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CHAPTER 1

Radical Galois groups and cohomology

1. Introduction

Let K be a field of characteristic 0, and let K be an algebraic closure of K. Let i be the
subgroup of K consisting of all roots of unity. The maximal cyclotomic extension K (u) is
Galois over K, and we canonically identify its Galois group with a closed subgroup I'x of
the group of units Z* of the profinite completion Zof Z.

Let, in general, I' be a closed subgroup of Z*, and let A be a profinite abelian group.
Then the natural Z-module structure on A canonically induces an action of I' on A, which

we call the natural action of I' on A. A short exact sequence
0—A-Le-5HTr—1

in the category of profinite groups is called a natural extension of I" by A or simply a natural
extension of T if for all z € A and o € G we have o f(x)o~! = f(g(o) - x), where - is the
natural action of [' on A.

Let TV be a finitely generated subgroup of K *. We call dimq (W ®z Q) the rank of W.
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Let

Wi/ — {z € K 2™ e W for some m € Z>,}

be the group of all radicals of W, and note that K (W'/>) is a Galois extension of K. In
this chapter we study the structure of the Galois group of K (/) over K, and prove the

following main theorem.

Theorem 1 (Main theorem). Letn € Z>( and let I' be a free Z-module of rankn. Let G be a

profinite group, and let K be a finite field extension of Q. Then the following are equivalent.

(a) There exists a finitely generated subgroup W of K* of rank n such that
G = Gal(K(WY*)/K)
as profinite groups.
(b) There is a natural extension of I i
0—F —G—Tg—1

such that if K = Q, the image of F' in G equals the algebraic commutator subgroup
G,G] of G.

The case n = 1 over K = QQ was the subject of the author’s master’s thesis, see [Jav13]. The
special condition for K = Q was encountered already there. It is a condition entirely due to
the theorem of Kronecker—Weber (see [Hil96]), which shows how number theory is involved
in determining these Galois groups.

The (a) to (b) implication is a fairly easy consequence of Kummer theory and Schinzel’s
lemma, which we show in the next section.

The main tool in our proof of the inverse implication is the algebraic cohomology of

topological groups acting continuously on topological modules, which one calls continuous
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cochain cohomology. Given a topological group I' and a topological I'-module A, the con-
tinuous cochain cohomology of T with coefficients in A is the cohomology obtained from the

complex
0 — A -2 CY(I, A) -2 C2(T, A) 2 C3(T, A) -2 CY(I, A) 24
where for n € Z, the group C"(I", A) consists of all continuous maps of

r"=Irx-..-xn

n times
to A, and d,, is the standard coboundary map one also has in non-continuous group coho-
mology. For n € Z>,, we denote the cohomology groups of this complex by H"(I', A). See
section 1.3 for more details.

Now, let n € Z>, let I' be a closed subgroup of 2* and let F be a free Z-module
of rank n. We define an equivalence relation on the collection of natural extensions of I' by
F' (see 1.19), and find as in non-continuous group cohomology that the set of equivalence
classes under this equivalence relation may be identified with H*(T', F') (see 1.20). However,
natural extensions of I' by F' that have isomorphic profinite groups in the middle, do not
need to define the same element of H*(T", F). To work around this, we consider the Aut(F)-
orbit of the equivalence class of a natural extension 0 — F — G — [' — 0, which
may be identified with the isomorphism class of G. The next theorem shows that the set of
these orbits is in bijection with the set of subgroups of H?(T, 2) that can be generated by n

elements.

Theorem 2. Let n € Z>, let I' be an open subgroup of Z*, and let F be a free Z-module of
rank n. Let S be the set of isomorphism classes of profinite groups G for which there exists a
natural extension of I’

0—F —G—T—1.
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Let T be the set of subgroups of H*(T', 2) that can be generated by n elements. Then there
is a well-defined bijection of S with T that sends a class [G] € S to the image of the group
morphism

CHom(F,Z) — HX(,Z), f+ BT, f)(E)

where CHom(F), 2) is the set of all continuous group morphisms from F to 2 and E €

H?(L, F) is the extension class of any natural extension ) — F — G — ' — 1.

For more details and the proof, see section 1.7 and section 1.8.
Our next step is to describe H*(T'g, 2) in terms of the field K. An important auxiliary
result is the following theorem, which has already been used in the rank 1 case over Q

in [Jav13].

Theorem 3. Let K be a number field, and let w be the number of roots of unity in K. Let A

be a profinite abelian group. Then for any m € Z>, we have
w-H" Tk, A) =0,

where Ik acts on A in the natural way.

See section 1.6 for more details.

Theorem 4. Let K be a number field, let w be the number of roots of unity in K, and let
{1y denote the subgroup of K* consisting of all roots of unity. Then the group H*(I'g, 2) is

isomorphic to
K(p)™nK*
qu*w ’
A more precise version of this theorem including a description of the isomorphism between
the two groups is given in Theorem 1.34.
Using Theorems 2 and 4, we see that an extension of ' as in part (b) of Theorem 1

(ll‘)*me*

corresponds to a subgroup H of K“w o that can be generated by n elements. The last step
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in the proof of the (b) to (a) implication of Theorem 1 is to lift this subgroup to a subgroup
W of K*. Putting M = K*/pu,, K* and A = K(")%, the following theorem enables us
Hw

to construct W in the case that K is unequal to Q.

Theorem 5. Let w € Z-4, and let M be a free module over Z/wZ. Let A be a submodule
of M, let n € Z>q, and let H C A be a finite subgroup generated by at most n elements.
Assume that the quotient group M [p|/A[p| of the p-torsion parts of M and A is infinite for
every prime p dividing w. Then there is a submodule I of M that is free over Z /wZ of rank
n such that | " A = H.

For the proof see Theorem 1.39 in section 1.10. Note that we have

*2 *

that is, we have A = M for K = Q. The restriction this puts on constructing W, in the case

of K = Q, translates into the extra condition in Theorem 1.

The present chapter is organized as follows.

In section 1.2 we prove the (a) to (b) implication of Theorem 1. In sections 1.3 and
1.4 we copy the definitions and theorems of continuous cochain cohomology and topological
group extensions from [Jav13]. The proofs, which are omitted in this section, are found
in [Jav13, Chapter 1]. In section 1.5 we prove a lemma in profinite group theory on natural
extensions. In section 1.6 we elaborate on Theorem 3 above. Section 1.7 is concentrated on
proving Theorem 2 above. Section 1.8 concerns the extended version of Theorem 4 above.
In section 1.9 we study the image of Gal(K (W'/*°)/K) under the bijection of Theorem 2.
In section 1.10 we prove the lifting theorems, such as Theorem 5 above. The last section

contains the proof of the main theorem.
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2. Maximal radical extensions of number fields

Theorem 1.1 (Schinzel). Let K be a field, let a € K, and let n € Z~ be not divisible by
char K. Let d be the number of n-th roots of unity in K. Then the splitting field of X" — a is

abelian over K if and only if there exists b € K with a® = b".
Proof. See [Sch77, Theorem 2], [Len07] . [ |
Definition 1.2. For an abelian group W we write rk(11) for the rank dimq (W ®z Q) of W.

Let K be a field of characteristic 0, let K be an algebraic closure of K, and let W be a

subgroup of K*. Let
Wi/ — {z € K 2™ e W for some m € Z>1}

be the group of all radicals of 1. The field K (WW'/°°) is the union over all positive integers

m of the Galois extensions K (W'/™) of K where
wim —{reK :az™eW}.

Therefore, the field K (W'/*) is Galois over K.
For a field L we write u(L) for the subgroup of L* consisting of the roots of unity of
L*. For simplicity we write y for the subgroup u(L) of T consisting of all roots of unity.
For an integer d € Z>; we write 114 for the subgroup of 1 consisting of the dth roots of unity.
The maximal cyclotomic extension K (u) is Galois over K, and there is a canonical
injection
Gal(K (p)/K) — Aut(p)

of profinite groups. Observe that Aut () is canonically isomorphic to Z* asa profinite group.

As Gal(K(p)/K) is compact and Z* is Hausdorff, we may identify Gal(K(pn)/K) with a
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closed subgroup of Z*, which we denote by I'x. As K(p) is clearly a subfield of K (W1/>),
we see that I'g is a quotient of Gal(K (W'/*)/K).
We write
Sat(W) = WY n K*
and
Cyc(W) = WV n K(u)*.
Proposition 1.3. Let K be a number field, and let K be an algebraic closure of K. Let

w = #u(K). Let K* be the maximal abelian extension of K inside K.

