

(c) Let a be a Steinitz ideal of O. Then Cyca(U)/E[a] is finitely generated over O of

O-rank n.

Proof. Let a and K ′ be as in (b). By the Mordell-Weil theorem (see [Sil09]) we know

that E(K ′) is finitely generated over Z, and, consequently, over O. As Sata(U,K
′) is con-

tained in E(K ′), we have that Sata(U,K
′) is finitely generated over O. Then the quotient

Q = Sata(U,K
′)/U is finitely generated over O. Moreover, by definition of Sata(U,K

′) the

quotient Q is torsion over O. It follows that Sata(U,K
′) has the same O-rank as U , which

proves (b).

Now, let a be as in (a). As U is finitely generated over O, the module U : a is finitely

generated too. Then the field K ′ = K(U : a) is finite over K. By (b) the module Sata(U,K
′)
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is finitely generated of O-rank n. As

U ⊂ U : a ⊂ Sata(U,K
′),

it follows that U : a has O-rank n. This proves (a).

Let a be as in (c). Let Kab be the maximal abelian extension of K contained in K. Let

Ô be the profinite completion of O, and let w = AnnÔ(E(K)tor). As K is a number field,

the module E(K)tor is finite, so that w = AnnO(E(K)tor). Observe that

Cyca(E(K)) ⊂ (E(K) : a) ∩ E(Kab).

By Theorem 3.9 we have

(E(K) : a) ∩ E(Kab) = (E(K) : (w + a)) + E[wa].

First, we will show that Cyca(E(K))/E[a] is finitely generated over O. By the above, it

suffices to show that (E(K) : (w + a)) and E[wa]/E[a] are finitely generated over O.

To this end, observe that w+a = AnnO(E(K)[a]) is an ideal ofO andE(K) is finitely

generated over O, so E(K) : (w + a) is finitely generated over O.

Moreover, the O-module E[wa] decomposes as
⊕

pE[pvp(w)+vp(a)], where p runs over

all primes of O dividing wa. Then one easily sees that

E[wa]/E[a] ∼=
⊕
p

(
E
[
pvp(w)+vp(a)

]
/E
[
pvp(a)

])
,

where p runs over all primes of O dividing wa such that vp(a) < ∞ and vp(w) > 0. As

there are only finitely many such p, and vp(a) and vp(w) are finite, the decomposition is a

finite direct sum of finitely generated modules over O. It follows that E[wa]/E[a] is finitely

generated over O, so that Cyca(E(K))/E[a] is finitely generated over O.

Now, as

U ⊂ Cyca(U) ⊂ U : a

122



3.6. KUMMER THEORY

and U : a
U

is torsion over O (annihilated by a), we have that rkO(Cyca(U)) = rkO(U). It

follows that Cyca(U)/E[a] is finitely generated over O of the same O-rank as U , which

proves (c).

In the rest of this section, we use two Gal(K(E[a])/K)-modules extensively, which we de-

fine as follows.

Let a be a Steinitz ideal. Recall from Theorem 3.13 and Proposition 3.7(b) that we may

consider Gal(K(E[a])/K) as a subgroup of (Ô/a)∗. The short exact sequence

0 −→ Gal(K(U : a)/K(E[a])) −→ Gal(K(U : a)/K) −→ Gal(K(E[a])/K) −→ 0

induces a Gal(K(E[a])/K)-module structure on Gal(K(U : a)/K(E[a])), because the latter

is abelian by Proposition 3.12.

On the other hand, define

κa : Gal(K(U : a)/K(E[a])) −→ HomO

(
U : a

Cyca(U)
, E[a]

)
as the canonical map given by σ 7→ [Q + Cyca(U) 7→ σ(Q) − Q], and note that κa is an in-

jective group morphism. The multiplication action of Ô/a on E[a] induces an Ô/a-module

structure on HomO

(
U : a

Cyca(U)
, E[a]

)
. In particular, there is a Gal(K(E[a])/K)-module struc-

ture on HomO

(
U : a

Cyca(U)
, E[a]

)
, where we consider Gal(K(E[a])/K) as a subgroup of (Ô/a)∗.

Lemma 3.19. Let a be a Steinitz ideal of O. Then the following statements hold.

(a) The group HomO

(
U : a

Cyca(U)
, E[a]

)
is profinite.

(b) Let G ⊂ HomO

(
U : a

Cyca(U)
, E[a]

)
be a closed subgroup. Then G is a finitely generated

profinite group.

Proof. The O-module
U : a

Cyca(U)
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is the union of the submodules
U : b

(U : b) ∩ Cyca(U)
,

where b runs over all nonzero ideals of O dividing a. For each such b, the corresponding

module is finite and annihilated by b. It follows that the group HomO

(
U : a

Cyca(U)
, E[a]

)
may be

identified with the projective limit of the finite groups

Hb = HomO

(
U : b

(U : b) ∩ Cyca(U)
, E[b]

)
,

and is therefore profinite. This proves (a).

