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CHAPTER 1

Radical Galois groups and cohomology

1. Introduction

Let K be a field of characteristic 0, and let K be an algebraic closure of K. Let µ be the

subgroup of K
∗

consisting of all roots of unity. The maximal cyclotomic extension K(µ) is

Galois over K, and we canonically identify its Galois group with a closed subgroup ΓK of

the group of units Ẑ∗ of the profinite completion Ẑ of Z.

Let, in general, Γ be a closed subgroup of Ẑ∗, and let A be a profinite abelian group.

Then the natural Ẑ-module structure on A canonically induces an action of Γ on A, which

we call the natural action of Γ on A. A short exact sequence

0 −→ A
f−→ G

g−→ Γ −→ 1

in the category of profinite groups is called a natural extension of Γ by A or simply a natural

extension of Γ if for all x ∈ A and σ ∈ G we have σf(x)σ−1 = f(g(σ) · x), where · is the

natural action of Γ on A.

Let W be a finitely generated subgroup of K∗. We call dimQ(W ⊗ZQ) the rank of W .

1



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Let

W 1/∞ = {x ∈ K∗ : xm ∈ W for some m ∈ Z≥1}

be the group of all radicals of W , and note that K(W 1/∞) is a Galois extension of K. In

this chapter we study the structure of the Galois group of K(W 1/∞) over K, and prove the

following main theorem.

Theorem 1 (Main theorem). Let n ∈ Z≥0 and let F be a free Ẑ-module of rank n. LetG be a

profinite group, and let K be a finite field extension of Q. Then the following are equivalent.

(a) There exists a finitely generated subgroup W of K∗ of rank n such that

G ∼= Gal(K(W 1/∞)/K)

as profinite groups.

(b) There is a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1

such that if K = Q, the image of F in G equals the algebraic commutator subgroup

[G,G] of G.

The case n = 1 over K = Q was the subject of the author’s master’s thesis, see [Jav13]. The

special condition for K = Q was encountered already there. It is a condition entirely due to

the theorem of Kronecker–Weber (see [Hil96]), which shows how number theory is involved

in determining these Galois groups.

The (a) to (b) implication is a fairly easy consequence of Kummer theory and Schinzel’s

lemma, which we show in the next section.

The main tool in our proof of the inverse implication is the algebraic cohomology of

topological groups acting continuously on topological modules, which one calls continuous
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1.1. INTRODUCTION

cochain cohomology. Given a topological group Γ and a topological Γ-module A, the con-

tinuous cochain cohomology of Γ with coefficients in A is the cohomology obtained from the

complex

0 −→ A
d0−→ C1(Γ, A)

d1−→ C2(Γ, A)
d2−→ C3(Γ, A)

d3−→ C4(Γ, A)
d4−→ . . .

where for n ∈ Z≥1 the group Cn(Γ, A) consists of all continuous maps of

Γ×n = Γ× · · · × Γ︸ ︷︷ ︸
n times

to A, and dn is the standard coboundary map one also has in non-continuous group coho-

mology. For n ∈ Z≥0, we denote the cohomology groups of this complex by Hn(Γ, A). See

section 1.3 for more details.

Now, let n ∈ Z≥0, let Γ be a closed subgroup of Ẑ∗, and let F be a free Ẑ-module

of rank n. We define an equivalence relation on the collection of natural extensions of Γ by

F (see 1.19), and find as in non-continuous group cohomology that the set of equivalence

classes under this equivalence relation may be identified with H2(Γ, F ) (see 1.20). However,

natural extensions of Γ by F that have isomorphic profinite groups in the middle, do not

need to define the same element of H2(Γ, F ). To work around this, we consider the Aut(F )-

orbit of the equivalence class of a natural extension 0 −→ F −→ G −→ Γ −→ 0, which

may be identified with the isomorphism class of G. The next theorem shows that the set of

these orbits is in bijection with the set of subgroups of H2(Γ, Ẑ) that can be generated by n

elements.

Theorem 2. Let n ∈ Z≥0, let Γ be an open subgroup of Ẑ∗, and let F be a free Ẑ-module of

rank n. Let S be the set of isomorphism classes of profinite groups G for which there exists a

natural extension of Γ

0 −→ F −→ G −→ Γ −→ 1.
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CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Let T be the set of subgroups of H2(Γ, Ẑ) that can be generated by n elements. Then there

is a well-defined bijection of S with T that sends a class [G] ∈ S to the image of the group

morphism

CHom(F, Ẑ) −→ H2(Γ, Ẑ), f 7→ H2(Γ, f)(E)

where CHom(F, Ẑ) is the set of all continuous group morphisms from F to Ẑ, and E ∈

H2(Γ, F ) is the extension class of any natural extension 0 −→ F −→ G −→ Γ −→ 1.

For more details and the proof, see section 1.7 and section 1.8.

Our next step is to describe H2(ΓK , Ẑ) in terms of the field K. An important auxiliary

result is the following theorem, which has already been used in the rank 1 case over Q

in [Jav13].

Theorem 3. Let K be a number field, and let w be the number of roots of unity in K. Let A

be a profinite abelian group. Then for any m ∈ Z≥0 we have

w · Hm(ΓK , A) = 0,

where ΓK acts on A in the natural way.

See section 1.6 for more details.

Theorem 4. Let K be a number field, let w be the number of roots of unity in K, and let

µw denote the subgroup of K∗ consisting of all roots of unity. Then the group H2(ΓK , Ẑ) is

isomorphic to
K(µ)∗w ∩K∗

µwK∗w
.

A more precise version of this theorem including a description of the isomorphism between

the two groups is given in Theorem 1.34.

Using Theorems 2 and 4, we see that an extension of ΓK as in part (b) of Theorem 1

corresponds to a subgroup H of K(µ)∗w∩K∗
µwK∗w

that can be generated by n elements. The last step
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1.1. INTRODUCTION

in the proof of the (b) to (a) implication of Theorem 1 is to lift this subgroup to a subgroup

W of K∗. Putting M = K∗/µwK
∗w and Λ = K(µ)∗w∩K∗

µwK∗w
, the following theorem enables us

to construct W in the case that K is unequal to Q.

Theorem 5. Let w ∈ Z>1, and let M be a free module over Z/wZ. Let Λ be a submodule

of M , let n ∈ Z≥1, and let H ⊂ Λ be a finite subgroup generated by at most n elements.

Assume that the quotient group M [p]/Λ[p] of the p-torsion parts of M and Λ is infinite for

every prime p dividing w. Then there is a submodule I of M that is free over Z/wZ of rank

n such that I ∩ Λ = H .

For the proof see Theorem 1.39 in section 1.10. Note that we have

Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2,

that is, we have Λ = M for K = Q. The restriction this puts on constructing W , in the case

of K = Q, translates into the extra condition in Theorem 1.

The present chapter is organized as follows.

In section 1.2 we prove the (a) to (b) implication of Theorem 1. In sections 1.3 and

1.4 we copy the definitions and theorems of continuous cochain cohomology and topological

group extensions from [Jav13]. The proofs, which are omitted in this section, are found

in [Jav13, Chapter 1]. In section 1.5 we prove a lemma in profinite group theory on natural

extensions. In section 1.6 we elaborate on Theorem 3 above. Section 1.7 is concentrated on

proving Theorem 2 above. Section 1.8 concerns the extended version of Theorem 4 above.

In section 1.9 we study the image of Gal(K(W 1/∞)/K) under the bijection of Theorem 2.

In section 1.10 we prove the lifting theorems, such as Theorem 5 above. The last section

contains the proof of the main theorem.
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CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

2. Maximal radical extensions of number fields

Theorem 1.1 (Schinzel). Let K be a field, let a ∈ K, and let n ∈ Z>0 be not divisible by

charK. Let d be the number of n-th roots of unity in K. Then the splitting field of Xn − a is

abelian over K if and only if there exists b ∈ K with ad = bn.

Proof. See [Sch77, Theorem 2], [Len07] .

Definition 1.2. For an abelian group W we write rk(W ) for the rank dimQ(W ⊗ZQ) of W .

Let K be a field of characteristic 0, let K be an algebraic closure of K, and let W be a

subgroup of K∗. Let

W 1/∞ = {x ∈ K∗ : xm ∈ W for some m ∈ Z≥1}

be the group of all radicals of W . The field K(W 1/∞) is the union over all positive integers

m of the Galois extensions K(W 1/m) of K where

W 1/m = {x ∈ K∗ : xm ∈ W}.

Therefore, the field K(W 1/∞) is Galois over K.

For a field L we write µ(L) for the subgroup of L∗ consisting of the roots of unity of

L∗. For simplicity we write µ for the subgroup µ(L) of L
∗

consisting of all roots of unity.

For an integer d ∈ Z≥1 we write µd for the subgroup of µ consisting of the dth roots of unity.

The maximal cyclotomic extension K(µ) is Galois over K, and there is a canonical

injection

Gal(K(µ)/K) −→ Aut(µ)

of profinite groups. Observe that Aut(µ) is canonically isomorphic to Ẑ∗ as a profinite group.

As Gal(K(µ)/K) is compact and Ẑ∗ is Hausdorff, we may identify Gal(K(µ)/K) with a
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1.2. MAXIMAL RADICAL EXTENSIONS OF NUMBER FIELDS

closed subgroup of Ẑ∗, which we denote by ΓK . As K(µ) is clearly a subfield of K(W 1/∞),

we see that ΓK is a quotient of Gal(K(W 1/∞)/K).

We write

Sat(W ) = W 1/∞ ∩K∗

and

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Proposition 1.3. Let K be a number field, and let K be an algebraic closure of K. Let

w = #µ(K). Let Kab be the maximal abelian extension of K inside K.

(a) Then we have

K∗1/∞ ∩Kab ∗ = µ ·K∗1/w.

(b) Let W be a subgroup of K∗. Then

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Proof. To prove (a), note that the right-to-left inclusion follows immediately from Kummer

theory and the fact that cyclotomic extensions are abelian. For the left-to-right inclusion, let

α ∈ K∗1/∞ ∩Kab ∗. Then there is n ∈ Z≥1 such that αn = a ∈ K∗. As Xn − a is abelian

over K, by Theorem 1.1 there exists b ∈ K∗ such that ad = bn, where d is the number of

n-th roots of unity in K. Then we have α = ζndb
1/d, where ζnd is some nd-th root of unity. It

follows that α ∈ µ ·K∗1/w, which shows the left-to-right inclusion.