(a) Then we have

K*l/oo N Kab* = - K*l/w.
(b) Let W be a subgroup of K*. Then
Cye(W) = p- (Sat(W)'/* 1 K (12)").
Proof. To prove (a), note that the right-to-left inclusion follows immediately from Kummer
theory and the fact that cyclotomic extensions are abelian. For the left-to-right inclusion, let
o € K*1/% N K** Then there is n € Z>; such that o” = a € K*. As X" — a is abelian
over K, by Theorem 1.1 there exists b € K™ such that a® = b", where d is the number of
n-th roots of unity in K. Then we have o = Caab™?, where (,,q is some nd-th root of unity. It

follows that o« € - K *1/w_\which shows the left-to-right inclusion.
For (b), intersect K*1/>° N K** = 1 . K*'/* on both sides with Cyc(V) to obtain

Cyc(W) = (u- K*/*) N Cyc(W).
As pu C Cyc(W), it follows that
Cyc(W) = pu- (Sat(W)Y* N K (n)")

as desired. ]
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Lemma 1.4. Let K be a number field, and let W be a finitely generated subgroup of K*. Let
n = rk(W). Then the following statements hold.

(a) The group Sat(W) is finitely generated of rank n.
(b) The quotient Cyc(W)/u is free of rank n.

Proof. Note that Sat(WW)/W is equal to the torsion subgroup of K*/W. By Lemma 3 in
[Iwa53], there is a countably infinite index set / such that K* = u(K) x 71 Moreover,

there is a finite subset .J of I such that T is contained in z(K) x Z(”). Then
K* = u(K) x ZY) @ zU\D,

Hence, the torsion part of K* /W is a finitely generated abelian group, which is therefore
finite. As Sat(W)/W is finite, the group Sat(1V) is finitely generated of rank n, which
proves (a).

By Proposition 1.3 we have Cyc(W) = pu - (Sat(W)Y* N K(u)*). Observe that
Sat(W)'/* is finitely generated, so

Sat(W)"* N K (u)* = Cyc(W)/p

is also finitely generated. As the quotient Cyc(WW')/(u - Sat(W)) is finitely generated and
annihilated by w, it follows that Cyc(W)/(u - Sat(W)) is a finitely generated torsion group.
Hence

Cye(W)/(p - Sat(W))
is finite, which implies that Cyc(W)/pu is free of rank n. |

Recall that a topological module M over a topological ring R is an R-module M that is a
topological group such that R x M — M is continuous, where R x M has the product

topology. Similarly, a topological module M over a topological group I' is a I'-module M
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that is a topological group such that I' x M — M is continuous, where I' x M has the
product topology.

Let A be a profinite abelian group. Then by [Jav13, Lemma 2.3] A has a unique Z-
module structure, and it makes A into a topological Z-module. We call this the natural
Z-module structure of A. By restriction, A has a topological ['-action, for every closed
subgroup I' of Z*. For any such I', we call this the natural action of I' on A.

Moreover, a short exact sequence 0 — A B4 5 1of profinite groups

where A is abelian and for all 0 € E and x € A we have

of(x)o" = f(g(o) - )

with - the natural action, is called a natural extension of I" by A or simply a natural extension
of .

Let K be a field, and K an algebraic closure of K. For every k € Z>; let y; denote
the group of all kth roots of unity in K . Letm e Z-,, and note that for every multiple £ of
m, there is a group morphism fi;, — /i, sending ¢ € j, to ¢*/™. This defines a projective
system, of which the projective limit 7z is called the Tate module of the multiplicative group.
It is a profinite module over 7 that is free of rank 1. For o € it we let «v,,, denote its image in

(L, under the canonical projection i1 — fi,.

Theorem 1.5. Let K be a field of characteristic 0, and let W be a finitely generated subgroup
of K*. Let G = Gal(K(W'Y*)/K). Then there is a natural extension of T

0 — Hom(Cyc(W), 1) ——= G — T —> 1

such that for all f € Hom(Cyc(W), 1), z € WY and m € Zs, with ™ € Cyc(W) the

Galois automorphism ( f) satisfies

(f)(x) = f(@™ ) - .
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Proof. By Galois theory, there is a natural extension of I'x

0 — Gal(K(WY*)/K(u)) — G — Ty — 1.
By Kummer theory, there is an isomorphism

Gal(K (W) /K (12)) — Auteye(Cyc(W)Y>)

of profinite groups that sends each ¢ to its restriction to /> = Cyc(W)'/*. Moreover,

there is an isomorphism
AUtCyc(W) (CyC(W)l/OO) — HOHI(CYC(W), ﬁ)

of profinite I'x-modules given by sending ¢ to the group morphism Cyc(W) — [ that
sends z € Cyc(W) to (0(Ym)/Ym)m>1 Where y,, € K are such that y” = z for every
m € Z>o. As these isomorphisms are ' -linear, composing their inverses gives the desired

natural extension of I'x. [ |

Remark 1.6. Let /, I/ and n be as in Lemma 1.4. Then by Lemma 1.4 there are ¢4, ..., ¢, €
K(p)* such that Cyc(W) = p- (t1, ..., t,).

Proposition 1.7. Let K be a number field, and let W be a finitely generated subgroup of K*.
Letn = rk(W). Let ty, ..., t, € K(u)* be such that Cyc(W) = - (t1,...,t,). Then there
is an isomorphism

Hom(Cyc(W), i) — 3"

of topological Z-modules sending f € Hom(Cyc(W),7i) to (f(t;))",.
Proof. As /i has no torsion, we have Hom(Cyc(W), i) = Hom(Cyc(W)/u, ii). Let

p: Z" — Cyc(W)/p

10
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be the group isomorphism sending the standard basis elemente; € Z" tot;-pufore =1,...,n.

Then ¢ induces the isomorphisms
Hom(Cyc(W)/p, i) = Hom(Z", i) & 3"

of profinite groups, where the last isomorphism sends f € Hom(Z", i) to (f(e;))™,. By

[Jav1l3, Lemma 2.3] these are in fact Z-linear morphisms. [ |

Lemma 1.8. Let I' be an open subgroup of 2*, and let F' be a free module over Z of finite

rank. Let

0—F-"5G—T—1

be a natural extension of I by F. Let |G, G] be the algebraic commutator subgroup of G.
Then the following hold.

(a) There exists m € Z>q such that |(mF) C [G,G].
(b) [G,G] is closed in G.

Proof. Since the kernels ker(Z* —s (Z/mZ)*) form a fundamental system of neighbour-
hoods of 1 € Z*, there is m € Z-q such that ker(z* — (Z/mZ)*) is contained in I'.

Choose such m even, which we may do without loss of generality. Let
u=(14m,2) € HZP X Hz,,:i
Pl ptm

and note that u € Z*. Since u = 1 (mod m), we have u € I". Moreover, by construction we
have (u — 1)Z = mZ.

Now, let x € F, and let v € G such that 7(v) = u. Observe that

(u—1) -z =1 (v x)v  (z)™h),

11
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which is an element of .~ !([G, G]). It follows that
(u—1F =mF C . (G, G)]).

As mF is open in F, it follows that .~ ([G, G]) is open in F, so in particular it is closed in

F. Since ¢ is a closed map, |G, G] is closed in G, as desired. [

Now, we are able to prove the (a) to (b) implication of the main theorem of this chapter (see

Theorem 1 of the Introduction).

Proof of (a) implies (b) of the main theorem. By Theorem 1.5, there is a natural extension
of I K

0 — Hom(Cyc(W), 1) — G — T —> 1,

where Hom(Cyc(W), 7i) is free of rank n over Z by Proposition 1.7. Moreover, if K = Q,
then by the theorem of Kronecker—Weber (see [Hil96]) the image of Hom(Cyc(W), i1) is

necessarily the closure [G, G| of the algebraic commutator subgroup of GG. By 1.8(b) this is

equal to the algebraic commutator subgroup (G, G]. [

3. Continuous cochain cohomology

Let I be a topological group. We denote the category of topological I'-modules by I'-TMod,
and note that it is an additive category. The morphism sets in this category are denoted by
CHomp(—, —), CEndr(—) and CAutr(—). When it is clear that every group morphism be-
tween two topological I'-modules is continuous, we drop the ‘C’ from the notation; e.g. when
the domain is discrete. Similarly, we drop the subscript I' when it is clear that every group
morphism between two ['-modules is I'-linear; e.g. when I is trivial or when I is a closed

subgroup of Z* and the action is natural (see [Jav13, Lemma 2.3]).

12
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Let A be a topological I'-module. For n € Z(, endow I'’*" with the product topology,
and let C"(I", A) denote the group C(I'*™, A) of continuous functions from I'’*" to A. The
elements of C"(I", A) are called continuous n-cochains.

