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CHAPTER 2

Reductions of multiplicative subgroups of

number fields

1. Introduction

Let K be a number field, and let W be a finitely generated subgroup of K∗. Let OK be the

ring of integers of K. For a maximal ideal p of OK , let vp : K −→ Z ∪ {∞} be the p-adic

valuation function, let OK,p be the localization of OK at p, and let κ(p) be the residue field

of OK at p. Let ΩK be the set of maximal ideals of OK , let

S = {p ∈ ΩK : there is w ∈ W such that vp(w) 6= 0},

and note that S is finite. Then for p ∈ ΩK \ S we have W ⊂ O∗K,p. Thus, the canonical ring

morphism OK,p −→ κ(p) induces a group morphism πp : W −→ κ(p)∗.

Let V be a subgroup of W such that W/V is finite cyclic. Note that for any p ∈ ΩK \S

the kernel of πp is such a subgroup of W . Let

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V }.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

For any subset N of ΩK we write d(N) for its natural density, if it exists. In this chapter we

show that the set A(W,V ) has a natural density d(A(W,V )) in ΩK , and prove properties of

this density of both qualitative and quantitative nature.

Theorem 6 (Main theorem).

(a) The set A(W,V ) has a natural density d(A(W,V )) in ΩK .

(b) The density d(A(W,V )) is rational.

(c) As a function of K, W and V , the density d(A(W,V )) is computable.

(d) Let V ′ be a subgroup of W containing V , and suppose that W is infinite. Then

d(A(W,V )) = d(A(W,V ′)) if and only if V = V ′.

(e) The density d(A(W,V )) is positive.

(f) We have d(A(W,V )) = 1 if and only if V = W or W is finite.

See Theorem 2.24 and Theorem 2.25 in Section 2.7 for the proof.

Suppose x and y are positive integers with the property that for all positive integers n

the set of prime numbers dividing xn−1 is equal to the set of prime numbers dividing yn−1.

Pál Erdös asked, at the 1988 number theory conference in Banff, whether it follows that x is

equal to y. This question was labeled the support problem, and was answered affirmatively

by C. Corrales-Rodrigáñez and R. Schoof in [CRS97], who, in the same paper, formulated

and proved an elliptic analogue of the support problem. One can find many generalisations

and variations of the support problem in the literature, see [Kha03, Proposition 3], [BGK05],

[Lar02], [Wes03], [Bar10], [Per09], [Per12]. As an application of Theorem 6(e), we give an

alternative solution to the following two generalisations of the support problem.

Throughout this chapter, we use the phrase almost all as a substitute for all but finitely

many.
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2.1. INTRODUCTION

Theorem 7. Let K be a number field, and let X and Y be finitely generated subgroups of

K∗.

(a) Let S ′ = {p ∈ ΩK : ∃x ∈ X ∪ Y : vp(x) 6= 0}. Then Y ⊂ X if and only if for almost

all p ∈ ΩK \ S ′ we have Y (mod p) ⊂ X (mod p).

(b) Suppose that Y ⊂ X . Let l be a prime number. Let

S ′ = {p ∈ ΩK : ∃x ∈ X : vp(x) 6= 0}.

Then

(X : Y ) <∞ and l - (X : Y )

if and only if

for almost all p ∈ ΩK \ S ′ we have l - (X (mod p) : Y (mod p)).

See Theorem 2.27 and Theorem 2.28 in Section 2.8 for the proof.

Let K be a number field, let W be a finitely generated subgroup of K∗, and let V

be a subgroup of W such that W/V is finite cyclic. The existence of the natural density

of A(W,V ) is obtained by a version of Chebotarev’s density theorem for infinite algebraic

extensions of a number field. Using this theorem, we also obtain a formula for d(A(W,V ))

that is, however, a finite product of infinite sums. In order to obtain a closed-form formula for

d(A(W,V )) we investigate the radical extensions of K occurring in this formula. We refer

to Section 2.3 for the infinite version of Chebotarev’s density theorem and to Section 2.4 for

the proof of the existence and formula of d(A(W,V )).

Let s be a Steinitz number, that is, let s =
∏

p p
e(p), where p runs over all prime numbers

and e(p) ∈ Z≥0 ∪ {∞}. Let K be an algebraic closure of K and define

W 1/s = {x ∈ K∗ : ∃d ∈ Z≥1 : d|s and xd ∈ W}.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

The field K(W 1/s) is Galois over K and any field automorphism of K(W 1/s) over K is

determined by its action on W 1/s, that is, we can identify Gal(K(W 1/s)/K) with a subgroup

of the group AutW (W 1/s) of automorphisms of W 1/s that are the identity on W . By abuse of

notation we denote this subgroup also by Gal(K(W 1/s)/K). We remark that AutW (W 1/s)

is the profinite group

lim←−
d

AutW (W 1/d)

where d runs over all positive integers dividing s. As Gal(K(W 1/s)/K) is compact and

AutW (W 1/s) is Hausdorff, the subgroup Gal(K(W 1/s)/K) of AutW (W 1/s) is closed.

For a prime p let vp be the p-adic valuation function. Moreover, for a group G write

exp(G) for its exponent.

Theorem 8. Let K be a number field, let W be a finitely generated subgroup of K∗, and let

s be a Steinitz number.

(a) Then Gal(K(W 1/s)/K) is an open subgroup of AutW (W 1/s).

(b) Suppose that s = p∞, where p is prime. Let

F =

K(µ4) if p = 2,

K(µp) otherwise.

Then exp((W 1/s ∩ F ∗)/W ) is an integer, and moreover, for

j = vp(exp((W 1/s ∩ F ∗)/W ))

and for all i ∈ Z≥j we have

AutW 1/pi (W
1/s) ⊂ Gal(K(W 1/s)/K).
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2.1. INTRODUCTION

See Section 2.5 for the proof of this theorem.

By using elementary group theory, we are able to calculate the order of an automor-

phism group of the form AutW 1/x′ (W 1/x), where W is as in the theorem above, x′, x ∈ Z≥1

and x′ divides x. As a result, we obtain the following closed-form expression for the density

d(A(W,V )).

Theorem 9. Let K be a number field, let W be a finitely generated subgroup of K∗, and let

V be a subgroup of W such that W/V is finite cyclic. Let m = (W : V ), let U = V 1/m, and

let L = K(U). Let n = rk(W ) (see Definition 1.2), and let P be the set of prime divisors of

m. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
.

For the sake of showcasing, we remark that in certain cases the above lengthy formula breaks

down to a rather simple formula, presented by the following corollary.

Corollary. Suppose that for every p ∈ P we have

Gal(L(U1/p∞)/L) = AutU(U1/p∞).

Then

d(A(W,V )) =
1

[L : K]

∏
p∈P

pn(p− 1)

pn+1 − 1
.

In addition, suppose that [L : K] = φ(m)mn−1, where φ is Euler’s totient function. Then we

have

d(A(W,V )) =
1

mn
·
∏
p∈P

pn+1

pn+1 − 1
.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

See Section 2.6 for the proof of Theorem 9 and its corollary.

At last, using the closed-form formula given in Theorem 9, we are able to make the

following quantitative observations about d(A(W,V )).