Now, let G be as in (b). Since G is closed, we have

G = lim←−
b

Gb,

where Gb is the image of G in Hb. We will show that there is c ∈ Z≥1 such that for every

m ∈ Z≥1 we have #(G/mG) ≤ mc, which implies that G is finitely generated (see [RZ09,

Lemma 2.5.3]), as desired.

To this end, let m ∈ Z≥1, and let n be the O-rank of U . We will show that for every

nonzero ideal b of O dividing a we have

#(Gb/mGb) ≤ m2n+2.

Let b be a nonzero ideal ofO dividing a, and note thatE[b] ∼=O O/b (see Proposition 3.7(a)).

As U : b is a finitely generated O-module of rank n whose torsion submodule is cyclic and

contains E[b], we have

U : b ∼=O M ⊕ (O/c)

where M is a finitely generated projective O-module of rank n and c is a nonzero ideal of O

divisible by b. Then
U : b

b · (U : b)
∼=O/b (M/bM)⊕ (O/b),
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which is O/b-projective of rank n + 1. As projective modules of constant rank over finite

commutative rings are free, we have

U : b

b · (U : b)
∼=O (O/b)n+1. (∗)

Now, since every f ∈ Hb is annihilated by b, we may identify Hb with a subgroup of

HomO

(
U : b

b · (U : b)
, E[b]

)
,

so that (∗) and the identity E[b] ∼=O O/b imply that Hb may be identified with a subgroup of

(O/b)n+1. As Gb is a subgroup of Hb, we see that Gb may be identified with a subgroup of

(O/b)n+1. Then using that O is quadratic over Z, we obtain

Gb/(m ·Gb) ∼=O Gb[m] ⊂ ((O/b)[m])n+1,

so that Gb/(m ·Gb) has order dividing m2n+2.

We conclude that for every nonzero ideal b of O dividing a and for every m ∈ Z≥1 we

have #Gb/mGb ≤ m2n+2. At last, one easily checks that

#

(
lim←−
b

Gb/mGb

)
≤ m2n+2,

and that

lim←−
b

Gb/mGb
∼=O G/mG,

where b runs over all nonzero ideals of O dividing a. Hence we have

#(G/mG) ≤ m2n+2,

as desired.

Proposition 3.20. Let a be a Steinitz ideal of O. Then the following statements hold.
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(a) The map κa, defined above Lemma 3.19, is Gal(K(E[a])/K)-linear, and its image

generates HomO

(
U : a

Cyca(U)
, E[a]

)
as an Ô/a-module.

(b) The image of κa is open in HomO

(
U : a

Cyca(U)
, E[a]

)
.

Proof. Let a be a Steinitz ideal, and for simplicity, write G = Gal(K(U : a)/K(E[a])),

and H = HomO

(
U : a

Cyca(U)
, E[a]

)
. Moreover, we write κ for κa. Let G′ be the Ô/a-module

generated by κ(G) inside H . We first prove the second statement of (a), namely that G′ = H .

First, as G is compact, the subset κ(G) is compact in H . As Ô is of rank 2 over Ẑ as a

module, we have Ô = Ẑ · 1 + Ẑ · α for some α ∈ Ô. Moreover, since κ(G) is a Ẑ-module,

we have

G′ = κ(G) + κ(G) · α

as a Ẑ-module. Then, as κ(G) is compact and H is Hausdorff, the submodule G′ of H is

closed.

For σ ∈ G, the kernel ker(κ(σ)) is equal to

(U : a)〈σ〉

Cyca(U)
,

where (U : a)〈σ〉 is the group of fixed points of U : a under the subgroup 〈σ〉 of G generated

by σ. Hence, we have

⋂
f∈κ(G)

ker f =
(U : a)G

Cyca(U)
=

Cyca(U)

Cyca(U)
= 0,

so that a fortiori ⋂
f∈G′

ker f = 0.

We will show that G′ maps surjectively to HomO(M,E[a]) for all finiteO-submodules M of
U : a

Cyca(U)
.
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To this end, let M be a finite O-submodule of U : a
Cyca(U)

. Let

ϕ : G′ −→ HomO(M,E[a])

be the canonical O-module morphism given by f 7→ f |M . As
⋂
f∈G′ ker f = 0 (see above),

one easily sees that ⋂
f∈I

ker f = 0,

where I = ϕ(G′). Now, let

ψ : M −→ HomO(I, E[a])

be given by x 7→ [f 7→ f(x)]. For x ∈ kerψ, we have

x ∈
⋂
f∈I

ker f = 0,

which implies that ψ is injective. Since finite modules over a Dedekind ring are direct sums

of cyclic modules and theO-moduleE[a] is isomorphic to (F/O)[a] (see Proposition 3.7(a)),

one easily sees that for finite O-modules X that are annihilated by a we have

#X = # HomO(X,E[a]).