For n € Zs define the boundary map d,,: C"(T', A) — C"*(T, A) by
(@) (15 Yrr) = 71 025 Y+

+ 3 (=D (s Vit s - Y1) F (D) o (),

whose kernel is the group of continuous n-cocycles, and is denoted by Z"(I', A). For all
n € Z>o we have d,,1; od, = 0. Hence, for n € Z>; the image of d,,_;, denoted by
B"(T', A), is contained in Z"(I', A); its elements are called the continuous n-coboundaries.
Moreover, the group of continuous 0-coboundaries B’(T', A) is defined as the trivial subgroup
of C°(T', A). For n € Zxo, we define the n-th continuous cochain cohomology group of T
with coefficients in A as the quotient Z"(I", A)/ B"(I", A), denoted by H" (T, A).

We will almost always omit ‘continuous’ in the above defined objects. Note that if I’
is a discrete topological group, the notions above coincide with the usual group cohomology
notions.

The cohomology group H%(T", A) will often be identified with the subgroup A" of I'-
invariants of A via the group isomorphism ¢ — ©(1). Moreover, if I acts trivially on A, then
H'(T', A) is equal to the group of continuous group morphisms CHom(T", A) of " to A.

Let A and I be topological groups, and let o: A — I'and v»: A — B be continuous
group morphisms, where A and B are topological modules over I" and A, respectively. The

pair (¢, 1) is called compatible if for all § € A and a € A we have ¥ (¢(d)a) = d(¢(a)).

Lemma 1.9. Let o: A — ' and v: A — B be a compatible pair. Then the following

statements hold.

13
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(a) For eachn € Zxg there is an induced group morphism
C"(p,0): CMTI'A) — C™(A, B)

given by
Ce, ¥)(f) =vo fop™,

where o*™: A*" — %" sends (01, ...,0,) € A" 1o (p(d1), ...

(b) Foreachn € Zx the diagram

(T, A) —& ¢ (T, A)
C”(Wl))l lCnH(%d})
C"(A, B) —— C™(A, B)

is commutative.
(¢c) Foreachn € Zx there is an induced group morphism
H"(p,v): HY(I', A) — H"(A, B)
defined by sending [f] € H"(T', A) to [C"(p,¥)(f)].

Proof. See [Wil98, Lemma 9.2.1].

Let C be the category defined as follows. Let the objects of C be all pairs (I', A) where I' is a
topological group and A is a topological I'-module. A morphism between (", A) and (A, B)
is given by a compatible pair (p, 1)) where ¢: A — I" and ¢): A — B. Composition of
two morphisms (p: A — I'¢p: A — B)and (¢': [ — A,¢': B — () is given by

(¢, ") o (0,0) = (poy, ¢ o).

14
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Proposition 1.10. Let n € Z>. Then
C"(,-): C — Aband H"(-,-): C — Ab
are covariant functors from C to the category Ab of abelian groups.
Proof. See [Jav13, Proposition 1.3]. [}

Throughout the rest of this section, let I' be a topological group. The subcategory Cr of C
consisting of the pairs (I', A) with A a topological I'-module, and with morphisms all com-
patible pairs (idr, 1)) where 1) is a continuous I'-module morphism, can be canonically iden-
tified with the category I'-TMod of topological I'-modules. For a morphism %) of topological
[-modules, let C"*(T", 1)) = C"(idr, v) and H"(T", ¢) = H"(idr, ¥).

Proposition 1.11. Let n € Z>. Then

c*(l,): I'"TMod — Ab and H"(T',-): I'“-TMod — Ab
are additive covariant functors.
Proof. See [Jav13, Proposition 1.4]. [ |
Proposition 1.12. The functors C" (I, -) and H"(T', -) commute with arbitrary products.
Proof. See [Jav13, Proposition 1.6]. [ |

Proposition 1.13. Let

1—A-sB %051

be a short exact sequence of not necessarily abelian topological groups. Then the following

are equivalent.

(a) The map f induces a homeomorphism from A to its image, and g admits a continuous

set-theoretic section.

15
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(b) There is a homeomorphism p: B — A x C, where A x C' has the product topology,

such that the diagram

AxC

commutes, where 14 sends a € A to (a,1) and m¢ sends (a,c) € A x C to c.
Proof. See [Jav13, Proposition 1.7]. [ |
Definition 1.14. A short exact sequence

1—A-sB %01

of not necessarily abelian topological groups is called well-adjusted if it satisfies either one

of the equivalent conditions 1.13(a) and 1.13(b) above.

All short exact sequences of discrete groups are well-adjusted, as are all short exact sequences

of profinite groups, see [Wil98, Lemma 0.1.2].

Proposition 1.15. Let

0— AL B0 —0

be a well-adjusted short exact sequence of topological I'-modules. Then for each n € Z>

there is a unique group morphism
6, HY(T,C) — H"THT, A)

such that for every ¢ € Z™(T, C) and for every a € C"(T', A) and b € C"(T', B) satisfying
C™(T, g)(b) = cand C"*Y(T, f)(a) = d,(b), we have a € Z" (", A) and §,([c]) = [a).

16
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Proof. See [Jav13, Proposition 1.13]. [
Theorem 1.16. Let

0—A-LB-%0c—0
be a well-adjusted short exact sequence of topological I'-modules. Then the sequence

HO(9) )
) — ) —

0—— 1T, A) w0, By 9 wor, ¢y~ 1T, 4) 2

n n n+1
w4 D g, By M g, o) s gy, Ay

Is exact.

Proof. See [Jav13, Theorem 1.15]. [

4. Topological group extensions
Throughout this section, let I be a topological group, and let A be a topological ['-module.

Definition 1.17. A ropological group extension of I by A is a triple (E, f, g) consisting of a

topological group F together with a well-adjusted short exact sequence
0—A-LEST —1
of topological groups, such that for all a € A and z € E we have zf(a)z™! = f(g(x) - a).

Notation 1.18. We will often denote the extension (£, f, g) by the well-adjusted short exact

sequence that is associated with it, or just by £ when the maps f and g are understood.

17
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Definition 1.19. Let (E, f, g) and (E', f’, ¢') be two topological extensions of I' by A. Then
(E, f,g)and (E', f’, ¢’) are said to be equivalent if there exists an isomorphism ¢: £ — E’

of topological groups such that the diagram

commutes.

The above defines an equivalence relation on the class of all topological extensions of I' by
A. For convenience, let X denote the set of all equivalence classes of topological extensions
of I' by A.

Let (E, f, g) be a topological extension of I" by A, and let s be a continuous section of

g. Then associating to (E, f, g) the map I'*? — A given by

(71,72) = fH(s(m)s(12)s(n2) ), (*)
induces a well-defined map ¢: X — H*(T', A), see [Hu52].
Theorem 1.20. The map ¢ above is a bijection of sets.
Proof. See [Hu52]. [ |

The theorem above enables us to identify elements of H*(T', A) with equivalence classes of
topological extensions of I' by A, and vice versa.
Let B be a topological I'-module, and let ©): A — B be a morphism of topological

[-modules. Let (F, f, g) be a topological extension of I" by A. Compose

E — T — Aut(B)

18
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to obtain a canonical action of F on B. Then the pushout 1.(E) of E along v is

u(E) = (B x E)[{(¢(a),—f(a)) : a € A},

where the semi-direct product has the product topology and the quotient has the quotient
topology. One easily checks that (,(E), 13, 7) defines an element of H*(T', B), where ¢ is

the inclusion of B in 1, (F) and 7 is the canonical surjection of ¢, (E) to IT'.
Proposition 1.21. We have H*(T',¢)([E]) = [(¢«(E), t, )].

Proof. Clear from (). u

5. On profinite groups

Lemma 1.22. Let F' be a free Z-module of finite rank, and let H be a profinite group. Then

every group morphism F' — H is continuous.

Proof. Note that every finite index subgroup of F' is open, because multiplication on F' by
every element of Z is a continuous morphism. By [Wil98, Proposition 1.1.6(d)] the map
F — H is continuous if and only if for every open normal subgroup N of H the compo-
sition fy: FF — H/N is continuous. As H/N is finite, it follows that ker fy is open in
F.

By [Wil98, Lemma 1.2.6], a map from a profinite group to a discrete space is continu-
ous if and only if there is an open normal subgroup N of G such that f factors through G/N.

It follows that /' — H is continuous. ]

Lemma 1.23. Let F' be a free Z-module of finite nonzero rank, and let I" be an open subgroup
of Z*. Let

0—F -G —T-—0
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be a natural extension. Then the image of v is equal to the centralizer
Co([G,G)) ={9 € G:gx =zgforal x € |G,G]}
of |G, G| in G.