For (b), intersect K∗1/∞ ∩Kab ∗ = µ ·K∗1/w on both sides with Cyc(W ) to obtain

Cyc(W ) =
(
µ ·K∗1/w

)
∩ Cyc(W ).

As µ ⊂ Cyc(W ), it follows that

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗)

as desired.
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CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Lemma 1.4. Let K be a number field, and let W be a finitely generated subgroup of K∗. Let

n = rk(W ). Then the following statements hold.

(a) The group Sat(W ) is finitely generated of rank n.

(b) The quotient Cyc(W )/µ is free of rank n.

Proof. Note that Sat(W )/W is equal to the torsion subgroup of K∗/W . By Lemma 3 in

[Iwa53], there is a countably infinite index set I such that K∗ ∼= µ(K) × Z(I). Moreover,

there is a finite subset J of I such that W is contained in µ(K)× Z(J). Then

K∗ ∼= µ(K)× Z(J) ⊕ Z(I\J).

Hence, the torsion part of K∗/W is a finitely generated abelian group, which is therefore

finite. As Sat(W )/W is finite, the group Sat(W ) is finitely generated of rank n, which

proves (a).

By Proposition 1.3 we have Cyc(W ) = µ · (Sat(W )1/w ∩ K(µ)∗). Observe that

Sat(W )1/w is finitely generated, so

Sat(W )1/w ∩K(µ)∗ = Cyc(W )/µ

is also finitely generated. As the quotient Cyc(W )/(µ · Sat(W )) is finitely generated and

annihilated by w, it follows that Cyc(W )/(µ · Sat(W )) is a finitely generated torsion group.

Hence

Cyc(W )/(µ · Sat(W ))

is finite, which implies that Cyc(W )/µ is free of rank n.

Recall that a topological module M over a topological ring R is an R-module M that is a

topological group such that R ×M −→ M is continuous, where R ×M has the product

topology. Similarly, a topological module M over a topological group Γ is a Γ-module M
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1.2. MAXIMAL RADICAL EXTENSIONS OF NUMBER FIELDS

that is a topological group such that Γ ×M −→ M is continuous, where Γ ×M has the

product topology.

Let A be a profinite abelian group. Then by [Jav13, Lemma 2.3] A has a unique Ẑ-

module structure, and it makes A into a topological Ẑ-module. We call this the natural

Ẑ-module structure of A. By restriction, A has a topological Γ-action, for every closed

subgroup Γ of Ẑ∗. For any such Γ, we call this the natural action of Γ on A.

Moreover, a short exact sequence 0 −→ A
f−→ E

g−→ Γ −→ 1 of profinite groups

where A is abelian and for all σ ∈ E and x ∈ A we have

σf(x)σ−1 = f(g(σ) · x)

with · the natural action, is called a natural extension of Γ by A or simply a natural extension

of Γ.

Let K be a field, and K an algebraic closure of K. For every k ∈ Z≥1 let µk denote

the group of all kth roots of unity in K
∗
. Let m ∈ Z≥1, and note that for every multiple k of

m, there is a group morphism µk −→ µm sending ζ ∈ µk to ζk/m. This defines a projective

system, of which the projective limit µ̂ is called the Tate module of the multiplicative group.

It is a profinite module over Ẑ that is free of rank 1. For α ∈ µ̂ we let αm denote its image in

µm under the canonical projection µ̂ −→ µm.

Theorem 1.5. LetK be a field of characteristic 0, and letW be a finitely generated subgroup

of K∗. Let G = Gal(K(W 1/∞)/K). Then there is a natural extension of ΓK

0 −→ Hom(Cyc(W ), µ̂)
ι−→ G −→ ΓK −→ 1

such that for all f ∈ Hom(Cyc(W ), µ̂), x ∈ W 1/∞ and m ∈ Z≥1 with xm ∈ Cyc(W ) the

Galois automorphism ι(f) satisfies

ι(f)(x) = f(xm)m · x.

9
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Proof. By Galois theory, there is a natural extension of ΓK

0 −→ Gal(K(W 1/∞)/K(µ)) −→ G −→ ΓK −→ 1.

By Kummer theory, there is an isomorphism

Gal(K(W 1/∞)/K(µ)) −→ AutCyc(W )(Cyc(W )1/∞)

of profinite groups that sends each σ to its restriction to W 1/∞ = Cyc(W )1/∞. Moreover,

there is an isomorphism

AutCyc(W )(Cyc(W )1/∞) −→ Hom(Cyc(W ), µ̂)

of profinite ΓK-modules given by sending σ to the group morphism Cyc(W ) −→ µ̂ that

sends x ∈ Cyc(W ) to (σ(ym)/ym)m≥1 where ym ∈ K
∗

are such that ymm = x for every

m ∈ Z≥0. As these isomorphisms are ΓK-linear, composing their inverses gives the desired

natural extension of ΓK .

Remark 1.6. LetK,W and n be as in Lemma 1.4. Then by Lemma 1.4 there are t1, . . . , tn ∈

K(µ)∗ such that Cyc(W ) = µ · 〈t1, . . . , tn〉.

Proposition 1.7. Let K be a number field, and let W be a finitely generated subgroup of K∗.

Let n = rk(W ). Let t1, . . . , tn ∈ K(µ)∗ be such that Cyc(W ) = µ · 〈t1, . . . , tn〉. Then there

is an isomorphism

Hom(Cyc(W ), µ̂) −→ µ̂⊕n

of topological Ẑ-modules sending f ∈ Hom(Cyc(W ), µ̂) to (f(ti))
n
i=1.

Proof. As µ̂ has no torsion, we have Hom(Cyc(W ), µ̂) = Hom(Cyc(W )/µ, µ̂). Let

ϕ : Zn −→ Cyc(W )/µ

10
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be the group isomorphism sending the standard basis element ei ∈ Zn to ti·µ for i = 1, . . . , n.

Then ϕ induces the isomorphisms

Hom(Cyc(W )/µ, µ̂) ∼= Hom(Zn, µ̂) ∼= µ̂⊕n

of profinite groups, where the last isomorphism sends f ∈ Hom(Zn, µ̂) to (f(ei))
n
i=1. By

[Jav13, Lemma 2.3] these are in fact Ẑ-linear morphisms.

Lemma 1.8. Let Γ be an open subgroup of Ẑ∗, and let F be a free module over Ẑ of finite

rank. Let

0 −→ F
ι−→ G −→ Γ −→ 1

be a natural extension of Γ by F . Let [G,G] be the algebraic commutator subgroup of G.

Then the following hold.

(a) There exists m ∈ Z≥0 such that ι(mF ) ⊂ [G,G].

(b) [G,G] is closed in G.

Proof. Since the kernels ker(Ẑ∗ −→ (Z/mZ)∗) form a fundamental system of neighbour-

hoods of 1 ∈ Ẑ∗, there is m ∈ Z>0 such that ker(Ẑ∗ −→ (Z/mZ)∗) is contained in Γ.

Choose such m even, which we may do without loss of generality. Let

u = (1 +m, 2) ∈
∏
p|m

Zp ×
∏
p-m

Zp = Ẑ

and note that u ∈ Ẑ∗. Since u ≡ 1 (mod m), we have u ∈ Γ. Moreover, by construction we

have (u− 1)Ẑ = mẐ.

Now, let x ∈ F , and let v ∈ G such that π(v) = u. Observe that

(u− 1) · x = ι−1(vι(x)v−1ι(x)−1),

11
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which is an element of ι−1([G,G]). It follows that

(u− 1)F = mF ⊂ ι−1([G,G]).

As mF is open in F , it follows that ι−1([G,G]) is open in F , so in particular it is closed in

F . Since ι is a closed map, [G,G] is closed in G, as desired.

Now, we are able to prove the (a) to (b) implication of the main theorem of this chapter (see

Theorem 1 of the Introduction).

Proof of (a) implies (b) of the main theorem. By Theorem 1.5, there is a natural extension

of ΓK

0 −→ Hom(Cyc(W ), µ̂)
ι−→ G −→ ΓK −→ 1,

where Hom(Cyc(W ), µ̂) is free of rank n over Ẑ by Proposition 1.7. Moreover, if K = Q,

then by the theorem of Kronecker–Weber (see [Hil96]) the image of Hom(Cyc(W ), µ̂) is

necessarily the closure [G,G] of the algebraic commutator subgroup of G. By 1.8(b) this is

equal to the algebraic commutator subgroup [G,G].

3. Continuous cochain cohomology

Let Γ be a topological group. We denote the category of topological Γ-modules by Γ-TMod,

and note that it is an additive category. The morphism sets in this category are denoted by

CHomΓ(−,−), CEndΓ(−) and CAutΓ(−). When it is clear that every group morphism be-

tween two topological Γ-modules is continuous, we drop the ‘C’ from the notation; e.g. when

the domain is discrete. Similarly, we drop the subscript Γ when it is clear that every group

morphism between two Γ-modules is Γ-linear; e.g. when Γ is trivial or when Γ is a closed

subgroup of Ẑ∗ and the action is natural (see [Jav13, Lemma 2.3]).

12



1.3. CONTINUOUS COCHAIN COHOMOLOGY

Let A be a topological Γ-module. For n ∈ Z≥0, endow Γ×n with the product topology,

and let Cn(Γ, A) denote the group C(Γ×n, A) of continuous functions from Γ×n to A. The

elements of Cn(Γ, A) are called continuous n-cochains.

For n ∈ Z≥0 define the boundary map dn : Cn(Γ, A) −→ Cn+1(Γ, A) by

(dnϕ)(γ1, . . . , γn+1) = γ1 · ϕ(γ2, . . . , γn+1)+

+
∑n

i=1(−1)iϕ(γ1, . . . , γiγi+1, . . . , γn+1) + (−1)n+1ϕ(γ1, . . . , γn),

whose kernel is the group of continuous n-cocycles, and is denoted by Zn(Γ, A). For all

n ∈ Z≥0 we have dn+1 ◦ dn = 0. Hence, for n ∈ Z≥1 the image of dn−1, denoted by

Bn(Γ, A), is contained in Zn(Γ, A); its elements are called the continuous n-coboundaries.