Therefore, we have

#M ≤ # HomO(I, E[a]) = #I ≤ # HomO(M,E[a]) = #M,

that is, we have I = HomO(M,E[a]). Therefore, the map ϕ is surjective.

Now, observe that

H = lim←−
M

HomO(M,E[a]),

where M runs over all finite O-submodules of U : a
Cyca(U)

, so that surjectivity of ϕ implies that

G′ is dense in the profinite group H . Then the closedness of G′ in H implies that G′ = H ,

which finishes the proof of the second statement of (a).
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For the first statement of (a), write Γ = Gal(K(E[a])/K) and consider it as a subgroup

of (Ô/a)∗. Let x ∈ Γ, σ ∈ G, and τx ∈ Gal(K(U : a)/K) a lift of x. Then the action of Γ on

G is given by

x · σ = τxστ
−1
x .

Now, let Q ∈ U : a. Recall that

U : a =
⋃
b

U : b,

where b runs over all nonzero ideals of O dividing a. Let b be a nonzero ideal of O dividing

a such that Q ∈ U : b. Then for b ∈ b we have

bQ ∈ U ⊂ E(K),

so

bQ = τ−1
x (bQ) = bτ−1

x (Q).

Hence

Q− τ−1
x (Q) ∈ E[b] ⊂ E[a],

so that

σ(Q− τ−1
x (Q)) = Q− τ−1

x (Q).

It follows that

σ(Q)−Q = στ−1
x (Q)− τ−1

x (Q).

Thus

κ(x · σ)(Q+ Cyca(U)) = κ(τxστ
−1
x )(Q+ Cyca(U))

= τxστ
−1
x (Q)−Q

= τx(στ
−1
x (Q)− τ−1

x (Q))

= τx(σ(Q)−Q)

= x · κ(σ)(Q+ Cyca(U)),
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where the latter · is the natural action of Ô/a on H . As the above holds for all Q ∈ U : a, we

have

κ(x · σ) = x · κ(σ).

Hence κ is Γ-linear, as desired.

Now we prove (b). By (a) we have

(Ô/a) · κ(G) = H.

Let R be the subring of Ô/a generated by Γ. As κ is Γ-linear (see (a)), we have

R · κ(G) = κ(G).

Then, since R is a subring of Ô/a, the image κ(G) is in fact an R-submodule of H . We will

first show that R is open in Ô/a, so that (Ô/a)/R is finite.

For p a maximal ideal of O let ip be as defined before Theorem 3.13. Then let

i′p =

ip + 1 if NF/Q(p) = 2 and ip = 0,

ip otherwise.

As for almost all p of O we have ip = 0 (see definition of ip), we have for almost all p of O

that i′p = 0. Now, for ease of notation, let P be the set of maximal ideals of O dividing a.

Then using Theorem 3.13(b) one easily sees that the group

Γ′ =
∏
i′p=0

(
Op/p

vp(a)
)∗ × ∏

vp(a)≥i′p
i′p>0

(
1 + pi

′
p
(
Op/p

vp(a)
))
×

∏
vp(a)<i′p

{1}

is a subgroup of Γ, where each product runs over p ∈ P , and where we identified the auto-

morphism groups in Theorem 3.13(b) with their image in (Ô/a)∗.

Observe that

Ô/a =
∏
p∈P

(Op/p
vp(a))×

∏
p maximal

p-a

{0},
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where p∞ = {0}, and consider the canonical morphism

ϕ : Ô/a −→
∏

vp(a)≥i′p
i′p>0

(
Op/p

i′p

)
×

∏
vp(a)<i′p

Op/p
vp(a)

of profinite rings, where each product runs over p ∈ P , and observe that it is surjective.

Observe that vp(a) < i′p implies that i′p > 0. Now, as there are only finitely many p with

i′p > 0, the codomain of ϕ is finite, and therefore discrete. Hence ker(ϕ) = ϕ−1({0}) is an

open ideal of Ô/a. We will show that

ker(ϕ) ⊂ Γ′ − Γ′ = {γ − γ′ : γ, γ′ ∈ Γ′}.

Then, as R is a ring containing Γ′, we have ker(ϕ) ⊂ R. Therefore ker(ϕ) being open in

Ô/a implies that R is open in Ô/a, as desired.

Let a = (ap)p∈P ∈ ker(ϕ). We will show that for every p ∈ P there are γp and γ′p in

the p-th component of Γ′, such that

ap = γp − γ′p. (∗)

If we restrict ϕ to a component where p ∈ P and vp(a) < i′p, then we have the identity map.

Thus, for p ∈ P with vp(a) < i′p we have ap = 0. Hence γp = γ′p = 1 proves (∗) in this case.

Let p ∈ P with i′p > 0 and vp(a) ≥ i′p. Then we have

1 + ap ∈ 1 + pi
′
p(Op/p

vp(a)),

so taking γp = 1 + ap and γ′p = 1 proves (∗) in this case.