Theorem 10. LetK,W , V ,m, U , L, n, P , and (jp)p∈P be as in Theorem 9. Then the density

d(A(W,V )) exists and equals a positive rational number in the interval[
1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)
,
∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)]

whose denominator divides mn ·
∏

p∈P
(
p(n+1)jp−1 · (pn+1 − 1)

)
.

See Section 2.7 for the proof of this theorem.

The present chapter is organised as follows.

In Section 2.2 we recall the necessary definitions and lemmas of measure theory. In

Section 2.3 we state the infinite version of Chebotarev’s density theorem. In Section 2.4 we

prove the existence of the density of Theorem 6 and give a formula for it. In Section 2.5 we

prove Theorem 8, and in Section 2.6 we prove Theorem 9. In Section 2.7 we prove Theorem

10 and the remaining parts of Theorem 6. At last, Section 2.8 contains the proof of Theorem

7.

2. Haar measure on profinite groups

In this section we briefly recall the theory of Haar measures on profinite groups. For a more

elaborate treatment of the subject see [HR79], [FJ08] or [RV99].

Definition 2.1. LetX be a set, and let Σ be a σ-algebra overX . A measure on Σ is a function

λ : Σ −→ R ∪ {∞} that satisfies:
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2.2. HAAR MEASURE ON PROFINITE GROUPS

(a) For all E ∈ Σ we have λ(E) ≥ 0;

(b) We have λ(∅) = 0;

(c) For all countable collections {Ei}i∈I of pairwise disjoint sets in Σ we have

λ

(∐
i∈I

Ei

)
=
∑
i∈I

λ(Ei).

Proposition 2.2. Let X be a set, let Σ be a σ-algebra on X , and let λ be a measure on Σ.

Then the following statements hold.

(a) For E1, E2 ∈ Σ with E1 ⊂ E2, we have λ(E1) ≤ λ(E2).

(b) For E1, E2 ∈ Σ with E2 ⊂ E1 and λ(E2) <∞, we have λ(E1 \E2) = λ(E1)−λ(E2).

(c) For any countable collection {Ei}i∈I of sets in Σ we have

λ

(⋃
i∈I

Ei

)
≤
∑
i∈I

λ(Ei).

Proof. See [Bau01, §1.3].

Let G be a profinite group. The σ-algebra B(G) generated by all open sets of G is called the

Borel algebra of G. An element of B(G) is called a Borel set of G.

Theorem 2.3. Let G be a profinite group. Then there is a unique measure λ on B(G) satis-

fying:

(a) For every g ∈ G and E ∈ B(G) we have λ(gE) = λ(E);

(b) λ(G) = 1.

Proof. See [FJ08, Theorem 18.2.1].
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

Definition 2.4. Let G be a profinite group. We call the unique measure on B(G) of Theorem

2.3 the Haar measure on G and denote it by λG, or just λ when the group G is understood.

Elements of B(G) are called measurable under the Haar measure or Haar measurable.

Lemma 2.5. Let G be a profinite group. Then the following statements hold.

(a) Let H ⊂ G be a Haar measurable subgroup of finite index. Then

λ(H) = 1/[G : H].

(b) Let H ⊂ G be a Haar measurable subgroup that is not of finite index in G. Then

λ(H) = 0.

Proof. See [FJ08, §18.1].

Lemma 2.6. Let π : G −→ H be a surjective morphism of profinite groups. Then for each

E ∈ B(H) we have π−1(E) ∈ B(G) and λH(E) = λG(π−1(E)).

Proof. See [FJ08, Proposition 18.2.2].

Lemma 2.7. Let n ∈ Z≥1. LetG1, . . . , Gn be profinite groups with Haar measures λ1, . . . , λn,

respectively. Let G =
∏n

i=1 Gi. For i = 1, . . . , n let Ei ∈ B(Gi). Then λG(E1× · · ·×En) =

λ1(E1) · · ·λn(En).

Proof. See [FJ08, Proposition 18.4.2].

3. Chebotarev density theorem for infinite extensions

In this section we briefly recall the theory of infinite Galois extensions of number fields to

state the Chebotarev density theorem for an infinite Galois extension of a number field. For

details and proofs we refer to [Ser89] or [Neu99].
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2.3. CHEBOTAREV DENSITY THEOREM FOR INFINITE EXTENSIONS

Let K be an algebraic extension of Q. We denote the set of maximal ideals of OK
by ΩK . For p ∈ ΩK we denote the residue field of OK at p by κ(p). Now, suppose K is a

number field, and let L be an infinite Galois extension of K with Galois group G. Let p be a

maximal ideal of OK and q a maximal ideal of OL extending p, that is, q ∩K = p. Then the

decomposition group

D(q/p) = {σ ∈ G : σ(q) = q}

of q over p is a closed subgroup of G. There is a canonical morphism of topological groups

r : D(q/p) −→ Gal(κ(q)/κ(p)),

which is surjective. The kernel of r, called the inertia group I(q/p) of q over p, is trivial if

and only if p is unramified in L.

Suppose that p is unramified. Then r is an isomorphism of topological groups. Note

that Gal(κ(q)/κ(p)) is topologically generated by the Frobenius morphism

Frobp : κ(q) −→ κ(q)

sending x ∈ κ(q) to x#κ(p). We denote the inverse image of Frobp under r by Frob(q/p)

and call it the Frobenius element of q over p in G. The Frobenius elements of the different

maximal ideals extending p form a conjugacy class in G. We write (p, L/K) for the conju-

gacy class consisting of the Frobenius elements Frob(q/p) where q runs over all primes of L

extending p.

Let C be a subset of G. Let C be the closure of C in G, and let Co be the interior of C

inG. Then the boundary ∂C of C is equal to C \Co. Equivalently, we have ∂C = C∩G \ C.

Let P be a subset of ΩK . Recall that the natural density d(P ) of P in ΩK is equal to

lim
x→∞

#{p ∈ P : #κ(p) ≤ x}
#{p ∈ ΩK : #κ(p) ≤ x}

.

We have the following version of the Chebotarev density theorem that can also handle infinite

Galois extensions of number fields.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

Theorem 2.8. Let K be a number field, and let L be a Galois extension of K that is unram-

ified outside a finite set of primes S of K. Let C be a Haar measurable subset of Gal(L/K)

that is closed under conjugation. Assume that the boundary ∂C has Haar measure 0. Then

the set

{p ∈ ΩK \ S : (p, L/K) ⊂ C}

has a natural density in ΩK that is equal to λ(C).

Proof. See [Ser89, Corollary 2, page I-9].

4. Existence of the density

Definition 2.9. Let W be a group, and let V be a subgroup of W . Then V is called cofinite

if V is of finite index in W . Moreover V is called cocyclic if W/V is a cyclic group.

Let K be a field, and let K be an algebraic closure of K. Let W be a subgroup of K∗, and let

s be a Steinitz number not divisible by charK. Define

W 1/s = {x ∈ K∗ : ∃n ∈ Z≥1 : n | s and xn ∈ W}.

Observe that W 1/s =
⋃
nW

1/n, where n runs over all positive integers dividing s. As usual,

we write µs for the group of s-th roots of unity {1}1/s.

Now, let K be a number field, and for p ∈ ΩK let vp be the p-adic valuation function.

