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CHAPTER 1

Radical Galois groups and cohomology

1. Introduction

Let K be a field of characteristic 0, and let K be an algebraic closure of K. Let µ be the

subgroup of K
∗

consisting of all roots of unity. The maximal cyclotomic extension K(µ) is

Galois over K, and we canonically identify its Galois group with a closed subgroup ΓK of

the group of units Ẑ∗ of the profinite completion Ẑ of Z.

Let, in general, Γ be a closed subgroup of Ẑ∗, and let A be a profinite abelian group.

Then the natural Ẑ-module structure on A canonically induces an action of Γ on A, which

we call the natural action of Γ on A. A short exact sequence

0 −→ A
f−→ G

g−→ Γ −→ 1

in the category of profinite groups is called a natural extension of Γ by A or simply a natural

extension of Γ if for all x ∈ A and σ ∈ G we have σf(x)σ−1 = f(g(σ) · x), where · is the

natural action of Γ on A.

Let W be a finitely generated subgroup of K∗. We call dimQ(W ⊗ZQ) the rank of W .
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CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Let

W 1/∞ = {x ∈ K∗ : xm ∈ W for some m ∈ Z≥1}

be the group of all radicals of W , and note that K(W 1/∞) is a Galois extension of K. In

this chapter we study the structure of the Galois group of K(W 1/∞) over K, and prove the

following main theorem.

Theorem 1 (Main theorem). Let n ∈ Z≥0 and let F be a free Ẑ-module of rank n. LetG be a

profinite group, and let K be a finite field extension of Q. Then the following are equivalent.

(a) There exists a finitely generated subgroup W of K∗ of rank n such that

G ∼= Gal(K(W 1/∞)/K)

as profinite groups.

(b) There is a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1

such that if K = Q, the image of F in G equals the algebraic commutator subgroup

[G,G] of G.

The case n = 1 over K = Q was the subject of the author’s master’s thesis, see [Jav13]. The

special condition for K = Q was encountered already there. It is a condition entirely due to

the theorem of Kronecker–Weber (see [Hil96]), which shows how number theory is involved

in determining these Galois groups.

The (a) to (b) implication is a fairly easy consequence of Kummer theory and Schinzel’s

lemma, which we show in the next section.

The main tool in our proof of the inverse implication is the algebraic cohomology of

topological groups acting continuously on topological modules, which one calls continuous

2



1.1. INTRODUCTION

cochain cohomology. Given a topological group Γ and a topological Γ-module A, the con-

tinuous cochain cohomology of Γ with coefficients in A is the cohomology obtained from the

complex

0 −→ A
d0−→ C1(Γ, A)

d1−→ C2(Γ, A)
d2−→ C3(Γ, A)

d3−→ C4(Γ, A)
d4−→ . . .

where for n ∈ Z≥1 the group Cn(Γ, A) consists of all continuous maps of

Γ×n = Γ× · · · × Γ︸ ︷︷ ︸
n times

to A, and dn is the standard coboundary map one also has in non-continuous group coho-

mology. For n ∈ Z≥0, we denote the cohomology groups of this complex by Hn(Γ, A). See

section 1.3 for more details.

Now, let n ∈ Z≥0, let Γ be a closed subgroup of Ẑ∗, and let F be a free Ẑ-module

of rank n. We define an equivalence relation on the collection of natural extensions of Γ by

F (see 1.19), and find as in non-continuous group cohomology that the set of equivalence

classes under this equivalence relation may be identified with H2(Γ, F ) (see 1.20). However,

natural extensions of Γ by F that have isomorphic profinite groups in the middle, do not

need to define the same element of H2(Γ, F ). To work around this, we consider the Aut(F )-

orbit of the equivalence class of a natural extension 0 −→ F −→ G −→ Γ −→ 0, which

may be identified with the isomorphism class of G. The next theorem shows that the set of

these orbits is in bijection with the set of subgroups of H2(Γ, Ẑ) that can be generated by n

elements.

Theorem 2. Let n ∈ Z≥0, let Γ be an open subgroup of Ẑ∗, and let F be a free Ẑ-module of

rank n. Let S be the set of isomorphism classes of profinite groups G for which there exists a

natural extension of Γ

0 −→ F −→ G −→ Γ −→ 1.

3



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Let T be the set of subgroups of H2(Γ, Ẑ) that can be generated by n elements. Then there

is a well-defined bijection of S with T that sends a class [G] ∈ S to the image of the group

morphism

CHom(F, Ẑ) −→ H2(Γ, Ẑ), f 7→ H2(Γ, f)(E)

where CHom(F, Ẑ) is the set of all continuous group morphisms from F to Ẑ, and E ∈

H2(Γ, F ) is the extension class of any natural extension 0 −→ F −→ G −→ Γ −→ 1.

For more details and the proof, see section 1.7 and section 1.8.

Our next step is to describe H2(ΓK , Ẑ) in terms of the field K. An important auxiliary

result is the following theorem, which has already been used in the rank 1 case over Q

in [Jav13].

Theorem 3. Let K be a number field, and let w be the number of roots of unity in K. Let A

be a profinite abelian group. Then for any m ∈ Z≥0 we have

w · Hm(ΓK , A) = 0,

where ΓK acts on A in the natural way.

See section 1.6 for more details.

Theorem 4. Let K be a number field, let w be the number of roots of unity in K, and let

µw denote the subgroup of K∗ consisting of all roots of unity. Then the group H2(ΓK , Ẑ) is

isomorphic to
K(µ)∗w ∩K∗

µwK∗w
.

A more precise version of this theorem including a description of the isomorphism between

the two groups is given in Theorem 1.34.

Using Theorems 2 and 4, we see that an extension of ΓK as in part (b) of Theorem 1

corresponds to a subgroup H of K(µ)∗w∩K∗
µwK∗w

that can be generated by n elements. The last step

4



1.1. INTRODUCTION

in the proof of the (b) to (a) implication of Theorem 1 is to lift this subgroup to a subgroup

W of K∗. Putting M = K∗/µwK
∗w and Λ = K(µ)∗w∩K∗

µwK∗w
, the following theorem enables us

to construct W in the case that K is unequal to Q.

Theorem 5. Let w ∈ Z>1, and let M be a free module over Z/wZ. Let Λ be a submodule

of M , let n ∈ Z≥1, and let H ⊂ Λ be a finite subgroup generated by at most n elements.

Assume that the quotient group M [p]/Λ[p] of the p-torsion parts of M and Λ is infinite for

every prime p dividing w. Then there is a submodule I of M that is free over Z/wZ of rank

n such that I ∩ Λ = H .

For the proof see Theorem 1.39 in section 1.10. Note that we have

Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2,

that is, we have Λ = M for K = Q. The restriction this puts on constructing W , in the case

of K = Q, translates into the extra condition in Theorem 1.

The present chapter is organized as follows.

In section 1.2 we prove the (a) to (b) implication of Theorem 1. In sections 1.3 and

1.4 we copy the definitions and theorems of continuous cochain cohomology and topological

group extensions from [Jav13]. The proofs, which are omitted in this section, are found

in [Jav13, Chapter 1]. In section 1.5 we prove a lemma in profinite group theory on natural

extensions. In section 1.6 we elaborate on Theorem 3 above. Section 1.7 is concentrated on

proving Theorem 2 above. Section 1.8 concerns the extended version of Theorem 4 above.

In section 1.9 we study the image of Gal(K(W 1/∞)/K) under the bijection of Theorem 2.

In section 1.10 we prove the lifting theorems, such as Theorem 5 above. The last section

contains the proof of the main theorem.

5



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

2. Maximal radical extensions of number fields

Theorem 1.1 (Schinzel). Let K be a field, let a ∈ K, and let n ∈ Z>0 be not divisible by

charK. Let d be the number of n-th roots of unity in K. Then the splitting field of Xn − a is

abelian over K if and only if there exists b ∈ K with ad = bn.

Proof. See [Sch77, Theorem 2], [Len07] .

Definition 1.2. For an abelian group W we write rk(W ) for the rank dimQ(W ⊗ZQ) of W .

Let K be a field of characteristic 0, let K be an algebraic closure of K, and let W be a

subgroup of K∗. Let

W 1/∞ = {x ∈ K∗ : xm ∈ W for some m ∈ Z≥1}

be the group of all radicals of W . The field K(W 1/∞) is the union over all positive integers

m of the Galois extensions K(W 1/m) of K where

W 1/m = {x ∈ K∗ : xm ∈ W}.

Therefore, the field K(W 1/∞) is Galois over K.

For a field L we write µ(L) for the subgroup of L∗ consisting of the roots of unity of

L∗. For simplicity we write µ for the subgroup µ(L) of L
∗

consisting of all roots of unity.

For an integer d ∈ Z≥1 we write µd for the subgroup of µ consisting of the dth roots of unity.

The maximal cyclotomic extension K(µ) is Galois over K, and there is a canonical

injection

Gal(K(µ)/K) −→ Aut(µ)

of profinite groups. Observe that Aut(µ) is canonically isomorphic to Ẑ∗ as a profinite group.

As Gal(K(µ)/K) is compact and Ẑ∗ is Hausdorff, we may identify Gal(K(µ)/K) with a

6



1.2. MAXIMAL RADICAL EXTENSIONS OF NUMBER FIELDS

closed subgroup of Ẑ∗, which we denote by ΓK . As K(µ) is clearly a subfield of K(W 1/∞),

we see that ΓK is a quotient of Gal(K(W 1/∞)/K).

We write

Sat(W ) = W 1/∞ ∩K∗

and

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Proposition 1.3. Let K be a number field, and let K be an algebraic closure of K. Let

w = #µ(K). Let Kab be the maximal abelian extension of K inside K.

(a) Then we have

K∗1/∞ ∩Kab ∗ = µ ·K∗1/w.

(b) Let W be a subgroup of K∗. Then

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Proof. To prove (a), note that the right-to-left inclusion follows immediately from Kummer

theory and the fact that cyclotomic extensions are abelian. For the left-to-right inclusion, let

α ∈ K∗1/∞ ∩Kab ∗. Then there is n ∈ Z≥1 such that αn = a ∈ K∗. As Xn − a is abelian

over K, by Theorem 1.1 there exists b ∈ K∗ such that ad = bn, where d is the number of

n-th roots of unity in K. Then we have α = ζndb
1/d, where ζnd is some nd-th root of unity. It

follows that α ∈ µ ·K∗1/w, which shows the left-to-right inclusion.

For (b), intersect K∗1/∞ ∩Kab ∗ = µ ·K∗1/w on both sides with Cyc(W ) to obtain

Cyc(W ) =
(
µ ·K∗1/w

)
∩ Cyc(W ).

As µ ⊂ Cyc(W ), it follows that

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗)

as desired.

7



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Lemma 1.4. Let K be a number field, and let W be a finitely generated subgroup of K∗. Let

n = rk(W ). Then the following statements hold.

(a) The group Sat(W ) is finitely generated of rank n.

(b) The quotient Cyc(W )/µ is free of rank n.

Proof. Note that Sat(W )/W is equal to the torsion subgroup of K∗/W . By Lemma 3 in

[Iwa53], there is a countably infinite index set I such that K∗ ∼= µ(K) × Z(I). Moreover,

there is a finite subset J of I such that W is contained in µ(K)× Z(J). Then

K∗ ∼= µ(K)× Z(J) ⊕ Z(I\J).

Hence, the torsion part of K∗/W is a finitely generated abelian group, which is therefore

finite. As Sat(W )/W is finite, the group Sat(W ) is finitely generated of rank n, which

proves (a).

By Proposition 1.3 we have Cyc(W ) = µ · (Sat(W )1/w ∩ K(µ)∗). Observe that

Sat(W )1/w is finitely generated, so

Sat(W )1/w ∩K(µ)∗ = Cyc(W )/µ

is also finitely generated. As the quotient Cyc(W )/(µ · Sat(W )) is finitely generated and

annihilated by w, it follows that Cyc(W )/(µ · Sat(W )) is a finitely generated torsion group.

Hence

Cyc(W )/(µ · Sat(W ))

is finite, which implies that Cyc(W )/µ is free of rank n.

Recall that a topological module M over a topological ring R is an R-module M that is a

topological group such that R ×M −→ M is continuous, where R ×M has the product

topology. Similarly, a topological module M over a topological group Γ is a Γ-module M

8



1.2. MAXIMAL RADICAL EXTENSIONS OF NUMBER FIELDS

that is a topological group such that Γ ×M −→ M is continuous, where Γ ×M has the

product topology.

Let A be a profinite abelian group. Then by [Jav13, Lemma 2.3] A has a unique Ẑ-

module structure, and it makes A into a topological Ẑ-module. We call this the natural

Ẑ-module structure of A. By restriction, A has a topological Γ-action, for every closed

subgroup Γ of Ẑ∗. For any such Γ, we call this the natural action of Γ on A.

Moreover, a short exact sequence 0 −→ A
f−→ E

g−→ Γ −→ 1 of profinite groups

where A is abelian and for all σ ∈ E and x ∈ A we have

σf(x)σ−1 = f(g(σ) · x)

with · the natural action, is called a natural extension of Γ by A or simply a natural extension

of Γ.

Let K be a field, and K an algebraic closure of K. For every k ∈ Z≥1 let µk denote

the group of all kth roots of unity in K
∗
. Let m ∈ Z≥1, and note that for every multiple k of

m, there is a group morphism µk −→ µm sending ζ ∈ µk to ζk/m. This defines a projective

system, of which the projective limit µ̂ is called the Tate module of the multiplicative group.

It is a profinite module over Ẑ that is free of rank 1. For α ∈ µ̂ we let αm denote its image in

µm under the canonical projection µ̂ −→ µm.

Theorem 1.5. LetK be a field of characteristic 0, and letW be a finitely generated subgroup

of K∗. Let G = Gal(K(W 1/∞)/K). Then there is a natural extension of ΓK

0 −→ Hom(Cyc(W ), µ̂)
ι−→ G −→ ΓK −→ 1

such that for all f ∈ Hom(Cyc(W ), µ̂), x ∈ W 1/∞ and m ∈ Z≥1 with xm ∈ Cyc(W ) the

Galois automorphism ι(f) satisfies

ι(f)(x) = f(xm)m · x.

9



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

Proof. By Galois theory, there is a natural extension of ΓK

0 −→ Gal(K(W 1/∞)/K(µ)) −→ G −→ ΓK −→ 1.

By Kummer theory, there is an isomorphism

Gal(K(W 1/∞)/K(µ)) −→ AutCyc(W )(Cyc(W )1/∞)

of profinite groups that sends each σ to its restriction to W 1/∞ = Cyc(W )1/∞. Moreover,

there is an isomorphism

AutCyc(W )(Cyc(W )1/∞) −→ Hom(Cyc(W ), µ̂)

of profinite ΓK-modules given by sending σ to the group morphism Cyc(W ) −→ µ̂ that

sends x ∈ Cyc(W ) to (σ(ym)/ym)m≥1 where ym ∈ K
∗

are such that ymm = x for every

m ∈ Z≥0. As these isomorphisms are ΓK-linear, composing their inverses gives the desired

natural extension of ΓK .

Remark 1.6. LetK,W and n be as in Lemma 1.4. Then by Lemma 1.4 there are t1, . . . , tn ∈

K(µ)∗ such that Cyc(W ) = µ · 〈t1, . . . , tn〉.

Proposition 1.7. Let K be a number field, and let W be a finitely generated subgroup of K∗.

Let n = rk(W ). Let t1, . . . , tn ∈ K(µ)∗ be such that Cyc(W ) = µ · 〈t1, . . . , tn〉. Then there

is an isomorphism

Hom(Cyc(W ), µ̂) −→ µ̂⊕n

of topological Ẑ-modules sending f ∈ Hom(Cyc(W ), µ̂) to (f(ti))
n
i=1.

Proof. As µ̂ has no torsion, we have Hom(Cyc(W ), µ̂) = Hom(Cyc(W )/µ, µ̂). Let

ϕ : Zn −→ Cyc(W )/µ

10



1.2. MAXIMAL RADICAL EXTENSIONS OF NUMBER FIELDS

be the group isomorphism sending the standard basis element ei ∈ Zn to ti·µ for i = 1, . . . , n.

Then ϕ induces the isomorphisms

Hom(Cyc(W )/µ, µ̂) ∼= Hom(Zn, µ̂) ∼= µ̂⊕n

of profinite groups, where the last isomorphism sends f ∈ Hom(Zn, µ̂) to (f(ei))
n
i=1. By

[Jav13, Lemma 2.3] these are in fact Ẑ-linear morphisms.

Lemma 1.8. Let Γ be an open subgroup of Ẑ∗, and let F be a free module over Ẑ of finite

rank. Let

0 −→ F
ι−→ G −→ Γ −→ 1

be a natural extension of Γ by F . Let [G,G] be the algebraic commutator subgroup of G.

Then the following hold.

(a) There exists m ∈ Z≥0 such that ι(mF ) ⊂ [G,G].

(b) [G,G] is closed in G.

Proof. Since the kernels ker(Ẑ∗ −→ (Z/mZ)∗) form a fundamental system of neighbour-

hoods of 1 ∈ Ẑ∗, there is m ∈ Z>0 such that ker(Ẑ∗ −→ (Z/mZ)∗) is contained in Γ.

Choose such m even, which we may do without loss of generality. Let

u = (1 +m, 2) ∈
∏
p|m

Zp ×
∏
p-m

Zp = Ẑ

and note that u ∈ Ẑ∗. Since u ≡ 1 (mod m), we have u ∈ Γ. Moreover, by construction we

have (u− 1)Ẑ = mẐ.

Now, let x ∈ F , and let v ∈ G such that π(v) = u. Observe that

(u− 1) · x = ι−1(vι(x)v−1ι(x)−1),

11



CHAPTER 1. RADICAL GALOIS GROUPS AND COHOMOLOGY

which is an element of ι−1([G,G]). It follows that

(u− 1)F = mF ⊂ ι−1([G,G]).

As mF is open in F , it follows that ι−1([G,G]) is open in F , so in particular it is closed in

F . Since ι is a closed map, [G,G] is closed in G, as desired.

Now, we are able to prove the (a) to (b) implication of the main theorem of this chapter (see

Theorem 1 of the Introduction).

Proof of (a) implies (b) of the main theorem. By Theorem 1.5, there is a natural extension

of ΓK

0 −→ Hom(Cyc(W ), µ̂)
ι−→ G −→ ΓK −→ 1,

where Hom(Cyc(W ), µ̂) is free of rank n over Ẑ by Proposition 1.7. Moreover, if K = Q,

then by the theorem of Kronecker–Weber (see [Hil96]) the image of Hom(Cyc(W ), µ̂) is

necessarily the closure [G,G] of the algebraic commutator subgroup of G. By 1.8(b) this is

equal to the algebraic commutator subgroup [G,G].

3. Continuous cochain cohomology

Let Γ be a topological group. We denote the category of topological Γ-modules by Γ-TMod,

and note that it is an additive category. The morphism sets in this category are denoted by

CHomΓ(−,−), CEndΓ(−) and CAutΓ(−). When it is clear that every group morphism be-

tween two topological Γ-modules is continuous, we drop the ‘C’ from the notation; e.g. when

the domain is discrete. Similarly, we drop the subscript Γ when it is clear that every group

morphism between two Γ-modules is Γ-linear; e.g. when Γ is trivial or when Γ is a closed

subgroup of Ẑ∗ and the action is natural (see [Jav13, Lemma 2.3]).

12



1.3. CONTINUOUS COCHAIN COHOMOLOGY

Let A be a topological Γ-module. For n ∈ Z≥0, endow Γ×n with the product topology,

and let Cn(Γ, A) denote the group C(Γ×n, A) of continuous functions from Γ×n to A. The

elements of Cn(Γ, A) are called continuous n-cochains.

For n ∈ Z≥0 define the boundary map dn : Cn(Γ, A) −→ Cn+1(Γ, A) by

(dnϕ)(γ1, . . . , γn+1) = γ1 · ϕ(γ2, . . . , γn+1)+

+
∑n

i=1(−1)iϕ(γ1, . . . , γiγi+1, . . . , γn+1) + (−1)n+1ϕ(γ1, . . . , γn),

whose kernel is the group of continuous n-cocycles, and is denoted by Zn(Γ, A). For all

n ∈ Z≥0 we have dn+1 ◦ dn = 0. Hence, for n ∈ Z≥1 the image of dn−1, denoted by

Bn(Γ, A), is contained in Zn(Γ, A); its elements are called the continuous n-coboundaries.

Moreover, the group of continuous 0-coboundaries B0(Γ, A) is defined as the trivial subgroup

of C0(Γ, A). For n ∈ Z≥0, we define the n-th continuous cochain cohomology group of Γ

with coefficients in A as the quotient Zn(Γ, A)/Bn(Γ, A), denoted by Hn(Γ, A).

We will almost always omit ‘continuous’ in the above defined objects. Note that if Γ

is a discrete topological group, the notions above coincide with the usual group cohomology

notions.

The cohomology group H0(Γ, A) will often be identified with the subgroup AΓ of Γ-

invariants of A via the group isomorphism ϕ 7→ ϕ(1). Moreover, if Γ acts trivially on A, then

H1(Γ, A) is equal to the group of continuous group morphisms CHom(Γ, A) of Γ to A.

Let ∆ and Γ be topological groups, and let ϕ : ∆ −→ Γ and ψ : A −→ B be continuous

group morphisms, where A and B are topological modules over Γ and ∆, respectively. The

pair (ϕ, ψ) is called compatible if for all δ ∈ ∆ and a ∈ A we have ψ(ϕ(δ)a) = δ(ψ(a)).

Lemma 1.9. Let ϕ : ∆ −→ Γ and ψ : A −→ B be a compatible pair. Then the following

statements hold.

13
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(a) For each n ∈ Z≥0 there is an induced group morphism

Cn(ϕ, ψ) : Cn(Γ, A) −→ Cn(∆, B)

given by

Cn(ϕ, ψ)(f) = ψ ◦ f ◦ ϕ×n,

where ϕ×n : ∆×n −→ Γ×n sends (δ1, . . . , δn) ∈ ∆×n to (ϕ(δ1), . . . , ϕ(δn)).

(b) For each n ∈ Z≥0 the diagram

Cn(Γ, A)
dn //

Cn(ϕ,ψ)

��

Cn+1(Γ, A)

Cn+1(ϕ,ψ)
��

Cn(∆, B)
dn
// Cn+1(∆, B)

is commutative.

(c) For each n ∈ Z≥0 there is an induced group morphism

Hn(ϕ, ψ) : Hn(Γ, A) −→ Hn(∆, B)

defined by sending [f ] ∈ Hn(Γ, A) to [Cn(ϕ, ψ)(f)].

Proof. See [Wil98, Lemma 9.2.1].

Let C be the category defined as follows. Let the objects of C be all pairs (Γ, A) where Γ is a

topological group and A is a topological Γ-module. A morphism between (Γ, A) and (∆, B)

is given by a compatible pair (ϕ, ψ) where ϕ : ∆ −→ Γ and ψ : A −→ B. Composition of

two morphisms (ϕ : ∆ −→ Γ, ψ : A −→ B) and (ϕ′ : I −→ ∆, ψ′ : B −→ C) is given by

(ϕ′, ψ′) ◦ (ϕ, ψ) = (ϕ ◦ ϕ′, ψ′ ◦ ψ).

14
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Proposition 1.10. Let n ∈ Z≥0. Then

Cn(·, ·) : C −→ Ab and Hn(·, ·) : C −→ Ab

are covariant functors from C to the category Ab of abelian groups.

Proof. See [Jav13, Proposition 1.3].

Throughout the rest of this section, let Γ be a topological group. The subcategory CΓ of C

consisting of the pairs (Γ, A) with A a topological Γ-module, and with morphisms all com-

patible pairs (idΓ, ψ) where ψ is a continuous Γ-module morphism, can be canonically iden-

tified with the category Γ-TMod of topological Γ-modules. For a morphism ψ of topological

Γ-modules, let Cn(Γ, ψ) = Cn(idΓ, ψ) and Hn(Γ, ψ) = Hn(idΓ, ψ).

Proposition 1.11. Let n ∈ Z≥0. Then

Cn(Γ, ·) : Γ-TMod −→ Ab and Hn(Γ, ·) : Γ-TMod −→ Ab

are additive covariant functors.

Proof. See [Jav13, Proposition 1.4].

Proposition 1.12. The functors Cn(Γ, ·) and Hn(Γ, ·) commute with arbitrary products.

Proof. See [Jav13, Proposition 1.6].