At last, let p ∈ P with i′p = 0. By the definition of i′p we have at least three residue

classes modulo p. Therefore, we may choose up ∈ Op/p
vp(a) such that up 6≡ 0 (mod p) and

up 6≡ ap (mod p). Then putting γp = up and γ′p = up − ap proves (∗) in this last case as well.

Hence, we have ker(ϕ) ⊂ Γ′ − Γ′, so R is open in Ô/a, as desired.
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Now, the image κ(G) is a closed subgroup of H , so Lemma 3.19(b) states that κ(G) is

finitely generated. Thus, there is a finite subset X ⊂ κ(G) such that 〈X〉 = κ(G). Note that

we also have R ·X = κ(G). As R is open in Ô/a, it is also closed. Hence, by compactness

of Ô/a, the ringR is compact, so thatR·X is compact. The latter implies thatR·X is closed,

thus R ·X = R ·X = κ(G). It follows that κ(G) is finitely generated as an R-module.

Then by finiteness of (Ô/a)/R the quotient

(Ô/a) · κ(G)

R · κ(G)
(∗∗)

is finite. By (a) we have (Ô/a) · κ(G) = H and R · κ(G) = κ(G). Thus, the finite quotient

(∗∗) is equal to H/κ(G), which shows that κ(G) is open in H , as desired.

Proof of Theorem 3.16. Let a be a Steinitz ideal of O. By Proposition 3.20(b) we have that

κa(Gal(K(U : a)/K(E[a]))) is open in HomO

(
U : a

Cyca(U)
, E[a]

)
.

Observe that for any O-submodule V of U : a containing E[a] the map

HomO

(
U : a

V
,E[a]

)
−→ AutO,V (U : a)

given by f 7→ [Q 7→ Q + f(Q)] is an isomorphism of topological groups. Hence, we have

the identification

AutO,U+E[a](U : a) = HomO

(
U : a

U + E[a]
, E[a]

)
.

Moreover, we have the inclusion

Ha = HomO

(
U : a

Cyca(U)
, E[a]

)
⊂ H ′a = HomO

(
U : a

U + E[a]
, E[a]

)
.

Now, by Proposition 3.18(c) the O-module Cyca(U)/E[a] is finitely generated of the same

O-rank as U . Therefore, the quotient H ′a/Ha is finite, so that Ha is open in H ′a. As im(κa)

is open in Ha, and Ha is open in H ′a, it follows that im(κa) is open in H ′a, which proves the

theorem.
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7. Galois representations on division points

Throughout this section, let K be a number field, let K be an algebraic closure of K, let E

be an elliptic curve over K withO = EndK(E) 6= Z a Dedekind domain, and let U ⊂ E(K)

be an O-submodule.

In this section we combine Theorem 3.13 and Theorem 3.16 from the previous two

sections to prove the following theorem.

Theorem 3.21. LetK be a number field, and letE,O, and U be as above. Let a be a Steinitz

ideal of O. Then Gal(K(U : a)/K) is an open subgroup of AutO,U(U : a).

Proof. Let a be a Steinitz ideal of O. By elementary module theory over O, we have the

following short exact sequence

0 −→ AutO,U+E[a](U : a) −→ AutO,U(U : a) −→ AutO,U [a](E[a]) −→ 0. (∗)

Moreover, we have the commutative diagram

0 // Gal(K(U : a)/K(E[a])) //

��

Gal(K(U : a)/K) //

��

Gal(K(E[a])/K) //

��

0

0 // AutO,U+E[a](U : a) // AutO,U(U : a) // AutO,U [a](E[a]) // 0

of profinite groups, where the vertical maps are the canonical injective maps. By Theorem

3.16 the left vertical map is open, and by Theorem 3.13(a) the right vertical map is open. It

follows that the middle map is open, which proves the theorem.

8. Existence of the density

Throughout this section, let K be a number field, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let W be an O-submodule of E(K), and let V be

132



3.8. EXISTENCE OF THE DENSITY

anO-submodule of W such that W/V ∼= O/I , where I is a nonzero ideal ofO. Let P be the

set of prime ideals of O dividing I , let U = V : I , and let L = K(U). Let F be the fraction

field of O, and let n = rkO(U) (see Definition 3.17).

Let ΩK be the set of maximal ideals of OK . Choosing a model of E over a finitely

generated subring of K, we may talk about the reduction of E modulo p for almost all max-

imal ideals p of OK , and denote it by Ep. For the definition of good, bad, ordinary, and

supersingular reduction we refer to [Sil94].

Let S be the subset of ΩK consisting of the primes where Ep is not defined, the primes

of bad reduction for E, the primes of supersingular reduction for E (see [Sil94]), and the

primes dividing I . By [Lan87, Theorem 12, §13.4] the set of supersingular primes has density

zero. As there are only finitely many primes for whichEp is not defined, finitely many primes

of bad reduction for E, and finitely many primes dividing I , the set S has density zero too.