Moreover, the group of continuous 0-coboundaries B0(Γ, A) is defined as the trivial subgroup

of C0(Γ, A). For n ∈ Z≥0, we define the n-th continuous cochain cohomology group of Γ

with coefficients in A as the quotient Zn(Γ, A)/Bn(Γ, A), denoted by Hn(Γ, A).

We will almost always omit ‘continuous’ in the above defined objects. Note that if Γ

is a discrete topological group, the notions above coincide with the usual group cohomology

notions.

The cohomology group H0(Γ, A) will often be identified with the subgroup AΓ of Γ-

invariants of A via the group isomorphism ϕ 7→ ϕ(1). Moreover, if Γ acts trivially on A, then

H1(Γ, A) is equal to the group of continuous group morphisms CHom(Γ, A) of Γ to A.

Let ∆ and Γ be topological groups, and let ϕ : ∆ −→ Γ and ψ : A −→ B be continuous

group morphisms, where A and B are topological modules over Γ and ∆, respectively. The

pair (ϕ, ψ) is called compatible if for all δ ∈ ∆ and a ∈ A we have ψ(ϕ(δ)a) = δ(ψ(a)).

Lemma 1.9. Let ϕ : ∆ −→ Γ and ψ : A −→ B be a compatible pair. Then the following

statements hold.

13



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

(a) For each n ∈ Z≥0 there is an induced group morphism

Cn(ϕ, ψ) : Cn(Γ, A) −→ Cn(∆, B)

given by

Cn(ϕ, ψ)(f) = ψ ◦ f ◦ ϕ×n,

where ϕ×n : ∆×n −→ Γ×n sends (δ1, . . . , δn) ∈ ∆×n to (ϕ(δ1), . . . , ϕ(δn)).

(b) For each n ∈ Z≥0 the diagram

Cn(Γ, A)
dn //

Cn(ϕ,ψ)

��

Cn+1(Γ, A)

Cn+1(ϕ,ψ)
��

Cn(∆, B)
dn
// Cn+1(∆, B)

is commutative.

(c) For each n ∈ Z≥0 there is an induced group morphism

Hn(ϕ, ψ) : Hn(Γ, A) −→ Hn(∆, B)

defined by sending [f ] ∈ Hn(Γ, A) to [Cn(ϕ, ψ)(f)].

Proof. See [Wil98, Lemma 9.2.1].

Let C be the category defined as follows. Let the objects of C be all pairs (Γ, A) where Γ is a

topological group and A is a topological Γ-module. A morphism between (Γ, A) and (∆, B)

is given by a compatible pair (ϕ, ψ) where ϕ : ∆ −→ Γ and ψ : A −→ B. Composition of

two morphisms (ϕ : ∆ −→ Γ, ψ : A −→ B) and (ϕ′ : I −→ ∆, ψ′ : B −→ C) is given by

(ϕ′, ψ′) ◦ (ϕ, ψ) = (ϕ ◦ ϕ′, ψ′ ◦ ψ).

14



1.3. CONTINUOUS COCHAIN COHOMOLOGY

Proposition 1.10. Let n ∈ Z≥0. Then

Cn(·, ·) : C −→ Ab and Hn(·, ·) : C −→ Ab

are covariant functors from C to the category Ab of abelian groups.

Proof. See [Jav13, Proposition 1.3].

Throughout the rest of this section, let Γ be a topological group. The subcategory CΓ of C

consisting of the pairs (Γ, A) with A a topological Γ-module, and with morphisms all com-

patible pairs (idΓ, ψ) where ψ is a continuous Γ-module morphism, can be canonically iden-

tified with the category Γ-TMod of topological Γ-modules. For a morphism ψ of topological

Γ-modules, let Cn(Γ, ψ) = Cn(idΓ, ψ) and Hn(Γ, ψ) = Hn(idΓ, ψ).

Proposition 1.11. Let n ∈ Z≥0. Then

Cn(Γ, ·) : Γ-TMod −→ Ab and Hn(Γ, ·) : Γ-TMod −→ Ab

are additive covariant functors.

Proof. See [Jav13, Proposition 1.4].

Proposition 1.12. The functors Cn(Γ, ·) and Hn(Γ, ·) commute with arbitrary products.

Proof. See [Jav13, Proposition 1.6].

Proposition 1.13. Let

1 −→ A
f−→ B

g−→ C −→ 1

be a short exact sequence of not necessarily abelian topological groups. Then the following

are equivalent.

(a) The map f induces a homeomorphism from A to its image, and g admits a continuous

set-theoretic section.

15
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(b) There is a homeomorphism ϕ : B −→ A× C, where A× C has the product topology,

such that the diagram

B
g

##
ϕ

��

1 // A

f
;;

ιA ##

C // 1

A× C
πC

;;

commutes, where ιA sends a ∈ A to (a, 1) and πC sends (a, c) ∈ A× C to c.

Proof. See [Jav13, Proposition 1.7].

Definition 1.14. A short exact sequence

1 −→ A
f−→ B

g−→ C −→ 1

of not necessarily abelian topological groups is called well-adjusted if it satisfies either one

of the equivalent conditions 1.13(a) and 1.13(b) above.

All short exact sequences of discrete groups are well-adjusted, as are all short exact sequences

of profinite groups, see [Wil98, Lemma 0.1.2].

Proposition 1.15. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological Γ-modules. Then for each n ∈ Z≥0

there is a unique group morphism

δn : Hn(Γ, C) −→ Hn+1(Γ, A)

such that for every c ∈ Zn(Γ, C) and for every a ∈ Cn+1(Γ, A) and b ∈ Cn(Γ, B) satisfying

Cn(Γ, g)(b) = c and Cn+1(Γ, f)(a) = dn(b), we have a ∈ Zn+1(Γ, A) and δn([c]) = [a].

16
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Proof. See [Jav13, Proposition 1.13].

Theorem 1.16. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological Γ-modules. Then the sequence

0 // H0(Γ, A)
H0(f)

// H0(Γ, B)
H0(g)

// H0(Γ, C)
δ0 // H1(Γ, A)

H1(f)
// . . .

. . .
δn−1

// Hn(Γ, A)
Hn(f)

// Hn(Γ, B)
Hn(g)

// Hn(Γ, C)
δn // Hn+1(Γ, A)

Hn+1(f)
// . . .

is exact.

Proof. See [Jav13, Theorem 1.15].

4. Topological group extensions

Throughout this section, let Γ be a topological group, and let A be a topological Γ-module.

Definition 1.17. A topological group extension of Γ by A is a triple (E, f, g) consisting of a

topological group E together with a well-adjusted short exact sequence

0 −→ A
f−→ E

g−→ Γ −→ 1

of topological groups, such that for all a ∈ A and x ∈ E we have xf(a)x−1 = f(g(x) · a).

Notation 1.18. We will often denote the extension (E, f, g) by the well-adjusted short exact

sequence that is associated with it, or just by E when the maps f and g are understood.

17
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Definition 1.19. Let (E, f, g) and (E ′, f ′, g′) be two topological extensions of Γ by A. Then

(E, f, g) and (E ′, f ′, g′) are said to be equivalent if there exists an isomorphism ϕ : E −→ E ′

of topological groups such that the diagram

E
g

  
ϕ

��

0 // A

f
>>

f ′   

Γ // 1

E ′
g′

>>

commutes.

The above defines an equivalence relation on the class of all topological extensions of Γ by

A. For convenience, let X denote the set of all equivalence classes of topological extensions

of Γ by A.

Let (E, f, g) be a topological extension of Γ by A, and let s be a continuous section of

g. Then associating to (E, f, g) the map Γ×2 −→ A given by

(γ1, γ2) 7→ f−1(s(γ1)s(γ2)s(γ1γ2)−1), (∗)

induces a well-defined map ϕ : X −→ H2(Γ, A), see [Hu52].

Theorem 1.20. The map ϕ above is a bijection of sets.

Proof. See [Hu52].

The theorem above enables us to identify elements of H2(Γ, A) with equivalence classes of

topological extensions of Γ by A, and vice versa.

Let B be a topological Γ-module, and let ψ : A −→ B be a morphism of topological

Γ-modules. Let (E, f, g) be a topological extension of Γ by A. Compose

E −→ Γ −→ Aut(B)

18
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to obtain a canonical action of E on B. Then the pushout ψ∗(E) of E along ψ is

ψ∗(E) = (B o E)/{(ψ(a),−f(a)) : a ∈ A},

where the semi-direct product has the product topology and the quotient has the quotient

topology. One easily checks that (ψ∗(E), ιB, π) defines an element of H2(Γ, B), where ιB is

the inclusion of B in ψ∗(E) and π is the canonical surjection of ψ∗(E) to Γ.

Proposition 1.21. We have H2(Γ, ψ)([E]) = [(ψ∗(E), ιB, π)].

Proof. Clear from (∗).

5. On profinite groups

Lemma 1.22. Let F be a free Ẑ-module of finite rank, and let H be a profinite group. Then

every group morphism F −→ H is continuous.

Proof. Note that every finite index subgroup of F is open, because multiplication on F by

every element of Z is a continuous morphism. By [Wil98, Proposition 1.1.6(d)] the map

F −→ H is continuous if and only if for every open normal subgroup N of H the compo-

sition fN : F −→ H/N is continuous. As H/N is finite, it follows that ker fN is open in

F .

By [Wil98, Lemma 1.2.6], a map from a profinite group to a discrete space is continu-

ous if and only if there is an open normal subgroup N of G such that f factors through G/N .

It follows that F −→ H is continuous.

Lemma 1.23. Let F be a free Ẑ-module of finite nonzero rank, and let Γ be an open subgroup

of Ẑ∗. Let

0 −→ F
ι−→ G −→ Γ −→ 0

19
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be a natural extension. Then the image of ι is equal to the centralizer

CG([G,G]) = {g ∈ G : gx = xg for all x ∈ [G,G]}

of [G,G] in G.

Proof. First, note that [G,G] ⊂ ι(F ), because Γ is abelian. As ι(F ) is abelian, it centralises

every subgroup. Hence ι(F ) ⊂ CG([G,G]).