Proposition 1.13. Let

1 −→ A
f−→ B

g−→ C −→ 1

be a short exact sequence of not necessarily abelian topological groups. Then the following

are equivalent.

(a) The map f induces a homeomorphism from A to its image, and g admits a continuous

set-theoretic section.

15
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(b) There is a homeomorphism ϕ : B −→ A× C, where A× C has the product topology,

such that the diagram

B
g

##
ϕ

��

1 // A

f
;;

ιA ##

C // 1

A× C
πC

;;

commutes, where ιA sends a ∈ A to (a, 1) and πC sends (a, c) ∈ A× C to c.

Proof. See [Jav13, Proposition 1.7].

Definition 1.14. A short exact sequence

1 −→ A
f−→ B

g−→ C −→ 1

of not necessarily abelian topological groups is called well-adjusted if it satisfies either one

of the equivalent conditions 1.13(a) and 1.13(b) above.

All short exact sequences of discrete groups are well-adjusted, as are all short exact sequences

of profinite groups, see [Wil98, Lemma 0.1.2].

Proposition 1.15. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological Γ-modules. Then for each n ∈ Z≥0

there is a unique group morphism

δn : Hn(Γ, C) −→ Hn+1(Γ, A)

such that for every c ∈ Zn(Γ, C) and for every a ∈ Cn+1(Γ, A) and b ∈ Cn(Γ, B) satisfying

Cn(Γ, g)(b) = c and Cn+1(Γ, f)(a) = dn(b), we have a ∈ Zn+1(Γ, A) and δn([c]) = [a].

16
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Proof. See [Jav13, Proposition 1.13].

Theorem 1.16. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological Γ-modules. Then the sequence

0 // H0(Γ, A)
H0(f)

// H0(Γ, B)
H0(g)

// H0(Γ, C)
δ0 // H1(Γ, A)

H1(f)
// . . .

. . .
δn−1

// Hn(Γ, A)
Hn(f)

// Hn(Γ, B)
Hn(g)

// Hn(Γ, C)
δn // Hn+1(Γ, A)

Hn+1(f)
// . . .

is exact.

Proof. See [Jav13, Theorem 1.15].

4. Topological group extensions

Throughout this section, let Γ be a topological group, and let A be a topological Γ-module.

Definition 1.17. A topological group extension of Γ by A is a triple (E, f, g) consisting of a

topological group E together with a well-adjusted short exact sequence

0 −→ A
f−→ E

g−→ Γ −→ 1

of topological groups, such that for all a ∈ A and x ∈ E we have xf(a)x−1 = f(g(x) · a).

Notation 1.18. We will often denote the extension (E, f, g) by the well-adjusted short exact

sequence that is associated with it, or just by E when the maps f and g are understood.

17
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Definition 1.19. Let (E, f, g) and (E ′, f ′, g′) be two topological extensions of Γ by A. Then

(E, f, g) and (E ′, f ′, g′) are said to be equivalent if there exists an isomorphism ϕ : E −→ E ′

of topological groups such that the diagram

E
g

  
ϕ

��

0 // A

f
>>

f ′   

Γ // 1

E ′
g′

>>

commutes.

The above defines an equivalence relation on the class of all topological extensions of Γ by

A. For convenience, let X denote the set of all equivalence classes of topological extensions

of Γ by A.

Let (E, f, g) be a topological extension of Γ by A, and let s be a continuous section of

g. Then associating to (E, f, g) the map Γ×2 −→ A given by

(γ1, γ2) 7→ f−1(s(γ1)s(γ2)s(γ1γ2)−1), (∗)

induces a well-defined map ϕ : X −→ H2(Γ, A), see [Hu52].

Theorem 1.20. The map ϕ above is a bijection of sets.

Proof. See [Hu52].

The theorem above enables us to identify elements of H2(Γ, A) with equivalence classes of

topological extensions of Γ by A, and vice versa.

Let B be a topological Γ-module, and let ψ : A −→ B be a morphism of topological

Γ-modules. Let (E, f, g) be a topological extension of Γ by A. Compose

E −→ Γ −→ Aut(B)

18
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to obtain a canonical action of E on B. Then the pushout ψ∗(E) of E along ψ is

ψ∗(E) = (B o E)/{(ψ(a),−f(a)) : a ∈ A},

where the semi-direct product has the product topology and the quotient has the quotient

topology. One easily checks that (ψ∗(E), ιB, π) defines an element of H2(Γ, B), where ιB is

the inclusion of B in ψ∗(E) and π is the canonical surjection of ψ∗(E) to Γ.

Proposition 1.21. We have H2(Γ, ψ)([E]) = [(ψ∗(E), ιB, π)].

Proof. Clear from (∗).

5. On profinite groups

Lemma 1.22. Let F be a free Ẑ-module of finite rank, and let H be a profinite group. Then

every group morphism F −→ H is continuous.

Proof. Note that every finite index subgroup of F is open, because multiplication on F by

every element of Z is a continuous morphism. By [Wil98, Proposition 1.1.6(d)] the map

F −→ H is continuous if and only if for every open normal subgroup N of H the compo-

sition fN : F −→ H/N is continuous. As H/N is finite, it follows that ker fN is open in

F .

By [Wil98, Lemma 1.2.6], a map from a profinite group to a discrete space is continu-

ous if and only if there is an open normal subgroup N of G such that f factors through G/N .

It follows that F −→ H is continuous.

Lemma 1.23. Let F be a free Ẑ-module of finite nonzero rank, and let Γ be an open subgroup

of Ẑ∗. Let

0 −→ F
ι−→ G −→ Γ −→ 0

19
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be a natural extension. Then the image of ι is equal to the centralizer

CG([G,G]) = {g ∈ G : gx = xg for all x ∈ [G,G]}

of [G,G] in G.

Proof. First, note that [G,G] ⊂ ι(F ), because Γ is abelian. As ι(F ) is abelian, it centralises

every subgroup. Hence ι(F ) ⊂ CG([G,G]).

Conversely, note that by Lemma 1.8(a) there is m ∈ Z>0 such that ι(mF ) ⊂ [G,G].

Let σ ∈ CG([G,G]), and let x ∈ F . As ι(mx) ∈ [G,G], we have

σ · ι(mx) = σι(mx)σ−1 = ι(mx).

Since F is torsion-free, it follows that σ acts as the identity on F . Equivalently σ maps to the

identity in Γ, because F is a free Ẑ-module of finite nonzero rank. Hence σ ∈ ι(F ), which

proves that CG([G,G]) ⊂ ι(F ).

6. Roots of unity and cohomology

Let Γ be a closed subgroup of Ẑ∗. Define

IΓ =
∑
γ∈Γ

Ẑ(γ − 1)

to be the Ẑ-ideal generated by Γ − 1 = {γ − 1 : γ ∈ Γ}, and let JΓ = IΓ be its topological

closure in Ẑ. For example, one has IẐ∗ = JẐ∗ = 2Ẑ.

Let M be a profinite abelian group. As M is a Ẑ-module, there is an induced module

structure of Ẑ on Hn(Γ,M) for each n ∈ Z≥0.

Theorem 1.24. Let Γ be a closed subgroup of Ẑ∗. Let M be a profinite abelian group, and

let Γ act naturally on M . Then for all n ∈ Z≥0 we have JΓ · Hn(Γ,M) = 0.
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Proof. See [Jav13, Theorem 2.16].

Recall that for a fieldK of characteristic 0, we identify the maximal cyclotomic Galois group

Gal(K(µ)/K) of K canonically with a closed subgroup of Ẑ∗, which we denote by ΓK .

Theorem 1.25. Let K be a field of characteristic 0, and let ΓK be its maximal cyclotomic

Galois group. Then JΓK
= AnnẐ(µ(K)).

Proof. See [Jav13, Theorem 2.17].

Corollary 1.26. Let ΓK be as in Theorem 1.25, and let M be a profinite abelian group with

the natural ΓK-action. Then for all n ∈ Z≥0 we have AnnẐ(µ(K)) · Hn(ΓK ,M) = 0.

Proof. This follows immediately from Theorem 1.24 and Theorem 1.25.

Example 1.27. Let K be a field of characteristic 0 with only finitely many roots of unity, say

w = #µ(K). Then AnnẐ(µ(K)) = wẐ = JΓ. Hence w ·Hn(ΓK ,M) = 0 for every profinite

abelian group M .

7. Orbits of natural extensions

Throughout this section, let n ∈ Z≥0, let M be a free Ẑ-module of rank 1, let F be a free

Ẑ-module of rank n, and let Γ be an open subgroup of Ẑ∗. Let S be the set of isomorphism

classes of profinite groups G such that there exists a natural extension

0 −→ F −→ G −→ Γ −→ 1.

Such an extension has a class [0 −→ F −→ G −→ Γ −→ 1] that belongs to H2(Γ, F ); for

f ∈ Hom(F,M), the map H2(Γ, f) sends this class to an element of H2(Γ,M).

Let T be the set of subgroups of H2(Γ,M) that can be generated by n elements. In this

section we prove the following theorem.
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Theorem 1.28. The map ρ : S −→ T given by

[G] 7→
{

H2(Γ, f)([0 −→ F −→ G −→ Γ −→ 1]) : f ∈ Hom(F,M)
}

is well-defined and bijective.

We briefly give an outline of the proof. First, note that the theorem is trivial for n = 0.

Assume n > 0 and for simplicity take F = Ẑ⊕n and M = Ẑ. We define GLn(Ẑ)-actions on

H2(Γ, Ẑ⊕n) and H2(Γ, Ẑ)⊕n and give an isomorphism

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

of GLn(Ẑ)-modules. We give S and T the trivial GLn(Ẑ)-action, and construct GLn(Ẑ)-

equivariant maps

H2(Γ, Ẑ⊕n) −→ S

and

H2(Γ, Ẑ)⊕n −→ T

that both have the property that two elements in the domain map to the same element in the

codomain if and only if they are in the same GLn(Ẑ)-orbit in the domain. We show that the

latter maps make the diagram

H2(Γ, Ẑ⊕n) ω //

��

H2(Γ, Ẑ)⊕n

��

S ρ
// T

commutative in the category of GLn(Ẑ)-sets. Then ρ is the map induced by ω on the orbit

spaces. As ω is an isomorphism, the map ρ is a bijection, as desired.

Assume that n ≥ 1. By additivity of H2(Γ, ·) there is a ring morphism

CEndΓ(Ẑ⊕n) −→ End(H2(Γ, Ẑ⊕n))
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given by f 7→ H2(Γ, f). By Lemma 1.22 and the fact that any continuous group morphism

of profinite abelian groups is Ẑ-linear (see [Jav13, Lemma 2.3]), we may drop the ‘C’ and

subscript Γ, so that we have an End(Ẑ⊕n)-module structure on H2(Γ, Ẑ⊕n). For simplicity

we write Mn(Ẑ) for End(Ẑ⊕n) and GLn(Ẑ) for Aut(Ẑ⊕n).

By additivity of H2(Γ, ·) the map

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

given by x 7→
(
H2(Γ, πi)(x)

)n
i=1

, where πi is the i-th projection of Ẑ⊕n onto Ẑ, is an isomor-

phism of groups. Then

End(H2(Γ, Ẑ⊕n)) −→ End(H2(Γ, Ẑ)⊕n)

given by f 7→ ω ◦ f ◦ ω−1 is an isomorphism defining the Mn(Ẑ)-module structure on

H2(Γ, Ẑ)⊕n. The map ω then becomes an isomorphism of Mn(Ẑ)-modules. Moreover, for

f ∈ Mn(Ẑ) and (x1, . . . , xn) ∈ H2(Γ, Ẑ)⊕n we explicitly have

f · (x1, . . . , xn) =

(
n∑
j=1

H2(Γ, πi ◦ f ◦ ιj)(xj)

)n

i=1

.

We summarize the above in the following lemma.

Lemma 1.29. Assume that n ≥ 1. For i = 1, . . . , n let πi be the i-th projection of Ẑ⊕n onto

Ẑ, and ιi the i-th injection of Ẑ into Ẑ⊕n. Then the map

ω : H2(Γ, Ẑ⊕n) −→ H2(Γ, Ẑ)⊕n

defined by x 7→ (H2(Γ, πi)(x))ni=1 is an isomorphism of Mn(Ẑ)-modules, where for f ∈

Mn(Ẑ) and x ∈ H2(Γ, Ẑ⊕n) and (x1, . . . , xn) ∈ H2(Γ, Ẑ)⊕n we have

f · x = H2(Γ, f)(x)
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and

f · (x1, . . . , xn) =

(
n∑
j=1

H2(Γ, πi ◦ f ◦ ιj)(xj)

)n

i=1

.

Lemma 1.30. Assume that n ≥ 1. Let GLn(Ẑ) act on H2(Γ, Ẑ⊕n) by restricting the Mn(Ẑ)-

action, and let GLn(Ẑ) act trivially on S. Then the map H2(Γ, Ẑ⊕n) −→ S given by

[0 −→ Ẑ⊕n −→ G −→ Γ −→ 1] 7→ [G]

is a well-defined GLn(Ẑ)-map with the property that two elements in H2(Γ, Ẑ⊕n) map to the

same element in S if and only if they are in the same GLn(Ẑ)-orbit.

Proof. The map is clearly well-defined. Equivariance under GLn(Ẑ) follows from the second

statement of the lemma, which we prove now.

Let

[(G1, f1, g1)] = [G1], [(G2, f2, g2)] = [G2] ∈ H2(Γ, Ẑ⊕n)

and suppose that they map to the same element in S. Let α : G1 −→ G2 be an isomorphism

of topological groups, which exists since G1 and G2 map to the same element in S. As

α(CG1([G1, G1])) = CG2([G2, G2]),

Lemma 1.23 implies that the map α induces an isomorphism α′ : Ẑ⊕n −→ Ẑ⊕n such that the

diagram

0 // Ẑ⊕n
f1
//

α′
��

G1
g1
//

α

��

Γ //

��

1

0 // Ẑ⊕n
f2
// G2 g2

// Γ // 1

commutes. The vertical map Γ −→ Γ is induced by the universal property of cokernels.

Since the action of Γ on Ẑ⊕n is the same as the actions of G1 and G2 on Ẑ⊕n, it follows that
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the vertical map Γ −→ Γ is the identity. Moreover, as G2 is the pushout of G1 along α′,

Proposition 1.21 implies that H2(Γ, α′)([G1]) = [G2].

Conversely, suppose that there is f ∈ GLn(Ẑ) with H2(Γ, f)([G1]) = [G2]. By Propo-

sition 1.21, the latter equality implies that G2 is isomorphic to the pushout f∗(G1) of G1

along f . As f is an isomorphism, it follows that G1 is isomorphic to f∗(G1). Hence, we have

G1
∼= G2 as profinite groups.

Let R be a not necessarily commutative ring. Recall that the Jacobson radical Jac(R) of R

is the intersection of all maximal left ideals of R. Moreover, recall that a left R-module M

is called simple if it has exactly two R-submodules, and that M is called semisimple if it is

the direct sum of simple R-modules. The ring R is called semisimple if it is semisimple as a

module over itself. The ring R is called semi-local if R/ Jac(R) is semisimple.

Lemma 1.31. Let R be a (not necessarily commutative) semi-local ring. Let A be a finitely

generated R-module, and let P be a finitely generated projective R-module. Assume that

we have two surjective R-module morphisms f, g : P −→ A. Then there is an isomorphism

h : P −→ P of R-modules such that g ◦ h = f .

Proof. First, assume that R is semisimple. Then A is projective, so we have R-module

isomorphisms

p1 : P −→ A⊕ ker f

and

p2 : P −→ A⊕ ker g

such that f = πA ◦ p1 and g = πA ◦ p2, where

πA : A⊕ ker f −→ A

and

π′A : A⊕ ker g −→ A
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are the canonical projection maps. As P is both noetherian and artinian as R-module, the

theorem of Krull-Remak-Schmidt (see [Lan02, Chapter X, Theorem 7.5]) implies that ker f

and ker g are isomorphic as R-modules. Choose any R-module isomorphism

p : ker f −→ ker g.

It follows that

h = p−1
2 ◦ (idA⊕ p) ◦ p1 : P −→ P

is an R-module isomorphism that satisfies g ◦ h = f . Indeed, we have

g ◦ h = π′A ◦ p2 ◦ h = π′A ◦ (idA⊕ p) ◦ p1 = πA ◦ p1 = f,

which proves the statement for R semisimple.

Now drop the assumption that R is semisimple. By definition of a semi-local ring,

the ring R/ Jac(R) is semisimple. For simplicity write J = Jac(R). Then f and g induce

surjective R-module morphisms

f, g : P/JP −→ A/JA.

As R/J is semisimple, the R/J-module P/JP = (R/J)⊗R P is projective. Hence, there is

an R-module isomorphism

h : P/JP −→ P/JP

such that g ◦ h = f . Let Z be the pullback of the canonical projection A −→ A/JA and

f : P/JP −→ A/JA. Let Z ′ be the pullback of the same diagram with f replaced by g.

As the pullback diagrams of Z and Z ′ are isomorphic, there is an isomorphism

q : Z −→ Z ′
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such that the cube

Z

q
��

//

��

A

id
��

��

Z ′ //

��

A

��

P/JP
f

//

h��

A/JA

id��

P/JP
g

// A/JA

commutes. By the universal property of Z, the canonical projection P −→ P/JP and f

induce an R-module morphism uZ : P −→ Z. By a diagram chasing argument, one easily

sees that this map is surjective. Analogously, we have a surjective morphism

uZ′ : P −→ Z ′.

By projectivity of P , there is a morphism h : P −→ P such that uZ′ ◦ h = q ◦ uZ . Now, the

three-dimensional diagram

P

h~~

##

f

&&

uZ

%%

P

π

��

g

%%

uZ′

""

Z

qxx

//

��

A

idxx

��

Z ′ //

p

��

A

��

P/JP
f

//

hyy

A/JA

idyy

P/JP
g

// A/JA

commutes. Note that we have g ◦ h = f . Therefore, it remains to show that h is an isomor-

phism of R-modules. To show surjectivity, note that uZ , q and p are surjective. Therefore,

the map p ◦ uZ′ ◦ h = π ◦ h is surjective. Thus, we have P = h(P ) + JP . Since P is finitely
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generated, the quotient P/h(P ) is so too. Moreover, we have J(P/h(P )) = P/h(P ). Hence,

by Nakayama’s lemma (see [Lam91, Theorem 4.22]) we have P/h(P ) = 0. It follows that h

is surjective.

By projectivity of P the sequence 0 −→ kerh −→ P −→ P −→ 0 splits, that is, there

is an R-module isomorphism ϕ : P −→ kerh⊕ P such that

P

ϕ

��

g

%%
0 // kerh

88

&&

P // 0

kerh⊕ P
πP

::

commutes, where πP is the projection to P . As P is finitely generated and the sequence

splits, kerh is also finitely generated. Applying the functor (R/J)⊗R− to h = πP ◦ϕ shows

that

P/JP h //

ϕ

��

P/JP

ker(h)/(J · ker(h))⊕ P/JP
πP

::

commutes. As h and ϕ are isomorphisms, it follows that πP is an isomorphism. Hence, we

have

ker(h)/(J · ker(h)) = 0.

Then Nakayama’s lemma (see [Lam91, Theorem 4.22]) implies that kerh = 0, so that h is

injective. This shows that h is an isomorphism of R-modules, which finishes the proof.

Lemma 1.32. Assume that n ≥ 1, and that M = Ẑ. Let GLn(Ẑ) act on H2(Γ, Ẑ)⊕n by

restricting the Mn(Ẑ)-action, and let GLn(Ẑ) act trivially on the set T from Theorem 1.28.

Then the map

H2(Γ, Ẑ)⊕n −→ T
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given by

(x1, . . . , xn) 7→ 〈x1, . . . , xn〉

is a GLn(Ẑ)-map with the property that two elements in H2(Γ, Ẑ)⊕n map to the same element

in T if and only if they are in the same GLn(Ẑ)-orbit.

Proof. Equivariance under GLn(Ẑ) follows from the second statement of the lemma, which

we prove now.

Let (x1, . . . , xn) and (y1, . . . , yn) be elements of H2(Γ, Ẑ)⊕n. Suppose that 〈x1, . . . , xn〉

and 〈y1, . . . , yn〉 are the same subgroup of H2(Γ, Ẑ), say N . By Theorem 1.24, the ideal JΓ

annihilates the group H2(Γ, Ẑ). As Γ is open, it is equal to ΓK for some number field K.

Hence, by Example 1.27 there is w ∈ Z≥2 such that wẐ = JΓ. Now JΓ · H2(Γ, Ẑ) = 0

implies that H2(Γ, Ẑ) is torsion. It follows that N is a finite group. Now, we replace Ẑ with

the ring ẐN =
∏

p|#N Zp, because the action of Ẑ on N factors via ẐN . As ẐN is a finite

product of local rings, it is semi-local; in particular, the quotient ẐN/ Jac(ẐN) is semisimple.

Each set of generators of N defines a surjective morphism

Ẑ⊕nN −→ N

of ẐN -modules by sending the standard basis to the set of generators. Let f be the morphism

corresponding to (x1, . . . , xn), and let g be the morphism corresponding to (y1, . . . , yn). Then

by Lemma 1.31 it follows that there is an isomorphism

h : Ẑ⊕nN −→ Ẑ⊕nN

of ẐN -modules such that g ◦ h = f . Extend h to an automorphism of Ẑ⊕n by the identity on∏
p-#N Zp.

Let A be the matrix in GLn(Ẑ) corresponding to h. Then

A ·
( x1

...
xn

)
=

( y1
...
yn

)
.
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This action of A on (x1, . . . , xn) is the same as the action of h on (x1, . . . , xn). It follows that

h · (x1, . . . , xn) = (y1, . . . , yn) as desired.

Conversely, suppose there is f ∈ GLn(Ẑ) such that f · (x1, . . . , xn) = (y1, . . . , yn).

Then yi is a Ẑ-linear combination of x1, . . . , xn for every i = 1, . . . , n. Hence, we have

〈y1, . . . , yn〉 ⊂ 〈x1, . . . , xn〉.

The other inclusion follows from the identity f−1 · (y1, . . . , yn) = (x1, . . . , xn).

Remark 1.33. One easily sees that the above lemma is true if we replace H2(Γ, Ẑ) by an

abelian torsion group A that is an Mn(Ẑ)-module, and replace T by the corresponding set of

subgroups of A that can be generated by n elements of A.

Proof of Theorem 1.28. Observe that the theorem is trivial for n = 0. Assume n > 0. It is

clear that we may take F = Ẑ⊕n and M = Ẑ, which we do for simplicity. To show that ρ is

well-defined, note that

H2(Γ, Ẑ⊕n)× Hom(Ẑ⊕n, Ẑ) −→ H2(Γ, Ẑ)

given by (x, f) 7→ H2(Γ, f)(x) is a bilinear mapping. Hence, for fixed x ∈ H2(Γ, Ẑ⊕n)

the image H2(Γ,Hom(Ẑ⊕n, Ẑ))(x) is indeed a subgroup of H2(Γ, Ẑ). Moreover, the group

Hom(Ẑ⊕n, Ẑ) is generated as a Ẑ-module by the n projection morphisms π1, . . . , πn. Then

by additivity of H2(Γ, ·) it follows that H2(Γ,Hom(Ẑ⊕n, Ẑ))(x) is indeed a subgroup of

H2(Γ, Ẑ) that can be generated by n elements.

To show that for [G] ∈ S the image ρ([G]) does not depend on the equivalence class

[0 −→ Ẑ⊕n −→ G −→ Γ −→ 1] in H2(Γ, Ẑ⊕n), suppose [(G, f1, g1)] and [(G, f2, g2)] are

two elements of H2(Γ, Ẑ⊕n). Let α : G −→ G be an automorphism of G. By Lemma 1.23,
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there exists an isomorphism α′ of Ẑ⊕n such that

Ẑ⊕n
f1
//

α′
��

G

α

��

Ẑ⊕n g2
// G

commutes. Then clearly G is the pushout of G along α′, so that we have

H2(Γ, f)([(G, f2, g2)]) = H2(Γ, f ◦ α′)([(G, f1, g1)]).

As composition with α′ induces an automorphism of Hom(Ẑ⊕n, Ẑ), it follows that

H2(Γ,Hom(Ẑ⊕n, Ẑ))([(G, f1, g1)]) = H2(Γ,Hom(Ẑ⊕n, Ẑ))([(G, f2, g2)]).

Hence, the map ρ is well-defined.