Now, for every p ∈ ΩK \ S we have a reduction map

πp : W −→ Ep(κ(p))

of O-modules, where κ(p) is the residue field of OK at p. We define

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V },

for which we often simply write A.

In this section we prove the following theorem.

Theorem 3.22. Suppose that I is not divisible by any prime number p that splits completely

in O. Then the set A has a natural density equal to

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U : pi) : L]

(
1− 1

[L((U : pi), (W : pi+1)) : L(U : pi)]

)
.

The proof of this theorem, given at the end of this section, follows the same lines as the proof

of Theorem 2.10.
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Lemma 3.23. Let R be a commutative ring, and let ϕ : N −→ N ′ be a morphism of R-

modules. Let X be an R-submodule of N such that N/X ∼=R R/a, where a is an ideal of R.

Then ker(ϕ) ⊂ X if and only if ϕ(N)/ϕ(X) ∼=R R/a.

Proof. ‘Only if’: note that there is a canonical isomorphism

N/(X + ker(ϕ)) −→ ϕ(N)/ϕ(X)

induced by ϕ and the projection map ϕ(N) −→ ϕ(N)/ϕ(X). Hence, if ker(ϕ) ⊂ X , then

ϕ(N)/ϕ(X) ∼=R N/X ∼=R R/a.

‘If’: on the other hand, suppose that ϕ(N)/ϕ(X) ∼=R R/a. As R is commutative, any

surjective map R/a −→ R/a of R-modules is an isomorphism. It follows that the canonical

map

f : N/X −→ ϕ(N)/ϕ(X)

induced by ϕ and the projection map ϕ(N) −→ ϕ(N)/ϕ(X) is an isomorphism. Now, the

kernel of f , which is trivial, contains (ker(ϕ) +X)/X , so that ker(ϕ) +X = X . Hence, we

have ker(ϕ) ⊂ X , as desired.

Let ϕ : ΩL −→ ΩK be given by q 7→ q∩K, and let S ′ = ϕ−1(S). Then for every q ∈ ΩL \S ′

we have the reduction map πq : U −→ Eq(κ(q)), where κ(q) is the residue field of L at q.

Now, since W/V ∼=O O/I , we have IW ⊂ V , so that W ⊂ U . Hence, we may define

A′ = {q ∈ ΩL \ S ′ : ker(πq|W ) ⊂ V }.

Similarly to the case of S, also S ′ has density zero.

Lemma 3.24. Suppose that d(A′) exists. Then d(A) exists and we have

d(A) =
1

[L : K]
d(A′).
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Proof. First, note that for all p ∈ ΩK \ S and q ∈ ΩL \ S ′ dividing p, we have p ∈ A if and

only if q ∈ A′.

Now, let p ∈ A, and let q ∈ ΩL \ S ′ be a prime dividing p. We will show that p splits

completely in L.

As p is of ordinary reduction, the reduction Ep of E modulo p has endomorphism ring

O. Moreover, by [Len96, Theorem 1] we have

N = Ep(κ(p)) ∼=O O/(π − 1),

where π is the Frobenius endomorphism of Ep. As O is Dedekind, every submodule of the

cyclic module N is again cyclic. Therefore πp(W ) and πp(V ) are cyclic. Now, since p ∈ A,

we have ker(πp) ⊂ V , so Lemma 3.23 implies that

πp(W )/πp(V ) ∼=O O/I.

Hence, by cyclicity πp(V ) = Iπp(W ), so that πp(V ) ⊂ IN . Let M = Ep(κ(p)) where κ(p)

is an algebraic closure of the residue field κ(p). By Proposition 3.3(a) we have

πp(V ) :M I ⊂ N +M [I].

Moreover, since N ∼=O O/(π− 1), we have (π− 1) ⊂ I . Then O/(p− 1) maps surjectively

to O/I , so that M [I] ⊂ N . It follows that πp(V ) :M I ⊂ N . We conclude that p splits

completely in L.

Thus, for x ∈ R≥1 we have

#{q ∈ ΩL : q ∈ A′ ∧ NL/Q(q) ≤ x} = [L : K] ·#{p ∈ ΩK : p ∈ A ∧ NK/Q(p) ≤ x}.
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Hence, we have

d(A′) = lim
x→∞

#{q ∈ ΩL : q ∈ A′ and NL/Q(q) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= lim
x→∞

[L : K]#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

.

As

lim
x→∞

#{q ∈ ΩL : NL/Q(q) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= 1,

we have

d(A′) = [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= [L : K] d(A).

It follows that d(A) exists and that d(A) = 1
[L:K]

d(A′).

Lemma 3.25. We have A′ = {q ∈ ΩL \ S ′ : πq(W ) = πq(U)}.