Let W be a finitely generated subgroup of K∗, and let

S = {p ∈ ΩK : ∃w ∈ W : vp(w) 6= 0},

and remark that S is finite. For every p ∈ ΩK \ S the canonical projection OK −→ κ(p)

induces a group morphism πp : W −→ κ(p)∗.
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2.4. EXISTENCE OF THE DENSITY

Let V be a cocyclic cofinite subgroup of W of index m, and write P(m) for the set of

prime divisors of m. Moreover, let

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V }.

To ease notation we will write P for P(m) and A for A(W,V ) throughout this section.

In this section we prove the following theorem.

Theorem 2.10. Let m = (W : V ), let U = V 1/m, and let L = K(U). Then A has a natural

density, which equals

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

Lemma 2.11. Let W be a group, and let V be a cofinite subgroup of W . Let

π : W −→ W ′

be a group morphism. Then kerπ ⊂ V if and only if (W : V ) = (π(W ) : π(V )).

Proof. Let N = ker π. Observe that π(V ) = π(V N), so that

π(W )/π(V ) ∼= (W/N)/(V N/N) ∼= W/V N

as sets. Hence, we have (π(W ) : π(V )) = (W : V N). It follows that

(π(W ) : π(V )) = (W : V )

if and only if V = V N . This is equivalent to V containing N .

Throughout the rest of this section let K, W , V , A, m, P , U , and L be as in Theorem 2.10.

Let ϕ : ΩL −→ ΩK be given by q 7→ q ∩K, and let

S ′ = ϕ−1(S) ∪ {q ∈ ΩL : m ∈ q}.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

Then for every q ∈ ΩL \ S ′ we have the reduction map πq : U −→ κ(q)∗, where κ(q) is the

residue field of L at q. Then we let A′ = A′(W,V ) = {q ∈ ΩL \ S ′ : ker(πq|W ) ⊂ V }.

Lemma 2.12. Suppose that d(A′) exists. Then d(A) exists and we have

d(A) =
1

[L : K]
d(A′).

Proof. First, note that for all q ∈ ΩL \ S ′ we have πq(W ) = πϕ(q)(W ), so that

ker(πq|W ) = ker(πϕ(q)|W ).

On the other hand, for p ∈ A and q ∈ ΩL \ S ′ dividing p, we have q ∈ A′. It follows that for

all p ∈ ΩK \ S and q ∈ ΩL \ S ′ dividing p, we have p ∈ A if and only if q ∈ A′.

Now, let p ∈ A, and let q ∈ ΩL \ S ′ be a prime dividing p. Then by Lemma 2.11 we

have (πp(W ) : πp(V )) = m, which implies that m divides #κ(p)∗ and

πp(V ) ⊂ κ(p)∗m.

It follows that p splits completely in K(V 1/m) = L. Thus, for x ∈ R≥1 we have

#{q ∈ ΩL : q ∈ A′ ∧ NL/Q(q) ≤ x} = [L : K]#{p ∈ ΩK : p ∈ A ∧ NK/Q(p) ≤ x}.

Hence we have

d(A′) = lim
x→∞

#{q ∈ ΩL : q ∈ A′ and NL/Q(q) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= lim
x→∞

[L : K]#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

.

As

lim
x→∞

#{q ∈ ΩL : NL/Q(q) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= 1,
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2.4. EXISTENCE OF THE DENSITY

we have

d(A′) = [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= [L : K] d(A).

It follows that d(A) exists and that d(A) = 1
[L:K]

d(A′).

Lemma 2.13. We have A′ = {q ∈ ΩL \ S ′ : πq(W ) = πq(U)}.

Proof. Let q ∈ ΩL \ S ′. Observe that V = Um, and that (πq(U) : πq(U
m)) divides m,

since κ(q)∗ is cyclic. Moreover, as U = V 1/m contains a primitive mth root of unity, it

follows that m divides #πq(U) and (πq(U) : πq(V )) = m. It follows that πq(U) = πq(W )

if and only if (πq(W ) : πq(V )) = m. On the other hand, we have by Lemma 2.11 that

(πq(W ) : πq(V )) = m if and only if ker(πq|W ) ⊂ V .

Let m∞ =
∏

p∈P p
∞. Let L be an algebraic closure of L, and write G for its Galois group

over L. Since W ⊂ U , we have for every p ∈ P the following tower

L ⊂ L(W 1/p) ⊂ L(U1/p) ⊂ L(U1/p,W 1/p2) ⊂ · · ·

· · · ⊂ L(U1/pi) ⊂ L(U1/pi ,W 1/pi+1

) ⊂ L(U1/pi+1

) ⊂ L(U1/pi+1

,W 1/pi+2

) ⊂ · · ·

· · · ⊂ L(U1/p∞) ⊂ L(U1/m∞) ⊂ L

of Galois extensions of L.

For all p ∈ P and i ∈ Z≥0 ∪ {∞} let

Gp,i = Gal(L/L(U1/pi)),

and for i ∈ Z≥0, let

Hp,i = Gal(L/L(U1/pi ,W 1/pi+1

)) ⊂ Gp,i.
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CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

Note that for all p ∈ P and i ∈ Z≥0 we have

Gp,∞ ⊂ · · · ⊂ Gp,i+1 ⊂ Hp,i ⊂ Gp,i ⊂ · · · ⊂ Gp,0

by the above. Moreover, define

Cp,i = Gp,i \Hp,i,

and

Cp =
∞⋃
i=0

Cp,i.

One easily sees that Cp is a disjoint union of sets Cp,i. At last, we define C =
⋂
p∈P Cp.

Lemma 2.14. The subset C of G is closed under conjugation and open in G.

Proof. As for all p ∈ P and for all i ∈ Z≥0, the sets Gp,i and Hp,i are normal subgroups of

G of finite index, it follows that Cp,i = Gp,i \Hp,i is closed under conjugation and open in G.

Thus C =
⋂
p∈P Cp is closed under conjugation and open in G.

Lemma 2.15. The boundary ∂C of C inG satisfies λ(∂C) = 0, where λ is the Haar measure

on G (see 2.4).

Proof. For p ∈ P and i ∈ Z≥0 let

Dp,i = Hp,i \Gp,i+1.

Then observe that G \ C contains the open set

D =
⋃
p,i

Dp,i

of G, where p runs over P and i runs over Z≥0. Hence ∂C ⊂ G \ (C ∪D).

Now, for σ ∈ G let Nσ be the Steinitz number
∏

p∈P p
σp with σp ∈ Z≥0 ∪ {∞} the

largest element such that σ ∈ Gp,i, where we order Z≥0 ∪ {∞} in the natural way, that is

σp = sup{i : σ ∈ Gp,i}.
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2.4. EXISTENCE OF THE DENSITY

Let σ ∈ G and suppose that Nσ is an integer. This implies that for every p ∈ P there

exists i ∈ Z≥0 such that σ ∈ Gp,i \Gp,i+1. Then one easily sees that either σ ∈ C or σ ∈ D.