Now, one easily checks that we have a commutative diagram

H2(Γ, Ẑ⊕n)

1.30
��

ω // H2(Γ, Ẑ)⊕n

1.32
��

S ρ
// T

of GLn(Ẑ)-equivariant maps, where ω is defined in Lemma 1.29. By Lemma 1.30 and 1.32,

the sets S and T are in bijection with the orbit spaces of H2(Γ, Ẑ⊕n) and H2(Γ, Ẑ)⊕n under

the action of GLn(Ẑ), respectively. By commutativity of the diagram ρ is a bijection.

8. Cohomology of the Tate module

Throughout this section, let K be a number field, K an algebraic closure of K, and w =

#µ(K). For every m ∈ Z≥1 we put Km = K
∗
. For every positive integer m′ dividing m

we have a surjective map Km −→ Km′ given by exponentiation by m/m′. This forms a
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projective system and its limit is denoted by K̂∗. The elements x = (xm)m≥1 of K̂∗ are, in

particular, systems of compatible roots of x1, that is, for every m, d ∈ Z≥1 we have xmm = x1

and xdmd = xm.

Theorem 1.34. There is a unique isomorphism

ϕ :
K(µ)∗w ∩K∗

µwK∗w
−→ H2(ΓK , µ̂)

such that for every x ∈ K(µ)∗w∩K∗, every (xm)m≥1 ∈ K̂∗ with x1 = x and every continuous

set-theoretic section s : ΓK −→ Gal(K/K) we have

ϕ(x · µwK∗w) =

[
(σ, τ) 7→

(
s(σ)s(τ)xmw
s(στ)xmw

)
m≥1

]
.

Proof. Exponentiation byw is a continuous ΓK-module endomorphism of µ̂, giving the well-

adjusted sequence (see 1.14)

0 −→ µ̂
·w−→ µ̂

π−→ µw −→ 0

of topological ΓK-modules. By Theorem 1.16 the following long sequence

0 // H0(ΓK , µ̂)
H0(·w)

// H0(ΓK , µ̂)
H0(π)

// H0(ΓK , µw)
δ0

// H1(ΓK , µ̂)
H1(·w)

// H1(ΓK , µ̂)
H1(π)

// H1(ΓK , µw)
δ1

// H2(ΓK , µ̂)
H2(·w)

// H2(ΓK , µ̂)
H2(π)

// · · ·

of continuous cohomology groups is exact. By Corollary 1.26 we have

AnnẐ(µ(K)) · H0(ΓK , µ̂) = 0.

As µ̂ has no non-trivial w-torsion, it follows that

H0(ΓK , µ̂) = µ̂ΓK = 0.
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As AnnẐ(µ(K)) = wẐ (see Example 1.27) and Hm(ΓK , ·) is an additive functor for every

m ∈ Z≥0 (see Proposition 1.11), the group morphism Hm(ΓK , ·w) is the zero map. Thus, the

map δ0 : µw −→ H1(ΓK , µ̂) is an isomorphism of groups.

Moreover, the long exact sequence above gives the exact sequence

0 −→ H1(ΓK , µ̂)
H1(π)−→ H1(ΓK , µw)

δ1−→ H2(ΓK , µ̂) −→ 0.

As ΓK acts trivially on µw, we have H1(ΓK , µw) = CHom(ΓK , µw). By Kummer theory the

map

κ :
K(µ)∗w ∩K∗

K∗w
−→ CHom(ΓK , µw)

defined by

uK∗w 7→
(
σ 7→ σ(t)

t

)
where t ∈ K∗ is such that tw = x, is an isomorphism of groups. Using Proposition 1.15, one

easily checks that

H1(ΓK , µ̂)
H1(π)

// CHom(ΓK , µw)

µw

oδ0

OO

//
K(µ)∗w ∩K∗

K∗w

o κ
OO

is a commutative diagram, where the lower horizontal map is the natural inclusion. Hence,

the map δ1 ◦ κ induces an isomorphism

K(µ)∗w ∩K∗

µwK∗w
−→ H2(ΓK , µ̂)

of groups, which we will call ϕ.

Let x ∈ K(µ)∗w ∩ K∗, (xm)m≥1 ∈ K̂∗ with x1 = x and s : ΓK −→ Gal(K/K) a

continuous set-theoretic section. We will show that the image of x · µwK∗w under ϕ is[
(σ, τ) 7→

(
s(σ)s(τ)xmw
s(στ)xmw

)
m≥1

]
.
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Then we have κ(x ·K∗w) =
[
σ 7→ σ(xw)

xw

]
. For brevity we will denote κ(x ·K∗w) by γx. Now,

for the image of γx under δ1 we are going to apply Proposition 1.15.

Define βx : ΓK −→ µ̂ by σ 7→
(
s(σ)(xm)

xm

)
m≥1

and note that it is an element of C1(ΓK , µ̂)

that maps to γx under C1(ΓK , π). Moreover, writing out the formula for d1 (see beginning of

Section 1.3) we obtain

d1(βx)(σ, τ) =

(
σ

(
s(τ)(xm)

xm

)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)

(
s(τ)(xm)

xm

)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)s(τ)(xm)

s(σ)(xm)
· xm
s(στ)(xm)

· s(σ)(xm)

xm

)
m≥1

=

(
s(σ)s(τ)(xm)

s(στ)(xm)

)
m≥1

.

On the other hand, define

αx : ΓK × ΓK −→ µ̂

by (σ, τ) 7→
(
s(σ)s(τ)xmw

s(στ)xmw

)
m≥1

. Since x ∈ K(µ)∗w, for all m ∈ Z≥1 we have

s(σ)s(τ)xmw
s(στ)xmw

∈ µm.

The formula for d1(βx) given above shows that the map αx maps to d1(βx) under C2(ΓK , ·w).

Hence, by Proposition 1.15 the identity δ1([γx]) = [αx] holds.

It follows that the image of x · µwK∗w under ϕ is [αx], as desired.

9. Galois groups of maximal radical extensions

Throughout this section, let K be a number field, let K an algebraic closure of K, let w =

#µ(K), and let

Λ(K) =
K(µ)∗w ∩K∗

µwK∗w
.
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Let n ∈ Z≥0, and let F be a free Ẑ-module of rank n. Let S be the set of isomorphism classes

of profinite groups G such that there exists a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1,

and let T be the set of subgroups of H2(ΓK , µ̂) that can be generated by n elements. Then by

Theorem 1.28 the map ρ : S −→ T given by

[G] 7→ {H2(ΓK , f)([0 −→ F −→ G −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)}

is a bijection. Let T ′ be the set of subgroups of Λ(K) that can be generated by n elements.

The isomorphism ϕ of Theorem 1.34 induces a bijection

Φ: T ′ −→ T

given by H 7→ ϕ(H), and its inverse Φ−1 : T −→ T ′ is given by H 7→ ϕ−1(H). Thus, the

map

χ = Φ−1 ◦ ρ

is a bijection of S with T ′ given by

χ([G]) = ϕ−1({H2(ΓK , f)([0 −→ F −→ G −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)}).

Observe that for any finitely generated subgroup W of K∗ of rank n, the Galois group

Gal(K(W 1/∞)/K)

defines an element of S by Theorem 1.5 and Proposition 1.7. In this section we prove the

following theorem.

Theorem 1.35. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.
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Then the image of the isomorphism class of Gal(K(W 1/∞)/K) in S under the bijection χ is

(Cyc(W )w ∩K∗)K∗w

µwK∗w
⊂ Λ(K).

Let A be a discrete abelian group. Then Hom(A, µ̂) is a topological ΓK-module, where ΓK

acts via the second argument. For any x ∈ A we have a continuous ΓK-linear morphism

evx : Hom(A, µ̂) −→ µ̂ given by f 7→ f(x). This induces a group morphism

H2(ΓK , evx) : H2(ΓK ,Hom(A, µ̂)) −→ H2(ΓK , µ̂).

As H2(ΓK , ·) is an additive functor (see 1.11) and for any x, y ∈ A we have evx+y =

evx + evy, there is a group morphism

ψA : H2(ΓK ,Hom(A, µ̂)) −→ Hom(A,H2(ΓK , µ̂))

given by [c] 7→ (x 7→ H2(evx)(c)). This defines a morphism of additive functors in A.

Lemma 1.36. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Let ψ be the group morphism ψCyc(W ) defined above, and let K̂∗ be as defined in the beginning

of section 1.8. Then

ψ : H2(ΓK ,Hom(Cyc(W ), µ̂)) −→ Hom(Cyc(W ),H2(ΓK , µ̂))

is a group isomorphism such that for every x ∈ Cyc(W ), for every (xm)m≥1 ∈ K̂∗ with

x1 = x and for every continuous set-theoretic section s : ΓK −→ Gal(K/K), the image of

the equivalence class of the natural extension of ΓK

e : 0 −→ Hom(Cyc(W ), µ̂) −→ Gal(K(W 1/∞)/K) −→ ΓK −→ 1
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of Theorem 1.5 is defined by

x 7→

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
.

Proof. We first show that ψZ is an isomorphism. To this end, observe that

χµ̂ : Hom(Z, µ̂) −→ µ̂

defined by f 7→ f(1) is an isomorphism of ΓK-modules. Hence

H2(ΓK , χµ̂) : H2(ΓK ,Hom(Z, µ̂)) −→ H2(ΓK , µ̂)

is an isomorphism of groups. Moreover

χH2(ΓK ,µ̂) : Hom(Z,H2(ΓK , µ̂)) −→ H2(ΓK , µ̂)

is an isomorphism of groups. Since χH2(ΓK ,µ̂) ◦ ψZ = H2(ΓK , χµ̂), the map ψZ is an isomor-

phism.

Now, note that Hom(Cyc(W ), µ̂) = Hom(Cyc(W )/µ, µ̂) and that Cyc(W )/µ ∼= Zn

for some n ∈ Z≥1 (see Lemma 1.4). Moreover, since µ is divisible and H2(ΓK , µ̂) has

exponent w (see Theorem 1.34), we have

Hom(Cyc(W ),H2(ΓK , µ̂)) = Hom(Cyc(W )/µ,H2(ΓK , µ̂)).

Then by additivity of H2(ΓK ,Hom(·, µ̂)) and Hom(·,H2(ΓK , µ̂)), the map ψCyc(W ) is an

isomorphism of groups.

For the second part of the lemma, let x ∈ Cyc(W ), (xm)m≥1 ∈ K̂∗ with x1 = x and

s : ΓK −→ Gal(K/K) a continuous set-theoretic section. Let

e : 0 −→ Hom(Cyc(W ), µ̂) −→ Gal(K(W 1/∞)/K) −→ ΓK −→ 0
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be as in Theorem 1.5. Then e corresponds to the element [(σ, τ) 7→ s(σ)s(τ)s(στ)−1] of the

cohomology group H2(ΓK ,Hom(Cyc(W ), µ̂)) (see Theorem 1.20).

Recall that the isomorphism α : Gal(K(W 1/∞)/K(µ)) −→ Hom(Cyc(W ), µ̂) is de-

fined by σ 7→
(
y 7→

(
σ(ym)
ym

)
m≥1

)
(see Theorem 1.5). Then we deduce

ψCyc(W )(e)(x) =
[
(σ, τ) 7→ α(s(σ)s(τ)s(στ)−1)(x)

]
=

[
(σ, τ) 7→

(
s(σ)s(τ)s(στ)−1(xm)

xm

)
m≥1

]
.

Observe that for any σ, τ ∈ ΓK and m ∈ Z≥1 the identity

s(σ)s(τ)
(
s(στ)−1xm

xm

)
s(στ)

(
s(στ)−1xm

xm

) = 1

holds. Thus, for any σ, τ ∈ ΓK and m ∈ Z≥1 we have

s(σ)s(τ)s(στ)−1xm
xm

=
s(σ)s(τ)xm
s(στ)xm

·
s(σ)s(τ)

(
s(στ)−1xm

xm

)
s(στ)

(
s(στ)−1xm

xm

) =
s(σ)s(τ)xm
s(στ)xm

.

This shows that

ψCyc(W )(e)(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
.

Let W be a finitely generated subgroup of K∗ of rank n, and let Sat(W ) = W 1/∞ ∩K∗ and

Cyc(W ) = W 1/∞ ∩K(µ)∗. By Proposition 1.3 we have

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Moreover, as µ is divisible and Λ(K) has exponent w, the map

νW : Cyc(W ) −→ Λ(K)

defined by x 7→ y · µwK∗w, where xw = ζ · y for some ζ ∈ µ and y ∈ K∗, is a well-defined

group morphism.
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Lemma 1.37. Let W be a finitely generated subgroup of K∗ of rank n, and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Then for every x ∈ Cyc(W ), for every (xm)m≥1 ∈ K̂∗ with x1 = x and for every continuous

set-theoretic section s : ΓK −→ Gal(K/K) we have

(ϕ ◦ νW )(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
where ϕ is defined in Theorem 1.34.

Proof. Let x ∈ Cyc(W ), (xm)m≥1 ∈ K̂∗ with x1 = x and s : ΓK −→ Gal(K/K) a

continuous set-theoretic section. Let ζ ∈ µ and y ∈ K∗ be such that xw = yζ . Then

(xm)wm≥1 = (ym)(ζm)m≥1 for some (ym)m≥1 ∈ K̂∗ with y1 = y and (ζm)m≥1 ∈ K̂∗ with

ζ1 = ζ . Then by Theorem 1.34 we have

(ϕ ◦ νW )(x) =

[
(σ, τ) 7→

(
s(σ)s(τ)ymw
s(στ)ymw

)
m≥1

]

=

[
(σ, τ) 7→

(
s(σ)s(τ)(xmζ

−1
mw)

s(στ)(xmζ−1
mw)

)
m≥1

]

=

[
(σ, τ) 7→

(
s(σ)s(τ)xm
s(στ)xm

)
m≥1

]
where we used that for every γ ∈ ΓK and m ≥ 1 we have s(γ)ζm = γζm.

Lemma 1.38. Let W be a finitely generated subgroup of K∗ of rank n, let

Sat(W ) = W 1/∞ ∩K∗,

and let

Cyc(W ) = W 1/∞ ∩K(µ)∗.

Then the kernel of νW is Sat(W ) · µ and its image is

νW (Cyc(W )) =
(Cyc(W )w ∩K∗) ·K∗w

µwK∗w
.
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Proof. This is clear since modulo µ the map νW is given by exponentiation byw, and because

by Proposition 1.3 we have Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗).

Proof of Theorem 1.35. Let GW = Gal(K(W 1/∞)/K), and let ν = νW . Recall the defini-

tions of ρ and Φ−1 from the beginning of this section. We will first show that

ρ([GW ]) = Φ(ν(Cyc(W ))),

where Φ is the inverse of Φ−1. To this end, let

EW : 0 −→ Hom(Cyc(W ), µ̂) −→ GW −→ ΓK −→ 1

be the natural extension of ΓK of Theorem 1.5. Note that

ρ([GW ]) = {H2(ΓK , f)([0 −→ F −→ GW −→ ΓK −→ 1]) : f ∈ Hom(F, µ̂)},

where it does not matter which equivalence class of natural extensions of ΓK by F we take

(see Theorem 1.28). As Hom(Cyc(W ), µ̂) is isomorphic to F as topological Ẑ-module, we

have

ρ([GW ]) = {H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)},

where again we are free to choose which equivalence class of natural extensions of ΓK we

use.

On the other hand, note that ν(Cyc(W )) is indeed an element of T ′, since Cyc(W )/µ

is free of rank n (see Lemma 1.4) and µ ⊂ ker(ν). Hence

Φ(ν(Cyc(W ))) = (ϕ ◦ ν)(Cyc(W ))

is an element of T . By Lemma 1.36 and Lemma 1.37 we have

(ϕ ◦ ν)(Cyc(W )) = ψ([EW ])(Cyc(W ))
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where [EW ] is the equivalence class of EW in H2(ΓK ,Hom(Cyc(W ), µ̂)), and ψ is defined

in Lemma 1.36. Recall that

ψ([EW ]) : Cyc(W ) −→ H2(ΓK , µ̂)

is given by x 7→ H2(ΓK , evx)([EW ]), where evx : Hom(Cyc(W ), µ̂) −→ µ̂ is evaluation at

x. Hence

ψ([EW ])(Cyc(W )) = {H2(ΓK , evx)([EW ]) : x ∈ Cyc(W )},

which we want to be equal to

{H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)}.

To see this, note that the canonical group morphism

Cyc(W ) −→ Hom(Hom(Cyc(W ), µ̂), µ̂)

given by x 7→ evx has kernel µ. It induces an injective Ẑ-module morphism

(Cyc(W )/µ)⊗Z Ẑ −→ Hom(Hom(Cyc(W ), µ̂), µ̂) = Hom(Hom(Cyc(W )/µ, µ̂), µ̂). (∗)

Note that (∗) is an isomorphism when Cyc(W )/µ is replaced by Zn. As

Cyc(W )/µ ∼= Zn

as groups, the map (∗) is an isomorphism (cf. the proof of Lemma 1.36). Hence, we have

Φ(ν(Cyc(W ))) = (ϕ ◦ ν)(Cyc(W ))

= ψ([EW ])(Cyc(W ))

= {H2(ΓK , evx)([EW ]) : x ∈ Cyc(W )}

= {H2(ΓK , g)([EW ]) : g ∈ Hom(Hom(Cyc(W ), µ̂), µ̂)}

= ρ([GW ]),
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as we wanted to show.

Now, applying Φ−1 we obtain χ([GW ]) = ν(Cyc(W )). Hence, by Lemma 1.38 we

have

χ([GW ]) = ν(Cyc(W )) =
(Cyc(W )w ∩K∗) ·K∗w

µwK∗w
.

10. Lifting

In this section we prove the following two theorems.

Theorem 1.39. Let w ∈ Z>1, and let M be a free module over Z/wZ. Let Λ be a submodule

of M , let n ∈ Z≥1, and let H ⊂ Λ be a finite subgroup generated by at most n elements.

Assume that M [l]/Λ[l] is infinite for every prime l dividing w. Then there is a submodule I

of M that is free over Z/wZ of rank n such that I ∩ Λ = H .

Theorem 1.40. Let K be a number field unequal to Q, and let w = #µ(K). Let M =

K∗/µwK
∗w and Λ = K(µ)∗w∩K∗

µwK∗w
. Then for every prime l dividing w the quotient M [l]/Λ[l] is

infinite.

We remark that Theorem 1.40 does not hold for Q, since

Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2

holds as a corollary of the Kronecker-Weber theorem.

Proof of 1.39. As Z/wZ is a Gorenstein ring, projective modules are injective. Therefore

M is injective over Z/wZ. Let I be a free Z/wZ-module of rank n and choose an injection
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H −→ I . Let H −→ Λ −→ M be the composition of injections. Then by injectivity of M

there is a group morphism f : I −→M making the diagram

0 // H //

��

I π //

f

��

I/H //

f
��

0

0 // Λ //M
π′
//M/Λ // 0

commutative, where π and π′ are the canonical quotient maps, and f is the induced map on

the quotients.

We will construct a group morphism g : I/H −→M such that the map

f + gπ = f + π′g : I/H −→M/Λ

induced by f + gπ is injective. Given such a g, the Snake Lemma implies that the map

f + gπ : I −→ M is injective. Then we have injective morphisms I −→ M and I/H −→

M/Λ making the above diagram commute, which finishes the proof, for I can be identified

with a free Z/wZ-submodule of M of rank n whose intersection with Λ is H .

To construct g, we first assume w = lk where l is prime and k ∈ Z≥1. Let

(−)[l] : Ab −→ Ab

be the functor of the category of abelian groups to the category of abelian groups sending

objects A to their l-torsion subgroup A[l] ∼= Hom(Z/lZ, A), and morphisms φ : A −→ B to

their restriction φ[l] : A[l] −→ B[l] to the l-torsion subgroup of the domain.

As (−)[l] is left exact, we obtain the exact sequence

0 −→ Λ[l] −→M [l]
π′[l]−→ (M/Λ)[l].

This induces the injection M [l]/Λ[l] −→ (M/Λ)[l], which we also denote by π′[l] by abuse

of notation. Let c : (M/Λ)[l] −→ N be the cokernel of f [l], and let N0 be the image of
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c ◦ π′[l]. As (I/H)[l] is finite, it follows that N and N0 are both infinite. We have the

following commutative diagram

(I/H)[l]
f [l]
// (M/Λ)[l] c // N // 0

M [l]/Λ[l]
c◦π′[l]

//
?�

π′[l]

OO

N0
//

?�

ι

OO

0

with exact rows. Observe that all groups in this diagram are Fl-vector spaces, hence they are

injective and projective over Fl. Since (I/H)[l] is finite dimensional over Fl andN0 is infinite

dimensional over Fl, we can embed the former in the latter. Choose such an embedding and

call it j. Using projectivity of (I/H)[l], lift j to a morphism j : (I/H)[l] −→ M [l] via the

surjective composition

M [l] −→M [l]/Λ[l] −→ N0.

Composing with the canonical embedding M [l] −→M , we obtain a morphism

(I/H)[l] −→M.

Using injectivity of M , we lift this map to a map g : I/H −→ M via the embedding

(I/H)[l] −→ I/H .

Now we show that f + gπ = f + π′g is injective. As w = lk, it suffices to show that

(f + π′g)[l] is injective. Note that

(f + π′g)[l] = f [l] + π′[l] ◦ q ◦ g[l],

where q is the surjection M [l] −→M [l]/Λ[l]. Composing with c gives

c ◦ (f + π′g)[l] = c ◦ f [l] + c ◦ π′[l] ◦ q ◦ g[l] = 0 + ι ◦ j.

As j and ι are both injective, the composition c ◦ (f + π′g)[l] is injective. It follows that

(f + π′g)[l] is injective. Thus, we have constructed g such that f + gπ is injective, proving

the theorem for w a prime power.
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Now, suppose w ∈ Z>1. Let l be a prime divisor of w. Restrict f to the l-part of I and

do the above for the l-part of H , I , Λ and M . This gives a morphism gl for every l dividing

w. The direct sum of all the gl defines a map g : I/H −→ M such that f + gπ is injective,

which finishes the proof.

Lemma 1.41. Let K be a number field, let L be a finite extension of K, and let F be a (not

necessarily finite) abelian extension ofK. LetM = F ·L. Let p be a prime ofK that does not

ramify in L, and let p and q be primes of L lying above p. Then the inertia groups Ip(M/L)

and Iq(M/L) are equal.

Proof. Let Ip = Ip(F/K), Ip = Ip(M/L) and Iq = Iq(M/L). As p does not ramify in L, we

have

L ∩ F ⊂ F Ip = E.

Recall that there is a canonical isomorphism between the Galois groups Gal(F/L ∩ F ) and

Gal(M/L). Hence Ip corresponds to a unique subgroup of Gal(M/L), which we again

denote by Ip.

Observe that E · L = M Ip . We claim that E · L is contained in M Ip . Indeed, let s be

a prime of E · L dividing p. Then s ∩ E is unramified over p, since E is the inertia subfield

of p in F . Moreover, as M is the compositum of F with L, and s ∩ E is unramified over

s ∩ (F ∩ L), it follows that s is unramified over p. Hence M Ip ⊂ M Ip , which gives Ip ⊂ Ip

and proves the claim.

Consider Ip as a subgroup of Gal(F/F ∩ L), and note that Ip ⊂ Ip implies E ⊂ F Ip .

Let r be a prime of M Ip dividing p. Then r is unramified over E · L, as E · L is contained in

the inertia subfield of r∩L = p in M . Moreover, r∩ (E ·L) is unramified over E, since p is

unramified over p ∩ (L ∩ F ).

On the other hand, r ∩ F Ip is totally ramified over E, since E is the inertia subfield of

p in F . This implies that r ∩ F Ip is totally ramified and unramified over E, hence F Ip = E.
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It follows that Ip = Ip.

Analogously, we find Ip = Iq, so that Ip = Iq, as desired.

Proof of Theorem 1.40. Let l be a prime divisor of w. Let K̃ = K(K∗1/w), let Ml be the

maximal exponent l extension of K(µw2) contained inside of K̃, and let Λl be the maximal

exponent l extension of K(µw2) contained inside of K(µ)∩ K̃. One easily checks that under

Kummer and Galois dualities with K(µw2) as basefield, the quotient M [l] corresponds to Ml,

and Λ[l] corresponds to Λl. To show that M [l]/Λ[l] is infinite is then equivalent to showing

that Ml/Λl is an infinite extension.