Proof. Let q ∈ ΩL \S ′, and recall that S ′ has density zero. As q is of ordinary reduction, the

reduction Eq of E modulo q has endomorphism ring O. Moreover, by [Len96, Theorem 1]

we have

N = Eq(κ(q)) ∼=O O/(π − 1),

where π is the Frobenius endomorphism of Eq. Since O is Dedekind, every submodule of

the cyclic module N is again cyclic.

By Proposition 3.3(b) we have I · U = V , and by O-linearity of πq we have

πq(I · U) = I · πq(U).
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Therefore

πq(U)/πq(V ) = πq(U)/(Iπq(U)).

On the other hand E[I] ⊂ U and Eq[I] ⊂ πq(U) ⊂ N , so that the cyclicity of N implies that

πq(U)/πq(V ) ∼=O O/I.

It follows that πq(W ) = πq(U) if and only if πq(W )/πq(V ) ∼=O O/I . By Lemma 3.23, the

latter holds if and only if ker(W −→ E(κ(q))) ⊂ V .

Proof of Theorem 3.22. As W ⊂ U , we have for every p ∈ P and i ∈ Z≥0 that

W : pi ⊂ U : pi.

Let M = L(V : I∞) = L(W : I∞) = L(U : I∞) and note that

M = L(U : p∞ : p ∈ P).

For p ∈ P with residue characteristic p, the finite subfields of L(U : p∞) have p-power de-

gree over L. Hence, since I is not divisible by two distinct primes having the same residue

characteristic, we have for distinct p and q in P that

L(U : p∞) ∩ L(U : q∞) = L.

It follows that G = Gal(M/L) decomposes as a product over p ∈ P of the Galois groups

Gp = Gal(L(U : p∞)/L), that is, we have G =
∏

p∈P Gp. Now, for all p ∈ P and i ∈ Z≥0 let

Gp,i = Gal(M/L(U : pi)),

let

Hp,i = Gal(M/L((U : pi), (W : pi+1))) ⊂ Gp,i,
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and note that we have

· · · ⊂ Gp,i+1 ⊂ Hp,i ⊂ Gp,i ⊂ · · ·

by the above. Define

Cp,i = Gp,i \Hp,i,

and

Cp =
∞⋃
i=0

Cp,i.

One easily sees that Cp is a disjoint union of sets Cp,i. At last, define

C =
⋂
p∈P

Cp.

To prove that C is closed under conjugation in G, open in G, and that λ(∂C) = 0,

where λ is the Haar measure on G, one easily imitates the Galois theoretic proofs of lemma’s

2.14, and 2.15.

The rest of the proof is an imitation of the proof of Theorem 2.10. One uses Lemma

3.25 to show that d(A′) = λ(C). Then by Lemma 3.24 and the decomposition

G =
∏
p∈P

Gal(L(U : p∞)/L),

one finds

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U : pi) : L]

(
1− 1

[L((U : pi), (W : pi+1)) : L(U : pi)]

)
,

as desired.

9. Rationality of the density

Throughout this section, let K be a number field, and let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain. Let W be an O-submodule of E(K), and let V be
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an O-submodule of W such that W/V ∼= O/I where I is a nonzero ideal of O. Let P be the

set of prime ideals of O dividing I , let U = V : I , and let L = K(U). Let F be the fraction

field of O, and let n = rkO(U) (see Definition 3.17). Write N for the field norm NF/Q.

In this section we prove the following theorem.

Theorem 3.26. Suppose that I is not divisible by any prime number p that splits completely

in O. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

AutO,U : pjp (U : p∞) ⊂ Gal(L(U : p∞)/L).

Then the density d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U : pjp ):L]
· N(p)n(N(p)−1)

N(p)n+1−1
+
∑jp−1

i=0

(
1

[L(U : pi):L]
− 1

[L(U : pi,W : pi+1):L]

)]
.

We remark that (jp)p∈P , as in the theorem above, exist by Theorem 3.21.

Lemma 3.27. Let p ∈ P , and let i ∈ Z≥0. Then the following hold.

(a) The degree [L(U : pi+1) : L(U : pi)] divides N(p)n+1, and if i ≥ jp, it is equal to

N(p)n+1.

(b) The degree [L(U : pi,W : pi+1) : L(U : pi)] divides N(p), and if i ≥ jp, it is equal to

N(p).

Proof. Write X = U : pi+1. By Proposition 3.3(b) we have pX = U : pi. Then the inclusions

E[p] ⊂ U ⊂ pX imply that the morphism

f : AutO,pX(X) −→ HomO(X/pX,E[p])

of groups given by σ 7→ [x+pX 7→ σ(x)−x] is an isomorphism. AsX is a finitely generated

O-module of rank n whose torsion submodule is cyclic and contains E[p], we have

X ∼=O M ⊕ (O/b),
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where b is an ideal of O divisible by p and M is a finitely generated projective O-module of

rank n. It follows that

X/pX ∼=O (O/p)n+1.

Since E[p] ∼=O O/p and #(O/p) = N(p), the group AutO,pX(X) has order N(p)n+1.