Thus σ ∈ ∂C implies that Nσ is an infinite Steinitz number. As there are only finitely many

primes dividing m, it follows that ∂C ⊂
⋃
p∈P Gal(L/L(U1/p∞)). Since the field L(U1/p∞)

contains the infinite extension L(µp∞) of L, the former is also infinite over L. Therefore, the

group Gal(L/L(U1/p∞)) is of infinite index in G. Then by Lemma 2.5(b) the Haar measure

of Gal(L/L(U1/p∞)) is 0. Thus, by Proposition 2.2 the Haar measure of ∂C is 0.

Lemma 2.16. We have d(A′) = λG(C) (see text above Lemma 2.12 for the definition of A′).

Proof. Let q ∈ ΩL \ S ′. As ζm ∈ U , we have (πq(U) : πq(U
m)) = m. Moreover

Um ⊂ W ⊂ U,

so that (πq(U) : πq(W )) divides m. It follows that πq(U) = πq(W ) if and only if for all

p ∈ P there is i ∈ Z≥0 such that pi divides (κ(q)∗ : πq(U)) and pi+1 does not divide

(κ(q)∗ : πq(W )).

Let p ∈ P and i ∈ Z≥0, and note that q splits completely in L(U1/pi) if and only if

pi | (κ(q)∗ : πq(U)).

Similarly q does not split completely in L(W 1/pi+1
) if and only if

pi+1 - (κ(q)∗ : πq(W )).

Now, let M = L(U1/m∞), let G′ = Gal(M/L), and let C ′ be the image of C under

the canonical surjective map G −→ G′. Observe that there are only finitely many primes

ramifying in M . We will show that d(A′) = λG′(C
′). Then by Lemma 2.6 we have d(A′) =

λG(C), which finishes the proof.
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To this end, recall that q splits completely in an intermediate extension F of M/L if

and only if for any prime ideal Q of M dividing q we have Frob(Q/q)|F = id if and only if

(q,M/L)|F = {σ|F : σ ∈ (q,M/L)} = {id}.

Thus, we have πq(U) = πq(W ) if and only if for all p ∈ P there is i ∈ Z≥0 such that

(q,M/L)|L(U1/pi ) = {id} and (q,M/L)|L(U1/pi ,W 1/pi+1
) 6= {id}.

By Lemma 2.13 we have A′ = {q ∈ ΩL \ S ′ : πq(U) = πq(W )}. Hence, by the equivalences

that we just saw we have

A′ = {q ∈ ΩL \ S ′ : (q,M/L) ⊂ C ′}.

Then by Theorem 2.8 and Lemma 2.15 we have d(A′) = λG′(C
′).

Proof of Theorem 2.10. For p ∈ P let Gp = Gal(L(U1/p∞)/L), and for i ∈ Z≥0 let

Gp(i) = Gal(L(U1/p∞)/L(U1/pi)),

Hp(i) = Gal(L(U1/p∞)/L(U1/pi ,W 1/pi+1

))

and Cp(i) = Gp(i) \Hp(i).

Let p ∈ P and note that L contains the pth roots of unity. Hence, for every i ∈ Z≥0 the

field L(U1/pi) is of p-power degree over L. It follows that the fields L(U1/p∞) for p ∈ P are

linearly disjoint over L, so that the canonical morphism

ϕ : G −→
∏
p∈P

Gp

of profinite groups is surjective. One easily sees that

ϕ(C) =
∏
p∈P

∞∐
i=0

Cp(i),
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so that by Lemma 2.7 and Lemma 2.6 we have

λG(C) =
∏
p∈P

λGp

(
∞∐
i=0

Cp(i)

)
.

Using Definition 2.1, Proposition 2.2 and Lemma 2.5, we find

d(A′) = λG(C) =
∏
p∈P

∞∑
i=0

(
λGp(Gp(i))− λGp(Hp(i))

)
=

∏
p∈P

∞∑
i=0

(
1[

L(U1/pi) : L
] − 1[

L(U1/pi ,W 1/pi+1) : L
])

=
∏
p∈P

∞∑
i=0

1[
L(U1/pi) : L

](1− 1[
L(U1/pi ,W 1/pi+1) : L(U1/pi)

]).
The desired formula for d(A) now follows by applying Lemma 2.12.

5. Galois representations on radical groups

ForG a group andH a subgroup ofG, we write AutH(G) for the set of group automorphisms

of G that are the identity on H .

Let L be a field, let U be a subgroup of L∗, and let s be a Steinitz number that is

not divisible by charL. The field L(U1/s) over L is Galois and any field automorphism

of L(U1/s) is determined by its action on U1/s, that is, we can identify Gal(L(U1/s)/L)

with a subgroup of AutU(U1/s). By abuse of notation we denote this subgroup also by

Gal(L(U1/s)/L). If U is finitely generated, the group AutU(U1/s) is the profinite group

lim←−
d

AutU(U1/d),

where d runs over all positive integers dividing s. As Gal(L(U1/s)/L) is compact and

AutU(U1/s) is Hausdorff, the subgroup Gal(L(U1/s)/L) of AutU(U1/s) is closed.
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For L a number field, U a subgroup of L∗, and s a Steinitz number, we define

Sats(U) = U1/s ∩ L∗

and

Cycs(U) = U1/s ∩ L(µs)
∗.

In some cases, we expand our notation to Sats(U,L) and Cycs(U,L) for these groups, to

clarify the base field L in which we view U as a subset. When s is∞ =
∏

p p
∞ where p runs

over all prime numbers, we leave out the subscript s from the notation, which is consistent

with the notation of the previous chapter (see Section 1.2).

For a group G we write exp(G) for its exponent. Moreover, recall that for a prime

number p we write vp for the p-adic valuation function.

In this section we prove the following theorem.

Theorem 2.17. Let L be a number field, let U be a finitely generated subgroup of L∗, and let

s be a Steinitz number.

(a) Then there is d ∈ Z≥1 such that for every d′ ∈ Z≥1 with d|d′|s we have

AutU1/d′ (U1/s) ⊂ Gal(L(U1/s)/L).

(b) Suppose that s = p∞, where p is prime. Let

F =

L(µ4) if p = 2,

L(µp) otherwise.

Then exp(Sats(U, F )/U) is finite, and there is j ∈ Z≥0 with

j ≤ vp(exp(Sats(U, F )/U))

such that for all i ∈ Z≥j we have

AutU1/pi (U
1/s) ⊂ Gal(L(U1/s)/L).
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Lemma 2.18. Let s = p∞, where p is a prime. Let F be a number field with µp ⊂ F ∗,

and if p = 2, with µ4 ⊂ F ∗. Let U ⊂ F ∗ be a subgroup such that Sats(U) = U . Then

Cycs(U) = µs · U .

Proof. The inclusion ⊃ clearly holds. Moreover, the quotient

Cycs(U)/(U · µs)

is p-primary, so it suffices to show that this quotient has no element of order p. To this end,

let x ∈ F (µs)
∗ such that xp ∈ U ·µs. We will show that x ∈ U ·µs. Note that there are u ∈ U

and ζ ∈ µs such that xp = u · ζ . Let ξ be a pth root of ζ , and let y = x/ξ ∈ F (µs)
∗. Then

we will show that y ∈ U , which implies that x ∈ U · µs, as desired. Suppose that y ∈ F ∗. As

U = Sats(U) and yp ∈ U , it follows that y ∈ U , as desired.