Proof. First, note that [G, G] C «(F), because I' is abelian. As +(F’) is abelian, it centralises
every subgroup. Hence «(F') C Cq([G, G]).

Conversely, note that by Lemma 1.8(a) there is m € Z-q such that «(mF) C [G,G].
Let o € Cg(|G,G]), and let x € F. As 1(mx) € [G, G], we have

o 1(mzx) = oulma)o™t = o(ma).

Since F'is torsion-free, it follows that o acts as the identity on F'. Equivalently o maps to the
identity in I, because F'is a free Z-module of finite nonzero rank. Hence o € ((F), which

proves that C([G, G]) C (F). u

6. Roots of unity and cohomology

Let I be a closed subgroup of Z*. Define

=Y Z(y-1)

yerl

to be the Z-ideal generated by I' — 1 = {y —1:~ €T}, andlet Jr = Ir be its topological
closure in Z. For example, one has [, = J;. = 2Z.
Let M be a profinite abelian group. As M is a Z-module, there is an induced module

structure of Z on H*(I", M) for each n € Z,.

Theorem 1.24. Let I' be a closed subgroup of Z*. Let M be a profinite abelian group, and
let I' act naturally on M. Then for all n € Z>q we have Jr - H"(I', M) = 0.
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Proof. See [Jav13, Theorem 2.16]. [

Recall that for a field K of characteristic 0, we identify the maximal cyclotomic Galois group

Gal(K(p)/K) of K canonically with a closed subgroup of Z*, which we denote by I'x.

Theorem 1.25. Let K be a field of characteristic 0, and let I'k be its maximal cyclotomic

Galois group. Then Jr,, = Anng(u(K)).
Proof. See [Jav13, Theorem 2.17]. [ |

Corollary 1.26. Let ' be as in Theorem 1.25, and let M be a profinite abelian group with
the natural Ik -action. Then for all n € Z>y we have Anng(u(K)) - H*(I'g, M) = 0.

Proof. This follows immediately from Theorem 1.24 and Theorem 1.25. ]

Example 1.27. Let K be a field of characteristic 0 with only finitely many roots of unity, say
w = #p(K). Then Anng (u(K)) = wZ = Jp. Hence w-H" (', M) = 0 for every profinite
abelian group M.

7. Orbits of natural extensions

Throughout this section, let n € Zx, let M be a free Z-module of rank 1, let F" be a free
Z-module of rank n, and let I' be an open subgroup of Z*. Let S be the set of isomorphism

classes of profinite groups GG such that there exists a natural extension
0 —F —G—I—1

Such an extension has a class [0 — F — G — I' — 1] that belongs to H*(T', F'); for
f € Hom(F, M), the map H*(T', f) sends this class to an element of H*(T", M).
Let T be the set of subgroups of H*(I', M) that can be generated by n elements. In this

section we prove the following theorem.
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Theorem 1.28. The map p: S — T given by
G = {B*T, f)(0 — F — G —T —1]): f € Hom(F, M)}
is well-defined and bijective.

We briefly give an outline of the proof. First, note that the theorem is trivial for n = 0.
Assume n > 0 and for simplicity take F' = Z®" and M = Z. We define GL,(Z)-actions on
H(T", Z®") and H*(T", Z)®" and give an isomorphism
w: HA(T,Z") —s H2(T, Z)®"

of GL,(Z)-modules. We give S and T the trivial GL,(Z)-action, and construct GL,(Z)-
equivariant maps

H([,Z®") — S
and

H%([,Z)®" — T
that both have the property that two elements in the domain map to the same element in the

codomain if and only if they are in the same GLn(z)—orbit in the domain. We show that the

latter maps make the diagram

H(T', Z9") —“— H(T', Z)®

T

S———F

commutative in the category of GLn(Z)-sets. Then p is the map induced by w on the orbit

spaces. As w is an isomorphism, the map p is a bijection, as desired.

Assume that n > 1. By additivity of H*(T', -) there is a ring morphism

CEndp(Z8") —s End(H2(T, Z®"™))
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given by f +— H*(T, f). By Lemma 1.22 and the fact that any continuous group morphism
of profinite abelian groups is Z-linear (see [Javl3, Lemma 2.3]), we may drop the ‘C’ and
subscript T, so that we have an End(Z®")-module structure on H*(I', Z®"). For simplicity
we write M,,(Z) for End(Z®") and GL,(Z) for Aut(Z®").

By additivity of H*(T', -) the map

w: HA(T,Z") — HX(T, Z)®"

given by z — (H*(T, m;) (x))?zl where 7; is the i-th projection of Z®" onto Z, is an isomor-

phism of groups. Then

End(H2(T, Z®")) — End(H%(T, Z)®")

~

!'is an isomorphism defining the M, (Z)-module structure on

given by f — wo fow™
H?(I", Z)®". The map w then becomes an isomorphism of M, (Z)-modules. Moreover, for

f€M,(Z)and (z1, ..., z,) € HX(T', Z)®" we explicitly have

fr(@n. o ma) = (Z HA(T, m, OfOLj)(wj>>
J=1 i=1
We summarize the above in the following lemma.
Lemma 1.29. Assume thatn > 1. Fori = 1,...,n let m; be the i-th projection of 7" onto
2, and v; the i-th injection of Z into Z®". Then the map
w: HA(T,Z") — H(T, Z)®"

~

defined by x +— (H*(T',7;)(x))", is an isomorphism of M,,(Z)-modules, where for f &
M,(Z) and z € HX(T, Z%") and (1, . .., z,) € H*(T', Z)®" we have

frz=H(T,f)(x)
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and

f(xy,...,zp) = (ZHQ(F,m ofo Lj)(asj)> .

i=1

Lemma 1.30. Assume thatn > 1. Let GLR(Z) act on H*(T, 2@") by restricting the Mn(Z)—
action, and let GLn(z) act trivially on S. Then the map H*(T, 2@”) — S given by

0—Z%" — G —T — 1] [d]

is a well-defined GLn(z)-map with the property that two elements in H*(T', 2@”) map to the
same element in S if and only if they are in the same GLn(Z)—orbit.

~

Proof. The map is clearly well-defined. Equivariance under GL,,(Z) follows from the second
statement of the lemma, which we prove now.

Let
(G, f1,90)] = [G1], [(Gas fo, g)] = [Ga] € HA(T, Z°™)

and suppose that they map to the same element in S. Let av: G; — G4 be an isomorphism

of topological groups, which exists since G; and GG, map to the same element in .S. As
a(Cg, ([G1, Gh])) = Ca, ([Ga, G,

Lemma 1.23 implies that the map « induces an isomorphism o/ : Z®" —s Z®" such that the

diagram

0 Zen N o ST 1

0——=Z%" —— Gy T —— 1

commutes. The vertical map I' — I is induced by the universal property of cokernels.

Since the action of T" on Z®" is the same as the actions of G4 and G5 on 2@", it follows that
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the vertical map I' — T is the identity. Moreover, as G is the pushout of GG along ¢/,
Proposition 1.21 implies that H*(T', o/)([G1]) = [Ga].

Conversely, suppose that there is f € GL,(Z) with H2(T, f)([G1]) = [Gs]. By Propo-
sition 1.21, the latter equality implies that (G5 is isomorphic to the pushout f.(G;) of Gy
along f. As f is an isomorphism, it follows that GG is isomorphic to f.(G1). Hence, we have

G = G4 as profinite groups. ]

Let R be a not necessarily commutative ring. Recall that the Jacobson radical Jac(R) of R
is the intersection of all maximal left ideals of R. Moreover, recall that a left R-module M
is called simple if it has exactly two R-submodules, and that M is called semisimple if it is
the direct sum of simple R-modules. The ring R is called semisimple if it is semisimple as a

module over itself. The ring R is called semi-local if R/ Jac(R) is semisimple.

Lemma 1.31. Let R be a (not necessarily commutative) semi-local ring. Let A be a finitely
generated R-module, and let P be a finitely generated projective R-module. Assume that
we have two surjective R-module morphisms f,q: P — A. Then there is an isomorphism

h: P — P of R-modules such that g o h = f.

Proof. First, assume that R is semisimple. Then A is projective, so we have R-module
isomorphisms

p1: P— A®ker f

and

po: P— A®keryg

such that f = 74 o p; and g = 74 o py, where
ma: ADkerf — A

and

i ADkerg — A
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are the canonical projection maps. As P is both noetherian and artinian as [2-module, the
theorem of Krull-Remak-Schmidt (see [Lan02, Chapter X, Theorem 7.5]) implies that ker f

and ker g are isomorphic as R-modules. Choose any R-module isomorphism
p: ker f — kerg.