Conversely, note that by Lemma 1.8(a) there is m ∈ Z>0 such that ι(mF ) ⊂ [G,G].

Let σ ∈ CG([G,G]), and let x ∈ F . As ι(mx) ∈ [G,G], we have

σ · ι(mx) = σι(mx)σ−1 = ι(mx).

Since F is torsion-free, it follows that σ acts as the identity on F . Equivalently σ maps to the

identity in Γ, because F is a free Ẑ-module of finite nonzero rank. Hence σ ∈ ι(F ), which

proves that CG([G,G]) ⊂ ι(F ).

6. Roots of unity and cohomology

Let Γ be a closed subgroup of Ẑ∗. Define

IΓ =
∑
γ∈Γ

Ẑ(γ − 1)

to be the Ẑ-ideal generated by Γ − 1 = {γ − 1 : γ ∈ Γ}, and let JΓ = IΓ be its topological

closure in Ẑ. For example, one has IẐ∗ = JẐ∗ = 2Ẑ.

Let M be a profinite abelian group. As M is a Ẑ-module, there is an induced module

structure of Ẑ on Hn(Γ,M) for each n ∈ Z≥0.

Theorem 1.24. Let Γ be a closed subgroup of Ẑ∗. Let M be a profinite abelian group, and

let Γ act naturally on M . Then for all n ∈ Z≥0 we have JΓ · Hn(Γ,M) = 0.
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Proof. See [Jav13, Theorem 2.16].

Recall that for a fieldK of characteristic 0, we identify the maximal cyclotomic Galois group

Gal(K(µ)/K) of K canonically with a closed subgroup of Ẑ∗, which we denote by ΓK .

Theorem 1.25. Let K be a field of characteristic 0, and let ΓK be its maximal cyclotomic

Galois group. Then JΓK
= AnnẐ(µ(K)).

Proof. See [Jav13, Theorem 2.17].

Corollary 1.26. Let ΓK be as in Theorem 1.25, and let M be a profinite abelian group with

the natural ΓK-action. Then for all n ∈ Z≥0 we have AnnẐ(µ(K)) · Hn(ΓK ,M) = 0.

Proof. This follows immediately from Theorem 1.24 and Theorem 1.25.

Example 1.27. Let K be a field of characteristic 0 with only finitely many roots of unity, say

w = #µ(K). Then AnnẐ(µ(K)) = wẐ = JΓ. Hence w ·Hn(ΓK ,M) = 0 for every profinite

abelian group M .

7. Orbits of natural extensions

Throughout this section, let n ∈ Z≥0, let M be a free Ẑ-module of rank 1, let F be a free

Ẑ-module of rank n, and let Γ be an open subgroup of Ẑ∗. Let S be the set of isomorphism

classes of profinite groups G such that there exists a natural extension

0 −→ F −→ G −→ Γ −→ 1.

Such an extension has a class [0 −→ F −→ G −→ Γ −→ 1] that belongs to H2(Γ, F ); for

f ∈ Hom(F,M), the map H2(Γ, f) sends this class to an element of H2(Γ,M).

Let T be the set of subgroups of H2(Γ,M) that can be generated by n elements. In this

section we prove the following theorem.
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Theorem 1.28. The map ρ : S −→ T given by

[G] 7→
{

H2(Γ, f)([0 −→ F −→ G −→ Γ −→ 1]) : f ∈ Hom(F,M)
}

is well-defined and bijective.

We briefly give an outline of the proof. First, note that the theorem is trivial for n = 0.

Assume n > 0 and for simplicity take F = Ẑ⊕n and M = Ẑ. We define GLn(Ẑ)-actions on

H2(Γ, Ẑ⊕n) and H2(Γ, Ẑ)⊕n and give an isomorphism

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

of GLn(Ẑ)-modules. We give S and T the trivial GLn(Ẑ)-action, and construct GLn(Ẑ)-

equivariant maps

H2(Γ, Ẑ⊕n) −→ S

and

H2(Γ, Ẑ)⊕n −→ T

that both have the property that two elements in the domain map to the same element in the

codomain if and only if they are in the same GLn(Ẑ)-orbit in the domain. We show that the

latter maps make the diagram

H2(Γ, Ẑ⊕n) ω //

��

H2(Γ, Ẑ)⊕n

��

S ρ
// T

commutative in the category of GLn(Ẑ)-sets. Then ρ is the map induced by ω on the orbit

spaces. As ω is an isomorphism, the map ρ is a bijection, as desired.

Assume that n ≥ 1. By additivity of H2(Γ, ·) there is a ring morphism

CEndΓ(Ẑ⊕n) −→ End(H2(Γ, Ẑ⊕n))
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given by f 7→ H2(Γ, f). By Lemma 1.22 and the fact that any continuous group morphism

of profinite abelian groups is Ẑ-linear (see [Jav13, Lemma 2.3]), we may drop the ‘C’ and

subscript Γ, so that we have an End(Ẑ⊕n)-module structure on H2(Γ, Ẑ⊕n). For simplicity

we write Mn(Ẑ) for End(Ẑ⊕n) and GLn(Ẑ) for Aut(Ẑ⊕n).

By additivity of H2(Γ, ·) the map

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

given by x 7→
(
H2(Γ, πi)(x)

)n
i=1

, where πi is the i-th projection of Ẑ⊕n onto Ẑ, is an isomor-

phism of groups. Then

End(H2(Γ, Ẑ⊕n)) −→ End(H2(Γ, Ẑ)⊕n)

given by f 7→ ω ◦ f ◦ ω−1 is an isomorphism defining the Mn(Ẑ)-module structure on

H2(Γ, Ẑ)⊕n. The map ω then becomes an isomorphism of Mn(Ẑ)-modules. Moreover, for

f ∈ Mn(Ẑ) and (x1, . . . , xn) ∈ H2(Γ, Ẑ)⊕n we explicitly have

f · (x1, . . . , xn) =

(
n∑
j=1

H2(Γ, πi ◦ f ◦ ιj)(xj)

)n

i=1

.

We summarize the above in the following lemma.

Lemma 1.29. Assume that n ≥ 1. For i = 1, . . . , n let πi be the i-th projection of Ẑ⊕n onto

Ẑ, and ιi the i-th injection of Ẑ into Ẑ⊕n. Then the map

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

defined by x 7→ (H2(Γ, πi)(x))ni=1 is an isomorphism of Mn(Ẑ)-modules, where for f ∈

Mn(Ẑ) and x ∈ H2(Γ, Ẑ⊕n) and (x1, . . . , xn) ∈ H2(Γ, Ẑ)⊕n we have

f · x = H2(Γ, f)(x)
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and

f · (x1, . . . , xn) =

(
n∑
j=1

H2(Γ, πi ◦ f ◦ ιj)(xj)

)n

i=1

.

Lemma 1.30. Assume that n ≥ 1. Let GLn(Ẑ) act on H2(Γ, Ẑ⊕n) by restricting the Mn(Ẑ)-

action, and let GLn(Ẑ) act trivially on S. Then the map H2(Γ, Ẑ⊕n) −→ S given by

[0 −→ Ẑ⊕n −→ G −→ Γ −→ 1] 7→ [G]

is a well-defined GLn(Ẑ)-map with the property that two elements in H2(Γ, Ẑ⊕n) map to the

same element in S if and only if they are in the same GLn(Ẑ)-orbit.

Proof. The map is clearly well-defined. Equivariance under GLn(Ẑ) follows from the second

statement of the lemma, which we prove now.

Let

[(G1, f1, g1)] = [G1], [(G2, f2, g2)] = [G2] ∈ H2(Γ, Ẑ⊕n)

and suppose that they map to the same element in S. Let α : G1 −→ G2 be an isomorphism

of topological groups, which exists since G1 and G2 map to the same element in S. As

α(CG1([G1, G1])) = CG2([G2, G2]),

Lemma 1.23 implies that the map α induces an isomorphism α′ : Ẑ⊕n −→ Ẑ⊕n such that the

diagram

0 // Ẑ⊕n
f1
//

α′
��

G1
g1
//

α

��

Γ //

��

1

0 // Ẑ⊕n
f2
// G2 g2

// Γ // 1

commutes. The vertical map Γ −→ Γ is induced by the universal property of cokernels.

Since the action of Γ on Ẑ⊕n is the same as the actions of G1 and G2 on Ẑ⊕n, it follows that
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the vertical map Γ −→ Γ is the identity. Moreover, as G2 is the pushout of G1 along α′,

Proposition 1.21 implies that H2(Γ, α′)([G1]) = [G2].

Conversely, suppose that there is f ∈ GLn(Ẑ) with H2(Γ, f)([G1]) = [G2]. By Propo-

sition 1.21, the latter equality implies that G2 is isomorphic to the pushout f∗(G1) of G1

along f . As f is an isomorphism, it follows that G1 is isomorphic to f∗(G1). Hence, we have

G1
∼= G2 as profinite groups.

Let R be a not necessarily commutative ring. Recall that the Jacobson radical Jac(R) of R

is the intersection of all maximal left ideals of R. Moreover, recall that a left R-module M

is called simple if it has exactly two R-submodules, and that M is called semisimple if it is

the direct sum of simple R-modules. The ring R is called semisimple if it is semisimple as a

module over itself. The ring R is called semi-local if R/ Jac(R) is semisimple.

Lemma 1.31. Let R be a (not necessarily commutative) semi-local ring. Let A be a finitely

generated R-module, and let P be a finitely generated projective R-module. Assume that

we have two surjective R-module morphisms f, g : P −→ A. Then there is an isomorphism

h : P −→ P of R-modules such that g ◦ h = f .

Proof. First, assume that R is semisimple. Then A is projective, so we have R-module

isomorphisms

p1 : P −→ A⊕ ker f

and

p2 : P −→ A⊕ ker g

such that f = πA ◦ p1 and g = πA ◦ p2, where

πA : A⊕ ker f −→ A

and

π′A : A⊕ ker g −→ A
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are the canonical projection maps. As P is both noetherian and artinian as R-module, the

theorem of Krull-Remak-Schmidt (see [Lan02, Chapter X, Theorem 7.5]) implies that ker f

and ker g are isomorphic as R-modules. Choose any R-module isomorphism

p : ker f −→ ker g.