Suppose that y /∈ F ∗. Since F ∗ contains µp, and also µ4 if p = 2, we have

Gal(F (µs)/F ) ∼= Zp

as profinite groups. Moreover, as yp ∈ U ⊂ F ∗, it follows that F (y) is the unique subexten-

sion of F (µs)/F of degree p over F . Then by Kummer theory we have that

F (y) = F (ε1/p),

where ε is a generator of µs(F ), and moreover, there are i ∈ {1, . . . , p− 1} and a ∈ F ∗ such

that

yp = εi · ap.

Now, as Sats(U) = U , we have ε ∈ U . Furthermore, since ap ∈ U , we have a ∈ U . It

follows that y = η · a for some η ∈ µs, that is, we have y ∈ µs · U , as desired.

Throughout the rest of this section, let L be a number field, let U be a finitely generated

subgroup of L∗, let n = rk(U) (see Definition 1.2), let s be a Steinitz number, let Γs =

Gal(L(µs)/L), let As = Autµs∩U(µs), let G = Gal(L(U1/s)/L), and let A = AutU(U1/s).
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Lemma 2.19. The groups Sats(U) and Cycs(U)/µs are finitely generated of rank n.

Proof. By Lemma 1.4, the groups U and Sat(U) are finitely generated of rank n, and

Cyc(U)/µ is free of rank n. Since U ⊂ Sats(U) ⊂ Sat(U), we have that Sats(U) is finitely

generated of rank n.

Let (Cycs(U))tor be the torsion subgroup of Cycs(U). Note that the quotient

Cycs(U)/(Cycs(U))tor

maps injectively to Cyc(U)/µ. As the latter is a free abelian group of rank n, it follows that

Cycs(U)/(Cycs(U))tor is free of rank n.

Let w = µ(L), and observe that

µs ⊆ (Cycs(U))tor ⊆ U
1/s
tor ⊆ µws.

As µws/µs is finite, it follows that Cycs(U)/µs is finitely generated.

Lemma 2.20. (a) The Galois group Γs is open in As.

(b) Suppose that s = p∞, where p is prime. Let µs ∩ L∗ = µpe . Suppose that e ∈ Z≥1. If

p = 2, suppose that e ∈ Z≥2. Then

Γs = Autµpe (µs)

inside As.

Proof. By the irreducibility of the cyclotomic polynomials over Q, we may identify the

Galois group Gal(Q(µs)/Q) with Aut(µs). Moreover

Γs ∼= Gal(Q(µs)/(L ∩Q(µs))),

as profinite groups. As L ∩ Q(µs) is a finite extension of Q, it follows that Γs is a closed

subgroup of finite index in Aut(µs). It follows that Γs is open in As, as desired.
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Suppose s, p, and e are as in (b). There is a canonical isomorphism

ϕ : Aut(µs) −→ Z∗p

of profinite groups, so ϕ(Γs) is an open subgroup of Z∗p.

As every element of Γs is the identity on µpe , the image ϕ(Γs) is contained in the

subgroup 1 + peZp of Z∗p. Moreover, since µpe+1 6⊂ L, the image ϕ(Γs) is not contained in

1 + pe+1Zp.

Now, because e ≥ 2 for p = 2, we have 1 + peZp ∼= Zp as profinite groups. The latter

implies that 1+peZp is topologically generated by any element not in 1+pe+1Zp. Thus ϕ(Γs)

is equal to 1 +peZp. We conclude that the image of Γs inside As is equal to Autµpe (µs). This

proves (b).

Proof of Theorem 2.17. As µs is a direct summand of U1/s, the natural map

r : A −→ As

sending f to f |µs is surjective. Moreover, one easily checks that the kernel Autµs·U(U1/s) of

r is canonically isomorphic to Hom(U1/s/(µs · U), µs) as a profinite group.

On the other hand, by Kummer theory the kernel of the restriction morphism G −→ Γs

is canonically isomorphic to Hom(U1/s/Cycs(U), µs) as a profinite group. The surjective

morphism U1/s/(µs · U) −→ U1/s/Cycs(U) of discrete groups gives rise to a canonical

injective morphism

Hom(U1/s/Cycs(U), µs) −→ Hom(U1/s/(µs · U), µs)

of profinite groups that makes the following diagram of profinite groups

0 // Hom
(
U1/s/Cycs(U), µs

)
//

��

G //

��

Γs

��

// 0

0 // Hom
(
U1/s/(µs · U), µs

)
// A // As // 0

(∗)
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commutative, where all other maps are defined above.

The kernel ofU1/s/(µs·U) −→ U1/s/Cycs(U) is equal to Cycs(U)/(µs·U). Therefore

the cokernel of the left vertical map is contained in Hom(Cycs(U)/(µs · U), µs). As by

Lemma 2.19 the quotient Cycs(U)/(µs · U) is finite, it follows that the cokernel of the left

vertical map is finite.

On the other hand, by Lemma 2.20 the profinite group Γs is open in As, implying that

the cokernel coker(Γs −→ As) is finite. Hence coker(G −→ A) is finite. As G is closed in A

(see beginning of this section), it follows that G is open in A. Equivalently, there is d ∈ Z≥1

such that

AutU1/d(U1/s) ⊂ Gal(L(U1/s)/L).

Moreover, for every d′ ∈ Z≥1 with d|d′|s we have

AutU1/d′ (U1/s) ⊂ AutU1/d(U1/s),

which finishes the proof of (a).

Suppose that s = p∞, where p is prime. By (a) we know that there is j ∈ Z≥0 such that

for every i ∈ Z≥j

AutU1/pi (U
1/s) = Gal(L(U1/s)/L(U1/pi)).

Let

F =

L(µ4) if p = 2,

L(µp) otherwise.

and let U ′ = Sats(U, F ). Then Lemma 2.19 implies that exp(U ′/U) is finite. Let

e = vp(exp(U ′/U)).

We will show that j can be taken equal to e, which finishes the proof. To this end, we will

prove that AutU ′(U
′1/s) ⊂ G.
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First, note that µs ∩ F ∗ = µs ∩ U ′. Then Lemma 2.20(b) implies that

Gal(F (µs)/F ) = AutU ′∩µs(µs).

Since F (µs) = L(µs), it follows that

AutU ′∩µs(µs) = Gal(L(µs)/F ).

On the other hand, by Lemma 2.18 we have

Cycs(U, F ) = µs · U ′.

Moreover, since U ′1/s = U1/s, we have

Hom(U1/s/Cycs(U
′, F ), µs) = Hom(U1/s/(µs · U ′), µs).

Replacing L by F and U by U ′ in (∗), we obtain

0 // Hom
(
U1/s/Cycs(U

′, F ), µs
)

//

��

Gal(L(U1/s)/F ) //

��

Gal(L(µs)/F )

��

// 0

0 // Hom
(
U1/s/(µs · U ′), µs

)
// AutU ′(U

1/s) // AutU ′∩µs(µs) // 0

where, by the above, the left and right vertical maps are isomorphisms. It follows that

Gal(L(U1/s)/F ) = AutU ′(U
1/s),

so that AutU ′(U
1/s) ⊂ G. At last, as U ′ ⊂ U1/pe , we have

AutU1/pe (U1/s) ⊂ AutU ′(U
1/s) ⊂ G,

which finishes the proof.
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6. Rationality of the density

Throughout this section, let K be a number field, let W be a finitely generated subgroup of

K∗, and let V be cocyclic cofinite subgroup of W . Let m = (W : V ), let P be the set of

prime divisors of m, let n = rk(W ) (see Definition 1.2), let U = V 1/m, and let L = K(U).