It follows that

h=p, o(ida@®p)op: P— P

is an R-module isomorphism that satisfies g o h = f. Indeed, we have
goh=myopyoh=m)0(ids®p)opi =ma0op = f,

which proves the statement for R semisimple.
Now drop the assumption that R is semisimple. By definition of a semi-local ring,
the ring R/ Jac(R) is semisimple. For simplicity write J = Jac(R). Then f and ¢ induce

surjective R-module morphisms
f,g: P/JP — A/JA.

As R/J is semisimple, the R/J-module P/JP = (R/J) ®gr P is projective. Hence, there is

an R-module isomorphism

h: P/JP — P/JP

such that o h = f. Let Z be the pullback of the canonical projection A — A/JA and
f: P/JP — A/JA. Let Z' be the pullback of the same diagram with f replaced by g.

As the pullback diagrams of Z and Z’ are isomorphic, there is an isomorphism

q: 2 — 7'
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such that the cube

P/JP — —AJJA
i Lo
P/JP—2—— A/JA
commutes. By the universal property of Z, the canonical projection P — P/JP and f
induce an R-module morphism uy: P — Z. By a diagram chasing argument, one easily

sees that this map is surjective. Analogously, we have a surjective morphism
Uz . P—7.

By projectivity of P, there is a morphism h: P — P such that uz o h = g o uy. Now, the

three-dimensional diagram

v PlIP——— | A/JA
. 4
PlJP——% S AJJA

commutes. Note that we have g o h = f. Therefore, it remains to show that A is an isomor-
phism of R-modules. To show surjectivity, note that vz, ¢ and p are surjective. Therefore,

the map p o uy o h = 7o his surjective. Thus, we have P = h(P) + JP. Since P is finitely
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generated, the quotient P/h(P) is so too. Moreover, we have J(P/h(P)) = P/h(P). Hence,
by Nakayama’s lemma (see [Lam91, Theorem 4.22]) we have P/h(P) = 0. It follows that h
is surjective.

By projectivity of P the sequence 0 —> kerh — P — P — 0 splits, that is, there

is an R-module isomorphism ¢: P — ker h & P such that

0——kerh ® P——0
\ /
kerh @ P

commutes, where mp is the projection to P. As P is finitely generated and the sequence
splits, ker A is also finitely generated. Applying the functor (R/.J) ®g — to h = 7p o p shows
that

P/JP h P/JP

s

ker(h)/(J - ker(h)) & P/JP

commutes. As h and p are isomorphisms, it follows that 775 is an isomorphism. Hence, we
have

ker(h)/(J - ker(h)) = 0.

Then Nakayama’s lemma (see [Lam91, Theorem 4.22]) implies that ker A = 0, so that h is

injective. This shows that /& is an isomorphism of R-modules, which finishes the proof. =

Lemma 1.32. Assume that n > 1, and that M = Z. Let GL,(Z) act on H*(T, 2)@" by
restricting the M,,(Z)-action, and let GL,,(Z) act trivially on the set T from Theorem 1.28.

Then the map
H(T,Z)®" — T
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given by
(1, ooy @) = (X1, o, Tp)
isa GLH(Z)—map with the property that two elements in H* (T, 2)@” map to the same element

in T if and only if they are in the same GLn(Z)—orbit.

~

Proof. Equivariance under GL,,(Z) follows from the second statement of the lemma, which
We prove now.

Let (zy,...,7,)and (y1, ..., ¥,) be elements of H*(T, 2)@". Suppose that (z1, ..., z,)
and (yy, ..., y,) are the same subgroup of H*(T', 2), say N. By Theorem 1.24, the ideal Jr
annihilates the group H*(T, 2) As I is open, it is equal to [, for some number field K.
Hence, by Example 1.27 there is w € Z>, such that wZ = Jr. Now Jp - H¥(T, 2) =0
implies that H*(T, 2) is torsion. It follows that IV is a finite group. Now, we replace Z with
the ring ZN = Hp‘#N Z,, because the action of 7 on N factors via ZN. As ZN is a finite
product of local rings, it is semi-local; in particular, the quotient Z N/ J ac(z ~) is semisimple.

Each set of generators of /V defines a surjective morphism
Zy — N
of Z ~-modules by sending the standard basis to the set of generators. Let f be the morphism

corresponding to (x1, . .., x,), and let g be the morphism corresponding to (v, . - ., ¥, ). Then

by Lemma 1.31 it follows that there is an isomorphism
he 28— 73"

of Z n-modules such that g o h = f. Extend A to an automorphism of AL by the identity on

[Lsn Zyp-
Let A be the matrix in GL,(Z) corresponding to h. Then

()-()
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This action of A on (xy,...,x,) is the same as the action of h on (xy, ..., x,). It follows that
h-(x1,...,2,) = (y1,...,yn) as desired.
Conversely, suppose there is [ € GLH(Z) such that f - (z1,...,2,) = (Y1, -, Yn)-

Then y; is a Z-linear combination of x4, ..., z, forevery : = 1,...,n. Hence, we have

Y1y s Yn) T, T).

The other inclusion follows from the identity f~* - (y1,...,y,) = (z1,...,2,). |

Remark 1.33. One easily sees that the above lemma is true if we replace H*(T, 2) by an

abelian torsion group A that is an M,,(Z)-module, and replace 7" by the corresponding set of

subgroups of A that can be generated by n elements of A.

Proof of Theorem 1.28. Observe that the theorem is trivial for n = 0. Assume n > 0. It is
clear that we may take F' = Z®" and M = Z, which we do for simplicity. To show that p is

well-defined, note that
H?(T, Z®") x Hom(Z®",Z) — HX(T', Z)

given by (z, f) ~ H?*(T, f)(z) is a bilinear mapping. Hence, for fixed z € H*(T, 2@")
the image H*(T, Hom(z@", 2))(3:) is indeed a subgroup of H*(T', 2) Moreover, the group
Hom(z@”, 2) is generated as a Z-module by the n projection morphisms 7y, ..., m,. Then
by additivity of H(T,-) it follows that H*(T", Hom(Z®", Z))(x) is indeed a subgroup of
H*(T, 2) that can be generated by n elements.

To show that for [G] € S the image p([G]) does not depend on the equivalence class
[0 — Z%" — G — T —» 1] in HX(T', Z®"), suppose [(G, f1,91)] and [(G, fa, g2)] are

two elements of H*(T, 2@”). Let o: G — G be an automorphism of G. By Lemma 1.23,

30



1.8. COHOMOLOGY OF THE TATE MODULE

there exists an isomorphism o’ of Z®" such that

2€Bn f1

J

7o —— G
92
commutes. Then clearly G is the pushout of GG along o/, so that we have

H2(F7 f)([(Gv f2792)]) = HQ(P7 f © O/)([(G7 flagl)])‘

As composition with o induces an automorphism of Hom(z@”, 2) it follows that
HE (T, Hom(Z°", Z))([(G f1,0)]) = H3(T, Hom(Z*", Z)([(G, 2, 92)))-

Hence, the map p is well-defined.

Now, one easily checks that we have a commutative diagram

A~

H2(T, Z8™) 2 H(T, Z)®"

of GLn(/Z\)—equivariant maps, where w is defined in Lemma 1.29. By Lemma 1.30 and 1.32,
the sets S and 7 are in bijection with the orbit spaces of H2(I", Z®") and H?(T", Z)®" under

the action of GLn(Z), respectively. By commutativity of the diagram p is a bijection. ]

8. Cohomology of the Tate module

Throughout this section, let X be a number field, K an algebraic closure of K, and w =
#4(K). For every m € Zs, we put K,, = K . For every positive integer m’ dividing m

we have a surjective map K,, — K, given by exponentiation by m/m’. This forms a
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projective system and its limit is denoted by K*. The elements x = (x,,),>1 of K* are, in
particular, systems of compatible roots of x;, that is, for every m,d € Z>; we have 2] = x;

d _
and z7 ; = Tp,.

Theorem 1.34. There is a unique isomorphism

K(pw)™n K~ 2>p
 ———— — H(I
b o (T, 1)
such that for every x € K (u)**NK*, every (Ty,)m>1 € K* with 1 = x and every continuous
set-theoretic section s: 'y — Gal(K /K) we have
$(0)$(T) T
K = | (0, 7) v | DT T .
o - p K™) [(0 T) ( p s )mZJ

Proof. Exponentiation by w is a continuous I" x-module endomorphism of jz, giving the well-

adjusted sequence (see 1.14)
0— 711 -5 05 fty — 0

of topological I'x-modules. By Theorem 1.16 the following long sequence

0 ~ HO(w) L -g ~ HO(m) __g
0——H' (I'x,pt) — H'(T'g, 1) —H (FK,#w>>

40

( 1 o HY(w) ~ HY(m) 4
H (FKMLL)—)H (FKmu)—>H (FK7/L1U)>

61

. H2(w PR H2 )
<—>H2(FK,M) Ty (e ) —

of continuous cohomology groups is exact. By Corollary 1.26 we have
Anng (u(K)) - (T, i) = 0.
As 11 has no non-trivial w-torsion, it follows that

(T, i) = 37 = 0.
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As Anng (1(K)) = wZ (see Example 1.27) and H™(T'k, -) is an additive functor for every
m € Z>q (see Proposition 1.11), the group morphism H™ (I, -w) is the zero map. Thus, the
map 0o : ft — H'(I'g, i) is an isomorphism of groups.