It follows that

h = p−1
2 ◦ (idA⊕ p) ◦ p1 : P −→ P

is an R-module isomorphism that satisfies g ◦ h = f . Indeed, we have

g ◦ h = π′A ◦ p2 ◦ h = π′A ◦ (idA⊕ p) ◦ p1 = πA ◦ p1 = f,

which proves the statement for R semisimple.

Now drop the assumption that R is semisimple. By definition of a semi-local ring,

the ring R/ Jac(R) is semisimple. For simplicity write J = Jac(R). Then f and g induce

surjective R-module morphisms

f, g : P/JP −→ A/JA.

As R/J is semisimple, the R/J-module P/JP = (R/J)⊗R P is projective. Hence, there is

an R-module isomorphism

h : P/JP −→ P/JP

such that g ◦ h = f . Let Z be the pullback of the canonical projection A −→ A/JA and

f : P/JP −→ A/JA. Let Z ′ be the pullback of the same diagram with f replaced by g.

As the pullback diagrams of Z and Z ′ are isomorphic, there is an isomorphism

q : Z −→ Z ′
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such that the cube

Z

q
��

//

��

A

id
��

��

Z ′ //

��

A

��

P/JP
f

//

h��

A/JA

id��

P/JP
g

// A/JA

commutes. By the universal property of Z, the canonical projection P −→ P/JP and f

induce an R-module morphism uZ : P −→ Z. By a diagram chasing argument, one easily

sees that this map is surjective. Analogously, we have a surjective morphism

uZ′ : P −→ Z ′.

By projectivity of P , there is a morphism h : P −→ P such that uZ′ ◦ h = q ◦ uZ . Now, the

three-dimensional diagram

P

h~~

##

f

&&

uZ

%%

P

π

��

g

%%

uZ′

""

Z

qxx

//

��

A

idxx

��

Z ′ //

p

��

A

��

P/JP
f

//

hyy

A/JA

idyy

P/JP
g

// A/JA

commutes. Note that we have g ◦ h = f . Therefore, it remains to show that h is an isomor-

phism of R-modules. To show surjectivity, note that uZ , q and p are surjective. Therefore,

the map p ◦ uZ′ ◦ h = π ◦ h is surjective. Thus, we have P = h(P ) + JP . Since P is finitely
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generated, the quotient P/h(P ) is so too. Moreover, we have J(P/h(P )) = P/h(P ). Hence,

by Nakayama’s lemma (see [Lam91, Theorem 4.22]) we have P/h(P ) = 0. It follows that h

is surjective.

By projectivity of P the sequence 0 −→ kerh −→ P −→ P −→ 0 splits, that is, there

is an R-module isomorphism ϕ : P −→ kerh⊕ P such that

P

ϕ

��

g

%%
0 // kerh

88

&&

P // 0

kerh⊕ P
πP

::

commutes, where πP is the projection to P . As P is finitely generated and the sequence

splits, kerh is also finitely generated. Applying the functor (R/J)⊗R− to h = πP ◦ϕ shows

that

P/JP h //

ϕ

��

P/JP

ker(h)/(J · ker(h))⊕ P/JP
πP

::

commutes. As h and ϕ are isomorphisms, it follows that πP is an isomorphism. Hence, we

have

ker(h)/(J · ker(h)) = 0.

Then Nakayama’s lemma (see [Lam91, Theorem 4.22]) implies that kerh = 0, so that h is

injective. This shows that h is an isomorphism of R-modules, which finishes the proof.

Lemma 1.32. Assume that n ≥ 1, and that M = Ẑ. Let GLn(Ẑ) act on H2(Γ, Ẑ)⊕n by

restricting the Mn(Ẑ)-action, and let GLn(Ẑ) act trivially on the set T from Theorem 1.28.

Then the map

H2(Γ, Ẑ)⊕n −→ T

28



1.7. ORBITS OF NATURAL EXTENSIONS

given by

(x1, . . . , xn) 7→ 〈x1, . . . , xn〉

is a GLn(Ẑ)-map with the property that two elements in H2(Γ, Ẑ)⊕n map to the same element

in T if and only if they are in the same GLn(Ẑ)-orbit.

Proof. Equivariance under GLn(Ẑ) follows from the second statement of the lemma, which

we prove now.

Let (x1, . . . , xn) and (y1, . . . , yn) be elements of H2(Γ, Ẑ)⊕n. Suppose that 〈x1, . . . , xn〉

and 〈y1, . . . , yn〉 are the same subgroup of H2(Γ, Ẑ), say N . By Theorem 1.24, the ideal JΓ

annihilates the group H2(Γ, Ẑ). As Γ is open, it is equal to ΓK for some number field K.

Hence, by Example 1.27 there is w ∈ Z≥2 such that wẐ = JΓ. Now JΓ · H2(Γ, Ẑ) = 0

implies that H2(Γ, Ẑ) is torsion. It follows that N is a finite group. Now, we replace Ẑ with

the ring ẐN =
∏

p|#N Zp, because the action of Ẑ on N factors via ẐN . As ẐN is a finite

product of local rings, it is semi-local; in particular, the quotient ẐN/ Jac(ẐN) is semisimple.

Each set of generators of N defines a surjective morphism

Ẑ⊕nN −→ N

of ẐN -modules by sending the standard basis to the set of generators. Let f be the morphism

corresponding to (x1, . . . , xn), and let g be the morphism corresponding to (y1, . . . , yn). Then

by Lemma 1.31 it follows that there is an isomorphism

h : Ẑ⊕nN −→ Ẑ⊕nN

of ẐN -modules such that g ◦ h = f . Extend h to an automorphism of Ẑ⊕n by the identity on∏
p-#N Zp.

Let A be the matrix in GLn(Ẑ) corresponding to h. Then

A ·
( x1

...
xn

)
=

( y1
...
yn

)
.
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This action of A on (x1, . . . , xn) is the same as the action of h on (x1, . . . , xn). It follows that

h · (x1, . . . , xn) = (y1, . . . , yn) as desired.

Conversely, suppose there is f ∈ GLn(Ẑ) such that f · (x1, . . . , xn) = (y1, . . . , yn).

Then yi is a Ẑ-linear combination of x1, . . . , xn for every i = 1, . . . , n. Hence, we have

〈y1, . . . , yn〉 ⊂ 〈x1, . . . , xn〉.

The other inclusion follows from the identity f−1 · (y1, . . . , yn) = (x1, . . . , xn).

Remark 1.33. One easily sees that the above lemma is true if we replace H2(Γ, Ẑ) by an

abelian torsion group A that is an Mn(Ẑ)-module, and replace T by the corresponding set of

subgroups of A that can be generated by n elements of A.

Proof of Theorem 1.28. Observe that the theorem is trivial for n = 0. Assume n > 0. It is

clear that we may take F = Ẑ⊕n and M = Ẑ, which we do for simplicity. To show that ρ is

well-defined, note that

H2(Γ, Ẑ⊕n)× Hom(Ẑ⊕n, Ẑ) −→ H2(Γ, Ẑ)

given by (x, f) 7→ H2(Γ, f)(x) is a bilinear mapping. Hence, for fixed x ∈ H2(Γ, Ẑ⊕n)

the image H2(Γ,Hom(Ẑ⊕n, Ẑ))(x) is indeed a subgroup of H2(Γ, Ẑ). Moreover, the group

Hom(Ẑ⊕n, Ẑ) is generated as a Ẑ-module by the n projection morphisms π1, . . . , πn. Then

by additivity of H2(Γ, ·) it follows that H2(Γ,Hom(Ẑ⊕n, Ẑ))(x) is indeed a subgroup of

H2(Γ, Ẑ) that can be generated by n elements.

To show that for [G] ∈ S the image ρ([G]) does not depend on the equivalence class

[0 −→ Ẑ⊕n −→ G −→ Γ −→ 1] in H2(Γ, Ẑ⊕n), suppose [(G, f1, g1)] and [(G, f2, g2)] are

two elements of H2(Γ, Ẑ⊕n). Let α : G −→ G be an automorphism of G. By Lemma 1.23,
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there exists an isomorphism α′ of Ẑ⊕n such that

Ẑ⊕n
f1
//

α′
��

G

α

��

Ẑ⊕n g2
// G

commutes. Then clearly G is the pushout of G along α′, so that we have

H2(Γ, f)([(G, f2, g2)]) = H2(Γ, f ◦ α′)([(G, f1, g1)]).

As composition with α′ induces an automorphism of Hom(Ẑ⊕n, Ẑ), it follows that

H2(Γ,Hom(Ẑ⊕n, Ẑ))([(G, f1, g1)]) = H2(Γ,Hom(Ẑ⊕n, Ẑ))([(G, f2, g2)]).

Hence, the map ρ is well-defined.

Now, one easily checks that we have a commutative diagram

H2(Γ, Ẑ⊕n)

1.30
��

ω // H2(Γ, Ẑ)⊕n

1.32
��

S ρ
// T

of GLn(Ẑ)-equivariant maps, where ω is defined in Lemma 1.29. By Lemma 1.30 and 1.32,

the sets S and T are in bijection with the orbit spaces of H2(Γ, Ẑ⊕n) and H2(Γ, Ẑ)⊕n under

the action of GLn(Ẑ), respectively. By commutativity of the diagram ρ is a bijection.

8. Cohomology of the Tate module

Throughout this section, let K be a number field, K an algebraic closure of K, and w =

#µ(K). For every m ∈ Z≥1 we put Km = K
∗
. For every positive integer m′ dividing m

we have a surjective map Km −→ Km′ given by exponentiation by m/m′. This forms a
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projective system and its limit is denoted by K̂∗. The elements x = (xm)m≥1 of K̂∗ are, in

particular, systems of compatible roots of x1, that is, for every m, d ∈ Z≥1 we have xmm = x1

and xdmd = xm.

Theorem 1.34. There is a unique isomorphism

ϕ :
K(µ)∗w ∩K∗

µwK∗w
−→ H2(ΓK , µ̂)

such that for every x ∈ K(µ)∗w∩K∗, every (xm)m≥1 ∈ K̂∗ with x1 = x and every continuous

set-theoretic section s : ΓK −→ Gal(K/K) we have

ϕ(x · µwK∗w) =

[
(σ, τ) 7→

(
s(σ)s(τ)xmw
s(στ)xmw

)
m≥1

]
.