Now, recall that we have an injective morphism

ϕ : Gal(L(X)/L(pX)) −→ AutO,pX(X)

of groups, implying that [L(X) : L(pX)] divides N(p)n+1. Moreover, if i ∈ Z≥jp , then one

easily checks that ϕ is an isomorphism. The latter shows that

[L(X) : L(pX)] = N(p)n+1,

which proves (a).

To prove (b), write

Y = W : pi+1,

and observe that Gal(L(pX, Y )/L(pX)) maps injectively to AutO,pX(Y + pX). One easily

checks that

AutO,pX(Y + pX) −→ HomO

(
Y + pX

pX
,E[p]

)
sending σ 7→ [x+ pX 7→ σ(x)− x] is an isomorphism, and that

Y + pX

pX
∼=O

Y

Y ∩ pX

holds. Therefore, for the first statement of (b) it suffices to show HomO

(
Y+pX
pX

, E[p]
)

has

order dividing N(p). We will show that the order of Y/(Y ∩ pX) equals N(p), which finishes

the proof of the first statement of (b).

To this end, recall that U = V : I , so that I · U = V . We claim that

Y/(V : pi+1) ∼=O O/I, (∗)
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and prove it as follows.

As Y is a finitely generatedO-module of rank n whose torsion submodule is cyclic and

contains E[pi+1], we have

Y ∼=O N ⊕ (O/c),

where c is an ideal of O divisible by pi+1 and N is a finitely generated projective O-module

of rank n. It follows that
Y

pi+1Y
∼=O (O/pi+1)n+1.

By Proposition 3.3(b) we have pi+1Y = W , so that the index (Y : W ) of W in Y equals

N(pi+1)n+1. Similarly, one shows that

(
(V : pi+1) : V

)
= N(pi+1)n+1.

Now, observe that

(Y : V ) = (Y : W ) · (W : V )

and

(Y : V ) =
(
Y : (V : pi+1)

)
·
(
(V : pi+1) : V

)
,

from which it follows that

(Y : (V : pi+1)) = (W : V ) = N(I).

Moreover, the annihilator of Y/(V : pi+1) is equal to I . Indeed, from I · W ⊂ V we see

I · Y ⊂ V : pi+1. Conversely, for x ∈ O with

x ·
(

Y

V : pi+1

)
= 0,

we have

x · Y ⊂ V : pi+1.
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Multiplying the latter by pi+1 and using Proposition 3.3(b) we see that x ·W ⊂ V , which

implies that x ∈ I .

Thus, we have that Y/(V : pi+1) has order N(I) and its O-annihilator equals I . As up

to isomorphism there is only one O-module of order N(I) and with O-annihilator I , namely

O/I , this finishes the proof of the claim (∗).

Observe that we have the following inclusions

V : pi+1 ⊂ pY +
(
V : pi+1

)
⊂ Y ∩ pX ⊂ Y.

Then by (∗) we have that Y/(Y ∩pX) is cyclic. Moreover, as Y
pY+(V : pi+1)

is annihilated by p,

it follows that Y/(Y ∩ pX) is also annihilated by p. Therefore Y/(Y ∩ pX) is a vector space

of dimension 0 or 1 over O/p, so that Y/(Y ∩ pX) has order 1 or N(p).

Suppose that Y/(Y ∩ pX) has order 1. Then by definition of Y and X we have

W : pi+1 ⊂ p(U : pi+1).

Multiplying by pi+1 and using Proposition 3.3(b) we find

W ⊂ pU = p(V : I).

Writing I = Jp for some ideal J of O, we obtain

W ⊂ p((V : J) : p) = V : J,

so that JW ⊂ V . However, the latter means J · (W/V ) = 0, which is a contradiction, since

W/V has annihilator I and J strictly contains I . It follows that Y/(Y ∩ pX) has order N(p),

as desired. We conclude that

[L(pX, Y ) : L(pX)] | N(p).

Now, note that we have the equality

#(X/pX) = #

(
Y + pX

pX

)
·#
(

X

Y + pX

)
,
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where by the above we have

#(X/pX) = N(p)n+1 and #

(
Y + pX

pX

)
= N(p),

so that

#

(
X

Y + pX

)
= N(p)n.

Then

[L(X) : L(pX, Y )] | N(p)n.

Suppose that i ∈ Z≥jp . Then by (a) we have [L(X) : L(pX)] = N(p)n+1. As [L(X) :

L(pX, Y )] divides N(p)n and [L(pX, Y ) : L(pX)] divides N(p), it follows that [L(X) :

L(pX, Y )] = N(p)n and [L(pX, Y ) : L(pX)] = N(p).

Proof of Theorem 3.26. This is completely analogous to the proof of Theorem 2.21, using

Theorem 3.22 instead of Theorem 2.10 and Lemma 3.27 instead of Lemma 2.23.