Moreover, the long exact sequence above gives the exact sequence
1 ~ BYm) 111 61 112 ~
0 — H (I, ) — H Pk, py) — H* Tk, 1) — 0.

As 'y acts trivially on j,,, we have H' (I'x, jt,,) = CHom(T'g, 14y, ). By Kummer theory the

map
K ()™ n K-
R, ——————

o — CHom(T'k, pt)

defined by
t
uK™ — (o — #)

where t € K is such that {* = z, is an isomorphism of groups. Using Proposition 1.15, one
easily checks that

H (i, 71) 2" CHom (e, 1)

)[ ZT'{
9o |2

K(p)™ nK*
How Jrw

is a commutative diagram, where the lower horizontal map is the natural inclusion. Hence,

the map ¢, o x induces an isomorphism

K(p)™n K~

1 rw —>H2(FK7:ZI)

of groups, which we will call .
Let x € K(u)™ N K*, (Tm)m>1 € K* with 21 = = and s: T —> Gal(K/K) a

continuous set-theoretic section. We will show that the image of x - 1, K under ¢ is

[(0, T) = (%) mzj'
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Then we have x(z- K*) = [a > %:)] . For brevity we will denote x(x - K**) by 7,. Now,
for the image of 7, under d; we are going to apply Proposition 1.15.
Define 5,: 'x — by o — (%) and note that it is an element of C'(I'g, 1)
m m>1

that maps to vy, under C*(I'g, 7). Moreover, writing out the formula for d; (see beginning of

Section 1.3) we obtain

dy (ﬁx) (07 T) =

On the other hand, define

QIZPKXFK—)ZL\

by (0, 7) — (M) . Since x € K(pu)*, for all m € Z~; we have
m>1 -

s(oT)Tmuw

$(0)$(T) T
$(0T) Tmuw "

The formula for d,(/3,) given above shows that the map cv, maps to d; (3, ) under C*(T'x, -w).

Hence, by Proposition 1.15 the identity 6; ([y.]) = [ holds.

It follows that the image of x - 11, K** under ¢ is [o], as desired. ]

9. Galois groups of maximal radical extensions

Throughout this section, let A be a number field, let K an algebraic closure of K, let w =

#u(K), and let
K(p)™ nK*
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Letn € Z>o, and let I be a free Z-module of rank n. Let S be the set of isomorphism classes

of profinite groups G such that there exists a natural extension of 'y
0—F —G—Txg—1,

and let T be the set of subgroups of H*(T'x, 1) that can be generated by n elements. Then by
Theorem 1.28 the map p: S — 1" given by

[G] — {H* Tk, /)(0 — F — G — T — 1]) : f € Hom(F,[i)}

is a bijection. Let 7" be the set of subgroups of A(K’) that can be generated by n elements.

The isomorphism ¢ of Theorem 1.34 induces a bijection
o: T — T

given by H — p(H), and its inverse ®~': T' — T" is given by H + ¢ '(H). Thus, the
map

x=0"op
is a bijection of S with 7" given by
X([G]) = ¢ ({H* Tk, /)([0 — F — G — T — 1]) : f € Hom(F, i)}).
Observe that for any finitely generated subgroup W of K* of rank n, the Galois group
Cal(K(WV*>)/K)

defines an element of S by Theorem 1.5 and Proposition 1.7. In this section we prove the

following theorem.

Theorem 1.35. Let W be a finitely generated subgroup of K* of rank n, and let

Cyc(W) = WY 0 K(u)*.
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Then the image of the isomorphism class of Gal(K (W) /K) in S under the bijection  is

(Cyc(W)* N K*)K*
Iqu*w

C A(K).

Let A be a discrete abelian group. Then Hom(A, 1) is a topological I' x-module, where 'k
acts via the second argument. For any x € A we have a continuous ['k-linear morphism

ev,: Hom(A, 1) — fi given by f — f(z). This induces a group morphism
H?(Tg,ev,): H*(Tg, Hom(A, 1)) — H*(Tk, 7).

As H*(T'g, ) is an additive functor (see 1.11) and for any z,y € A we have ev,,, =

ev, + ev,, there is a group morphism
Ya: H* (D, Hom(A, i) — Hom(A, H*(T'k, 1))
given by [c] + (x — H?(ev,)(c)). This defines a morphism of additive functors in A.
Lemma 1.36. Let W be a finitely generated subgroup of K* of rank n, and let
Cyc(W) = WYV N K(u)*.

Let 1) be the group morphism \cycw) defined above, and let K* be as defined in the beginning

of section 1.8. Then
i 1P, Hom(Cyc(W), /1)) —> Hom(Cyc(W), H(I'x, i)

is a group isomorphism such that for every x € Cyc(W), for every (p;)m>1 € K* with
w1 = x and for every continuous set-theoretic section s: 'y — Gal(K /K), the image of

the equivalence class of the natural extension of ' i

e: 0 — Hom(Cyc(W), i) — Gal(K(WY*®)/K) — T'x — 1
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of Theorem 1.5 is defined by
T > [(0, T) (Siiirsf;x):m>m2j .
Proof. We first show that 1z is an isomorphism. To this end, observe that
va: Hom(Z, ) — i
defined by f — f(1) is an isomorphism of I"x-modules. Hence
H* (T, xa): H* (T, Hom(Z, fi)) — H*(T'c, 1)
is an isomorphism of groups. Moreover
Xi2(r . Hom(Z, H* (T, 1)) — H? (T, 1)

is an isomorphism of groups. Since xyz(r, ) © Yz = H*(T'g, X7)» the map 9z is an isomor-
phism.

Now, note that Hom(Cyc(W), 1) = Hom(Cyc(W)/u, i) and that Cyc(W)/u = Z"
for some n € Zs; (see Lemma 1.4). Moreover, since p is divisible and H*(I'x, 7i) has

exponent w (see Theorem 1.34), we have
Hom(Cyc(W), H*(I'x, i)) = Hom(Cyc(W)/u, (I, i))-

Then by additivity of H*(I'x, Hom(-, 7i)) and Hom(-, H*(I'x, i), the map tcycow) is an
isomorphism of groups.
For the second part of the lemma, let z € Cyc(W), (2,,)m>1 € K* with r1 = x and

s: 'y — Gal(K/K) a continuous set-theoretic section. Let

e: 0 — Hom(Cyc(W), i) — Gal(K(WY*)/K) — 'y — 0
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be as in Theorem 1.5. Then e corresponds to the element (o, T) — s(c0)s(7)s(o7) "] of the
cohomology group H*(I' i, Hom(Cyc(W), 1)) (see Theorem 1.20).

Recall that the isomorphism a: Gal(K (W) /K (1)) — Hom(Cyc(W), i) is de-
fined by o — <y —> (M>m>1> (see Theorem 1.5). Then we deduce

Ym

beyem(€)(@) = [(0.7) = als(o)s(r)s(or))(x)]

Observe that for any o, 7 € I'x and m € Z>, the identity

s(0)s(r) (—SW*M) B

Im

S(O'T) <s(072*1:1:m )

m

holds. Thus, for any o, 7 € I'x and m € Z>, we have

s(or) Yzm

s(0)s(7)s(07) " 5(0)s(7)m 8(0)8(7)(—% )  5(0)8(7)m

T  s(0T)Tm S(O_T)<S(U-2*1wm>  s(oT)T,

This shows that
Yeyew) (€)(x) = [(0, T) = (m) J.

Let IV be a finitely generated subgroup of K* of rank n, and let Sat(W/) = W'/>° N K* and
Cyc(W) = W/ N K (u)*. By Proposition 1.3 we have

Cyc(W) = p- (Sat(W)"/* N K (u)).
Moreover, as (i is divisible and A(K') has exponent w, the map
vy : Cyc(W) — A(K)

defined by z — vy - p,, K, where % = ( - y for some ( € pand y € K*, is a well-defined

group morphism.
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Lemma 1.37. Let W be a finitely generated subgroup of K* of rank n, and let
Cyc(W) = WY 0 K(u)*.