We remark that W/V ∼= Z/mZ implies that W ⊂ U .

In this section, we prove a closed-form expression of the density d(A(W,V )) using the

formula given in Theorem 2.10 and Theorem 2.17.

Theorem 2.21. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then the density d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
.

We remark that one can find suitable (jp)p∈P , as in the theorem above, in Theorem 2.17.

Corollary 2.22. Suppose that for every p ∈ P we have

Gal(L(U1/p∞)/L) = AutU(U1/p∞).

Then

d(A(W,V )) =
1

[L : K]

∏
p∈P

pn(p− 1)

pn+1 − 1
.

In addition, suppose that [L : K] = φ(m)mn−1, where φ is Euler’s totient function. Then we

have

d(A(W,V )) =
1

mn
·
∏
p∈P

pn+1

pn+1 − 1
.

Proof. The proof follows directly from Theorem 2.21 by putting jp = 0 for all p ∈ P .
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Lemma 2.23. Let p ∈ P , and let i ∈ Z≥0. Then the following hold.

(a) The degree [L(U1/pi+1
) : L(U1/pi)] divides pn+1, and if i ≥ jp, it is equal to pn+1.

(b) The degree [L(U1/pi ,W 1/pi+1
) : L(U1/pi)] divides p, and if i ≥ jp, it is equal to p.

Proof. Let s = p∞. As U is a finitely generated abelian group of rank n and µm ⊂ U , we

have U ∼= 1
u
Z/Z⊕ Zn, where u ∈ Z≥1 is divisible by m. Then we have

U1/pi ∼=
1

upi
Z/Z⊕

(
1

pi
Z

)n
,

so that

AutU1/pi (U
1/pi+1

) ∼= Hom

(
U1/pi+1

U1/pi
, U1/pi+1

)

∼= Hom

((
1

p
Z/Z

)n+1

,
1

upi+1
Z/Z⊕

(
1

pi+1
Z

)n)
.

Since

# Hom

(
(Z/pZ)n+1,Z/upi+1Z⊕

(
1

pi+1
Z

)n)
= pn+1,

we have that

# AutU1/pi (U
1/pi+1

) = pn+1.

Now, note that

Gal(L(U1/pi+1

)/L(U1/pi)) ⊂ AutU1/pi (U
1/pi+1

),

which implies that [L(U1/pi+1
) : L(U1/pi)] divides pn+1.

Now, suppose that i ∈ Z≥jp . Then by Theorem 2.17

Gal(L(U1/s)/L(U1/pi)) = AutU1/pi (U
1/s).

Moreover, by [Pal14, Theorem 2.12] the sequence

0 −→ AutU1/pi+1 (U1/s) −→ AutU1/pi (U
1/s) −→ AutU1/pi (U

1/pi+1

) −→ 0
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of profinite groups is exact. Then by Galois theory

pn+1 = # AutU1/pi (U
1/pi+1

) = [L(U1/pi+1

) : L(U1/pi)].

This proves (a).

For (b), note that W 1/pi ⊂ L(U1/pi)∗. Hence, by Kummer theory

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = (W 1/pi : L(U1/pi)∗p ∩W 1/pi).

Recall that Um = V ⊂ W , so that (Um)1/pi ⊂ W 1/pi . One easily checks that

W 1/pi−1 · (Um)1/pi ⊂ W 1/pi ∩ L(U1/pi)∗p.

As W 1/pi−1 · (Um)1/pi maps to the unique subgroup of index p of the cyclic group

W 1/pi/(Um)1/pi

of order m, it follows that (W 1/pi : W 1/pi ∩ L(U1/pi)∗p) divides p. Hence

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] | p.

On the other hand, the degree [L(U1/pi+1
) : L(U1/pi ,W 1/pi+1

)] divides pn, as the pi+1th roots

of unity are already contained in L(U1/pi ,W 1/pi+1
). Hence for i ≥ jp we have

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = p,

as desired.

Proof of Theorem 2.21. Write A = A(W,V ). Then by Theorem 2.10 we have

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

By Lemma 2.23, we have for all p ∈ P and i ∈ Z≥jp

[L(U1/pi+1

) : L(U1/pi)] = pn+1
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and

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = p.

Hence
∞∑
i=jp

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
is equal to

1

[L(U1/pjp ) : L]

∞∑
i=0

1

p(n+1)i

(
1− 1

p

)
=

1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
.

Using this in the expression for d(A), we find

d(A) =
1

[L : K]

∏
p∈P

[
1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)]
,

which is the desired formula.

7. Main theorem

In this section we

Theorem 2.24. Let K be a number field, let W be a finitely generated subgroup of K∗, and

let V be a cocyclic cofinite subgroup of W . Let m = (W : V ), let U = V 1/m, and let

L = K(U). Let n = rk(W ) (see Definition 1.2), and let P be the set of primes dividing m.

Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then the following statements hold.
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(a) The density d(A(W,V )) exists and equals a positive rational number in the interval[
1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)
,
∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)]

whose denominator divides mn ·
∏

p∈P
(
p(n+1)jp−1 · (pn+1 − 1)

)
.

(b) d(A(W,V )) = 1 if and only if V = W or W is finite.

(c) d(A(W,V )) is computable as a function of K, W and V .

Proof. By Theorem 2.21 we have that d(A(W,V )) exists and is equal to

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
,

which is rational. We first note that [L : K] divides φ(m)mn−1, where φ is Euler’s totient

function.

Now, let p ∈ P . By Lemma 2.23 we have for all i ∈ Z≥0 that

[L(U1/pi+1

) : L(U1/pi)] | pn+1

and

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] | p.

To ease the notation, for i ∈ Z≥0 write

Ti =
1

[L(U1/pi) : L]
− 1

[L(U1/pi ,W 1/pi+1) : L]
,

and note that

Ti =
1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

Hence [L(U1/pi ,W 1/pi+1
) : L(U1/pi)] = 1 implies Ti = 0. Using Lemma 2.23 we obtain for

p ∈ P

1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

Ti ≥
1

p(n+1)jp
· p

n+1 − pn

pn+1 − 1
=

p− 1

pn(jp−1)+jp(pn+1 − 1)
,
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so that

d(A(W,V )) ≥ 1

[L : K]

∏
p∈P

p− 1

pn(jp−1)+jp(pn+1 − 1)

≥ 1

φ(m)mn−1

∏
p∈P

p− 1

pn(jp−1)+jp(pn+1 − 1)
.

Then using the identity φ(m) = m ·
∏

p∈P

(
1− 1

p

)
in the latter, we obtain the lower bound

1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)

for d(A(W,V )). For the upper bound, note that

jp−1∑
i=0

Ti ≤ 1− 1

[L(U1/pjp ) : L]
.