Proof. Exponentiation byw is a continuous ΓK-module endomorphism of µ̂, giving the well-

adjusted sequence (see 1.14)

0 −→ µ̂
·w−→ µ̂

π−→ µw −→ 0

of topological ΓK-modules. By Theorem 1.16 the following long sequence

0 // H0(ΓK , µ̂)
H0(·w)

// H0(ΓK , µ̂)
H0(π)

// H0(ΓK , µw)
δ0

// H1(ΓK , µ̂)
H1(·w)

// H1(ΓK , µ̂)
H1(π)

// H1(ΓK , µw)
δ1

// H2(ΓK , µ̂)
H2(·w)

// H2(ΓK , µ̂)
H2(π)

// · · ·

of continuous cohomology groups is exact. By Corollary 1.26 we have

AnnẐ(µ(K)) · H0(ΓK , µ̂) = 0.

As µ̂ has no non-trivial w-torsion, it follows that

H0(ΓK , µ̂) = µ̂ΓK = 0.
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As AnnẐ(µ(K)) = wẐ (see Example 1.27) and Hm(ΓK , ·) is an additive functor for every

m ∈ Z≥0 (see Proposition 1.11), the group morphism Hm(ΓK , ·w) is the zero map. Thus, the

map δ0 : µw −→ H1(ΓK , µ̂) is an isomorphism of groups.

Moreover, the long exact sequence above gives the exact sequence

0 −→ H1(ΓK , µ̂)
H1(π)−→ H1(ΓK , µw)

δ1−→ H2(ΓK , µ̂) −→ 0.

As ΓK acts trivially on µw, we have H1(ΓK , µw) = CHom(ΓK , µw). By Kummer theory the

map

κ :
K(µ)∗w ∩K∗

K∗w
−→ CHom(ΓK , µw)

defined by

uK∗w 7→
(
σ 7→ σ(t)

t

)
where t ∈ K∗ is such that tw = x, is an isomorphism of groups. Using Proposition 1.15, one

easily checks that

H1(ΓK , µ̂)
H1(π)

// CHom(ΓK , µw)

µw

oδ0

OO

//
K(µ)∗w ∩K∗

K∗w

o κ
OO

is a commutative diagram, where the lower horizontal map is the natural inclusion. Hence,

the map δ1 ◦ κ induces an isomorphism

K(µ)∗w ∩K∗

µwK∗w
−→ H2(ΓK , µ̂)

of groups, which we will call ϕ.

Let x ∈ K(µ)∗w ∩ K∗, (xm)m≥1 ∈ K̂∗ with x1 = x and s : ΓK −→ Gal(K/K) a

continuous set-theoretic section. We will show that the image of x · µwK∗w under ϕ is[
(σ, τ) 7→

(
s(σ)s(τ)xmw
s(στ)xmw

)
m≥1

]
.
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Then we have κ(x ·K∗w) =
[
σ 7→ σ(xw)

xw

]
. For brevity we will denote κ(x ·K∗w) by γx. Now,

for the image of γx under δ1 we are going to apply Proposition 1.15.

Define βx : ΓK −→ µ̂ by σ 7→
(
s(σ)(xm)

xm

)
m≥1

and note that it is an element of C1(ΓK , µ̂)

that maps to γx under C1(ΓK , π). Moreover, writing out the formula for d1 (see beginning of

Section 1.3) we obtain

d1(βx)(σ, τ) =

(
σ

(
s(τ)(xm)

xm

)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)

(
s(τ)(xm)

xm

)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)s(τ)(xm)

s(σ)(xm)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)s(τ)(xm)

s(στ)(xm)

)
m≥1

.

On the other hand, define

αx : ΓK × ΓK −→ µ̂

by (σ, τ) 7→
(
s(σ)s(τ)xmw

s(στ)xmw

)
m≥1

. Since x ∈ K(µ)∗w, for all m ∈ Z≥1 we have

s(σ)s(τ)xmw
s(στ)xmw

∈ µm.

The formula for d1(βx) given above shows that the map αx maps to d1(βx) under C2(ΓK , ·w).

Hence, by Proposition 1.15 the identity δ1([γx]) = [αx] holds.

It follows that the image of x · µwK∗w under ϕ is [αx], as desired.

9. Galois groups of maximal radical extensions

Throughout this section, let K be a number field, let K an algebraic closure of K, let w =

#µ(K), and let

Λ(K) =
K(µ)∗w ∩K∗

µwK∗w
.
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Let n ∈ Z≥0, and let F be a free Ẑ-module of rank n. Let S be the set of isomorphism classes

of profinite groups G such that there exists a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1,

and let T be the set of subgroups of H2(ΓK , µ̂) that can be generated by n elements. Then by

Theorem 1.28 the map ρ : S −→ T given by

[G] 7→ {H2(ΓK , f)([0 −→ F −→ G −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)}

is a bijection. Let T ′ be the set of subgroups of Λ(K) that can be generated by n elements.

The isomorphism ϕ of Theorem 1.34 induces a bijection

Φ: T ′ −→ T

given by H 7→ ϕ(H), and its inverse Φ−1 : T −→ T ′ is given by H 7→ ϕ−1(H). Thus, the

map

χ = Φ−1 ◦ ρ

is a bijection of S with T ′ given by

χ([G]) = ϕ−1({H2(ΓK , f)([0 −→ F −→ G −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)}).

Observe that for any finitely generated subgroup W of K∗ of rank n, the Galois group

Gal(K(W 1/∞)/K)

defines an element of S by Theorem 1.5 and Proposition 1.7. In this section we prove the

following theorem.

Theorem 1.35. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.
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Then the image of the isomorphism class of Gal(K(W 1/∞)/K) in S under the bijection χ is

(Cyc(W )w ∩K∗)K∗w

µwK∗w
⊂ Λ(K).

Let A be a discrete abelian group. Then Hom(A, µ̂) is a topological ΓK-module, where ΓK

acts via the second argument. For any x ∈ A we have a continuous ΓK-linear morphism

evx : Hom(A, µ̂) −→ µ̂ given by f 7→ f(x). This induces a group morphism

H2(ΓK , evx) : H2(ΓK ,Hom(A, µ̂)) −→ H2(ΓK , µ̂).

As H2(ΓK , ·) is an additive functor (see 1.11) and for any x, y ∈ A we have evx+y =

evx + evy, there is a group morphism

ψA : H2(ΓK ,Hom(A, µ̂)) −→ Hom(A,H2(ΓK , µ̂))

given by [c] 7→ (x 7→ H2(evx)(c)). This defines a morphism of additive functors in A.

Lemma 1.36. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Let ψ be the group morphism ψCyc(W ) defined above, and let K̂∗ be as defined in the beginning

of section 1.8. Then

ψ : H2(ΓK ,Hom(Cyc(W ), µ̂)) −→ Hom(Cyc(W ),H2(ΓK , µ̂))

is a group isomorphism such that for every x ∈ Cyc(W ), for every (xm)m≥1 ∈ K̂∗ with

x1 = x and for every continuous set-theoretic section s : ΓK −→ Gal(K/K), the image of

the equivalence class of the natural extension of ΓK

e : 0 −→ Hom(Cyc(W ), µ̂) −→ Gal(K(W 1/∞)/K) −→ ΓK −→ 1
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of Theorem 1.5 is defined by

x 7→

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
.

Proof. We first show that ψZ is an isomorphism. To this end, observe that

χµ̂ : Hom(Z, µ̂) −→ µ̂

defined by f 7→ f(1) is an isomorphism of ΓK-modules. Hence

H2(ΓK , χµ̂) : H2(ΓK ,Hom(Z, µ̂)) −→ H2(ΓK , µ̂)

is an isomorphism of groups. Moreover

χH2(ΓK ,µ̂) : Hom(Z,H2(ΓK , µ̂)) −→ H2(ΓK , µ̂)

is an isomorphism of groups. Since χH2(ΓK ,µ̂) ◦ ψZ = H2(ΓK , χµ̂), the map ψZ is an isomor-

phism.

Now, note that Hom(Cyc(W ), µ̂) = Hom(Cyc(W )/µ, µ̂) and that Cyc(W )/µ ∼= Zn

for some n ∈ Z≥1 (see Lemma 1.4). Moreover, since µ is divisible and H2(ΓK , µ̂) has

exponent w (see Theorem 1.34), we have

Hom(Cyc(W ),H2(ΓK , µ̂)) = Hom(Cyc(W )/µ,H2(ΓK , µ̂)).

Then by additivity of H2(ΓK ,Hom(·, µ̂)) and Hom(·,H2(ΓK , µ̂)), the map ψCyc(W ) is an

isomorphism of groups.

For the second part of the lemma, let x ∈ Cyc(W ), (xm)m≥1 ∈ K̂∗ with x1 = x and

s : ΓK −→ Gal(K/K) a continuous set-theoretic section. Let

e : 0 −→ Hom(Cyc(W ), µ̂) −→ Gal(K(W 1/∞)/K) −→ ΓK −→ 0
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be as in Theorem 1.5. Then e corresponds to the element [(σ, τ) 7→ s(σ)s(τ)s(στ)−1] of the

cohomology group H2(ΓK ,Hom(Cyc(W ), µ̂)) (see Theorem 1.20).

Recall that the isomorphism α : Gal(K(W 1/∞)/K(µ)) −→ Hom(Cyc(W ), µ̂) is de-

fined by σ 7→
(
y 7→

(
σ(ym)
ym

)
m≥1

)
(see Theorem 1.5). Then we deduce

ψCyc(W )(e)(x) =
[
(σ, τ) 7→ α(s(σ)s(τ)s(στ)−1)(x)

]
=

[
(σ, τ) 7→

(
s(σ)s(τ)s(στ)−1(xm)

xm

)
m≥1

]
.