Then for every x € Cyc(W), for every (zm)m>1 € K* with x1 = x and for every continuous

set-theoretic section s: 'y — Gal(K /K) we have

(woywxxy:[wnﬂk+<%gﬁgkﬁ)mxl

where ¢ is defined in Theorem 1.34.
Proof. Let x € Cyc(W), (Zm)m>1 € K* with 21 = z and s: [y — Gal(K/K) a
continuous set-theoretic section. Let ( € p and y € K* be such that x* = y(. Then

(xm)%zl = (Ym)(Gn)m>1 for some (Yp)m>1 € -f(\* with v, = y and (¢ )m>1 € [/(\* with
(1 = (. Then by Theorem 1.34 we have

(poy)(z) = wﬂ0F>(ﬂgEEE@ﬂ>mN]

S(0T) Ymuw

_ oo <s<o>s<r><xm<;;>)m>1]

s(O7)(@m )

= |(o,7) (%)mxl

where we used that for every v € I'x and m > 1 we have s(7)(n = Y. ]

Lemma 1.38. Let W be a finitely generated subgroup of K* of rank n, let
Sat(W) = WY n K*,
and let
Cyc(W) = WV N K(u)*.

Then the kernel of vy is Sat(W) - u and its image is
(Cyc(W)* N K*) - K*
HwK*w ’

v (Cye(W)) =
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Proof. This is clear since modulo y the map vy is given by exponentiation by w, and because

by Proposition 1.3 we have Cyc(W) = p - (Sat(W)Y* N K (u)*). n

Proof of Theorem 1.35. Let Gy = Gal(K (W'/>*)/K), and let v = vyy. Recall the defini-

tions of p and ®~! from the beginning of this section. We will first show that
p([Gw]) = @(v(Cyc(W))),
where @ is the inverse of ®~1. To this end, let
Ew:0— Hom(Cyc(W),i) — Gw — ' — 1
be the natural extension of I' of Theorem 1.5. Note that
p([Gw]) = {H*Tk, f)([0 — F — Gw — I'x — 1]) : f € Hom(F, 1)},

where it does not matter which equivalence class of natural extensions of ' by F' we take
(see Theorem 1.28). As Hom(Cyc(W), iz) is isomorphic to F as topological Z-module, we

have
p([Gw]) = {H*(Tk, 9)([Ew]) : g € Hom(Hom(Cyc(W), i), i)},

where again we are free to choose which equivalence class of natural extensions of ['x we
use.
On the other hand, note that v(Cyc(W)) is indeed an element of 7", since Cyc(W)/u

is free of rank n (see Lemma 1.4) and ;1 C ker(v). Hence

O(v(Cyc(W))) = (¢ o v)(Cyc(W))

is an element of 7. By Lemma 1.36 and Lemma 1.37 we have

(¢ o v)(Cyc(W)) = ¢([Ew])(Cyc(W))
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where [Eyy] is the equivalence class of Fyy in H*(I' i, Hom(Cyc(W), 1)), and 1 is defined

in Lemma 1.36. Recall that
d([Ew]): Cye(W) — H*(Tk, 1)
is given by x +— H*(I'k, ev,)([Ew]), where ev,: Hom(Cyc(W), 1) — [ is evaluation at
x. Hence
U([Ew])(Cye(W)) = {H*(Tk, eva)([Ew]) : @ € Cye(W)},
which we want to be equal to
{H*(Tk, 9)([Ew]) : g € Hom(Hom(Cyc(W), 1), /i) }-
To see this, note that the canonical group morphism
Cyc(W) — Hom(Hom(Cyc(W), i1), fz)

given by z — ev, has kernel p. It induces an injective Z-module morphism

(Cye(W)/ ) @2 Z — Hom(Hom(Cyc(W), i), fi) = Hom(Hom(Cyc(W)/u, /i), fi). (+)
Note that (x) is an isomorphism when Cyc(W)/u is replaced by Z". As

Cyc(W)/n=127Z"

as groups, the map (x) is an isomorphism (cf. the proof of Lemma 1.36). Hence, we have

(v(Cyc(W))) = (pov)(Cyc(W))
= Y([Ew])(Cyc(W))
= {H*(Tx,ev.)([Ew]) : v € Cyc(W)}
= {H*(Tk,9)([Ew]) : g € Hom(Hom(Cyc(W), f1), 1)}
= p([Gw]),
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as we wanted to show.
Now, applying ®~! we obtain x([Gw]) = v(Cyc(WW)). Hence, by Lemma 1.38 we

have
(Cyc(W)¥ N K*) - K*
MwK*w ’

x([Gw]) = v(Cyc(W)) =

10. Lifting

In this section we prove the following two theorems.

Theorem 1.39. Let w € Z~4, and let M be a free module over Z/wZ. Let \ be a submodule
of M, let n € Z>,, and let H C A be a finite subgroup generated by at most n elements.

Assume that M|l)/A[l] is infinite for every prime | dividing w. Then there is a submodule |
of M that is free over Z /wZ of rank n such that I N A = H.

Theorem 1.40. Let K be a number field unequal to Q, and let w = #u(K). Let M =

K* [, K** and N = % Then for every prime | dividing w the quotient M{l]/A[l] is

infinite.

We remark that Theorem 1.40 does not hold for Q, since

Q(w)*NQ*

j:Q*2 — Q*/ + Q*2

holds as a corollary of the Kronecker-Weber theorem.

Proof of 1.39. As Z/wZ is a Gorenstein ring, projective modules are injective. Therefore

M is injective over Z /wZ. Let I be a free Z /wZ-module of rank n and choose an injection
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H — I. Let H — A — M be the composition of injections. Then by injectivity of M

there is a group morphism f: I — M making the diagram

0 H [—=51/H——0

| | b

0 A M —— M/A——0

7.r/

commutative, where 7 and 7’ are the canonical quotient maps, and f is the induced map on
the quotients.

We will construct a group morphism ¢: I/H — M such that the map

fH+gn=f+n'g: I/H— M/A

induced by f + g7 is injective. Given such a g, the Snake Lemma implies that the map
f+gm: I — M is injective. Then we have injective morphisms / — M and [/H —
M /A making the above diagram commute, which finishes the proof, for I can be identified
with a free Z /wZ-submodule of M of rank n whose intersection with A is H.

To construct g, we first assume w = [ where [ is prime and k& € Z>;. Let
(—)[l]: Ab — Ab

be the functor of the category of abelian groups to the category of abelian groups sending
objects A to their [-torsion subgroup A[l] = Hom(Z/IZ, A), and morphisms ¢: A — B to
their restriction ¢[l]: A[l] — B]l] to the [-torsion subgroup of the domain.

As (—)[l] is left exact, we obtain the exact sequence
0 — Al — M) 25 (My/a)[0.

This induces the injection M|l]/A[l] — (M /A)[l], which we also denote by 7’[l] by abuse
of notation. Let c¢: (M/A)[l] — N be the cokernel of f[I], and let N, be the image of
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con'll]l. As (I/H)[l] is finite, it follows that N and N are both infinite. We have the

following commutative diagram

(/I - (/A —— N ——0

o

cor'[l]

MIl]/A[l] — No——0
with exact rows. Observe that all groups in this diagram are F;-vector spaces, hence they are
injective and projective over F,. Since (I /H)[l] is finite dimensional over F; and Nj, is infinite
dimensional over F;, we can embed the former in the latter. Choose such an embedding and
call it j. Using projectivity of (I/H)[l], lift j to a morphism j: (I/H)[l] — M]l] via the
surjective composition
MIl] — M]l]/A[l] — Np.
Composing with the canonical embedding M [[| — M, we obtain a morphism
(I/H)[l] — M.

Using injectivity of M, we lift this map to a map g: [/H — M via the embedding
(I/H)|[l] — I/H.

Now we show that f + gm = f + 7'g is injective. As w = [*, it suffices to show that

(f + 7'g)[l] is injective. Note that
(f+ 7'l = fll] + [l o g o gll],
where ¢ is the surjection M[l] — M][l]/A[l]. Composing with ¢ gives
co(F+7g)ll = cofl] +corllogogl] =0+ 107,

As j and ¢ are both injective, the composition c o (f 4 7'g)[l] is injective. It follows that
(f + m'g)[l] is injective. Thus, we have constructed g such that f + g is injective, proving

the theorem for w a prime power.
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Now, suppose w € Z-1. Let [ be a prime divisor of w. Restrict f to the [-part of / and
do the above for the [-part of H, I, A and M. This gives a morphism g; for every [ dividing
w. The direct sum of all the g; defines a map g: I/H — M such that f + g is injective,

which finishes the proof. ]

Lemma 1.41. Let K be a number field, let L be a finite extension of K, and let I' be a (not
necessarily finite) abelian extension of K. Let M = F'- L. Let p be a prime of K that does not
ramify in L, and let p and q be primes of L lying above p. Then the inertia groups 1,(M /L)
and 1,(M /L) are equal.