Suppose by contradiction that Ml/Λl is finite. Then there is a finite extension L of

K(µw2) such that Ml = L · Λl. Let F = Q(µ) ∩ Λl, and note that F ·K(µw2) = Λl, so that

F · L = Ml.

Now, let p be a prime number different from l that splits completely in L. As K 6= Q,

there are two distinct primes p and q of K above p. Let p′ and q′ be primes of L above p and

q, respectively. Since F is abelian over Q, and p is unramified in L, Lemma 1.41 with Q in

the role of K implies that Ip′(Ml/L) = Iq′(Ml/L). Moreover L is unramified at p over K, so

we have

Ip(Ml/K) = Ip′(Ml/L) = Iq′(Ml/L) = Iq(Ml/K).

Let α ∈ K∗ such that α does not have a l-th root in L, α ∈ p \ p2, and α /∈ q. Then

X l − α ∈ K[X] is Eisenstein at p, so that K ′ = K(α1/l) is totally ramified at p. Therefore

the inertia group Ip(K
′/K) is nontrivial. However, the prime q does not contain l nor α,

which implies that q does not ramify in K ′. Note that K ′ is contained in K̃, and moreover, as

it has exponent l over K, it is contained in Ml. Thus, it follows that Ip(Ml/K) 6= Iq(Ml/K),

which is a contradiction. We conclude that Ml has infinite degree over Λl, as desired.
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11. The main theorem

In this section we prove the main theorem of this chapter.

Theorem 1.42 (Main theorem). Let n ∈ Z≥0, and let F be a free Ẑ-module of rank n. Let G

be a profinite group, and let K be a number field. Then the following are equivalent.

(a) There exists a finitely generated subgroup W ⊂ K∗ of rank n such that

G ∼= Gal(K(W 1/∞)/K)

as profinite groups.

(b) There is a natural extension of ΓK

0 −→ F −→ G −→ ΓK −→ 1

such that if K = Q, the image of F in G equals the algebraic commutator subgroup

[G,G] of G.

Proof of main theorem. As the implication (a) to (b) was already proven in Section 1.2, it

remains to show the implication (b) to (a).

First, suppose K is unequal to Q, and let us be given a natural ΓK-extension

0 −→ F −→ G −→ ΓK −→ 1.

Then we want to show that there is W ⊂ K∗ of rank n such that G ∼= Gal(K(W 1/∞)/K) as

profinite groups.

Let S be the set of isomorphism classes of profinite groups that are natural ΓK-extensions

by F . Let T ′ be the set of subgroups of

Λ =
K(µ)∗w ∩K∗

µwK∗w
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that can be generated by at most n elements. As described in the beginning of Section 1.9,

there is by Theorems 1.28 and 1.34 a bijection χ of S with T ′. Under this bijection the class

of G in S corresponds to a unique element, say H , of T ′.

By [Iwa53, Lemma 3] we know that K∗/µw is free over Z. It follows that

M = K∗/µwK
∗w

is free over Z/wZ. Then by Theorem 1.40 and Theorem 1.39, there exists I ⊂ M such that

I is free over Z/wZ of rank n and I ∩ Λ = H . Let x1, . . . , xn be a Z/wZ-basis of I , and lift

them to K∗, to say y1, . . . , yn. Let W be the group generated by y1, . . . , yn.

Let

Sat(W ) = W 1/∞ ∩K∗

and

Cyc(W ) = W 1/∞ ∩K(µ)∗.

By Lemma 1.4 the group Sat(W ) is finitely generated of rank n. As Sat(W ) contains W ,

and the image of W under the canonical map

K∗ −→ K∗/µwK
∗w

is equal to the free module I of rank n over Z/wZ, the image of Sat(W ) is also equal to I .

Hence, the identity

I =
Sat(W )K∗w

µwK∗w

holds. Let GW = Gal(K(W 1/∞)/K). Then Theorem 1.35 implies that

χ([GW ]) =
(Cyc(W )w ∩K∗)K∗w

µwK∗w
.

Moreover, recall that

Cyc(W ) = µ · (Sat(W )1/w ∩K(µ)∗)
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by Proposition 1.3. Hence, we have

H = I ∩ Λ =
Sat(W )K∗w

µwK∗w

⋂ K(µ)∗w ∩K∗

µwK∗w

=
Sat(W )K∗w ∩K(µ)∗w ∩K∗

µwK∗w

=
(Sat(W ) ∩K(µ)∗w ∩K∗)K∗w

µwK∗w

=
(Cyc(W )w ∩K∗)K∗w

µwK∗w

= χ([GW ]),

we see that H is the image of [GW ]. As χ is a bijection, it follows that G ∈ [GW ], that is, we

have G ∼= GW .

Now, suppose K is equal to Q, and note that ΓK = Ẑ∗. Let

E : 0 −→ F −→ G −→ Ẑ∗ −→ 1

be a natural extension of Ẑ∗ with F = [G,G]. Suppose that n = 1. Since the semi-direct

product has commutator subgroup 2Ẑ and [G,G] = Ẑ, it follows that G is not the trivial

extension. Then [Jav13, Theorem 1, page v] states that any natural extension of Ẑ∗ by Ẑ that

is not the trivial extension Ẑ o Ẑ∗, is isomorphic to a Galois group Gal(Q(〈r〉1/∞)/Q) for

some r ∈ Q∗. This proves the theorem for n = 1.

Now suppose n ∈ Z≥2, and let f1, . . . , fn be generators of Hom(F, Ẑ). Then

(H2(Ẑ∗, fi))
n
i=1 : H2(Ẑ∗, F ) −→ H2(Ẑ∗, Ẑ)⊕n

is an isomorphism of groups that sends [E] to (H2(Ẑ∗, fi)([E]))ni=1. As 2 · H2(Ẑ∗, Ẑ) = 0 by

Theorem 1.24, the group H2(Ẑ∗, Ẑ) is an F2-vector space. Moreover, the subgroup

〈H2(Ẑ∗, fi)([E]) : i = 1, . . . , n〉
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is an F2-subvector space of H2(Ẑ∗, Ẑ). We show that this subspace is in fact n-dimensional,

that is, we show that H2(Ẑ∗, f1)([E]), . . . ,H2(Ẑ∗, fn)([E]) are linearly independent over F2.

To this end, let N be any nonempty subset of {1, . . . , n} and consider f =
∑

i∈N fi.

Then by Proposition 1.21 we have

H2(Ẑ∗, f)([E]) = [0 −→ Ẑ −→ f∗(G) −→ Ẑ∗ −→ 1].

As f is surjective, the map G −→ f∗(G) is surjective. Therefore, we have

[f∗(G), f∗(G)] = f([G,G]) = Ẑ.

Since f∗(G) has commutator subgroup Ẑ, it is not the trivial extension Ẑ o Ẑ∗, that is, the

element H2(Ẑ∗, f)([E]) is different from 0. As N was any nonempty subset of {1, . . . , n},

the elements

H2(Ẑ∗, f1)([E]), . . . ,H2(Ẑ∗, fn)([E])

are linearly independent over F2.

Define S, T ′ and χ similarly as above for K = Q and

Λ =
Q(µ)∗2 ∩Q∗

±Q∗2
= Q∗/±Q∗2.

Under χ the isomorphism class [G] maps to a subgroup H of Λ that is free of rank n over

Z/2Z. We define W to be the subgroup of Q∗ generated by the liftings of the n generators

of H . Let Sat(W ), Cyc(W ) and GW be similar as above for K = Q. Then Theorem 1.35

implies that

χ([GW ]) =
(Cyc(W )2 ∩Q∗)Q∗2

±Q∗2
.

Moreover, similarly as above we have

χ([G]) =
Sat(W )Q∗2

±Q∗2
.

Using Q(µ)∗2∩Q∗ = Q∗ one checks similarly as above that χ([G]) = χ([GW ]), from which

it follows that G ∼= GW , as desired.
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CHAPTER 2

Reductions of multiplicative subgroups of

number fields

1. Introduction

Let K be a number field, and let W be a finitely generated subgroup of K∗. Let OK be the

ring of integers of K. For a maximal ideal p of OK , let vp : K −→ Z ∪ {∞} be the p-adic

valuation function, let OK,p be the localization of OK at p, and let κ(p) be the residue field

of OK at p. Let ΩK be the set of maximal ideals of OK , let

S = {p ∈ ΩK : there is w ∈ W such that vp(w) 6= 0},

and note that S is finite. Then for p ∈ ΩK \ S we have W ⊂ O∗K,p. Thus, the canonical ring

morphism OK,p −→ κ(p) induces a group morphism πp : W −→ κ(p)∗.

Let V be a subgroup of W such that W/V is finite cyclic. Note that for any p ∈ ΩK \S

the kernel of πp is such a subgroup of W . Let

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V }.
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For any subset N of ΩK we write d(N) for its natural density, if it exists. In this chapter we

show that the set A(W,V ) has a natural density d(A(W,V )) in ΩK , and prove properties of

this density of both qualitative and quantitative nature.

Theorem 6 (Main theorem).

(a) The set A(W,V ) has a natural density d(A(W,V )) in ΩK .

(b) The density d(A(W,V )) is rational.

(c) As a function of K, W and V , the density d(A(W,V )) is computable.

(d) Let V ′ be a subgroup of W containing V , and suppose that W is infinite. Then

d(A(W,V )) = d(A(W,V ′)) if and only if V = V ′.

(e) The density d(A(W,V )) is positive.

(f) We have d(A(W,V )) = 1 if and only if V = W or W is finite.

See Theorem 2.24 and Theorem 2.25 in Section 2.7 for the proof.

Suppose x and y are positive integers with the property that for all positive integers n

the set of prime numbers dividing xn−1 is equal to the set of prime numbers dividing yn−1.

Pál Erdös asked, at the 1988 number theory conference in Banff, whether it follows that x is

equal to y. This question was labeled the support problem, and was answered affirmatively

by C. Corrales-Rodrigáñez and R. Schoof in [CRS97], who, in the same paper, formulated

and proved an elliptic analogue of the support problem. One can find many generalisations

and variations of the support problem in the literature, see [Kha03, Proposition 3], [BGK05],

[Lar02], [Wes03], [Bar10], [Per09], [Per12]. As an application of Theorem 6(e), we give an

alternative solution to the following two generalisations of the support problem.

Throughout this chapter, we use the phrase almost all as a substitute for all but finitely

many.
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Theorem 7. Let K be a number field, and let X and Y be finitely generated subgroups of

K∗.

(a) Let S ′ = {p ∈ ΩK : ∃x ∈ X ∪ Y : vp(x) 6= 0}. Then Y ⊂ X if and only if for almost

all p ∈ ΩK \ S ′ we have Y (mod p) ⊂ X (mod p).

(b) Suppose that Y ⊂ X . Let l be a prime number. Let

S ′ = {p ∈ ΩK : ∃x ∈ X : vp(x) 6= 0}.

Then

(X : Y ) <∞ and l - (X : Y )

if and only if

for almost all p ∈ ΩK \ S ′ we have l - (X (mod p) : Y (mod p)).

See Theorem 2.27 and Theorem 2.28 in Section 2.8 for the proof.

Let K be a number field, let W be a finitely generated subgroup of K∗, and let V

be a subgroup of W such that W/V is finite cyclic. The existence of the natural density

of A(W,V ) is obtained by a version of Chebotarev’s density theorem for infinite algebraic

extensions of a number field. Using this theorem, we also obtain a formula for d(A(W,V ))

that is, however, a finite product of infinite sums. In order to obtain a closed-form formula for

d(A(W,V )) we investigate the radical extensions of K occurring in this formula. We refer

to Section 2.3 for the infinite version of Chebotarev’s density theorem and to Section 2.4 for

the proof of the existence and formula of d(A(W,V )).

Let s be a Steinitz number, that is, let s =
∏

p p
e(p), where p runs over all prime numbers

and e(p) ∈ Z≥0 ∪ {∞}. Let K be an algebraic closure of K and define

W 1/s = {x ∈ K∗ : ∃d ∈ Z≥1 : d|s and xd ∈ W}.
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The field K(W 1/s) is Galois over K and any field automorphism of K(W 1/s) over K is

determined by its action on W 1/s, that is, we can identify Gal(K(W 1/s)/K) with a subgroup

of the group AutW (W 1/s) of automorphisms of W 1/s that are the identity on W . By abuse of

notation we denote this subgroup also by Gal(K(W 1/s)/K). We remark that AutW (W 1/s)

is the profinite group

lim←−
d

AutW (W 1/d)

where d runs over all positive integers dividing s. As Gal(K(W 1/s)/K) is compact and

AutW (W 1/s) is Hausdorff, the subgroup Gal(K(W 1/s)/K) of AutW (W 1/s) is closed.

For a prime p let vp be the p-adic valuation function. Moreover, for a group G write

exp(G) for its exponent.

Theorem 8. Let K be a number field, let W be a finitely generated subgroup of K∗, and let

s be a Steinitz number.

(a) Then Gal(K(W 1/s)/K) is an open subgroup of AutW (W 1/s).

(b) Suppose that s = p∞, where p is prime. Let

F =

K(µ4) if p = 2,

K(µp) otherwise.

Then exp((W 1/s ∩ F ∗)/W ) is an integer, and moreover, for

j = vp(exp((W 1/s ∩ F ∗)/W ))

and for all i ∈ Z≥j we have

AutW 1/pi (W
1/s) ⊂ Gal(K(W 1/s)/K).
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See Section 2.5 for the proof of this theorem.

By using elementary group theory, we are able to calculate the order of an automor-

phism group of the form AutW 1/x′ (W 1/x), where W is as in the theorem above, x′, x ∈ Z≥1

and x′ divides x. As a result, we obtain the following closed-form expression for the density

d(A(W,V )).

Theorem 9. Let K be a number field, let W be a finitely generated subgroup of K∗, and let

V be a subgroup of W such that W/V is finite cyclic. Let m = (W : V ), let U = V 1/m, and

let L = K(U). Let n = rk(W ) (see Definition 1.2), and let P be the set of prime divisors of

m. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
.

For the sake of showcasing, we remark that in certain cases the above lengthy formula breaks

down to a rather simple formula, presented by the following corollary.

Corollary. Suppose that for every p ∈ P we have

Gal(L(U1/p∞)/L) = AutU(U1/p∞).

Then

d(A(W,V )) =
1

[L : K]

∏
p∈P

pn(p− 1)

pn+1 − 1
.

In addition, suppose that [L : K] = φ(m)mn−1, where φ is Euler’s totient function. Then we

have

d(A(W,V )) =
1

mn
·
∏
p∈P

pn+1

pn+1 − 1
.
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See Section 2.6 for the proof of Theorem 9 and its corollary.

At last, using the closed-form formula given in Theorem 9, we are able to make the

following quantitative observations about d(A(W,V )).

Theorem 10. LetK,W , V ,m, U , L, n, P , and (jp)p∈P be as in Theorem 9. Then the density

d(A(W,V )) exists and equals a positive rational number in the interval[
1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)
,
∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)]

whose denominator divides mn ·
∏

p∈P
(
p(n+1)jp−1 · (pn+1 − 1)

)
.

See Section 2.7 for the proof of this theorem.

The present chapter is organised as follows.

In Section 2.2 we recall the necessary definitions and lemmas of measure theory. In

Section 2.3 we state the infinite version of Chebotarev’s density theorem. In Section 2.4 we

prove the existence of the density of Theorem 6 and give a formula for it. In Section 2.5 we

prove Theorem 8, and in Section 2.6 we prove Theorem 9. In Section 2.7 we prove Theorem

10 and the remaining parts of Theorem 6. At last, Section 2.8 contains the proof of Theorem

7.

2. Haar measure on profinite groups

In this section we briefly recall the theory of Haar measures on profinite groups. For a more

elaborate treatment of the subject see [HR79], [FJ08] or [RV99].

Definition 2.1. LetX be a set, and let Σ be a σ-algebra overX . A measure on Σ is a function

λ : Σ −→ R ∪ {∞} that satisfies:
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(a) For all E ∈ Σ we have λ(E) ≥ 0;

(b) We have λ(∅) = 0;

(c) For all countable collections {Ei}i∈I of pairwise disjoint sets in Σ we have

λ

(∐
i∈I

Ei

)
=
∑
i∈I

λ(Ei).

Proposition 2.2. Let X be a set, let Σ be a σ-algebra on X , and let λ be a measure on Σ.

Then the following statements hold.

(a) For E1, E2 ∈ Σ with E1 ⊂ E2, we have λ(E1) ≤ λ(E2).

(b) For E1, E2 ∈ Σ with E2 ⊂ E1 and λ(E2) <∞, we have λ(E1 \E2) = λ(E1)−λ(E2).

(c) For any countable collection {Ei}i∈I of sets in Σ we have

λ

(⋃
i∈I

Ei

)
≤
∑
i∈I

λ(Ei).

Proof. See [Bau01, §1.3].

Let G be a profinite group. The σ-algebra B(G) generated by all open sets of G is called the

Borel algebra of G. An element of B(G) is called a Borel set of G.

Theorem 2.3. Let G be a profinite group. Then there is a unique measure λ on B(G) satis-

fying:

(a) For every g ∈ G and E ∈ B(G) we have λ(gE) = λ(E);

(b) λ(G) = 1.

Proof. See [FJ08, Theorem 18.2.1].
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Definition 2.4. Let G be a profinite group. We call the unique measure on B(G) of Theorem

2.3 the Haar measure on G and denote it by λG, or just λ when the group G is understood.

Elements of B(G) are called measurable under the Haar measure or Haar measurable.

Lemma 2.5. Let G be a profinite group. Then the following statements hold.

(a) Let H ⊂ G be a Haar measurable subgroup of finite index. Then

λ(H) = 1/[G : H].

(b) Let H ⊂ G be a Haar measurable subgroup that is not of finite index in G. Then

λ(H) = 0.

Proof. See [FJ08, §18.1].

Lemma 2.6. Let π : G −→ H be a surjective morphism of profinite groups. Then for each

E ∈ B(H) we have π−1(E) ∈ B(G) and λH(E) = λG(π−1(E)).

Proof. See [FJ08, Proposition 18.2.2].

Lemma 2.7. Let n ∈ Z≥1. LetG1, . . . , Gn be profinite groups with Haar measures λ1, . . . , λn,

respectively. Let G =
∏n

i=1 Gi. For i = 1, . . . , n let Ei ∈ B(Gi). Then λG(E1× · · ·×En) =

λ1(E1) · · ·λn(En).

Proof. See [FJ08, Proposition 18.4.2].

3. Chebotarev density theorem for infinite extensions

In this section we briefly recall the theory of infinite Galois extensions of number fields to

state the Chebotarev density theorem for an infinite Galois extension of a number field. For

details and proofs we refer to [Ser89] or [Neu99].
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Let K be an algebraic extension of Q. We denote the set of maximal ideals of OK
by ΩK . For p ∈ ΩK we denote the residue field of OK at p by κ(p). Now, suppose K is a

number field, and let L be an infinite Galois extension of K with Galois group G. Let p be a

maximal ideal of OK and q a maximal ideal of OL extending p, that is, q ∩K = p. Then the

decomposition group

D(q/p) = {σ ∈ G : σ(q) = q}

of q over p is a closed subgroup of G. There is a canonical morphism of topological groups

r : D(q/p) −→ Gal(κ(q)/κ(p)),

which is surjective. The kernel of r, called the inertia group I(q/p) of q over p, is trivial if

and only if p is unramified in L.

Suppose that p is unramified. Then r is an isomorphism of topological groups. Note

that Gal(κ(q)/κ(p)) is topologically generated by the Frobenius morphism

Frobp : κ(q) −→ κ(q)

sending x ∈ κ(q) to x#κ(p). We denote the inverse image of Frobp under r by Frob(q/p)

and call it the Frobenius element of q over p in G. The Frobenius elements of the different

maximal ideals extending p form a conjugacy class in G. We write (p, L/K) for the conju-

gacy class consisting of the Frobenius elements Frob(q/p) where q runs over all primes of L

extending p.

Let C be a subset of G. Let C be the closure of C in G, and let Co be the interior of C

inG. Then the boundary ∂C of C is equal to C \Co. Equivalently, we have ∂C = C∩G \ C.

Let P be a subset of ΩK . Recall that the natural density d(P ) of P in ΩK is equal to

lim
x→∞

#{p ∈ P : #κ(p) ≤ x}
#{p ∈ ΩK : #κ(p) ≤ x}

.

We have the following version of the Chebotarev density theorem that can also handle infinite

Galois extensions of number fields.
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Theorem 2.8. Let K be a number field, and let L be a Galois extension of K that is unram-

ified outside a finite set of primes S of K. Let C be a Haar measurable subset of Gal(L/K)

that is closed under conjugation. Assume that the boundary ∂C has Haar measure 0. Then

the set

{p ∈ ΩK \ S : (p, L/K) ⊂ C}

has a natural density in ΩK that is equal to λ(C).

Proof. See [Ser89, Corollary 2, page I-9].

4. Existence of the density

Definition 2.9. Let W be a group, and let V be a subgroup of W . Then V is called cofinite

if V is of finite index in W . Moreover V is called cocyclic if W/V is a cyclic group.

Let K be a field, and let K be an algebraic closure of K. Let W be a subgroup of K∗, and let

s be a Steinitz number not divisible by charK. Define

W 1/s = {x ∈ K∗ : ∃n ∈ Z≥1 : n | s and xn ∈ W}.

Observe that W 1/s =
⋃
nW

1/n, where n runs over all positive integers dividing s. As usual,

we write µs for the group of s-th roots of unity {1}1/s.

Now, let K be a number field, and for p ∈ ΩK let vp be the p-adic valuation function.

Let W be a finitely generated subgroup of K∗, and let

S = {p ∈ ΩK : ∃w ∈ W : vp(w) 6= 0},

and remark that S is finite. For every p ∈ ΩK \ S the canonical projection OK −→ κ(p)

induces a group morphism πp : W −→ κ(p)∗.
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Let V be a cocyclic cofinite subgroup of W of index m, and write P(m) for the set of

prime divisors of m. Moreover, let

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V }.

To ease notation we will write P for P(m) and A for A(W,V ) throughout this section.

In this section we prove the following theorem.

Theorem 2.10. Let m = (W : V ), let U = V 1/m, and let L = K(U). Then A has a natural

density, which equals

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

Lemma 2.11. Let W be a group, and let V be a cofinite subgroup of W . Let

π : W −→ W ′

be a group morphism. Then kerπ ⊂ V if and only if (W : V ) = (π(W ) : π(V )).

Proof. Let N = ker π. Observe that π(V ) = π(V N), so that

π(W )/π(V ) ∼= (W/N)/(V N/N) ∼= W/V N

as sets. Hence, we have (π(W ) : π(V )) = (W : V N). It follows that

(π(W ) : π(V )) = (W : V )

if and only if V = V N . This is equivalent to V containing N .

Throughout the rest of this section let K, W , V , A, m, P , U , and L be as in Theorem 2.10.

Let ϕ : ΩL −→ ΩK be given by q 7→ q ∩K, and let

S ′ = ϕ−1(S) ∪ {q ∈ ΩL : m ∈ q}.
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Then for every q ∈ ΩL \ S ′ we have the reduction map πq : U −→ κ(q)∗, where κ(q) is the

residue field of L at q. Then we let A′ = A′(W,V ) = {q ∈ ΩL \ S ′ : ker(πq|W ) ⊂ V }.

Lemma 2.12. Suppose that d(A′) exists. Then d(A) exists and we have

d(A) =
1

[L : K]
d(A′).

Proof. First, note that for all q ∈ ΩL \ S ′ we have πq(W ) = πϕ(q)(W ), so that

ker(πq|W ) = ker(πϕ(q)|W ).

On the other hand, for p ∈ A and q ∈ ΩL \ S ′ dividing p, we have q ∈ A′. It follows that for

all p ∈ ΩK \ S and q ∈ ΩL \ S ′ dividing p, we have p ∈ A if and only if q ∈ A′.

Now, let p ∈ A, and let q ∈ ΩL \ S ′ be a prime dividing p. Then by Lemma 2.11 we

have (πp(W ) : πp(V )) = m, which implies that m divides #κ(p)∗ and

πp(V ) ⊂ κ(p)∗m.

It follows that p splits completely in K(V 1/m) = L. Thus, for x ∈ R≥1 we have

#{q ∈ ΩL : q ∈ A′ ∧ NL/Q(q) ≤ x} = [L : K]#{p ∈ ΩK : p ∈ A ∧ NK/Q(p) ≤ x}.

Hence we have

d(A′) = lim
x→∞

#{q ∈ ΩL : q ∈ A′ and NL/Q(q) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= lim
x→∞

[L : K]#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

.