Observe that for any σ, τ ∈ ΓK and m ∈ Z≥1 the identity

s(σ)s(τ)
(
s(στ)−1xm

xm

)
s(στ)

(
s(στ)−1xm

xm

) = 1

holds. Thus, for any σ, τ ∈ ΓK and m ∈ Z≥1 we have

s(σ)s(τ)s(στ)−1xm
xm

=
s(σ)s(τ)xm
s(στ)xm

·
s(σ)s(τ)

(
s(στ)−1xm

xm

)
s(στ)

(
s(στ)−1xm

xm

) =
s(σ)s(τ)xm
s(στ)xm

.

This shows that

ψCyc(W )(e)(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
.

Let W be a finitely generated subgroup of K∗ of rank n, and let Sat(W ) = W 1/∞ ∩K∗ and

Cyc(W ) = W 1/∞ ∩K(µ)∗. By Proposition 1.3 we have

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Moreover, as µ is divisible and Λ(K) has exponent w, the map

νW : Cyc(W ) −→ Λ(K)

defined by x 7→ y · µwK∗w, where xw = ζ · y for some ζ ∈ µ and y ∈ K∗, is a well-defined

group morphism.
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Lemma 1.37. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Then for every x ∈ Cyc(W ), for every (xm)m≥1 ∈ K̂∗ with x1 = x and for every continuous

set-theoretic section s : ΓK −→ Gal(K/K) we have

(ϕ ◦ νW )(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
where ϕ is defined in Theorem 1.34.

Proof. Let x ∈ Cyc(W ), (xm)m≥1 ∈ K̂∗ with x1 = x and s : ΓK −→ Gal(K/K) a

continuous set-theoretic section. Let ζ ∈ µ and y ∈ K∗ be such that xw = yζ . Then

(xm)wm≥1 = (ym)(ζm)m≥1 for some (ym)m≥1 ∈ K̂∗ with y1 = y and (ζm)m≥1 ∈ K̂∗ with

ζ1 = ζ . Then by Theorem 1.34 we have

(ϕ ◦ νW )(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)ymw
s(στ)ymw

)
m≥1

]

=

[
(σ, τ) 7→

(
s(σ)s(τ)(xmζ

−1
mw)

s(στ)(xmζ−1
mw)

)
m≥1

]

=

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
where we used that for every γ ∈ ΓK and m ≥ 1 we have s(γ)ζm = γζm.

Lemma 1.38. Let W be a finitely generated subgroup of K∗ of rank n, let

Sat(W ) = W 1/∞ ∩K∗,

and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Then the kernel of νW is Sat(W ) · µ and its image is

νW (Cyc(W )) =
(Cyc(W )w ∩K∗) ·K∗w

µwK∗w
.
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Proof. This is clear since modulo µ the map νW is given by exponentiation byw, and because

by Proposition 1.3 we have Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Proof of Theorem 1.35. Let GW = Gal(K(W 1/∞)/K), and let ν = νW . Recall the defini-

tions of ρ and Φ−1 from the beginning of this section. We will first show that

ρ([GW ]) = Φ(ν(Cyc(W ))),

where Φ is the inverse of Φ−1. To this end, let

EW : 0 −→ Hom(Cyc(W ), µ̂) −→ GW −→ ΓK −→ 1

be the natural extension of ΓK of Theorem 1.5. Note that

ρ([GW ]) = {H2(ΓK , f)([0 −→ F −→ GW −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)},

where it does not matter which equivalence class of natural extensions of ΓK by F we take

(see Theorem 1.28). As Hom(Cyc(W ), µ̂) is isomorphic to F as topological Ẑ-module, we

have

ρ([GW ]) = {H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)},

where again we are free to choose which equivalence class of natural extensions of ΓK we

use.

On the other hand, note that ν(Cyc(W )) is indeed an element of T ′, since Cyc(W )/µ

is free of rank n (see Lemma 1.4) and µ ⊂ ker(ν). Hence

Φ(ν(Cyc(W ))) = (ϕ ◦ ν)(Cyc(W ))

is an element of T . By Lemma 1.36 and Lemma 1.37 we have

(ϕ ◦ ν)(Cyc(W )) = ψ([EW ])(Cyc(W ))

40



1.9. GALOIS GROUPS OF MAXIMAL RADICAL EXTENSIONS

where [EW ] is the equivalence class of EW in H2(ΓK ,Hom(Cyc(W ), µ̂)), and ψ is defined

in Lemma 1.36. Recall that

ψ([EW ]) : Cyc(W ) −→ H2(ΓK , µ̂)

is given by x 7→ H2(ΓK , evx)([EW ]), where evx : Hom(Cyc(W ), µ̂) −→ µ̂ is evaluation at

x. Hence

ψ([EW ])(Cyc(W )) = {H2(ΓK , evx)([EW ]) : x ∈ Cyc(W )},

which we want to be equal to

{H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)}.

To see this, note that the canonical group morphism

Cyc(W ) −→ Hom(Hom(Cyc(W ), µ̂), µ̂)

given by x 7→ evx has kernel µ. It induces an injective Ẑ-module morphism

(Cyc(W )/µ)⊗Z Ẑ −→ Hom(Hom(Cyc(W ), µ̂), µ̂) = Hom(Hom(Cyc(W )/µ, µ̂), µ̂). (∗)

Note that (∗) is an isomorphism when Cyc(W )/µ is replaced by Zn. As

Cyc(W )/µ ∼= Zn

as groups, the map (∗) is an isomorphism (cf. the proof of Lemma 1.36). Hence, we have

Φ(ν(Cyc(W ))) = (ϕ ◦ ν)(Cyc(W ))

= ψ([EW ])(Cyc(W ))

= {H2(ΓK , evx)([EW ]) : x ∈ Cyc(W )}

= {H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)}

= ρ([GW ]),
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as we wanted to show.

Now, applying Φ−1 we obtain χ([GW ]) = ν(Cyc(W )). Hence, by Lemma 1.38 we

have

χ([GW ]) = ν(Cyc(W )) =
(Cyc(W )w ∩K∗) ·K∗w

µwK∗w
.

10. Lifting

In this section we prove the following two theorems.

Theorem 1.39. Let w ∈ Z>1, and let M be a free module over Z/wZ. Let Λ be a submodule

of M , let n ∈ Z≥1, and let H ⊂ Λ be a finite subgroup generated by at most n elements.

Assume that M [l]/Λ[l] is infinite for every prime l dividing w. Then there is a submodule I

of M that is free over Z/wZ of rank n such that I ∩ Λ = H .

Theorem 1.40. Let K be a number field unequal to Q, and let w = #µ(K). Let M =

K∗/µwK
∗w and Λ = K(µ)∗w∩K∗

µwK∗w
. Then for every prime l dividing w the quotient M [l]/Λ[l] is

infinite.

We remark that Theorem 1.40 does not hold for Q, since

Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2

holds as a corollary of the Kronecker-Weber theorem.

Proof of 1.39. As Z/wZ is a Gorenstein ring, projective modules are injective. Therefore

M is injective over Z/wZ. Let I be a free Z/wZ-module of rank n and choose an injection
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H −→ I . Let H −→ Λ −→ M be the composition of injections. Then by injectivity of M

there is a group morphism f : I −→M making the diagram

0 // H //

��

I π //

f

��

I/H //

f
��

0

0 // Λ //M
π′
//M/Λ // 0

commutative, where π and π′ are the canonical quotient maps, and f is the induced map on

the quotients.

We will construct a group morphism g : I/H −→M such that the map

f + gπ = f + π′g : I/H −→M/Λ

induced by f + gπ is injective. Given such a g, the Snake Lemma implies that the map

f + gπ : I −→ M is injective. Then we have injective morphisms I −→ M and I/H −→

M/Λ making the above diagram commute, which finishes the proof, for I can be identified

with a free Z/wZ-submodule of M of rank n whose intersection with Λ is H .

To construct g, we first assume w = lk where l is prime and k ∈ Z≥1. Let

(−)[l] : Ab −→ Ab

be the functor of the category of abelian groups to the category of abelian groups sending

objects A to their l-torsion subgroup A[l] ∼= Hom(Z/lZ, A), and morphisms φ : A −→ B to

their restriction φ[l] : A[l] −→ B[l] to the l-torsion subgroup of the domain.

As (−)[l] is left exact, we obtain the exact sequence

0 −→ Λ[l] −→M [l]
π′[l]−→ (M/Λ)[l].

This induces the injection M [l]/Λ[l] −→ (M/Λ)[l], which we also denote by π′[l] by abuse

of notation. Let c : (M/Λ)[l] −→ N be the cokernel of f [l], and let N0 be the image of
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c ◦ π′[l]. As (I/H)[l] is finite, it follows that N and N0 are both infinite. We have the

following commutative diagram

(I/H)[l]
f [l]
// (M/Λ)[l] c // N // 0

M [l]/Λ[l]
c◦π′[l]

//
?�

π′[l]

OO

N0
//

?�

ι

OO

0

with exact rows. Observe that all groups in this diagram are Fl-vector spaces, hence they are

injective and projective over Fl. Since (I/H)[l] is finite dimensional over Fl andN0 is infinite

dimensional over Fl, we can embed the former in the latter. Choose such an embedding and

call it j. Using projectivity of (I/H)[l], lift j to a morphism j : (I/H)[l] −→ M [l] via the

surjective composition

M [l] −→M [l]/Λ[l] −→ N0.

Composing with the canonical embedding M [l] −→M , we obtain a morphism

(I/H)[l] −→M.

Using injectivity of M , we lift this map to a map g : I/H −→ M via the embedding

(I/H)[l] −→ I/H .

Now we show that f + gπ = f + π′g is injective. As w = lk, it suffices to show that

(f + π′g)[l] is injective. Note that

(f + π′g)[l] = f [l] + π′[l] ◦ q ◦ g[l],

where q is the surjection M [l] −→M [l]/Λ[l]. Composing with c gives

c ◦ (f + π′g)[l] = c ◦ f [l] + c ◦ π′[l] ◦ q ◦ g[l] = 0 + ι ◦ j.

As j and ι are both injective, the composition c ◦ (f + π′g)[l] is injective. It follows that

(f + π′g)[l] is injective. Thus, we have constructed g such that f + gπ is injective, proving

the theorem for w a prime power.
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Now, suppose w ∈ Z>1. Let l be a prime divisor of w. Restrict f to the l-part of I and

do the above for the l-part of H , I , Λ and M . This gives a morphism gl for every l dividing

w. The direct sum of all the gl defines a map g : I/H −→ M such that f + gπ is injective,

which finishes the proof.