Then for p ∈ P write dp = [L(U1/pjp ) : L], so that we have

1

dp
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

Ti ≤
1

dp
· p

n(p− 1)

pn+1 − 1
+ 1− 1

dp

≤ 1− 1

p(n+1)jp

(
1− pn(p− 1)

pn+1 − 1

)
= 1− pn − 1

p(n+1)jp · (pn+1 − 1)
,

where we use that dp ≤ p(n+1)jp (see Lemma 2.23). Thus, as [L : K] ≥ 1, an upper bound

for d(A(W,V )) is ∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)
.

Now, we want to find x ∈ Z≥1 such that x · d(A(W,V )) ∈ Z. To this end, note that

φ(m)mn−1 · [L : K]−1 ∈ Z.

Moreover, by Lemma 2.23 we have

p(n+1)jp · [L(U1/pjp ) : L]−1 ∈ Z.
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As for i ∈ {0, . . . , jp−1} the fieldsL(U1/pi) andL(U1/pi ,W 1/pi+1
) are contained inL(U1/pjp ),

we have

p(n+1)jp ·
jp−1∑
i=0

Ti ∈ Z.

It follows that the denominator of d(A(W,V )) divides

φ(m)mn−1
∏
p∈P

(
p(n+1)jp · p

n+1 − 1

p− 1

)
,

which by using φ(m) = m ·
∏

p∈P

(
1− 1

p

)
is equal to

mn ·
∏
p∈P

(
p(n+1)jp−1 ·

(
pn+1 − 1

))
,

as desired.

From the lower bound, we see that d(A(W,V )) is nonzero. From the upper bound, we

see that d(A(W,V )) = 1 only if m = 1 or n = 0, that is, only if V = W or W is finite. On

the other hand, if V = W or W is finite, we easily see that d(A(W,V )) = 1. This proves (a)

and (b).

To prove (c), we will show that there exists an algorithm that terminates after finitely

many steps, whose input is K, W , and V , and whose output is the density d(A(W,V )). Let

K, W , V , n, P , U , and L be as in the theorem. By Theorem 2.21 we have that d(A(W,V ))

equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
,

so it suffices to show that there exist three algorithms for calculating (1) P , (2) (jp)p∈P , and

(3) the degrees of the field extensions [L(U1/pi) : L] and [L(U1/pi ,W 1/pi+1
) : L] for i ∈

{0, . . . , jp}. The algorithms for (1) and (3) are well-known from elementary computational

algebraic number theory for which we refer to [Coh96]. It remains to show that for each

p ∈ P we can compute jp.
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To this end, let p ∈ P , and let s = p∞. Let

F =

L(µ4) if p = 2

L otherwise.

Compute and write

U =
k∐
i=1

ui · Up,

and compute

S0 = 〈x ∈ F : xp ∈ {u1, . . . , uk}〉.

If S0 ⊂ U , we have exp(Sats(U, F )/U) = 1 and put jp = 0 (see Theorem 2.17). Otherwise,

let U1 = U · S0, and write

U1 =

k1∐
i=1

ui,1 · Up
1 .

Then compute

S1 = 〈x ∈ F : xp ∈ {u1,1, . . . , uk1,1}〉.

If S1 ⊂ U1, then we have exp(Sats(U, F )/U) = p and put jp = 1. Otherwise, repeat the

above process to define U2 and find S2, and so on. By Lemma 2.19 the quotient Sats(U, F )/U

is finite, so there is i ∈ Z such that Si ⊂ Ui. Continue the above process until Si ⊂ Ui, and put

jp = i. Then observe that exp(Sats(U, F )/U) = pjp . This shows that there is an algorithm

to compute (jp)p∈P , which finishes the proof of (c).

Theorem 2.25. Let K be a number field, and let W be a finitely generated subgroup of K∗

of positive rank, and let V be a cocyclic cofinite subgroup of W . Let V ′ be a subgroup of W

containing V . Then d(A(W,V )) = d(A(W,V ′)) if and only if V = V ′.

Proof. First, note that V = V ′ clearly implies d(A(W,V )) = d(A(W,V ′)). To prove the

reverse implication, let V ′ be a subgroup of W containing V , and assume V ′ 6= V . We
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will show that d(A(W,V )) < d(A(W,V ′)), which finishes the proof. As for V ′′ such that

V ⊂ V ′′ ⊂ V ′ we have

d(A(W,V )) ≤ d(A(W,V ′′)) ≤ d(A(W,V ′)),

we may assume that V is of prime index, say q, in V ′.

Now, let m = (W : V ), let U = V 1/m, let L = K(U), let A′(W,V ) as defined

above Lemma 2.12, and let L be an algebraic closure of L (and of K). For p dividing m and

i ∈ Z≥0, let Gp,i, Hp,i, Cp,i, Cp and C be as defined above Lemma 2.14. Then by Lemma

2.16 and Lemma 2.12 we have

d(A(W,V )) =
1

[L : K]
· λGal(L/L)(C).

Observe that Gal(L/L) is a subgroup of G = Gal(L/K) of index [L : K]. By abuse of

notation we write C for the image of C in G, that is, henceforth we have

C = {σ ∈ Gal(L/K) : σ|U = idU , ∀p|m : ∃i ∈ Z≥0 : σ|U1/pi = id∧ σ|W 1/pi+1 6= id}.

Then we have

d(A(W,V )) = λG(C).

Now, let m/q = m′ = (W : V ′), let U ′ = V ′1/m
′ , let L′ = K(U ′), and note that V ′ ⊂ V 1/q

implies that U ′ ⊂ U and L′ ⊂ L. For p dividing m′ and i ∈ Z≥0 let G′p,i, H
′
p,i, C

′
p,i, C

′
p and

C ′ be defined as above with L replaced by L′ and U by U ′. Moreover, by abuse of notation

write C ′ for the image of C ′ in G, so that

C ′ = {σ ∈ Gal(L/K) : σ|U ′ = idU ′ , ∀p|m′ : ∃i ∈ Z≥0 : σ|U ′1/pi = id∧ σ|W 1/pi+1 6= id}.

Then we have

d(A(W,V ′)) = λG(C ′).
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Moreover, for every prime p and i ∈ Z≥0 we have U ′1/pi ⊂ U1/pi , so C ⊂ C ′ ⊂ G. We will

show that there is a non-empty open subset of C ′ that is disjoint from C, which by the above

and the fact that non-empty open subsets have positive density, proves that

d(A(W,V )) < d(A(W,V ′)),

as desired. Let j ∈ Z≥0 be such that Aut
U1/qj (U1/q∞) ⊂ Gal(L(U1/q∞)/L) (see Theorem

2.17).

Suppose first that q does not divide m′. For primes p dividing m′, let

Xp = Cp =
∞⋃
i=0

Gp,i \Hp,i

and

Xq = Hq,j \Gq,j+1.

Note that Xq ∩ Cq = ∅. We claim that the set

X =
⋂
p|m

Xp

has the desired properties of being a non-empty open subset of C ′ that is disjoint from C.

That X is open is proved in the same way as Lemma 2.14. That each Xp, including Xq, is

non-empty follows from Lemma 2.23 (at this point it is used that W is infinite, so that n in

Lemma 2.23(a) is positive). Since for primes p dividing m the degrees of the fields L(U1/p∞)

over L are p-powers, they are all linearly disjoint over L, so X is non-empty as well. As q

does not divide m′, we have X ⊂ C ′. From Xq ∩Cq = ∅ it follows that we have X ∩C = ∅.