As

lim
x→∞

#{q ∈ ΩL : NL/Q(q) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= 1,
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we have

d(A′) = [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= [L : K] d(A).

It follows that d(A) exists and that d(A) = 1
[L:K]

d(A′).

Lemma 2.13. We have A′ = {q ∈ ΩL \ S ′ : πq(W ) = πq(U)}.

Proof. Let q ∈ ΩL \ S ′. Observe that V = Um, and that (πq(U) : πq(U
m)) divides m,

since κ(q)∗ is cyclic. Moreover, as U = V 1/m contains a primitive mth root of unity, it

follows that m divides #πq(U) and (πq(U) : πq(V )) = m. It follows that πq(U) = πq(W )

if and only if (πq(W ) : πq(V )) = m. On the other hand, we have by Lemma 2.11 that

(πq(W ) : πq(V )) = m if and only if ker(πq|W ) ⊂ V .

Let m∞ =
∏

p∈P p
∞. Let L be an algebraic closure of L, and write G for its Galois group

over L. Since W ⊂ U , we have for every p ∈ P the following tower

L ⊂ L(W 1/p) ⊂ L(U1/p) ⊂ L(U1/p,W 1/p2) ⊂ · · ·

· · · ⊂ L(U1/pi) ⊂ L(U1/pi ,W 1/pi+1

) ⊂ L(U1/pi+1

) ⊂ L(U1/pi+1

,W 1/pi+2

) ⊂ · · ·

· · · ⊂ L(U1/p∞) ⊂ L(U1/m∞) ⊂ L

of Galois extensions of L.

For all p ∈ P and i ∈ Z≥0 ∪ {∞} let

Gp,i = Gal(L/L(U1/pi)),

and for i ∈ Z≥0, let

Hp,i = Gal(L/L(U1/pi ,W 1/pi+1

)) ⊂ Gp,i.
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Note that for all p ∈ P and i ∈ Z≥0 we have

Gp,∞ ⊂ · · · ⊂ Gp,i+1 ⊂ Hp,i ⊂ Gp,i ⊂ · · · ⊂ Gp,0

by the above. Moreover, define

Cp,i = Gp,i \Hp,i,

and

Cp =
∞⋃
i=0

Cp,i.

One easily sees that Cp is a disjoint union of sets Cp,i. At last, we define C =
⋂
p∈P Cp.

Lemma 2.14. The subset C of G is closed under conjugation and open in G.

Proof. As for all p ∈ P and for all i ∈ Z≥0, the sets Gp,i and Hp,i are normal subgroups of

G of finite index, it follows that Cp,i = Gp,i \Hp,i is closed under conjugation and open in G.

Thus C =
⋂
p∈P Cp is closed under conjugation and open in G.

Lemma 2.15. The boundary ∂C of C inG satisfies λ(∂C) = 0, where λ is the Haar measure

on G (see 2.4).

Proof. For p ∈ P and i ∈ Z≥0 let

Dp,i = Hp,i \Gp,i+1.

Then observe that G \ C contains the open set

D =
⋃
p,i

Dp,i

of G, where p runs over P and i runs over Z≥0. Hence ∂C ⊂ G \ (C ∪D).

Now, for σ ∈ G let Nσ be the Steinitz number
∏

p∈P p
σp with σp ∈ Z≥0 ∪ {∞} the

largest element such that σ ∈ Gp,i, where we order Z≥0 ∪ {∞} in the natural way, that is

σp = sup{i : σ ∈ Gp,i}.
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Let σ ∈ G and suppose that Nσ is an integer. This implies that for every p ∈ P there

exists i ∈ Z≥0 such that σ ∈ Gp,i \Gp,i+1. Then one easily sees that either σ ∈ C or σ ∈ D.

Thus σ ∈ ∂C implies that Nσ is an infinite Steinitz number. As there are only finitely many

primes dividing m, it follows that ∂C ⊂
⋃
p∈P Gal(L/L(U1/p∞)). Since the field L(U1/p∞)

contains the infinite extension L(µp∞) of L, the former is also infinite over L. Therefore, the

group Gal(L/L(U1/p∞)) is of infinite index in G. Then by Lemma 2.5(b) the Haar measure

of Gal(L/L(U1/p∞)) is 0. Thus, by Proposition 2.2 the Haar measure of ∂C is 0.

Lemma 2.16. We have d(A′) = λG(C) (see text above Lemma 2.12 for the definition of A′).

Proof. Let q ∈ ΩL \ S ′. As ζm ∈ U , we have (πq(U) : πq(U
m)) = m. Moreover

Um ⊂ W ⊂ U,

so that (πq(U) : πq(W )) divides m. It follows that πq(U) = πq(W ) if and only if for all

p ∈ P there is i ∈ Z≥0 such that pi divides (κ(q)∗ : πq(U)) and pi+1 does not divide

(κ(q)∗ : πq(W )).

Let p ∈ P and i ∈ Z≥0, and note that q splits completely in L(U1/pi) if and only if

pi | (κ(q)∗ : πq(U)).

Similarly q does not split completely in L(W 1/pi+1
) if and only if

pi+1 - (κ(q)∗ : πq(W )).

Now, let M = L(U1/m∞), let G′ = Gal(M/L), and let C ′ be the image of C under

the canonical surjective map G −→ G′. Observe that there are only finitely many primes

ramifying in M . We will show that d(A′) = λG′(C
′). Then by Lemma 2.6 we have d(A′) =

λG(C), which finishes the proof.
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To this end, recall that q splits completely in an intermediate extension F of M/L if

and only if for any prime ideal Q of M dividing q we have Frob(Q/q)|F = id if and only if

(q,M/L)|F = {σ|F : σ ∈ (q,M/L)} = {id}.

Thus, we have πq(U) = πq(W ) if and only if for all p ∈ P there is i ∈ Z≥0 such that

(q,M/L)|L(U1/pi ) = {id} and (q,M/L)|L(U1/pi ,W 1/pi+1
) 6= {id}.

By Lemma 2.13 we have A′ = {q ∈ ΩL \ S ′ : πq(U) = πq(W )}. Hence, by the equivalences

that we just saw we have

A′ = {q ∈ ΩL \ S ′ : (q,M/L) ⊂ C ′}.

Then by Theorem 2.8 and Lemma 2.15 we have d(A′) = λG′(C
′).

Proof of Theorem 2.10. For p ∈ P let Gp = Gal(L(U1/p∞)/L), and for i ∈ Z≥0 let

Gp(i) = Gal(L(U1/p∞)/L(U1/pi)),

Hp(i) = Gal(L(U1/p∞)/L(U1/pi ,W 1/pi+1

))

and Cp(i) = Gp(i) \Hp(i).

Let p ∈ P and note that L contains the pth roots of unity. Hence, for every i ∈ Z≥0 the

field L(U1/pi) is of p-power degree over L. It follows that the fields L(U1/p∞) for p ∈ P are

linearly disjoint over L, so that the canonical morphism

ϕ : G −→
∏
p∈P

Gp

of profinite groups is surjective. One easily sees that

ϕ(C) =
∏
p∈P

∞∐
i=0

Cp(i),
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so that by Lemma 2.7 and Lemma 2.6 we have

λG(C) =
∏
p∈P

λGp

(
∞∐
i=0

Cp(i)

)
.

Using Definition 2.1, Proposition 2.2 and Lemma 2.5, we find

d(A′) = λG(C) =
∏
p∈P

∞∑
i=0

(
λGp(Gp(i))− λGp(Hp(i))

)
=

∏
p∈P

∞∑
i=0

(
1[

L(U1/pi) : L
] − 1[

L(U1/pi ,W 1/pi+1) : L
])

=
∏
p∈P

∞∑
i=0

1[
L(U1/pi) : L

](1− 1[
L(U1/pi ,W 1/pi+1) : L(U1/pi)

]).
The desired formula for d(A) now follows by applying Lemma 2.12.

5. Galois representations on radical groups

ForG a group andH a subgroup ofG, we write AutH(G) for the set of group automorphisms

of G that are the identity on H .

Let L be a field, let U be a subgroup of L∗, and let s be a Steinitz number that is

not divisible by charL. The field L(U1/s) over L is Galois and any field automorphism

of L(U1/s) is determined by its action on U1/s, that is, we can identify Gal(L(U1/s)/L)

with a subgroup of AutU(U1/s). By abuse of notation we denote this subgroup also by

Gal(L(U1/s)/L). If U is finitely generated, the group AutU(U1/s) is the profinite group

lim←−
d

AutU(U1/d),

where d runs over all positive integers dividing s. As Gal(L(U1/s)/L) is compact and

AutU(U1/s) is Hausdorff, the subgroup Gal(L(U1/s)/L) of AutU(U1/s) is closed.
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For L a number field, U a subgroup of L∗, and s a Steinitz number, we define

Sats(U) = U1/s ∩ L∗

and

Cycs(U) = U1/s ∩ L(µs)
∗.

In some cases, we expand our notation to Sats(U,L) and Cycs(U,L) for these groups, to

clarify the base field L in which we view U as a subset. When s is∞ =
∏

p p
∞ where p runs

over all prime numbers, we leave out the subscript s from the notation, which is consistent

with the notation of the previous chapter (see Section 1.2).

For a group G we write exp(G) for its exponent. Moreover, recall that for a prime

number p we write vp for the p-adic valuation function.

In this section we prove the following theorem.

Theorem 2.17. Let L be a number field, let U be a finitely generated subgroup of L∗, and let

s be a Steinitz number.

(a) Then there is d ∈ Z≥1 such that for every d′ ∈ Z≥1 with d|d′|s we have

AutU1/d′ (U1/s) ⊂ Gal(L(U1/s)/L).

(b) Suppose that s = p∞, where p is prime. Let

F =

L(µ4) if p = 2,

L(µp) otherwise.

Then exp(Sats(U, F )/U) is finite, and there is j ∈ Z≥0 with

j ≤ vp(exp(Sats(U, F )/U))

such that for all i ∈ Z≥j we have

AutU1/pi (U
1/s) ⊂ Gal(L(U1/s)/L).
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Lemma 2.18. Let s = p∞, where p is a prime. Let F be a number field with µp ⊂ F ∗,

and if p = 2, with µ4 ⊂ F ∗. Let U ⊂ F ∗ be a subgroup such that Sats(U) = U . Then

Cycs(U) = µs · U .

Proof. The inclusion ⊃ clearly holds. Moreover, the quotient

Cycs(U)/(U · µs)

is p-primary, so it suffices to show that this quotient has no element of order p. To this end,

let x ∈ F (µs)
∗ such that xp ∈ U ·µs. We will show that x ∈ U ·µs. Note that there are u ∈ U

and ζ ∈ µs such that xp = u · ζ . Let ξ be a pth root of ζ , and let y = x/ξ ∈ F (µs)
∗. Then

we will show that y ∈ U , which implies that x ∈ U · µs, as desired. Suppose that y ∈ F ∗. As

U = Sats(U) and yp ∈ U , it follows that y ∈ U , as desired.

Suppose that y /∈ F ∗. Since F ∗ contains µp, and also µ4 if p = 2, we have

Gal(F (µs)/F ) ∼= Zp

as profinite groups. Moreover, as yp ∈ U ⊂ F ∗, it follows that F (y) is the unique subexten-

sion of F (µs)/F of degree p over F . Then by Kummer theory we have that

F (y) = F (ε1/p),

where ε is a generator of µs(F ), and moreover, there are i ∈ {1, . . . , p− 1} and a ∈ F ∗ such

that

yp = εi · ap.

Now, as Sats(U) = U , we have ε ∈ U . Furthermore, since ap ∈ U , we have a ∈ U . It

follows that y = η · a for some η ∈ µs, that is, we have y ∈ µs · U , as desired.

Throughout the rest of this section, let L be a number field, let U be a finitely generated

subgroup of L∗, let n = rk(U) (see Definition 1.2), let s be a Steinitz number, let Γs =

Gal(L(µs)/L), let As = Autµs∩U(µs), let G = Gal(L(U1/s)/L), and let A = AutU(U1/s).
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Lemma 2.19. The groups Sats(U) and Cycs(U)/µs are finitely generated of rank n.

Proof. By Lemma 1.4, the groups U and Sat(U) are finitely generated of rank n, and

Cyc(U)/µ is free of rank n. Since U ⊂ Sats(U) ⊂ Sat(U), we have that Sats(U) is finitely

generated of rank n.

Let (Cycs(U))tor be the torsion subgroup of Cycs(U). Note that the quotient

Cycs(U)/(Cycs(U))tor

maps injectively to Cyc(U)/µ. As the latter is a free abelian group of rank n, it follows that

Cycs(U)/(Cycs(U))tor is free of rank n.

Let w = µ(L), and observe that

µs ⊆ (Cycs(U))tor ⊆ U
1/s
tor ⊆ µws.

As µws/µs is finite, it follows that Cycs(U)/µs is finitely generated.

Lemma 2.20. (a) The Galois group Γs is open in As.

(b) Suppose that s = p∞, where p is prime. Let µs ∩ L∗ = µpe . Suppose that e ∈ Z≥1. If

p = 2, suppose that e ∈ Z≥2. Then

Γs = Autµpe (µs)

inside As.

Proof. By the irreducibility of the cyclotomic polynomials over Q, we may identify the

Galois group Gal(Q(µs)/Q) with Aut(µs). Moreover

Γs ∼= Gal(Q(µs)/(L ∩Q(µs))),

as profinite groups. As L ∩ Q(µs) is a finite extension of Q, it follows that Γs is a closed

subgroup of finite index in Aut(µs). It follows that Γs is open in As, as desired.
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Suppose s, p, and e are as in (b). There is a canonical isomorphism

ϕ : Aut(µs) −→ Z∗p

of profinite groups, so ϕ(Γs) is an open subgroup of Z∗p.

As every element of Γs is the identity on µpe , the image ϕ(Γs) is contained in the

subgroup 1 + peZp of Z∗p. Moreover, since µpe+1 6⊂ L, the image ϕ(Γs) is not contained in

1 + pe+1Zp.

Now, because e ≥ 2 for p = 2, we have 1 + peZp ∼= Zp as profinite groups. The latter

implies that 1+peZp is topologically generated by any element not in 1+pe+1Zp. Thus ϕ(Γs)

is equal to 1 +peZp. We conclude that the image of Γs inside As is equal to Autµpe (µs). This

proves (b).

Proof of Theorem 2.17. As µs is a direct summand of U1/s, the natural map

r : A −→ As

sending f to f |µs is surjective. Moreover, one easily checks that the kernel Autµs·U(U1/s) of

r is canonically isomorphic to Hom(U1/s/(µs · U), µs) as a profinite group.

On the other hand, by Kummer theory the kernel of the restriction morphism G −→ Γs

is canonically isomorphic to Hom(U1/s/Cycs(U), µs) as a profinite group. The surjective

morphism U1/s/(µs · U) −→ U1/s/Cycs(U) of discrete groups gives rise to a canonical

injective morphism

Hom(U1/s/Cycs(U), µs) −→ Hom(U1/s/(µs · U), µs)

of profinite groups that makes the following diagram of profinite groups

0 // Hom
(
U1/s/Cycs(U), µs

)
//

��

G //

��

Γs

��

// 0

0 // Hom
(
U1/s/(µs · U), µs

)
// A // As // 0

(∗)
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commutative, where all other maps are defined above.

The kernel ofU1/s/(µs·U) −→ U1/s/Cycs(U) is equal to Cycs(U)/(µs·U). Therefore

the cokernel of the left vertical map is contained in Hom(Cycs(U)/(µs · U), µs). As by

Lemma 2.19 the quotient Cycs(U)/(µs · U) is finite, it follows that the cokernel of the left

vertical map is finite.

On the other hand, by Lemma 2.20 the profinite group Γs is open in As, implying that

the cokernel coker(Γs −→ As) is finite. Hence coker(G −→ A) is finite. As G is closed in A

(see beginning of this section), it follows that G is open in A. Equivalently, there is d ∈ Z≥1

such that

AutU1/d(U1/s) ⊂ Gal(L(U1/s)/L).

Moreover, for every d′ ∈ Z≥1 with d|d′|s we have

AutU1/d′ (U1/s) ⊂ AutU1/d(U1/s),

which finishes the proof of (a).

Suppose that s = p∞, where p is prime. By (a) we know that there is j ∈ Z≥0 such that

for every i ∈ Z≥j

AutU1/pi (U
1/s) = Gal(L(U1/s)/L(U1/pi)).

Let

F =

L(µ4) if p = 2,

L(µp) otherwise.

and let U ′ = Sats(U, F ). Then Lemma 2.19 implies that exp(U ′/U) is finite. Let

e = vp(exp(U ′/U)).

We will show that j can be taken equal to e, which finishes the proof. To this end, we will

prove that AutU ′(U
′1/s) ⊂ G.
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First, note that µs ∩ F ∗ = µs ∩ U ′. Then Lemma 2.20(b) implies that

Gal(F (µs)/F ) = AutU ′∩µs(µs).

Since F (µs) = L(µs), it follows that

AutU ′∩µs(µs) = Gal(L(µs)/F ).

On the other hand, by Lemma 2.18 we have

Cycs(U, F ) = µs · U ′.

Moreover, since U ′1/s = U1/s, we have

Hom(U1/s/Cycs(U
′, F ), µs) = Hom(U1/s/(µs · U ′), µs).

Replacing L by F and U by U ′ in (∗), we obtain

0 // Hom
(
U1/s/Cycs(U

′, F ), µs
)

//

��

Gal(L(U1/s)/F ) //

��

Gal(L(µs)/F )

��

// 0

0 // Hom
(
U1/s/(µs · U ′), µs

)
// AutU ′(U

1/s) // AutU ′∩µs(µs) // 0

where, by the above, the left and right vertical maps are isomorphisms. It follows that

Gal(L(U1/s)/F ) = AutU ′(U
1/s),

so that AutU ′(U
1/s) ⊂ G. At last, as U ′ ⊂ U1/pe , we have

AutU1/pe (U1/s) ⊂ AutU ′(U
1/s) ⊂ G,

which finishes the proof.
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6. Rationality of the density

Throughout this section, let K be a number field, let W be a finitely generated subgroup of

K∗, and let V be cocyclic cofinite subgroup of W . Let m = (W : V ), let P be the set of

prime divisors of m, let n = rk(W ) (see Definition 1.2), let U = V 1/m, and let L = K(U).

We remark that W/V ∼= Z/mZ implies that W ⊂ U .

In this section, we prove a closed-form expression of the density d(A(W,V )) using the

formula given in Theorem 2.10 and Theorem 2.17.

Theorem 2.21. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then the density d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
.

We remark that one can find suitable (jp)p∈P , as in the theorem above, in Theorem 2.17.

Corollary 2.22. Suppose that for every p ∈ P we have

Gal(L(U1/p∞)/L) = AutU(U1/p∞).

Then

d(A(W,V )) =
1

[L : K]

∏
p∈P

pn(p− 1)

pn+1 − 1
.

In addition, suppose that [L : K] = φ(m)mn−1, where φ is Euler’s totient function. Then we

have

d(A(W,V )) =
1

mn
·
∏
p∈P

pn+1

pn+1 − 1
.

Proof. The proof follows directly from Theorem 2.21 by putting jp = 0 for all p ∈ P .
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Lemma 2.23. Let p ∈ P , and let i ∈ Z≥0. Then the following hold.

(a) The degree [L(U1/pi+1
) : L(U1/pi)] divides pn+1, and if i ≥ jp, it is equal to pn+1.

(b) The degree [L(U1/pi ,W 1/pi+1
) : L(U1/pi)] divides p, and if i ≥ jp, it is equal to p.

Proof. Let s = p∞. As U is a finitely generated abelian group of rank n and µm ⊂ U , we

have U ∼= 1
u
Z/Z⊕ Zn, where u ∈ Z≥1 is divisible by m. Then we have

U1/pi ∼=
1

upi
Z/Z⊕

(
1

pi
Z

)n
,

so that

AutU1/pi (U
1/pi+1

) ∼= Hom

(
U1/pi+1

U1/pi
, U1/pi+1

)

∼= Hom

((
1

p
Z/Z

)n+1

,
1

upi+1
Z/Z⊕

(
1

pi+1
Z

)n)
.

Since

# Hom

(
(Z/pZ)n+1,Z/upi+1Z⊕

(
1

pi+1
Z

)n)
= pn+1,

we have that

# AutU1/pi (U
1/pi+1

) = pn+1.

Now, note that

Gal(L(U1/pi+1

)/L(U1/pi)) ⊂ AutU1/pi (U
1/pi+1

),

which implies that [L(U1/pi+1
) : L(U1/pi)] divides pn+1.

Now, suppose that i ∈ Z≥jp . Then by Theorem 2.17

Gal(L(U1/s)/L(U1/pi)) = AutU1/pi (U
1/s).

Moreover, by [Pal14, Theorem 2.12] the sequence

0 −→ AutU1/pi+1 (U1/s) −→ AutU1/pi (U
1/s) −→ AutU1/pi (U

1/pi+1

) −→ 0

75



CHAPTER 2. REDUCTIONS OF MULTIPLICATIVE SUBGROUPS OF NUMBER FIELDS

of profinite groups is exact. Then by Galois theory

pn+1 = # AutU1/pi (U
1/pi+1

) = [L(U1/pi+1

) : L(U1/pi)].

This proves (a).

For (b), note that W 1/pi ⊂ L(U1/pi)∗. Hence, by Kummer theory

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = (W 1/pi : L(U1/pi)∗p ∩W 1/pi).

Recall that Um = V ⊂ W , so that (Um)1/pi ⊂ W 1/pi . One easily checks that

W 1/pi−1 · (Um)1/pi ⊂ W 1/pi ∩ L(U1/pi)∗p.

As W 1/pi−1 · (Um)1/pi maps to the unique subgroup of index p of the cyclic group

W 1/pi/(Um)1/pi

of order m, it follows that (W 1/pi : W 1/pi ∩ L(U1/pi)∗p) divides p. Hence

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] | p.

On the other hand, the degree [L(U1/pi+1
) : L(U1/pi ,W 1/pi+1

)] divides pn, as the pi+1th roots

of unity are already contained in L(U1/pi ,W 1/pi+1
). Hence for i ≥ jp we have

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = p,

as desired.

Proof of Theorem 2.21. Write A = A(W,V ). Then by Theorem 2.10 we have

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

By Lemma 2.23, we have for all p ∈ P and i ∈ Z≥jp

[L(U1/pi+1

) : L(U1/pi)] = pn+1
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and

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] = p.

Hence
∞∑
i=jp

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
is equal to

1

[L(U1/pjp ) : L]

∞∑
i=0

1

p(n+1)i

(
1− 1

p

)
=

1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
.

Using this in the expression for d(A), we find

d(A) =
1

[L : K]

∏
p∈P

[
1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)]
,

which is the desired formula.

7. Main theorem

In this section we

Theorem 2.24. Let K be a number field, let W be a finitely generated subgroup of K∗, and

let V be a cocyclic cofinite subgroup of W . Let m = (W : V ), let U = V 1/m, and let

L = K(U). Let n = rk(W ) (see Definition 1.2), and let P be the set of primes dividing m.

Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

Aut
U1/pjp (U1/p∞) ⊂ Gal(L(U1/p∞)/L).

Then the following statements hold.
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(a) The density d(A(W,V )) exists and equals a positive rational number in the interval[
1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)
,
∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)]

whose denominator divides mn ·
∏

p∈P
(
p(n+1)jp−1 · (pn+1 − 1)

)
.

(b) d(A(W,V )) = 1 if and only if V = W or W is finite.

(c) d(A(W,V )) is computable as a function of K, W and V .

Proof. By Theorem 2.21 we have that d(A(W,V )) exists and is equal to

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
,

which is rational. We first note that [L : K] divides φ(m)mn−1, where φ is Euler’s totient

function.

Now, let p ∈ P . By Lemma 2.23 we have for all i ∈ Z≥0 that

[L(U1/pi+1

) : L(U1/pi)] | pn+1

and

[L(U1/pi ,W 1/pi+1

) : L(U1/pi)] | p.

To ease the notation, for i ∈ Z≥0 write

Ti =
1

[L(U1/pi) : L]
− 1

[L(U1/pi ,W 1/pi+1) : L]
,

and note that

Ti =
1

[L(U1/pi) : L]

(
1− 1

[L(U1/pi ,W 1/pi+1) : L(U1/pi)]

)
.