Lemma 1.41. Let K be a number field, let L be a finite extension of K, and let F be a (not

necessarily finite) abelian extension ofK. LetM = F ·L. Let p be a prime ofK that does not

ramify in L, and let p and q be primes of L lying above p. Then the inertia groups Ip(M/L)

and Iq(M/L) are equal.

Proof. Let Ip = Ip(F/K), Ip = Ip(M/L) and Iq = Iq(M/L). As p does not ramify in L, we

have

L ∩ F ⊂ F Ip = E.

Recall that there is a canonical isomorphism between the Galois groups Gal(F/L ∩ F ) and

Gal(M/L). Hence Ip corresponds to a unique subgroup of Gal(M/L), which we again

denote by Ip.

Observe that E · L = M Ip . We claim that E · L is contained in M Ip . Indeed, let s be

a prime of E · L dividing p. Then s ∩ E is unramified over p, since E is the inertia subfield

of p in F . Moreover, as M is the compositum of F with L, and s ∩ E is unramified over

s ∩ (F ∩ L), it follows that s is unramified over p. Hence M Ip ⊂ M Ip , which gives Ip ⊂ Ip

and proves the claim.

Consider Ip as a subgroup of Gal(F/F ∩ L), and note that Ip ⊂ Ip implies E ⊂ F Ip .

Let r be a prime of M Ip dividing p. Then r is unramified over E · L, as E · L is contained in

the inertia subfield of r∩L = p in M . Moreover, r∩ (E ·L) is unramified over E, since p is

unramified over p ∩ (L ∩ F ).

On the other hand, r ∩ F Ip is totally ramified over E, since E is the inertia subfield of

p in F . This implies that r ∩ F Ip is totally ramified and unramified over E, hence F Ip = E.
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It follows that Ip = Ip.

Analogously, we find Ip = Iq, so that Ip = Iq, as desired.

Proof of Theorem 1.40. Let l be a prime divisor of w. Let K̃ = K(K∗1/w), let Ml be the

maximal exponent l extension of K(µw2) contained inside of K̃, and let Λl be the maximal

exponent l extension of K(µw2) contained inside of K(µ)∩ K̃. One easily checks that under

Kummer and Galois dualities with K(µw2) as basefield, the quotient M [l] corresponds to Ml,

and Λ[l] corresponds to Λl. To show that M [l]/Λ[l] is infinite is then equivalent to showing

that Ml/Λl is an infinite extension.

Suppose by contradiction that Ml/Λl is finite. Then there is a finite extension L of

K(µw2) such that Ml = L · Λl. Let F = Q(µ) ∩ Λl, and note that F ·K(µw2) = Λl, so that

F · L = Ml.

Now, let p be a prime number different from l that splits completely in L. As K 6= Q,

there are two distinct primes p and q of K above p. Let p′ and q′ be primes of L above p and

q, respectively. Since F is abelian over Q, and p is unramified in L, Lemma 1.41 with Q in

the role of K implies that Ip′(Ml/L) = Iq′(Ml/L). Moreover L is unramified at p over K, so

we have

Ip(Ml/K) = Ip′(Ml/L) = Iq′(Ml/L) = Iq(Ml/K).

Let α ∈ K∗ such that α does not have a l-th root in L, α ∈ p \ p2, and α /∈ q. Then

X l − α ∈ K[X] is Eisenstein at p, so that K ′ = K(α1/l) is totally ramified at p. Therefore

the inertia group Ip(K
′/K) is nontrivial. However, the prime q does not contain l nor α,

which implies that q does not ramify in K ′. Note that K ′ is contained in K̃, and moreover, as

it has exponent l over K, it is contained in Ml. Thus, it follows that Ip(Ml/K) 6= Iq(Ml/K),

which is a contradiction. We conclude that Ml has infinite degree over Λl, as desired.
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11. The main theorem

In this section we prove the main theorem of this chapter.

Theorem 1.42 (Main theorem). Let n ∈ Z≥0, and let F be a free Ẑ-module of rank n. Let G

be a profinite group, and let K be a number field. Then the following are equivalent.

(a) There exists a finitely generated subgroup W ⊂ K∗ of rank n such that

G ∼= Gal(K(W 1/∞)/K)

as profinite groups.

(b) There is a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1

such that if K = Q, the image of F in G equals the algebraic commutator subgroup

[G,G] of G.

Proof of main theorem. As the implication (a) to (b) was already proven in Section 1.2, it

remains to show the implication (b) to (a).

First, suppose K is unequal to Q, and let us be given a natural ΓK-extension

0 −→ F −→ G −→ ΓK −→ 1.

Then we want to show that there is W ⊂ K∗ of rank n such that G ∼= Gal(K(W 1/∞)/K) as

profinite groups.

Let S be the set of isomorphism classes of profinite groups that are natural ΓK-extensions

by F . Let T ′ be the set of subgroups of

Λ =
K(µ)∗w ∩K∗

µwK∗w
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that can be generated by at most n elements. As described in the beginning of Section 1.9,

there is by Theorems 1.28 and 1.34 a bijection χ of S with T ′. Under this bijection the class

of G in S corresponds to a unique element, say H , of T ′.

By [Iwa53, Lemma 3] we know that K∗/µw is free over Z. It follows that

M = K∗/µwK
∗w

is free over Z/wZ. Then by Theorem 1.40 and Theorem 1.39, there exists I ⊂ M such that

I is free over Z/wZ of rank n and I ∩ Λ = H . Let x1, . . . , xn be a Z/wZ-basis of I , and lift

them to K∗, to say y1, . . . , yn. Let W be the group generated by y1, . . . , yn.

Let

Sat(W ) = W 1/∞ ∩K∗

and

Cyc(W ) = W 1/∞ ∩K(µ)∗.

By Lemma 1.4 the group Sat(W ) is finitely generated of rank n. As Sat(W ) contains W ,

and the image of W under the canonical map

K∗ −→ K∗/µwK
∗w

is equal to the free module I of rank n over Z/wZ, the image of Sat(W ) is also equal to I .

Hence, the identity

I =
Sat(W )K∗w

µwK∗w

holds. Let GW = Gal(K(W 1/∞)/K). Then Theorem 1.35 implies that

χ([GW ]) =
(Cyc(W )w ∩K∗)K∗w

µwK∗w
.

Moreover, recall that

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗)
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by Proposition 1.3. Hence, we have

H = I ∩ Λ =
Sat(W )K∗w

µwK∗w

⋂ K(µ)∗w ∩K∗

µwK∗w

=
Sat(W )K∗w ∩K(µ)∗w ∩K∗

µwK∗w

=
(Sat(W ) ∩K(µ)∗w ∩K∗)K∗w

µwK∗w

=
(Cyc(W )w ∩K∗)K∗w

µwK∗w

= χ([GW ]),

we see that H is the image of [GW ]. As χ is a bijection, it follows that G ∈ [GW ], that is, we

have G ∼= GW .

Now, suppose K is equal to Q, and note that ΓK = Ẑ∗. Let

E : 0 −→ F −→ G −→ Ẑ∗ −→ 1

be a natural extension of Ẑ∗ with F = [G,G]. Suppose that n = 1. Since the semi-direct

product has commutator subgroup 2Ẑ and [G,G] = Ẑ, it follows that G is not the trivial

extension. Then [Jav13, Theorem 1, page v] states that any natural extension of Ẑ∗ by Ẑ that

is not the trivial extension Ẑ o Ẑ∗, is isomorphic to a Galois group Gal(Q(〈r〉1/∞)/Q) for

some r ∈ Q∗. This proves the theorem for n = 1.

Now suppose n ∈ Z≥2, and let f1, . . . , fn be generators of Hom(F, Ẑ). Then

(H2(Ẑ∗, fi))
n
i=1 : H2(Ẑ∗, F ) −→ H2(Ẑ∗, Ẑ)⊕n

is an isomorphism of groups that sends [E] to (H2(Ẑ∗, fi)([E]))ni=1. As 2 · H2(Ẑ∗, Ẑ) = 0 by

Theorem 1.24, the group H2(Ẑ∗, Ẑ) is an F2-vector space. Moreover, the subgroup

〈H2(Ẑ∗, fi)([E]) : i = 1, . . . , n〉
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is an F2-subvector space of H2(Ẑ∗, Ẑ). We show that this subspace is in fact n-dimensional,

that is, we show that H2(Ẑ∗, f1)([E]), . . . ,H2(Ẑ∗, fn)([E]) are linearly independent over F2.

To this end, let N be any nonempty subset of {1, . . . , n} and consider f =
∑

i∈N fi.

Then by Proposition 1.21 we have

H2(Ẑ∗, f)([E]) = [0 −→ Ẑ −→ f∗(G) −→ Ẑ∗ −→ 1].

As f is surjective, the map G −→ f∗(G) is surjective. Therefore, we have

[f∗(G), f∗(G)] = f([G,G]) = Ẑ.

Since f∗(G) has commutator subgroup Ẑ, it is not the trivial extension Ẑ o Ẑ∗, that is, the

element H2(Ẑ∗, f)([E]) is different from 0. As N was any nonempty subset of {1, . . . , n},

the elements

H2(Ẑ∗, f1)([E]), . . . ,H2(Ẑ∗, fn)([E])

are linearly independent over F2.

Define S, T ′ and χ similarly as above for K = Q and

Λ =
Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2.

Under χ the isomorphism class [G] maps to a subgroup H of Λ that is free of rank n over

Z/2Z. We define W to be the subgroup of Q∗ generated by the liftings of the n generators

of H . Let Sat(W ), Cyc(W ) and GW be similar as above for K = Q. Then Theorem 1.35

implies that

χ([GW ]) =
(Cyc(W )2 ∩Q∗)Q∗2

±Q∗2
.

Moreover, similarly as above we have

χ([G]) =
Sat(W )Q∗2

±Q∗2
.

Using Q(µ)∗2∩Q∗ = Q∗ one checks similarly as above that χ([G]) = χ([GW ]), from which

it follows that G ∼= GW , as desired.
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