Proof. Letl, = I,(F/K),1, =1,(M/L) and I; = 1I;(M/L). As p does not ramify in L, we
have

LNFCF»=F.

Recall that there is a canonical isomorphism between the Galois groups Gal(F'/L N F') and
Gal(M/L). Hence I, corresponds to a unique subgroup of Gal(M /L), which we again
denote by I,.

Observe that F - L. = M. We claim that E - L is contained in M. Indeed, let s be
a prime of £ - L dividing p. Then s N E is unramified over p, since F is the inertia subfield
of p in F'. Moreover, as M is the compositum of F' with L, and s N £ is unramified over
s N (F N L), it follows that s is unramified over p. Hence M' C M, which gives I, C I,
and proves the claim.

Consider I, as a subgroup of Gal(F/F N L), and note that I, C I, implies E C F™.
Let t be a prime of M dividing p. Then t is unramified over E - L, as E - L is contained in
the inertia subfield of t N L = p in M. Moreover, vt N (£ - L) is unramified over F, since p is
unramified over p N (L N F).

On the other hand, t N F™ is totally ramified over E, since E is the inertia subfield of

pin F. This implies that t N I is totally ramified and unramified over F, hence F*» = E.
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It follows that I, = I,,.

Analogously, we find I, = I, so that I, = I, as desired. [}

Proof of Theorem 1.40. Let [ be a prime divisor of w. Let K = K (K*'/*), let M, be the
maximal exponent [ extension of K(y,z2) contained inside of K, and let A; be the maximal
exponent [ extension of K (j1,) contained inside of K (1) N K. One easily checks that under
Kummer and Galois dualities with K (11,,2) as basefield, the quotient M [[] corresponds to M;,
and A[l] corresponds to A;. To show that M[l]/A[l] is infinite is then equivalent to showing
that M;/A,; is an infinite extension.

Suppose by contradiction that M;/A, is finite. Then there is a finite extension L of
K (pty2) such that M; = L - A;. Let F' = Q(i) N A, and note that F - K (p,,2) = Ay, so that
F-L=M,.

Now, let p be a prime number different from [ that splits completely in L. As K # Q,
there are two distinct primes p and q of K above p. Let p’ and q' be primes of L above p and
q, respectively. Since [’ is abelian over Q, and p is unramified in L, Lemma 1.41 with Q in
the role of K implies that I, (M;/L) = I,,(M;/L). Moreover L is unramified at p over K, so

we have

L(M/K) = Ly(M/L) = 1g(M,/L) = 14(Mi/ K).

Let a € K* such that o does not have a [-th root in L, a € p \ p?, and o ¢ q. Then
X! — a € K[X] is Eisenstein at p, so that K’ = K (a'/") is totally ramified at p. Therefore
the inertia group I,(K’/K) is nontrivial. However, the prime q does not contain [ nor «,
which implies that q does not ramify in K. Note that K’ is contained in K , and moreover, as
it has exponent [ over K, it is contained in M. Thus, it follows that I,(M;/ K) # 1,(M;/K),

which is a contradiction. We conclude that M, has infinite degree over A;, as desired. [ |
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11. The main theorem

In this section we prove the main theorem of this chapter.

Theorem 1.42 (Main theorem). Letn € Z>, and let I’ be a free Z-module of rank n. Let G

be a profinite group, and let K be a number field. Then the following are equivalent.
(a) There exists a finitely generated subgroup W C K™ of rank n such that
G = Gal(K(WY*)/K)
as profinite groups.
(b) There is a natural extension of I i
0—F —G—Tr—1

such that if K = Q, the image of F in G equals the algebraic commutator subgroup
G,G] of G.

Proof of main theorem. As the implication (a) to (b) was already proven in Section 1.2, it
remains to show the implication (b) to (a).

First, suppose K is unequal to Q, and let us be given a natural ' -extension
0 —F —G—Tr—1

Then we want to show that there is W C K* of rank n such that G = Gal(K (W) /K) as
profinite groups.
Let S be the set of isomorphism classes of profinite groups that are natural I" x-extensions

by F. Let T be the set of subgroups of

K(p)™n K~

A=
Iqu*w
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that can be generated by at most n elements. As described in the beginning of Section 1.9,
there is by Theorems 1.28 and 1.34 a bijection y of .S with 7”. Under this bijection the class
of G in S corresponds to a unique element, say H, of 7".

By [Iwa53, Lemma 3] we know that K* /1, is free over Z. It follows that
M — K*/Iqu*w

is free over Z /wZ. Then by Theorem 1.40 and Theorem 1.39, there exists I C M such that
Iis free over Z/wZ of rank nand I N A = H. Let x4, ..., x, be a Z/wZ-basis of I, and lift
them to K*, to say v, . . ., Y. Let W be the group generated by vy, ..., Y.
Let
Sat(W) = W~ n K*

and

Cyc(W) = WV n K(u)*.

By Lemma 1.4 the group Sat(W) is finitely generated of rank n. As Sat(W) contains W,

and the image of W under the canonical map

is equal to the free module / of rank n over Z/wZ, the image of Sat(W) is also equal to /.

Hence, the identity
_ Sat(W) K
o ,qu*w

holds. Let Gy = Gal(K (W?'/*)/K). Then Theorem 1.35 implies that

I

(Cyc(W)® N K*) K™

X([GW]) = L FC7

Moreover, recall that

Cye(W) = p- (Sat(W)"* N K (n)")
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by Proposition 1.3. Hence, we have

Sat(W)K*" ~ K(p)™ N K*
Lo I [y FCF®
Sat(W)K** N K (u)™ N K*
Lo T
(Sat(W) N K ()™ N K*)K**
NwK*w
(Cyc(W)* N K*)K*
Lo FCF®
= x([Gw]),

H=INnA =

we see that H is the image of [Gy|. As x is a bijection, it follows that G € [Gy], that is, we
have G = Gy

Now, suppose K is equal to Q, and note that I'x, = Z*. Let
E:0—F—G—2Z"—1

be a natural extension of Z* with F = |G, G]. Suppose that n = 1. Since the semi-direct
product has commutator subgroup 27 and G,G]| = Z, it follows that G is not the trivial
extension. Then [Jav13, Theorem 1, page v] states that any natural extension of A by Z that
is not the trivial extension Z x Z*, is isomorphic to a Galois group Gal(Q({r)'/>=)/Q) for
some r € Q*. This proves the theorem for n = 1.

Now suppose n € Z>s, and let fi, ..., f, be generators of Hom(F, 2) Then
(B2, f)iy: B2, F) — HY(Z", 2)™"

is an isomorphism of groups that sends [E] to (H2(Z*, f;)([E]))™;. As 2 - HX(Z*,Z) = 0 by

Theorem 1.24, the group H2(2*, 2) is an F5-vector space. Moreover, the subgroup

(H2(Z*, f)(E]) :i=1,...,n)
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is an Fy-subvector space of H2(/Z\*7 2) We show that this subspace is in fact n-dimensional,
that is, we show that H*(Z*, f,)([E]), ..., H*(Z*, f,)(|E)) are lincarly independent over Fs.

To this end, let N be any nonempty subset of {1,...,n} and consider f = »._ fi.
Then by Proposition 1.21 we have

HA(Z*, /) ([E]) = [0 — Z — f(G) — Z* — 1],
As f is surjective, the map G — f,(G) is surjective. Therefore, we have

[£(G), £.(G)] = f(IG.G)) = Z.

Since f.(G) has commutator subgroup Z, it is not the trivial extension Z x Z*, that is, the
element H(Z*, f)([E)) is different from 0. As N was any nonempty subset of {1,...,n},

the elements
HQ(Z*a fl)([E])v R H2(Z*7 fn)([E])
are linearly independent over Fs.

Define S, 7" and x similarly as above for K = Q and

_awene
AT

Under x the isomorphism class [G] maps to a subgroup H of A that is free of rank n over

- Q/+Q*

Z/27Z. We define W to be the subgroup of Q* generated by the liftings of the n generators
of H. Let Sat(W), Cyc(W) and Gy be similar as above for K = Q. Then Theorem 1.35

implies that

~ (Cye(W)?PNQY)Q*
x(low]) = S
Moreover, similarly as above we have
B Sat(T/V)C,)*2
X([G]) = T1qQ?

Using Q(p)** N Q* = Q* one checks similarly as above that x([G]) = x([Gw]), from which

it follows that G = Gy, as desired. [ ]
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