Hence [L(U1/pi ,W 1/pi+1
) : L(U1/pi)] = 1 implies Ti = 0. Using Lemma 2.23 we obtain for

p ∈ P

1

[L(U1/pjp ) : L]
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

Ti ≥
1

p(n+1)jp
· p

n+1 − pn

pn+1 − 1
=

p− 1

pn(jp−1)+jp(pn+1 − 1)
,
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so that

d(A(W,V )) ≥ 1

[L : K]

∏
p∈P

p− 1

pn(jp−1)+jp(pn+1 − 1)

≥ 1

φ(m)mn−1

∏
p∈P

p− 1

pn(jp−1)+jp(pn+1 − 1)
.

Then using the identity φ(m) = m ·
∏

p∈P

(
1− 1

p

)
in the latter, we obtain the lower bound

1

mn
·
∏
p∈P

1

p(jp−1)(n+1) · (pn+1 − 1)

for d(A(W,V )). For the upper bound, note that

jp−1∑
i=0

Ti ≤ 1− 1

[L(U1/pjp ) : L]
.

Then for p ∈ P write dp = [L(U1/pjp ) : L], so that we have

1

dp
· p

n(p− 1)

pn+1 − 1
+

jp−1∑
i=0

Ti ≤
1

dp
· p

n(p− 1)

pn+1 − 1
+ 1− 1

dp

≤ 1− 1

p(n+1)jp

(
1− pn(p− 1)

pn+1 − 1

)
= 1− pn − 1

p(n+1)jp · (pn+1 − 1)
,

where we use that dp ≤ p(n+1)jp (see Lemma 2.23). Thus, as [L : K] ≥ 1, an upper bound

for d(A(W,V )) is ∏
p∈P

(
1− pn − 1

p(n+1)jp · (pn+1 − 1)

)
.

Now, we want to find x ∈ Z≥1 such that x · d(A(W,V )) ∈ Z. To this end, note that

φ(m)mn−1 · [L : K]−1 ∈ Z.

Moreover, by Lemma 2.23 we have

p(n+1)jp · [L(U1/pjp ) : L]−1 ∈ Z.
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As for i ∈ {0, . . . , jp−1} the fieldsL(U1/pi) andL(U1/pi ,W 1/pi+1
) are contained inL(U1/pjp ),

we have

p(n+1)jp ·
jp−1∑
i=0

Ti ∈ Z.

It follows that the denominator of d(A(W,V )) divides

φ(m)mn−1
∏
p∈P

(
p(n+1)jp · p

n+1 − 1

p− 1

)
,

which by using φ(m) = m ·
∏

p∈P

(
1− 1

p

)
is equal to

mn ·
∏
p∈P

(
p(n+1)jp−1 ·

(
pn+1 − 1

))
,

as desired.

From the lower bound, we see that d(A(W,V )) is nonzero. From the upper bound, we

see that d(A(W,V )) = 1 only if m = 1 or n = 0, that is, only if V = W or W is finite. On

the other hand, if V = W or W is finite, we easily see that d(A(W,V )) = 1. This proves (a)

and (b).

To prove (c), we will show that there exists an algorithm that terminates after finitely

many steps, whose input is K, W , and V , and whose output is the density d(A(W,V )). Let

K, W , V , n, P , U , and L be as in the theorem. By Theorem 2.21 we have that d(A(W,V ))

equals

1
[L:K]

∏
p∈P

[
1

[L(U1/pjp ):L]
· p

n(p−1)
pn+1−1

+
∑jp−1

i=0

(
1

[L(U1/pi ):L]
− 1

[L(U1/pi ,W 1/pi+1
):L]

)]
,

so it suffices to show that there exist three algorithms for calculating (1) P , (2) (jp)p∈P , and

(3) the degrees of the field extensions [L(U1/pi) : L] and [L(U1/pi ,W 1/pi+1
) : L] for i ∈

{0, . . . , jp}. The algorithms for (1) and (3) are well-known from elementary computational

algebraic number theory for which we refer to [Coh96]. It remains to show that for each

p ∈ P we can compute jp.
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To this end, let p ∈ P , and let s = p∞. Let

F =

L(µ4) if p = 2

L otherwise.

Compute and write

U =
k∐
i=1

ui · Up,

and compute

S0 = 〈x ∈ F : xp ∈ {u1, . . . , uk}〉.

If S0 ⊂ U , we have exp(Sats(U, F )/U) = 1 and put jp = 0 (see Theorem 2.17). Otherwise,

let U1 = U · S0, and write

U1 =

k1∐
i=1

ui,1 · Up
1 .

Then compute

S1 = 〈x ∈ F : xp ∈ {u1,1, . . . , uk1,1}〉.

If S1 ⊂ U1, then we have exp(Sats(U, F )/U) = p and put jp = 1. Otherwise, repeat the

above process to define U2 and find S2, and so on. By Lemma 2.19 the quotient Sats(U, F )/U

is finite, so there is i ∈ Z such that Si ⊂ Ui. Continue the above process until Si ⊂ Ui, and put

jp = i. Then observe that exp(Sats(U, F )/U) = pjp . This shows that there is an algorithm

to compute (jp)p∈P , which finishes the proof of (c).

Theorem 2.25. Let K be a number field, and let W be a finitely generated subgroup of K∗

of positive rank, and let V be a cocyclic cofinite subgroup of W . Let V ′ be a subgroup of W

containing V . Then d(A(W,V )) = d(A(W,V ′)) if and only if V = V ′.

Proof. First, note that V = V ′ clearly implies d(A(W,V )) = d(A(W,V ′)). To prove the

reverse implication, let V ′ be a subgroup of W containing V , and assume V ′ 6= V . We
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will show that d(A(W,V )) < d(A(W,V ′)), which finishes the proof. As for V ′′ such that

V ⊂ V ′′ ⊂ V ′ we have

d(A(W,V )) ≤ d(A(W,V ′′)) ≤ d(A(W,V ′)),

we may assume that V is of prime index, say q, in V ′.

Now, let m = (W : V ), let U = V 1/m, let L = K(U), let A′(W,V ) as defined

above Lemma 2.12, and let L be an algebraic closure of L (and of K). For p dividing m and

i ∈ Z≥0, let Gp,i, Hp,i, Cp,i, Cp and C be as defined above Lemma 2.14. Then by Lemma

2.16 and Lemma 2.12 we have

d(A(W,V )) =
1

[L : K]
· λGal(L/L)(C).

Observe that Gal(L/L) is a subgroup of G = Gal(L/K) of index [L : K]. By abuse of

notation we write C for the image of C in G, that is, henceforth we have

C = {σ ∈ Gal(L/K) : σ|U = idU , ∀p|m : ∃i ∈ Z≥0 : σ|U1/pi = id∧ σ|W 1/pi+1 6= id}.

Then we have

d(A(W,V )) = λG(C).

Now, let m/q = m′ = (W : V ′), let U ′ = V ′1/m
′ , let L′ = K(U ′), and note that V ′ ⊂ V 1/q

implies that U ′ ⊂ U and L′ ⊂ L. For p dividing m′ and i ∈ Z≥0 let G′p,i, H
′
p,i, C

′
p,i, C

′
p and

C ′ be defined as above with L replaced by L′ and U by U ′. Moreover, by abuse of notation

write C ′ for the image of C ′ in G, so that

C ′ = {σ ∈ Gal(L/K) : σ|U ′ = idU ′ , ∀p|m′ : ∃i ∈ Z≥0 : σ|U ′1/pi = id∧ σ|W 1/pi+1 6= id}.

Then we have

d(A(W,V ′)) = λG(C ′).
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Moreover, for every prime p and i ∈ Z≥0 we have U ′1/pi ⊂ U1/pi , so C ⊂ C ′ ⊂ G. We will

show that there is a non-empty open subset of C ′ that is disjoint from C, which by the above

and the fact that non-empty open subsets have positive density, proves that

d(A(W,V )) < d(A(W,V ′)),

as desired. Let j ∈ Z≥0 be such that Aut
U1/qj (U1/q∞) ⊂ Gal(L(U1/q∞)/L) (see Theorem

2.17).

Suppose first that q does not divide m′. For primes p dividing m′, let

Xp = Cp =
∞⋃
i=0

Gp,i \Hp,i

and

Xq = Hq,j \Gq,j+1.

Note that Xq ∩ Cq = ∅. We claim that the set

X =
⋂
p|m

Xp

has the desired properties of being a non-empty open subset of C ′ that is disjoint from C.

That X is open is proved in the same way as Lemma 2.14. That each Xp, including Xq, is

non-empty follows from Lemma 2.23 (at this point it is used that W is infinite, so that n in

Lemma 2.23(a) is positive). Since for primes p dividing m the degrees of the fields L(U1/p∞)

over L are p-powers, they are all linearly disjoint over L, so X is non-empty as well. As q

does not divide m′, we have X ⊂ C ′. From Xq ∩Cq = ∅ it follows that we have X ∩C = ∅.

This finishes the proof of this case.

Now, suppose that q divides m′. We claim that for every i ∈ Z≥0 we have

U ′1/q
i

= V 1/(m′qi) ·W 1/qi .
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It suffices to prove the claim for i = 0. To this end, observe that

V 1/m′ ·W 6= V 1/m′ ,

because W/V is cyclic of order m′q. Moreover, as W ⊂ U ′, it follows that

V 1/m′ ·W ⊂ U ′.

As V ′/V has order q, also U ′/V 1/m′ has order q. It follows that U ′ = V 1/m′ · W , which

finishes the proof of the claim. We remark that for i ∈ Z≥1 we have

V 1/(m′qi) = V 1/(mqi−1) = U1/qi−1

,

so that the claim states that

U ′1/q
i

= U1/qi−1 ·W 1/qi .

As U q = V 1/m′ is contained in V ′1/m′ = U ′, we have U ⊂ U ′1/q, so that

L′ ⊂ L ⊂ L′(U ′1/q).

Then the claim implies that for every i ∈ Z≥0 we have

L′(U ′1/q
i+1

) = L(U1/qi ,W 1/qi+1

),

and moreover, since W ⊂ U , we have the following diagram

L′(U ′1/q
i+2

) = L(U1/qi+1
,W 1/qi+2

)

L′(U ′1/q
i+1
,W 1/qi+2

) L(U1/qi+1
)

L′(U ′1/q
i+1

) = L(U1/qi ,W 1/qi+1
)
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of fields, where the upper field is the composite of the fields on the left and right. The

corresponding diagram of Galois groups looks as follows:

G′q,i+2 = Hq,i+1 = H ′q,i+1 ∩Gq,i+1

((vv

H ′q,i+1

((

Gq,i+1

vv

G′q,i+1 = Hq,i

where the arrows in the diagram depict inclusions.

Now, for the prime divisors p of m′ that are not equal to q, let

Yp = C ′p =
∞⋃
i=0

G′p,i \H ′p,i,

and let

Yq = G′q,j+1 \
(
H ′q,j+1 ∪Gq,j+1

)
.

Note that one has Yq ⊂ Hq,j \ Gq,j+1, so that we have Yq ∩ Cq = ∅. We claim that the set

Y =
⋂
p|m Yp has the desired property of being a non-empty open subset of C ′ that is disjoint

from C. That Y is open is proved in the same way as Lemma 2.14. We next prove that each

Yp is non-empty. For p 6= q this follows directly from Lemma 2.23. For q = p, our choice

of j and Lemma 2.23 imply first that Gq,j+1 has index qn in Hq,j , and next that Hq,j+1 has

index q in Gq,j+1, which by Hq,j+1 = H ′q,j+1 ∩Gq,j+1 implies that Gq,j+1 is not contained in

H ′q,j+1, so that H ′q,j+1 6= Hq,j . Thus, since n ∈ Z>1, each of Gq,j+1 and H ′q,j+1 is a proper

subgroup of G′q,j+1 = Hq,j , which implies that Yq is non-empty. By linear disjointness, the

set Y is non-empty as well. From Yq ∩Cq = ∅ it follows that we have Y ∩C = ∅, while from

Yq ⊂ G′q,j+1 \H ′q,j+1 ⊂ C ′q

we obtain Y ⊂ C ′. This finishes the proof.
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Corollary 2.26. Let K be a number field, let W be a finitely generated subgroup of K∗, and

let V be a cofinite cocyclic subgroup of W . Let

S = {p ∈ ΩK : there is w ∈ W such that vp(w) 6= 0}.

For p ∈ ΩK \ S let Wp denote the kernel of the restriction map πp : W −→ κ(p)∗. Let S ′ be

a finite subset of ΩK \ S. Then there are t ∈ Z≥1, p1, . . . , pt ∈ ΩK \ S ′ such that

V = 〈Wpi : i ∈ {1, . . . , t}〉.

Proof. Let T = 〈Wp : p /∈ S ′,Wp ⊂ V 〉. Then T is cofinite and contained in V , and

moreover, d(A(W,V )) > 0 implies that T is cocyclic in W . Since T is finitely generated,

there are t ∈ Z≥0, p1, . . . , pt ∈ ΩK \ S ′ such that T = 〈Wpi : i ∈ {1, . . . , t}〉. Now, one

easily sees that d(A(W,T )) = d(A(W,V )). Hence Theorem 2.25 implies that T = V , as

desired.

8. Applications

Theorem 2.27. Let K be a number field, and let X and Y be finitely generated subgroups of

K∗. Let

S ′ = {p ∈ ΩK : ∃x ∈ X ∪ Y : vp(x) 6= 0}.

Suppose that for all primes p in a subset of ΩK \ S ′ of density one, we have

Y (mod p) ⊂ X (mod p).

Then Y ⊂ X .

Proof. Suppose that Y 6⊂ X , let W = Y · X , and note that X ( W . As W is a finitely

generated abelian group, there exist a prime number p and a surjective morphism

f : W −→ Z/pZ
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of groups with kernel containing X . Let V = ker f , and note that X ⊂ V . As W/V is finite

cyclic, Theorem 2.24 implies that

d({p ∈ ΩK : Wp ⊂ V }) > 0,

where Wp is the kernel of the reduction map πp : W −→ κ(p)∗.

Observe that for p ∈ ΩK \ S ′ the condition Y (mod p) ⊂ X (mod p) is equivalent to

X (mod p) = W (mod p), so that

d({p ∈ ΩK : X (mod p) = W (mod p)}) = 1.

Let p be a prime of K such that Wp ⊂ V and X (mod p) = W (mod p). As X ⊂ V

and Wp ⊂ V , we have

πp(X) = (X ·Wp)/Wp ⊂ V/Wp.

Moreover, since f is surjective, we have

Wp ⊂ V ( W.

Hence V/Wp ( W/Wp. However

X (mod p) = W (mod p) ∼= W/Wp,

which is a contradiction. It follows that Y ⊂ X .

Theorem 2.28. Let K be a number field, let X be a finitely generated subgroup of K∗, let Y

be a subgroup of X , and let l be a prime number. Let

S ′ = {p ∈ ΩK : ∃x ∈ X : vp(x) 6= 0}.

Suppose that for almost all p ∈ ΩK \ S ′ we have

l - (X (mod p) : Y (mod p)).

Then (X : Y ) <∞ and l - (X : Y ).
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Proof. Let V = X l · Y , and note that Y ⊂ V ⊂ X . For almost all p ∈ ΩK we have

l - (X (mod p) : Y (mod p)). As X (mod p)/V (mod p) is annihilated by l and for almost

all p we have

Y (mod p) ⊂ V (mod p) ⊂ X (mod p),

it follows that for almost all p we haveX (mod p) = V (mod p). Then Theorem 2.27 implies

that X = V = X l ·Y , so that (X/Y )l = X/Y . As X/Y is a finitely generated abelian group

with the property that (X/Y )l = X/Y , it follows that X/Y is finite of order coprime to l.
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CHAPTER 3

Reductions of the Mordell-Weil group

over number fields

1. Introduction

In this chapter we carry out for elliptic curves with complex multiplication the analogue of

Chapter 2 for the multiplicative group. In the previous chapter, say in the multiplicative

case, all modules involved are over Z, whereas in this chapter, say in the elliptic case, the

modules are over the endomorphism ring of an elliptic curve with complex multiplication.

Moving from the principal ideal domain Z to an order in a quadratic number field, which is

not necessarily a principal ideal domain, is where the complications are met in this chapter.

For simplicity, we do assume that the order is maximal, in the sense that it is a Dedekind

domain, but we remark that with some minor alterations the theorems in this chapter remain

valid without the maximality restriction.

For our first theorem, recall Theorem 1.1 from Chapter 1, also known as Schinzel’s

theorem. We state and prove an analogue of this theorem for elliptic curves with complex
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multiplication.

For a field K of characteristic 0, an algebraic closure K of K, an elliptic curve E over

K with endomorphism ring O = EndK(E), and an ideal a of O we write

E(K)[a] = {P ∈ E(K) : a · P = 0}

for the O-module of a-torsion points of E over K, and we write

E[a] = {P ∈ E(K) : a · P = 0}

for the O-module of all a-torsion points. Then for elliptic curves the analogue of the nth

radicals of an algebraic number is obtained by dividing points of the elliptic curve by an ideal

a of O. More precisely, for an O-submodule W of E(K) and a nonzero ideal a of O we

write

W : a = {P ∈ E(K) : a · P ⊂ W}

for the O-module of a-division points of W . Field extensions of K obtained by adjoining

division points are called division fields over K.

Moreover, for a module M over a ring R we write

AnnR(M) = {r ∈ R : rM = 0}

for the two-sided annihilator ideal of M . Then the analogue of Schinzel’s theorem, men-

tioned above, is as follows.

Theorem 11. Let K be a field of characteristic 0, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let W ⊂ E(K) be an O-submodule, and let a be a

nonzero ideal of O. Then K(W : a) is abelian over K if and only if

AnnO(E(K)[a]) ·W ⊂ a · E(K).
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See Section 3.4 for the proof of this theorem.

Our second main theorem is an analogue of Theorem 2.17(a) for elliptic curves with

complex multiplication. Let K be a number field, and let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain. Let

Ô = lim←−
b

O/b,

where b runs over all nonzero ideals of O, be the profinite completion of O as a ring. A

Steinitz ideal a of O is a closed ideal of Ô. See Definition 3.5 for more details.

Let W be an O-submodule of E(K), and let a be a Steinitz ideal. Then we define

E(K)[a] =
⋃
b

E(K)[b],

E[a] =
⋃
b

E[b],

W : a =
⋃
b

W : b,

where b runs over all nonzero ideals of O dividing a.

Now, the field K(W : a) is Galois over K, and any field automorphism of K(W : a)

over K is determined by its action on W : a. Moreover, the action of O on W : a commutes

with the action of Galois. Hence, we may identify Gal(K(W : a)/K) with a subgroup of the

group of O-automorphisms AutO,W (W : a) of W : a that are the identity on W . Note that

AutO,W (W : a) is the profinite group

lim←−
b

AutO,W (W : b),

where b runs over all nonzero ideals of O dividing a. As Gal(K(W : a)/K) is compact and

AutO,W (W : a) is Hausdorff, the subgroup Gal(K(W : a)/K) of AutO,W (W : a) is closed.

91



CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

Theorem 12. Let K be a number field, and let E be an elliptic curve over K with O =

EndK(E) 6= Z a Dedekind domain. Let W ⊂ E(K) be an O-submodule, and let a be a

Steinitz ideal of O. Then the map

ι : Gal(K(W : a)/K) −→ AutO,W (W : a)

is open.

See Section 3.7 for the proof.

We prove this theorem in two steps. As in the case of the multiplicative group, we have

a commutative diagram

0 // Gal(K(W : a)/K(E[a])) //

��

Gal(K(W : a)/K) //

ι

��

Gal(K(E[a])/K) //

��

0

0 // AutO,W+E[a](W : a) // AutO,W (W : a) // AutO,W [a](E[a]) // 0.

In Section 3.5 we prove that the right vertical map is open, and do so effectively. The latter

means that we give an explicit nonzero ideal b of O dividing a such that

AutO,E[b](E[a]) ⊂ Gal(K(E[a])/K).

In Section 3.6 we prove that the left vertical map is open. By combining these two results,

we prove that the middle vertical map is open, as desired.

As an application of the above theorems, we state and prove an analogue of Theorem 6

of Chapter 2, see Theorem 13 below.

Let W be an O-submodule of E(K), let V be an O-submodule of W such that

W/V ∼= O/I

as O-modules, for some nonzero ideal I of O.
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Throughout this chapter, we use the phrase almost all as a substitute for all but finitely

many. Let ΩK be the set of maximal ideals of OK . Choosing a model of E over a finitely

generated subring of K, we may talk about the reduction of E modulo p for almost all max-

imal ideals p of OK , and denote it by Ep. For the definition of good, bad, ordinary, and

supersingular reduction we refer to [Sil94].

As all elements of O are defined over K, the action of O on the tangent space at the

origin induces an injective ring morphism O −→ K, which extends to an injective map

F −→ K (see [Sil94, Chapter 2]). Throughout this chapter, we identify O and F with their

images in K, so that we have O ⊂ OK and F ⊂ K.

Let S be the subset of ΩK consisting of the primes where Ep is not defined, the primes

of bad reduction for E, the primes of supersingular reduction for E (see [Sil94]), and the

primes dividing I · OK . By [Lan87, Theorem 12, §13.4] the set of supersingular primes has

density zero. As there are only finitely many primes for which Ep is not defined, finitely

many primes of bad reduction for E, and finitely many primes dividing I · OK , the set S has

density zero too.

Now, for every p ∈ ΩK \ S we have a reduction map

πp : W −→ Ep(κ(p))

of O-modules, where κ(p) is the residue field of OK at p. We define

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V },

for which we often simply write A.

Then we prove the following theorem about the density d(A(W,V )).

Theorem 13. Suppose that I is not divisible by any prime number that splits completely in

O. Then the following statements hold.

93



CHAPTER 3. REDUCTIONS OF THE MORDELL-WEIL GROUP OVER NUMBER FIELDS

(a) The set A(W,V ) has a natural density d(A(W,V )) in ΩK .

(b) The density d(A(W,V )) is rational.

(c) The density d(A(W,V )) is positive.

(d) We have d(A(W,V )) = 1 if and only if V = W or W is finite.

The proof of this theorem has a similar structure to that of Theorem 6 in Section 2.1. Note

that computability of d(A(W,V )) is missing in this theorem. There is little doubt that de-

tailed scrutiny of our proofs will lead to a proof that d(A(W,V )) is indeed computable, and

that likewise the assumption on the ideal I can be omitted at the cost of some additional

complications. We leave these issues to the diligence of the interested reader.

The present chapter is organised as follows.

In Section 3.2 we define division in modules over a commutative ring. In Section 3.3

we apply this theory to elliptic curves, and define Steinitz ideals and treat their properties.

Section 3.4 contains the proof of Theorem 11 above. In Section 3.5 we prove the openness

of the right vertical map in the commutative diagram above, and in Section 3.6 we prove that

the left vertical map is open. Section 3.7 contains the proof of Theorem 12. In Section 3.8

we prove part (a) of Theorem 13, and in Section 3.9 we prove part (b) of the same theorem.

The last Section 3.10 consists of the proofs of the last two parts (c) and (d) of Theorem 13.

2. Division in modules

Let O be a commutative ring, and let M be an O-module. Let W be an O-submodule of M ,

and let a ⊂ O be an ideal. Then we define the module of a-division points of W in M as

W :M a = {x ∈M : a · x ⊂ W}.
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If a = (a) is principal, we simply write W :M a. Moreover, if W = O · x, we simply write

W :M a = x :M a. When the module M is understood, we leave it out of the notation.

We define the module of a-torsion points M [a] as 0: a. Note that M [a] ⊂ W : a and

(W : a)/W = (M/W )[a].

Lemma 3.1. Suppose that a is finitely generated, and let S be a multiplicatively closed subset

of O. Then S−1(W :M a) = S−1W :S−1M S−1a.

Proof. Suppose a is generated by a1, . . . , an ∈ O, where n ∈ Z≥1. Then W : a is the kernel

of the morphism

f : M −→
n⊕
i=1

M/W

of O-modules defined by x 7→ (a1 · x + W, . . . , an · x + W ). By exactness of S−1(−), we

then have that S−1(W : a) is the kernel of

S−1(f) : S−1M −→
n⊕
i=1

S−1M/S−1W.

Observe that the kernel of S−1(f) is exactly equal to S−1W :S−1M S−1a, which proves the

lemma.

Proposition 3.2. Let W and V be O-submodules of M , and let a and b be ideals of O that

are coprime. Then W : ab = W : a +W : b.