This finishes the proof of this case.

Now, suppose that q divides m′. We claim that for every i ∈ Z≥0 we have

U ′1/q
i

= V 1/(m′qi) ·W 1/qi .
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It suffices to prove the claim for i = 0. To this end, observe that

V 1/m′ ·W 6= V 1/m′ ,

because W/V is cyclic of order m′q. Moreover, as W ⊂ U ′, it follows that

V 1/m′ ·W ⊂ U ′.

As V ′/V has order q, also U ′/V 1/m′ has order q. It follows that U ′ = V 1/m′ · W , which

finishes the proof of the claim. We remark that for i ∈ Z≥1 we have

V 1/(m′qi) = V 1/(mqi−1) = U1/qi−1

,

so that the claim states that

U ′1/q
i

= U1/qi−1 ·W 1/qi .

As U q = V 1/m′ is contained in V ′1/m′ = U ′, we have U ⊂ U ′1/q, so that

L′ ⊂ L ⊂ L′(U ′1/q).

Then the claim implies that for every i ∈ Z≥0 we have

L′(U ′1/q
i+1

) = L(U1/qi ,W 1/qi+1

),

and moreover, since W ⊂ U , we have the following diagram

L′(U ′1/q
i+2

) = L(U1/qi+1
,W 1/qi+2

)

L′(U ′1/q
i+1
,W 1/qi+2

) L(U1/qi+1
)

L′(U ′1/q
i+1

) = L(U1/qi ,W 1/qi+1
)
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of fields, where the upper field is the composite of the fields on the left and right. The

corresponding diagram of Galois groups looks as follows:

G′q,i+2 = Hq,i+1 = H ′q,i+1 ∩Gq,i+1

((vv

H ′q,i+1

((

Gq,i+1

vv

G′q,i+1 = Hq,i

where the arrows in the diagram depict inclusions.

Now, for the prime divisors p of m′ that are not equal to q, let

Yp = C ′p =
∞⋃
i=0

G′p,i \H ′p,i,

and let

Yq = G′q,j+1 \
(
H ′q,j+1 ∪Gq,j+1

)
.

Note that one has Yq ⊂ Hq,j \ Gq,j+1, so that we have Yq ∩ Cq = ∅. We claim that the set

Y =
⋂
p|m Yp has the desired property of being a non-empty open subset of C ′ that is disjoint

from C. That Y is open is proved in the same way as Lemma 2.14. We next prove that each

Yp is non-empty. For p 6= q this follows directly from Lemma 2.23. For q = p, our choice

of j and Lemma 2.23 imply first that Gq,j+1 has index qn in Hq,j , and next that Hq,j+1 has

index q in Gq,j+1, which by Hq,j+1 = H ′q,j+1 ∩Gq,j+1 implies that Gq,j+1 is not contained in

H ′q,j+1, so that H ′q,j+1 6= Hq,j . Thus, since n ∈ Z>1, each of Gq,j+1 and H ′q,j+1 is a proper

subgroup of G′q,j+1 = Hq,j , which implies that Yq is non-empty. By linear disjointness, the

set Y is non-empty as well. From Yq ∩Cq = ∅ it follows that we have Y ∩C = ∅, while from

Yq ⊂ G′q,j+1 \H ′q,j+1 ⊂ C ′q

we obtain Y ⊂ C ′. This finishes the proof.
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Corollary 2.26. Let K be a number field, let W be a finitely generated subgroup of K∗, and

let V be a cofinite cocyclic subgroup of W . Let

S = {p ∈ ΩK : there is w ∈ W such that vp(w) 6= 0}.

For p ∈ ΩK \ S let Wp denote the kernel of the restriction map πp : W −→ κ(p)∗. Let S ′ be

a finite subset of ΩK \ S. Then there are t ∈ Z≥1, p1, . . . , pt ∈ ΩK \ S ′ such that

V = 〈Wpi : i ∈ {1, . . . , t}〉.

Proof. Let T = 〈Wp : p /∈ S ′,Wp ⊂ V 〉. Then T is cofinite and contained in V , and

moreover, d(A(W,V )) > 0 implies that T is cocyclic in W . Since T is finitely generated,

there are t ∈ Z≥0, p1, . . . , pt ∈ ΩK \ S ′ such that T = 〈Wpi : i ∈ {1, . . . , t}〉. Now, one

easily sees that d(A(W,T )) = d(A(W,V )). Hence Theorem 2.25 implies that T = V , as

desired.

8. Applications

Theorem 2.27. Let K be a number field, and let X and Y be finitely generated subgroups of

K∗. Let

S ′ = {p ∈ ΩK : ∃x ∈ X ∪ Y : vp(x) 6= 0}.

Suppose that for all primes p in a subset of ΩK \ S ′ of density one, we have

Y (mod p) ⊂ X (mod p).

Then Y ⊂ X .

Proof. Suppose that Y 6⊂ X , let W = Y · X , and note that X ( W . As W is a finitely

generated abelian group, there exist a prime number p and a surjective morphism

f : W −→ Z/pZ
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of groups with kernel containing X . Let V = ker f , and note that X ⊂ V . As W/V is finite

cyclic, Theorem 2.24 implies that

d({p ∈ ΩK : Wp ⊂ V }) > 0,

where Wp is the kernel of the reduction map πp : W −→ κ(p)∗.

Observe that for p ∈ ΩK \ S ′ the condition Y (mod p) ⊂ X (mod p) is equivalent to

X (mod p) = W (mod p), so that

d({p ∈ ΩK : X (mod p) = W (mod p)}) = 1.

Let p be a prime of K such that Wp ⊂ V and X (mod p) = W (mod p). As X ⊂ V

and Wp ⊂ V , we have

πp(X) = (X ·Wp)/Wp ⊂ V/Wp.

Moreover, since f is surjective, we have

Wp ⊂ V ( W.

Hence V/Wp ( W/Wp. However

X (mod p) = W (mod p) ∼= W/Wp,

which is a contradiction. It follows that Y ⊂ X .

Theorem 2.28. Let K be a number field, let X be a finitely generated subgroup of K∗, let Y

be a subgroup of X , and let l be a prime number. Let

S ′ = {p ∈ ΩK : ∃x ∈ X : vp(x) 6= 0}.

Suppose that for almost all p ∈ ΩK \ S ′ we have

l - (X (mod p) : Y (mod p)).

Then (X : Y ) <∞ and l - (X : Y ).
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Proof. Let V = X l · Y , and note that Y ⊂ V ⊂ X . For almost all p ∈ ΩK we have

l - (X (mod p) : Y (mod p)). As X (mod p)/V (mod p) is annihilated by l and for almost

all p we have

Y (mod p) ⊂ V (mod p) ⊂ X (mod p),

it follows that for almost all p we haveX (mod p) = V (mod p). Then Theorem 2.27 implies

that X = V = X l ·Y , so that (X/Y )l = X/Y . As X/Y is a finitely generated abelian group

with the property that (X/Y )l = X/Y , it follows that X/Y is finite of order coprime to l.
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