10. Main theorem

Let K be a number field, and let E be an elliptic curve over K with O = EndK(E) 6= Z a

Dedekind domain. Let W ⊂ E(K) be anO-submodule, and let V ⊂ W be anO-submodule

such that W/V ∼=O O/I where I is a nonzero ideal of O. Let U = V : I , and let L = K(U).

Let n = rkO(W ) (see Definition 3.17), and let P be the set of prime ideals of O dividing I .

Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P we have

AutO,U : pjp (U : p∞) ⊂ Gal(L(U : p∞)/L).

We remark that such jp exist by Theorem 3.21.

Theorem 3.28. Suppose that I is not divisible by any prime number p that splits completely

in O. Let A(W,V ) be defined as above Theorem 3.22. Then the following statements hold.
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(a) The density d(A(W,V )) exists and equals a positive rational number in the interval

[
1

[L:K]
·
∏

p∈P
N(p)−1

N(p)n(jp−1)+jp (N(p)n+1−1)
,
∏

p∈P

(
1− N(p)n−1

N(p)(n+1)jp ·(N(p)n+1−1)

)]
whose denominator divides

[L : K]
∏
p∈P

(
N(p)(n+1)jp · N(p)n+1 − 1

N(p)− 1

)
.

(b) d(A(W,V )) = 1 if and only if V = W or W is finite.

Observe that Theorem 13 in Section 3.1 follows from the above theorem.

Proof. By Theorem 3.26 we have that d(A(W,V )) exists and is equal to

1
[L:K]

∏
p∈P

[
1

[L(U : pjp ):L]
· N(p)n(N(p)−1)

N(p)n+1−1
+
∑jp−1

i=0

(
1

[L(U : pi):L]
− 1

[L(U : pi,W : pi+1):L]

)]
,

which is rational.

Now, let p ∈ P . By Lemma 3.27 we have for all i ∈ Z≥0 that

[L(U : pi+1) : L(U : pi)] | N(p)n+1

and

[L(U : pi,W : pi+1) : L(U : pi)] | N(p).

To ease the notation, for i ∈ Z≥0 write

Ti =
1

[L(U : pi) : L]
− 1

[L(U : pi,W : pi+1) : L]
,

and note that

Ti =
1

[L(U : pi) : L]

(
1− 1

[L(U : pi,W : pi+1) : L(U : pi)]

)
.
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Hence [L(U : pi,W : pi+1) : L(U : pi)] = 1 implies Ti = 0. Using Lemma 3.27 we obtain for

p ∈ P that
1

[L(U : pjp) : L]
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+

jp−1∑
i=0

Ti

is greater than or equal to

1

N(p)(n+1)jp
· N(p)n+1 − N(p)n

N(p)n+1 − 1
=

N(p)− 1

N(p)n(jp−1)+jp(N(p)n+1 − 1)
.

Thus, we have the lower bound

d(A(W,V )) ≥ 1

[L : K]
·
∏
p∈P

N(p)− 1

N(p)n(jp−1)+jp(N(p)n+1 − 1)
.

For the upper bound, we have for i ∈ Z≥0

L(U : pi,W : pi+1) ⊂ L(U : pi+1),

so that
jp−1∑
i=0

Ti ≤ 1− 1

[L(U : pjp) : L]
.

Then for p ∈ P , write dp = [L(U : pjp) : L] and note that we have

1

dp
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+

jp−1∑
i=0

Ti ≤
1

dp
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+ 1− 1

dp

≤ 1− 1

N(p)(n+1)jp

(
1− N(p)n(N(p)− 1)

N(p)n+1 − 1

)
= 1− N(p)n − 1

N(p)(n+1)jp · (N(p)n+1 − 1)
,

where we use that dp = [L(U : pjp) : L] ≤ N(p)(n+1)jp (see Lemma 3.27). Thus, as [L : K] ≥

1, an upper bound for d(A(W,V )) is∏
p∈P

(
1− N(p)n − 1

N(p)(n+1)jp · (N(p)n+1 − 1)

)
.
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Now, we want to find x ∈ Z≥1 such that x · d(A(W,V )) ∈ Z. By Lemma 3.27 we have

N(p)(n+1)jp · [L(U : pjp) : L]−1 ∈ Z.

As for i ∈ {0, . . . , jp − 1} the fields L(U : pi) and L(U : pi,W : pi+1) are contained in

L(U : pjp), we have

N(p)(n+1)jp ·
jp−1∑
i=0

Ti ∈ Z.

It follows that the denominator of d(A(W,V )) divides

[L : K]
∏
p∈P

(
N(p)(n+1)jp · N(p)n+1 − 1

N(p)− 1

)
,

which finishes the proof of (a).

From the lower bound, we see that d(A(W,V )) is nonzero. From the upper bound, we

see that d(A(W,V )) = 1 only if I = O or n = 0, that is, only if V = W or W is finite. On

the other hand, if V = W or W is finite, we easily see that d(A(W,V )) = 1, which finishes

the proof of (b).
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