Proof. First, observe that the right to left inclusion is straightforward. To prove the other

inclusion, let x ∈ W : ab. As a and b are coprime, there exist a ∈ a and b ∈ b such that

a + b = 1. Note that b · ax ⊂ W and a · bx ⊂ W , so that ax ∈ W : b and bx ∈ W : a. It

follows that x = (a+ b)x = ax+ bx ∈ W : a +W : b.

We say an ideal a of O is invertible if it is projective of rank 1. Moreover, throughout the

rest of this section, and only in this section, we denote the localisation of an O-module N at

a prime ideal p of O by Np.
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Proposition 3.3. Let W be an O-submodule of M , and let a ⊂ O be an invertible ideal.

(a) Then aW : a = W +M [a].

(b) Suppose that aM = M . Then W = a(W : a).

Proof. First, observe that the right to left inclusions of (a) and (b) are straightforward. To

prove the left to right inclusions of (a) and (b), we first prove them in the case that a is

principal. To this end, suppose that a = (a), and let x ∈ aW : a. Then ax = aw for some

w ∈ W , so that x− w ∈ M [a]. It follows that x ∈ W + M [a]. This proves (a) for principal

ideals a.

Let x ∈ W . As aM = M , there is y ∈ M such that ay = x, and hence y ∈ W : a. It

follows that x ∈ a(W : a), which proves (b) for principal ideals a.

Now, suppose a is any invertible ideal. As a is projective of rank 1, it is finitely gener-

ated and its localisation at every prime p ofO is principal inOp. Let p be a prime ofO. Then

(aW )p = apWp. By Lemma 3.1 we have

(a ·W : a)p = apWp :Mp ap.

On the other hand, by exactness of localisation we have

(W +M [a])p = Wp +M [a]p,

where M [a]p = Mp[ap] by Lemma 3.1.

Since we proved the principal case, and ap is principal, we have

apWp :Mp ap = Wp +Mp[ap].

It follows that for every prime p of O we have

(a ·W : a)p = (W +M [a])p.
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Hence aW : a = W +M [a], which proves (a).

For (b), let p be a prime ideal of O, and observe that (a(W : a))p = ap(Wp : ap). As

ap is principal, it follows that ap(Wp : ap) = Wp. As this holds for every prime p of O, we

conclude that a(W : a) = W .

Proposition 3.4. Let a ⊂ O be an invertible ideal, and suppose that the module M satisfies

M = aM . Let W and V be O-submodules of M . Then

(W + V ) : a = (W : a) + (V : a).

Proof. First, let x ∈ W : a and y ∈ V : a and note that

a(x+ y) ⊂ ax+ ay ⊂ W + V,

so that

x+ y ∈ (W + V ) : a.

This proves the right to left inclusion. To show the reverse inclusion, we first suppose that

a = (a) is principal.

Let x ∈ (W + V ) : a. Then ax = y + z for some y ∈ W and z ∈ V . As M = aM we

have y = au for some u ∈ M . Since au = y ∈ W , we have u ∈ W : a. On the other hand,

the identity

ax = y + z = au+ z

implies that

a(x− u) = z.

As z ∈ V , it follows that x− u ∈ V : a. Then

x = u+ (x− u) ∈ (W : a) + (V : a),

which proves the statement for principal ideals a.
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Now, suppose a is any invertible ideal, and let p be a prime of O. By Lemma 3.1 we

have

((W + V ) : a)p = (W + V )p : ap.

By exactness of localisation, we have (W + V )p = Wp + Vp. As ap is principal, we have

(Wp + Vp) : ap ⊂ (Wp : ap) + (Vp : ap) = (W : a)p + (V : a)p = ((W : a) + (V : a))p.

Hence (W + V ) : a ⊂ (W : a) + (V : a), which proves the proposition.

3. Dividing points on elliptic curves

Throughout this section, let K be a field of characteristic 0, let K be an algebraic closure of

K, let E be an elliptic curve over K with O = EndK(E) 6= Z a Dedekind domain, and let

F be the fraction field of O. In this chapter, for an ideal a of O and W an O-submodule

of E(K), the module of a-division points W : a of W , defined in the previous section, is

taken inside M = E(K). For any field extension L of K and nonzero ideal a ⊂ O, we

write E(L)[a] for the module of a-torsion points of the O-module E(L), and E(L)tor for the

O-module of all torsion points of E over L. For simplicity, we write E[a] for E(K)[a], and

Etor for E(K)tor.

Definition 3.5. Let Ô = lim←−b
O/b, where b runs over all nonzero ideals ofO, be the profinite

completion of O as a ring. A Steinitz ideal a of O is a closed ideal of Ô. One easily checks

that the set of open ideals of Ô is in bijection with the set of nonzero ideals of O. Therefore,

we often identify an open Steinitz ideal with the ideal it corresponds to in O.

Let a be a Steinitz ideal of O. For an O-submodule W of E(K), we define

W : a =
⋃
b

(W : b),
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where b runs over all nonzero ideals of O dividing a. Consistently with our notation for

ideals of O, we write E[a] for the a-torsion 0: a =
⋃

bE[b], where b runs over all nonzero

ideals of O dividing a. Note that both W : a and E[a] are O-modules. In fact, the canonical

module structure ofO on Etor extends naturally to a module structure of Ô on Etor. Then the

Ô-module E[a] is canonically an Ô/a-module.

Remark 3.6. For a nonzero ideal a of O, there is a unique factorization of a into prime

ideals of O. The same can be done for Steinitz ideals. Indeed, an ideal of a product
∏

i∈I Ri

of topological Hausdorff rings Ri is closed if and only if it is of the form
∏

i∈I Ji, where Ji

is a closed ideal of Ri for each i ∈ I . For a maximal ideal p of O, let

vp : F −→ Z ∪ {∞}

be the p-adic valuation, and letOp be the completion of O at p. The nonzero ideals ofOp are

powers of the maximal ideal pOp and closed. Now, observe that

Ô =
∏
p

Op

as profinite rings. Hence, putting p∞Op = {0}Op, we may represent a Steinitz ideal a

uniquely as

a =
∏
p

pvp(a)Op.

For simplicity, we often leave out Op from the notation.

For a nonzero ideal a of O, we write a∞ for the ideal

∏
p

p∞Op ×
∏
p′

Op′ ⊂ Ô =
∏
q

Oq,

where p runs over the maximal ideals of O dividing a, and p′ runs over the other maximal

ideals of O, and q runs over all maximal ideals of O.
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Note that for any O-submodule W ⊂ E(K) and Steinitz ideal a of O, the module E[a] is

contained in W : a, and K(W : a) is Galois over K(W ).

Let W be a finitely generated O-submodule of E(K) and let a be a Steinitz ideal of

O. The field K(W : a) is Galois over K, and any field automorphism of K(W : a) over K

is determined by its action on W : a. Moreover, the action of O on W : a commutes with

the action of Galois. Hence, we may identify Gal(K(W : a)/K) with a subgroup of the

group of O-automorphisms AutO,W (W : a) of W : a that are the identity on W . Note that

AutO,W (W : a) is the profinite group

lim←−
b

AutO,W (W : b),

where b runs over all nonzero ideals of O dividing a. As Gal(K(W : a)/K) is compact and

AutO,W (W : a) is Hausdorff, the subgroup Gal(K(W : a)/K) of AutO,W (W : a) is closed.

Endow F/O with the canonical O-module structure, and note that this structure natu-

rally extends to an Ô-module structure.

Proposition 3.7. Let a be a Steinitz ideal of O. Then the following statements hold.

(a) E[a] ∼=O (F/O)[a] = {x ∈ F/O : ax = 0} and Etor
∼=O F/O.

(b) EndO(E[a]) ∼=O Ô/a as O-algebras, and for a Steinitz ideal a′ of O divisible by a the

restriction map AutO(E[a′]) −→ AutO(E[a]) is surjective.

(c) The field K(E[a]) is abelian over K.

Proof. The second statement of (a) follows from Theorem 3 in [Len96]. The first statement

follows directly from the second one, since O-module isomorphisms respect the O-torsion.

This finishes the proof of (a).

For the first statement of (b), let b a nonzero ideal of O dividing a. One easily sees

that (F/O)[b] ∼=O O/b as O-modules, and EndO(O/b) ∼=O O/b as O-algebras. Then (a)
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implies

EndO(E[b]) ∼=O EndO((F/O)[b]) ∼=O EndO(O/b) ∼=O O/b

as O-algebras. Using E[a] = lim−→b
E[b], where b runs over all nonzero ideals of O dividing

a, we obtain

EndO(E[a]) = EndO(lim−→
b

E[b]) ∼=O lim←−
b

EndO(E[b]) ∼=O lim←−
b

O/b ∼=O Ô/a,

as O-algebras. This proves the first statement of (b).

For the second part, we first prove the statement for a′ =
∏

p p
∞ where p runs over all

maximal ideals of O. Then we have E[a′] = Etor and Ô/a′ = Ô. The above implies that

there are canonical isomorphisms

AutO(Etor) −→ Ô∗

and

AutO(E[a]) −→ (Ô/a)∗

which make the diagram

AutO(Etor)

��

// Ô∗

��

AutO(E[a]) // (Ô/a)∗

(∗)

commutative, where the vertical arrows are the restriction maps. Moreover, using the identity

Ô ∼=
∏

pOp, one easily checks that the diagram

Ô∗

��

∼= //
∏

pO∗p

��

(Ô/a)∗ ∼=
//
∏

p(Op/p
vp(a))∗

(∗∗)

is commutative, where p runs over all maximal ideals of O, and p∞ equals the zero ideal of

Op. Since Op is a local ring, the map O∗p −→ (Op/p
vp(a))∗ is surjective. By commutativity
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of (∗∗), we have that Ô∗ −→ (Ô/a)∗ is surjective. Then commutativity of (∗) implies that

AutO(Etor) −→ AutO(E[a]) is surjective, as desired.

Now, the case for general a′ follows directly from the fact that Ô∗ −→ (Ô/a)∗ factors

via Ô∗ −→ (Ô/a′)∗.

For (c), note that Gal(K(E[a])/K) is a subgroup of AutO(E[a]). By (b) we have

AutO(E[a]) = EndO(E[a])∗ ∼= (Ô/a)∗.

As the last group is clearly abelian, the subgroup Gal(K(E[a])/K) is abelian also, so that

K(E[a]) is abelian over K.

For a module N over a ring R, we write AnnR(N) = {r ∈ R : ∀x ∈ N : rx = 0} for the

annihilator ideal of N .

Proposition 3.8. (a) There is an inclusion-reversing bijection

ψ : {Steinitz ideals of O} −→ {O-submodules of Etor}

of sets, given by sending a Steinitz ideal a to E[a]. Moreover, its inverse is also

inclusion-reversing, sending an O-submodule M of Etor to the Ô-annihilator

AnnÔ(M) = {r ∈ Ô : r ·M = 0}

of M .

(b) Let a and a′ be Steinitz ideals of O. Then a = AnnÔ(E(K)[a′]) if and only if E[a] =

E(K)[a′].

Proof. For (a), define the map

ϕ : {Steinitz ideals of O} −→ {O-submodules of F/O},
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by sending the Steinitz ideal a to (F/O)[a] = {x ∈ F/O : a · x = 0}. We will show that ϕ

is a bijection.

For any fractional ideal a of O we write a−1 for its ideal inverse

O :F a = {x ∈ F : a · x ⊂ O}.

As O is Dedekind, there is a bijection of the set of nonzero ideals of O with the set of

fractional ideals of O containing O given by the ideal inverse. Moreover, one easily checks

that the map from the set of finite O-submodules of F/O to the set of fractional ideals of O

containingO defined by sendingM ⊂ F/O to the fractional ideal AnnO(M)−1 is a bijection,

and its inverse sends a fractional ideal a of O containing O to a/O. Composing the above

two bijections, we obtain another bijection, which is in fact the restriction of ϕ to the subset

of open Steinitz ideals of O. Thus ϕ restricts to a bijection of the subset of open Steinitz

ideals of O with the subset of finite O-submodules of F/O.

Now, let a be a Steinitz ideal, and note that

(F/O)[a] =
⋃
b

(F/O)[b] =
⋃
b

b−1/O,

where b runs over all nonzero ideals of O dividing a. Then

AnnÔ((F/O)[a]) = AnnÔ

(⋃
b

b−1/O

)
=
⋂
b

AnnÔ(b−1/O) =
⋂
b

bÔ = a.

Conversely, let M be an O-submodule of F/O. One easily checks that

M =
∑
p

p−e(p)/O,

where p runs over the maximal ideals of O, and e(p) ∈ Z≥0 ∪ {∞}, and p−∞ =
⋃
i≥0 p

−i.

Hence, we have

AnnÔ(M) =
∏
p

pe(p)Op,
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where p runs over the maximal ideals of O. Then one easily sees that

(F/O)
[
AnnÔ(M)

]
=
∑
p

p−e(p)/O,

where p runs over the maximal ideals of O, which shows that ϕ is a bijection.

By Proposition 3.7(a) there is an isomorphism f : Etor −→ F/O of O-modules. This

induces a bijection

{O-submodules of F/O} −→ {O-submodules of Etor},

which composed with ϕ gives us ψ, independent of the choice of the isomorphism f . As ϕ

is a bijection, it follows that ψ is a bijection. One easily checks that ψ and its inverse are

inclusion-reversing, which finishes the proof of (a).

For (b), let a and a′ be Steinitz ideals of O. Observe that for an O-submodule M of

Etor, part (a) implies that

a = ψ−1(M)⇔ ψ(a) = M.

Hence

a = AnnÔ(E(K)[a′]) = ψ−1(E(K)[a′])⇔ E[a] = ψ(a) = E(K)[a′],

as desired.

4. Abelian division fields

Throughout this section let K be a field of characteristic 0, let K be an algebraic closure of

K, let Kab be the maximal abelian extension of K contained in K, let E be an elliptic curve

over K with O = EndK(E) 6= Z a Dedekind domain, let F be the fraction field of O, let Ô

be as in Definition 3.5, and let W ⊂ E(K) be an O-submodule.

In this section we prove the following theorem.

104



3.4. ABELIAN DIVISION FIELDS

Theorem 3.9. Let a be a Steinitz ideal of O, and let w = AnnÔ(E(K)tor). Then

(E(K) : a)Gal(K/Kab) = (E(K) : (w + a)) + E[wa].

To prove this theorem, we first prove the following analogue of Schinzel’s theorem (see

Theorem 1.1) for elliptic curves with complex multiplication.

Theorem 3.10. Let a be a nonzero ideal of O. Then K(W : a) is abelian over K if and only

if AnnO(E(K)[a]) ·W ⊂ a · E(K).

Remark 3.11. In the rest of this section, we write w = AnnÔ(E(K)tor), and for a Steinitz

ideal a we write wa = w + a. By Proposition 3.8(a) we have for a Steinitz ideal a and an

O-submodule M of Etor the equivalence

a = AnnÔ(M)⇔ E[a] = M.

Therefore, we have E[w] = E(K)tor. Moreover, we have

E[wa] = E[w + a] = E[w][a] = E(K)tor[a] = E(K)[a],

so Proposition 3.8(b) implies

wa = AnnÔ(E(K)[a]).

Proposition 3.12. The field K(E(K) :w) is abelian over K.

Proof. By Remark 3.11 we have E[w] = E(K)tor.

Now, let

ϕ : Gal(K(E(K) :w)/K) −→ Hom((E(K) :w)/E(K), E[w])

be the map defined by

σ 7→ [Q+ E(K) 7→ σ(Q)−Q].
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As E[w] ⊂ E(K), the map ϕ is a group morphism. A field automorphism of K(E(K) :w)

over K is determined by its action on E(K) :w. Hence ϕ is injective. As the codomain is

clearly abelian, it follows that Gal(K(E(K) :w)/K) is abelian.

Proof of Theorem 3.10. We first prove the ‘if’ part. To this end, recall by Remark 3.11 that

wa = w + a = AnnÔ(E(K)[a]). Suppose that wa · W ⊂ a · E(K). We will prove that

K(W : a) is abelian over K. To this end, let Q ∈ W : a, and note that

awaQ ⊂ aE(K).

Then Proposition 3.3(a) implies waQ ⊂ E(K) + E[a]. Since a is an ideal of O, the ideal wa

is open and we may consider it as an ideal of O. Then Proposition 3.4 implies

Q ∈ (E(K) :wa) + E[a] :wa,

whereE[a] :wa = E[awa]. By Proposition 3.7(c) we know thatK(Etor) is abelian overK, so

in particular K(E[awa]) is abelian over K. On the other hand, by Proposition 3.12 we know

that K(E(K) :wa) is abelian over K. It follows that K((E(K) :wa) + E[awa]) is abelian

over K, so that K(Q) is abelian over K. We conclude that K(W : a) is abelian over K.

Now, we prove the ‘only if’ part. Suppose that K(W : a) is abelian over K. We will

show that wa ·W ⊂ a ·E(K). To this end, suppose first that a = (a) is principal. Let P ∈ W ,

and recall that we write P : a instead of (O · P ) : a. As P : a ⊂ W : a and K(W : a) is abelian

over K, the field K(P : a) is abelian over K. Write G for its Galois group Gal(K(P : a)/K),

and let Q ∈ P : a be such that aQ = P .

The natural O-module structure and G-module structure on E[a] are compatible with

each other, so E[a] is an O[G]-module. By Proposition 3.7(b) we have

EndO(E[a]) ∼= O/aO.
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It follows that for every σ ∈ G we can choose c(σ) ∈ O such that σ acts on E[a] by

multiplication with c(σ). We fix such c(σ) ∈ O. Now, for every σ ∈ G we have

aσ(Q) = σ(P ) = P = aQ.

Therefore, for every σ ∈ G there is Tσ ∈ E[a] such that σ(Q) = Q + Tσ. Let σ, τ ∈ G, and

observe that

τσ(Q)− σ(Q) = στ(Q)− σ(Q) = σ(Q) + σ(Tτ )− σ(Q) = c(σ)Tτ .

Moreover, we have

c(σ)Tτ = c(σ)Q+ c(σ)Tτ − c(σ)Q = c(σ)τ(Q)− c(σ)Q = τ(c(σ)Q)− c(σ)Q.

Thus, we have τσ(Q)− σ(Q) = τ(c(σ)Q)− c(σ)Q, which is equivalent to

τ(c(σ)Q− σ(Q)) = c(σ)Q− σ(Q).

As the latter holds for all σ, τ ∈ G, we conclude that

c(σ)Q− σ(Q) ∈ E(K)

for all σ ∈ G. Multiplying by a on both sides, we obtain

(c(σ)− 1) · P ∈ aE(K),

for all σ ∈ G. Let

d = (a) +
∑
σ∈G

(c(σ)− 1)O,

and note that

d · P ⊂ (a) · E(K).
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We will now show that d = AnnO(E(K)[a]). To this end, observe that Proposition 3.8

implies that d = AnnO(E(K)[a]) if and only if E[d] = E(K)[a]. Note that a ∈ d, so

E[d] ⊂ E[a]. Let T ∈ E[a], and observe that

T ∈ E(K)[a]⇔ ∀σ ∈ G : σ(T ) = T ⇔ ∀σ ∈ G : (c(σ)− 1)T = 0⇔ T ∈ E[d],

that is, we have E[d] = E(K)[a]. Hence d = AnnO(E(K)[a]).

Now, we have shown that for every P ∈ W we have

AnnO(E(K)[a]) · P ⊂ (a) · E(K),

which implies that

AnnO(E(K)[a]) ·W ⊂ (a) · E(K).

This proves the statement for principal ideals a.

Now, suppose a is any nonzero ideal. We will show that waW ⊂ aE(K). Since O is

Dedekind, there is an ideal b of O such that a + b = O and ab is principal. Moreover, by

Proposition 3.2 we have

bW : ab = bW : a + bW : b,

and

bW : b = W + E[b]

by Proposition 3.3(a). As E[b] is abelian over K, and by assumption, the field K(W : a) is

abelian over K, the field K(bW : ab) = K((bW : a) +E[b]) contained in K((W : a) +E[b])

is abelian over K. Then, because ab is principal, the above proof for principal ideals shows

that wab · bW ⊂ abE(K).

By Remark 3.11 we have E[wa] = E(K)[a] and E[wab] = E(K)[ab]. Moreover, we

have

E[wab + a] = E[wab] ∩ E[a] = E(K)[ab] ∩ E[a] = E(K)[a] = E[wa].
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Thus wab + a = wa by Proposition 3.8.

Recall from the above that wabbW ⊂ abE(K), so that

wa · bW = (wab + a) · bW = wabbW + abW ⊂ abE(K),

where we used that abW ⊂ abE(K). As a + b = O, we have

waW = wa(a + b)W = waaW + wabW.

Moreover waaW ⊂ waaE(K) ⊂ aE(K), and wabW ⊂ abE(K) ⊂ aE(K). Hence, we

have

waW = waaW + wabW ⊂ aE(K) + aE(K) ⊂ aE(K),

as desired.

Proof of Theorem 3.9. We first prove the right to left inclusion. By Proposition 3.12 and

Proposition 3.7(c), we have

(E(K) :w) + Etor ⊂ E(Kab).

By Remark 3.11 we have

E[w] = E(K)tor ⊂ E(K),

so that (E(K) : (w+a))+E[wa] is contained inE(K) : a and in (E(K) :w)+Etor. Therefore,

we have

(E(K) : (w + a)) + E[wa] ⊂ (E(K) : a) ∩ E(Kab) = (E(K) : a)Gal(K/Kab),

which proves the right to left inclusion.

We prove the other inclusion in two steps. First, we prove the inclusion for a a nonzero

ideal of O. To this end, let

X = (E(K) : a)Gal(K/Kab).
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As E[a] ⊂ X , Proposition 3.3(a) implies that

aX : a = X + E[a] = X.

Moreover, it is clear that aX ⊂ E(K) is an O-submodule. Now, as K(aX : a) = K(X) is

abelian over K, Theorem 3.10 implies that

wa · (aX) ⊂ aE(K),

where wa = w + a (see Remark 3.11). It follows that

wa ·X ⊂ aE(K) : a = E(K) + E[a],

where the equality follows from Proposition 3.3(a). Thus

X ⊂ (E(K) + E[a]) :wa = (E(K) :wa) + (E[a] :wa),

where the equality follows from Proposition 3.4. Observe that

E[a] :wa = E[awa] ⊂ E[aw].

Hence, we have

X ⊂ (E(K) : (w + a)) + E[aw],

as desired.

Now, suppose a is any Steinitz ideal, and note that

(E(K) : a)Gal(K/Kab) =
⋃
b

(E(K) : b)Gal(K/Kab)

⊂
⋃
b

((E(K) : (w + b)) + E[bw])

=
⋃
b

(E(K) : (w + b)) +
⋃
b

E[bw],
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where b runs over all nonzero ideals of O dividing a. At last,⋃
b

(E(K) : (w + b)) ⊂ E(K) : (w + a)

and
⋃

bE[bw] ⊂ E[aw], so that

(E(K) : a)Gal(K/Kab) ⊂ E(K) : (w + a) + E[aw],

as desired.

5. Galois representation on torsion points

Throughout this section, let K be a number field, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let F be the fraction field of O, let OK be the ring

of integers of K, and let c be the conductor of E over K (see [Sil94, §IV.10]). Remark that c

is a nonzeroOK-ideal. For an extension of prime ideals q/p in an extension of rings we write

e(q/p) for the ramification index of q over p, if it exists.

As all elements of O are defined over K, the action of O on the tangent space at the

origin induces an injective ring morphism O −→ K, which extends to an injective map

F −→ K (see [Sil94, Chapter 2]). Throughout this chapter, we identify O and F with their

images in K, so that we have O ⊂ OK and F ⊂ K.

For p a maximal ideal of O, define ip ∈ Z≥0 as follows. For primes q of OK dividing

p, let iq ∈ Z≥0 be such that

iq =

1 if vq(c) = 0 and e(q/p) 6= 1,

vq(c)
2

if vq(c) > 0 or e(q/p) = 1,

where vq is the q-adic valuation (cf. Remark 3.6), and observe that

iq = 0⇔ [e(q/p) = 1 and q - c].
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By Theorem 6 in [ST68] we have for all primes q of OK that vq(c) is divisible by 2. Hence

iq is an integer. Let p be the characteristic of O/p, let

mq = max

{⌈
iq

e(q/p)

⌉
,

⌊
e(p/p)

p− 1

⌋
+ 1

}
,

and let

ip,q =


⌈

iq
e(q/p)

⌉
if p - e(q/p),

mq + e(p/p) · vp(e(q/p)) if p| e(q/p).

Then put ip = minq ip,q, where q runs over the primes of OK dividing p. Now, observe that

for maximal ideals p of O not dividing c ·∆K/F , where ∆K/F is the discriminant of K over

F , we have ip = 0. Thus, for almost all maximal ideals p of O we have ip = 0.

For an O-module N and O-submodule N ′ of N we write AutO,N ′(N) for the group of

O-automorphisms ofN that are the identity onN ′. Moreover, observe that for a Steinitz ideal

a of O the group Gal(K(E[a])/K) may be identified with a subgroup of AutO,E(K)[a](E[a])

(see also the text before Proposition 3.7).

In this section, we prove the following theorem.

Theorem 3.13. Let a be a Steinitz ideal of O.

(a) Then Gal(K(E[a])/K) is open in AutO(E[a]).

(b) Let P be the set of maximal ideals of O dividing a that satisfy vp(a) ≥ ip. Then the

subgroup
∏

p∈P AutO,E[pip ]

(
E[pvp(a)]

)
of AutO(E[a]) is open, and moreover, we have∏

p∈P

AutO,E[pip ]

(
E[pvp(a)]

)
⊂ Gal(K(E[a])/K)

as subgroups of AutO(E[a]).

General notation. Let L be a number field, and let a be a nonzero ideal of OL. Then we

write OL,a for the a-adic completion of OL, and La = L ⊗OL
OL,a. If a = (a) is principal,
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we simply write OL,a instead of OL,a, and La instead of La. Note that OL,a =
∏

pOL,p and

La =
∏

p Lp where p runs over all primes of OL dividing a.

Suppose that a = p is a prime ideal. Then by abuse of notation we also write p for the

maximal ideal of the ring of integers of the local field Lp. For i ∈ Z≥0 we write Up,i or ULp,i

for the ith unit group of Lp, that is,

Up,0 = (OL,p)∗

and for i ≥ 1

Up,i = 1 + piOL,p.

We write IL for the idèle group of L.

Let L′/L be an extension of number fields, and let q be a prime of OL′ dividing p.

For the extension L′q/Lp of local fields, we sometimes write e(L′q/Lp) for e(q/p). We write

NIL′ / IL : IL′ −→ IL for the idèle norm. Let p be the characteristic of p, and embed L′∗p in IL′

by putting 1’s at the primes not over p. Then we write

NL′p/Lp =
∏
p

∏
q

NL′q/Lp : L
′∗
p −→ L∗p

for the restriction of the idèle norm to L′∗p , where p runs over the primes of OL dividing p,

and q runs over the primes of OL′ dividing p.

Let a be a nonzero ideal of O. By Proposition 3.7 we have

E[a] ∼=O (F/O)[a] = a−1/O ∼= O/a,

so that AutO(E[a]) ∼= (O/a)∗. Moreover, the latter isomorphism is compatible with the

restriction maps AutO(E[a]) −→ AutO(E[a′]) and canonical maps (O/a)∗ −→ (O/a′)∗ for

a′ an ideal of O dividing a. Hence, we have

AutO(E[a∞]) = lim←−
i

AutO(E[ai]) ∼= O∗a ,
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where for simplicity we write Oa for OF,a. We define the map ϕa as the following composi-

tion of canonical maps

Gal(K(E[a∞])/K) −→ AutO(E[a∞])
∼−→ O∗a ,

and note that ϕa is injective. As K(E[a∞]) is contained in the maximal abelian extension

Kab of K (see Proposition 3.7(c)), the global reciprocity law induces a surjective morphism

ψa : IK −→ Gal(K(E[a∞])/K) of topological groups. We define ρa as the composition

ρa = ϕa ◦ ψa : IK −→ O∗a .

Now, let a = (0), and define ϕa, ψa and ρa by doing exactly the above while replacing Oa

with Ô. If a = (a) is principal, we simply write a subscript a instead of a subscript a in the

above notation, and if a = (0), we simply write no subscript.

As we remarked earlier, for a prime q of OK dividing the conductor c, Theorem 6

in [ST68] implies that vq(c) is divisible by 2. We write

1 +
√
c =

∏
q

U
q,

vq(c)

2

⊂ (OK,c)∗,

where q runs over all primes of OK dividing c.

As F is a quadratic imaginary field contained in K, the field K is totally complex.

Proposition 3.14. Let F ∗ be endowed with the discrete topology. Then there is a unique

continuous group morphism ε : IK −→ F ∗ such that ε(x) = NK/F (x) for all x ∈ K∗, and

such that for each prime number p and each a ∈ IK

ρp(a) = ε(a) NKp/Fp((ap)
−1) ∈ O∗p,

where ap = (aq)q ∈
∏

qK
∗
q and q runs over the maximal ideals of OK dividing p. Moreover,

the kernel of ε contains

(1 +
√
c)×

∏
q

Uq,0×
∏
r

K∗r ,
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where q runs over all finite primes ofOK not dividing c, and r runs over all infinite primes of

K.

Proof. For the first part of the theorem see [Ser72, Theorem 5] or [ST68, §7]. For the second

part see [ST68, Theorem 6 and Theorem 11].

Lemma 3.15. Let p be a prime number, let L be a finite extension of Qp, let L′ be a finite

extension of L, and let eL = e(L/Qp).

(a) Suppose that e(L′/L) = 1. Then for all i ∈ Z≥0 we have

UL,i = NL′/L(UL′,i),

where NL′/L : L′∗ −→ L∗ is the norm function.

(b) Let i ∈ Z≥1, and let m = max
{⌈

i
e(L′/L)

⌉
,
⌊

eL
p−1

⌋
+ 1
}

. Put

i0 =

di/ e(L′/L)e if p - e(L′/L),

m+ eL · vp(e(L′/L)) otherwise.

Then

UL,i0 ⊂ NL′/L(UL′,i),

where NL′/L : L′∗ −→ L∗ is the norm function.

Proof. If e(L′/L) = 1, then [Ser79, Chapter V, §2] implies that for every i ∈ Z≥0

UL,i = NL′/L(UL′,i),

which proves statement (a) and also statement (b) in the case that e(L′/L) = 1.

Now, suppose that i > 0. By transitivity of the norm and the above case, we may

assume that L′/L is totally ramified. Let Lt be the maximal tamely ramified extension of L
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inside L′, let e(L′/L)t = [Lt : L] be the tame part of e(L′/L), and let e(L′/L)p = [L′ : Lt]

be the wild part of e(L′/L).

Note that for x ∈ L we have

NL′/L(x) = x[L′:L] = xe(L′/L).

Let p be the maximal ideal of the ring of integers OL of L and let q be the maximal ideal of

OL′ . Then p ⊂ qe(L′/L) implies that(
UL,d i

e(L′/L)
e

)e(L′/L)

⊂ NL′/L(UL′,i).

As for l ∈ Z≥1 the groups UL,l are pro-p-groups, we have(
UL,d i

e(L′/L)
e

)e(L′/L)p
=
(

UL,d i
e(L′/L)

e

)e(L′/L)

⊂ NL′/L(UL′,i).

Suppose that p does not divide e(L′/L). Then e(L′/L)p = 1, so

UL,d i
e(L′/L)

e =
(

UL,d i
e(L′/L)

e

)e(L′/L)p
⊂ NL′/L(UL′,i),

which proves the lemma in the case that p - e(L′/L).

Now, suppose that e(L′/L)p 6= 1. Since m ≥ i
e(L′/L)

, we have

(UL,m)e(L′/L)p ⊂
(

UL,d i
e(L′/L)

e

)e(L′/L)p
⊂ NL′/L(UL′,i).

Moreover, by [Ser79, Chapter XIV, Proposition 9] we have for every integer l > eL
p−1

that

(UL,l)
p = UL,l+eL .

Hence, since m > eL
p−1

, we have

UL,i0 = UL,m+eL · vp(e(L′/L)) = (UL,m)e(L′/L)p ⊂ NL′/L(UL′,i),

which proves the lemma in the final case that p | e(L′/L).
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Proof of Theorem 3.13. We first prove (b) for the Steinitz ideal a =
∏

p p
∞, that is, we first

show that ∏
p

AutO,E[pip ](E[p∞]) ⊂ Gal(K(Etor)/K),

as subgroups of AutO(Etor), where p runs over all maximal ideals of O. To this end, let

U = (1 +
√
c)×

∏
q

Uq,0×
∏
r

K∗r ,

where 1 +
√
c is defined above Proposition 3.14, where q runs over all finite primes of OK

not dividing c, and r runs over all infinite primes of K.

For an ideal b of O, let ψb, ϕb and ρb be as defined above Proposition 3.14. Recall

that if (b) is principal, we simply write ψb, ϕb and ρb for these maps, and if b = (0) we have

(0)∞ = a and simply write ψ, ϕ and ρ.

We claim that ρ =
∏

p ρp where p runs over all maximal ideals of O.

Indeed, we have Ô =
∏

pOp as profinite rings, so that Ô∗ =
∏

pO∗p as profinite groups.

Moreover, for a maximal ideal p of O we have the following commutative diagram

IK

ρ

%%

id

��

ψ
// Gal(K(Etor)/K)

ϕ
//

��

Ô∗

��

IK ψp

//

ρp

99
Gal(K(E[p∞])/K) ϕp

// O∗p

where the two right vertical maps are the canonical maps. The claim now follows from the

universal property of products.

Now, by Proposition 3.14 we have for all prime numbers p that ρp(U) = NKp/Fp(Up),

where Up is the pth component of U . Then for a maximal ideal p of O one easily sees that

ρp(U) =
∏
q

NKq/Fp(Uq),
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where q runs over all primes of OK dividing p, and Uq is the qth component of U .

Let p be a maximal ideal of O, and let q be a maximal ideal of OK dividing p. If

vq(c) = 0, we have Uq = Uq,0 by definition of U , so iq ≥ 0 implies that

Uq ⊃ UKq,iq .

On the other hand, if vq(c) > 0, we have

Uq = U
q,

vq(c)

2

= Uq,iq

by definition of U and iq. Thus, in both cases the inclusion UKq,iq ⊂ Uq holds. Moreover, the

equivalence

iq = 0⇔ [e(q/p) = 1 and q - c]

holds. Then Lemma 3.15, where L′ = Kq, L = Fp, and i = iq, implies that

UFp,ip,q ⊂ NKq/Fp(Uq).

Thus, for all maximal ideals p ofO and q ofOK dividing p, we have by definition of ip

that

UFp,ip ⊂
∏
q

NKq/Fp(Uq),

which implies that the image of ρp, and also of ϕp, in O∗p contains UFp,ip .

Since ρ(U) =
∏

p ρp(U) and the image of ϕ contains ρ(U), the inclusions

im(ϕ) ⊃ ρ(U) ⊃
∏
p

UFp,ip

hold, where p runs over all maximal ideals of O.

Now, under the isomorphism Ô∗ −→ AutO(Etor) the subgroup
∏

p UFp,ip corresponds

to the subgroup ∏
p

AutO,E[pip ](E[p∞])
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of AutO(Etor), where p runs over all maximal ideals of O. Thus, we have∏
p

AutO,E[pip ](E[p∞]) ⊂ Gal(K(Etor)/K),

where p runs over all maximal ideals of O.

At last, observe that for a maximal ideal p of O the subgroup

AutO,E[pip ](E[p∞])

is open in AutO(E[p∞]). Simultaneously, we have ip = 0 for almost all maximal ideals p of

O. Therefore, the subgroup ∏
p

AutO,E[pip ](E[p∞])

is open in ∏
p

AutO(E[p∞]) = AutO(Etor),

where p runs over all maximal ideals of O. Consequently, the group Gal(K(Etor)/K) is

open in AutO(Etor). This proves (a) and (b) for the Steinitz ideal a =
∏

p p
∞, where p runs

over all maximal ideals of O.

Let a be a Steinitz ideal. Then the diagram

Gal(K(Etor)/K) //

��

AutO(Etor)

��

Gal(K(E[a])/K) // AutO(E[a])

is commutative, where the vertical maps are the surjective restriction maps (see Proposition

3.7(b)). As the vertical maps are open, commutativity of the diagram implies that the com-

position

Gal(K(Etor)/K) −→ Gal(K(E[a])/K) −→ AutO(E[a])

is open. Hence Gal(K(E[a])/K) −→ AutO(E[a]) is open, which proves (a).
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Let P be the set of maximal ideals p of O dividing a with multiplicity at least ip, that

is, let

P = {p ⊂ O : p maximal, p|a, vp(a) ≥ ip}.

Using Proposition 3.7(b) we see that the image of the subgroup
∏

p AutO,E[pip ](E[p∞]),

where p runs over all maximal ideals of O, under the restriction map

Gal(K(Etor)/K) −→ Gal(K(E[a])/K)

is equal to ∏
q∈P

AutO,E[qiq ](E[qvq(a)]),

which proves (b).

6. Kummer theory

Throughout this section, let K be a number field, let K be an algebraic closure of K, let E be

an elliptic curve over K with O = EndK(E) 6= Z a Dedekind domain, let F be the fraction

field of O, and let U ⊂ E(K) be an O-submodule.

In this section we prove the following theorem (see the text before Theorem 3.13 for

the definition of the automorphism groups mentioned).

Theorem 3.16. Let a be a Steinitz ideal of O. Then the canonical map

Gal(K(U : a)/K(E[a])) −→ AutO,U+E[a](U : a)

is injective and open.

Notation. Let a be a Steinitz ideal of O. Then we write

Sata(U) = (U : a) ∩ E(K) = (U : a)Gal(K/K),
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and

Cyca(U) = (U : a) ∩ E(K(E[a])) = (U : a)Gal(K/K(E[a])).

In some cases, we expand our notation to Sata(U,K) and Cyca(U,K) to clarify the base field

K. When a = ∞O =
∏

p p
∞, where p runs over all maximal ideals of O, we leave out the

subscript a from the notation.

Definition 3.17. For an O-module M we write rkO(M) for the O-rank dimF (M ⊗O F ) of

M , where F is the fraction field of O.

Observe that rkO(U) is finite.

Proposition 3.18. Let n = rkO(U).

(a) Let a be a nonzero ideal of O. Then U : a is finitely generated over O of O-rank n.

(b) Let a be a Steinitz ideal of O. Then for any finite extension K ′/K the O-module

Sata(U,K
′) is finitely generated over O of O-rank n.

(c) Let a be a Steinitz ideal of O. Then Cyca(U)/E[a] is finitely generated over O of

O-rank n.

Proof. Let a and K ′ be as in (b). By the Mordell-Weil theorem (see [Sil09]) we know

that E(K ′) is finitely generated over Z, and, consequently, over O. As Sata(U,K
′) is con-

tained in E(K ′), we have that Sata(U,K
′) is finitely generated over O. Then the quotient

Q = Sata(U,K
′)/U is finitely generated over O. Moreover, by definition of Sata(U,K

′) the

quotient Q is torsion over O. It follows that Sata(U,K
′) has the same O-rank as U , which

proves (b).

Now, let a be as in (a). As U is finitely generated over O, the module U : a is finitely

generated too. Then the field K ′ = K(U : a) is finite over K. By (b) the module Sata(U,K
′)
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is finitely generated of O-rank n. As

U ⊂ U : a ⊂ Sata(U,K
′),

it follows that U : a has O-rank n. This proves (a).

Let a be as in (c). Let Kab be the maximal abelian extension of K contained in K. Let

Ô be the profinite completion of O, and let w = AnnÔ(E(K)tor). As K is a number field,

the module E(K)tor is finite, so that w = AnnO(E(K)tor). Observe that

Cyca(E(K)) ⊂ (E(K) : a) ∩ E(Kab).

By Theorem 3.9 we have

(E(K) : a) ∩ E(Kab) = (E(K) : (w + a)) + E[wa].

First, we will show that Cyca(E(K))/E[a] is finitely generated over O. By the above, it

suffices to show that (E(K) : (w + a)) and E[wa]/E[a] are finitely generated over O.

To this end, observe that w+a = AnnO(E(K)[a]) is an ideal ofO andE(K) is finitely

generated over O, so E(K) : (w + a) is finitely generated over O.

Moreover, the O-module E[wa] decomposes as
⊕

pE[pvp(w)+vp(a)], where p runs over

all primes of O dividing wa. Then one easily sees that

E[wa]/E[a] ∼=
⊕
p

(
E
[
pvp(w)+vp(a)

]
/E
[
pvp(a)

])
,

where p runs over all primes of O dividing wa such that vp(a) < ∞ and vp(w) > 0. As

there are only finitely many such p, and vp(a) and vp(w) are finite, the decomposition is a

finite direct sum of finitely generated modules over O. It follows that E[wa]/E[a] is finitely

generated over O, so that Cyca(E(K))/E[a] is finitely generated over O.

Now, as

U ⊂ Cyca(U) ⊂ U : a
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and U : a
U

is torsion over O (annihilated by a), we have that rkO(Cyca(U)) = rkO(U). It

follows that Cyca(U)/E[a] is finitely generated over O of the same O-rank as U , which

proves (c).

In the rest of this section, we use two Gal(K(E[a])/K)-modules extensively, which we de-

fine as follows.

Let a be a Steinitz ideal. Recall from Theorem 3.13 and Proposition 3.7(b) that we may

consider Gal(K(E[a])/K) as a subgroup of (Ô/a)∗. The short exact sequence

0 −→ Gal(K(U : a)/K(E[a])) −→ Gal(K(U : a)/K) −→ Gal(K(E[a])/K) −→ 0

induces a Gal(K(E[a])/K)-module structure on Gal(K(U : a)/K(E[a])), because the latter

is abelian by Proposition 3.12.

On the other hand, define

κa : Gal(K(U : a)/K(E[a])) −→ HomO

(
U : a

Cyca(U)
, E[a]

)
as the canonical map given by σ 7→ [Q + Cyca(U) 7→ σ(Q) − Q], and note that κa is an in-

jective group morphism. The multiplication action of Ô/a on E[a] induces an Ô/a-module

structure on HomO

(
U : a

Cyca(U)
, E[a]

)
. In particular, there is a Gal(K(E[a])/K)-module struc-

ture on HomO

(
U : a

Cyca(U)
, E[a]

)
, where we consider Gal(K(E[a])/K) as a subgroup of (Ô/a)∗.

Lemma 3.19. Let a be a Steinitz ideal of O. Then the following statements hold.

(a) The group HomO

(
U : a

Cyca(U)
, E[a]

)
is profinite.

(b) Let G ⊂ HomO

(
U : a

Cyca(U)
, E[a]

)
be a closed subgroup. Then G is a finitely generated

profinite group.

Proof. The O-module
U : a

Cyca(U)
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is the union of the submodules
U : b

(U : b) ∩ Cyca(U)
,

where b runs over all nonzero ideals of O dividing a. For each such b, the corresponding

module is finite and annihilated by b. It follows that the group HomO

(
U : a

Cyca(U)
, E[a]

)
may be

identified with the projective limit of the finite groups

Hb = HomO

(
U : b

(U : b) ∩ Cyca(U)
, E[b]

)
,

and is therefore profinite. This proves (a).

Now, let G be as in (b). Since G is closed, we have

G = lim←−
b

Gb,

where Gb is the image of G in Hb. We will show that there is c ∈ Z≥1 such that for every

m ∈ Z≥1 we have #(G/mG) ≤ mc, which implies that G is finitely generated (see [RZ09,

Lemma 2.5.3]), as desired.

To this end, let m ∈ Z≥1, and let n be the O-rank of U . We will show that for every

nonzero ideal b of O dividing a we have

#(Gb/mGb) ≤ m2n+2.

Let b be a nonzero ideal ofO dividing a, and note thatE[b] ∼=O O/b (see Proposition 3.7(a)).

As U : b is a finitely generated O-module of rank n whose torsion submodule is cyclic and

contains E[b], we have

U : b ∼=O M ⊕ (O/c)

where M is a finitely generated projective O-module of rank n and c is a nonzero ideal of O

divisible by b. Then
U : b

b · (U : b)
∼=O/b (M/bM)⊕ (O/b),
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which is O/b-projective of rank n + 1. As projective modules of constant rank over finite

commutative rings are free, we have

U : b

b · (U : b)
∼=O (O/b)n+1. (∗)

Now, since every f ∈ Hb is annihilated by b, we may identify Hb with a subgroup of

HomO

(
U : b

b · (U : b)
, E[b]

)
,

so that (∗) and the identity E[b] ∼=O O/b imply that Hb may be identified with a subgroup of

(O/b)n+1. As Gb is a subgroup of Hb, we see that Gb may be identified with a subgroup of

(O/b)n+1. Then using that O is quadratic over Z, we obtain

Gb/(m ·Gb) ∼=O Gb[m] ⊂ ((O/b)[m])n+1,

so that Gb/(m ·Gb) has order dividing m2n+2.

We conclude that for every nonzero ideal b of O dividing a and for every m ∈ Z≥1 we

have #Gb/mGb ≤ m2n+2. At last, one easily checks that

#

(
lim←−
b

Gb/mGb

)
≤ m2n+2,

and that

lim←−
b

Gb/mGb
∼=O G/mG,

where b runs over all nonzero ideals of O dividing a. Hence we have

#(G/mG) ≤ m2n+2,

as desired.

Proposition 3.20. Let a be a Steinitz ideal of O. Then the following statements hold.
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(a) The map κa, defined above Lemma 3.19, is Gal(K(E[a])/K)-linear, and its image

generates HomO

(
U : a

Cyca(U)
, E[a]

)
as an Ô/a-module.

(b) The image of κa is open in HomO

(
U : a

Cyca(U)
, E[a]

)
.

Proof. Let a be a Steinitz ideal, and for simplicity, write G = Gal(K(U : a)/K(E[a])),

and H = HomO

(
U : a

Cyca(U)
, E[a]

)
. Moreover, we write κ for κa. Let G′ be the Ô/a-module

generated by κ(G) inside H . We first prove the second statement of (a), namely that G′ = H .

First, as G is compact, the subset κ(G) is compact in H . As Ô is of rank 2 over Ẑ as a

module, we have Ô = Ẑ · 1 + Ẑ · α for some α ∈ Ô. Moreover, since κ(G) is a Ẑ-module,

we have

G′ = κ(G) + κ(G) · α

as a Ẑ-module. Then, as κ(G) is compact and H is Hausdorff, the submodule G′ of H is

closed.

For σ ∈ G, the kernel ker(κ(σ)) is equal to

(U : a)〈σ〉

Cyca(U)
,

where (U : a)〈σ〉 is the group of fixed points of U : a under the subgroup 〈σ〉 of G generated

by σ. Hence, we have

⋂
f∈κ(G)

ker f =
(U : a)G

Cyca(U)
=

Cyca(U)

Cyca(U)
= 0,

so that a fortiori ⋂
f∈G′

ker f = 0.

We will show that G′ maps surjectively to HomO(M,E[a]) for all finiteO-submodules M of
U : a

Cyca(U)
.
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To this end, let M be a finite O-submodule of U : a
Cyca(U)

. Let

ϕ : G′ −→ HomO(M,E[a])

be the canonical O-module morphism given by f 7→ f |M . As
⋂
f∈G′ ker f = 0 (see above),

one easily sees that ⋂
f∈I

ker f = 0,

where I = ϕ(G′). Now, let

ψ : M −→ HomO(I, E[a])

be given by x 7→ [f 7→ f(x)]. For x ∈ kerψ, we have

x ∈
⋂
f∈I

ker f = 0,

which implies that ψ is injective. Since finite modules over a Dedekind ring are direct sums

of cyclic modules and theO-moduleE[a] is isomorphic to (F/O)[a] (see Proposition 3.7(a)),

one easily sees that for finite O-modules X that are annihilated by a we have

#X = # HomO(X,E[a]).

Therefore, we have

#M ≤ # HomO(I, E[a]) = #I ≤ # HomO(M,E[a]) = #M,

that is, we have I = HomO(M,E[a]). Therefore, the map ϕ is surjective.

Now, observe that

H = lim←−
M

HomO(M,E[a]),

where M runs over all finite O-submodules of U : a
Cyca(U)

, so that surjectivity of ϕ implies that

G′ is dense in the profinite group H . Then the closedness of G′ in H implies that G′ = H ,

which finishes the proof of the second statement of (a).
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For the first statement of (a), write Γ = Gal(K(E[a])/K) and consider it as a subgroup

of (Ô/a)∗. Let x ∈ Γ, σ ∈ G, and τx ∈ Gal(K(U : a)/K) a lift of x. Then the action of Γ on

G is given by

x · σ = τxστ
−1
x .

Now, let Q ∈ U : a. Recall that

U : a =
⋃
b

U : b,

where b runs over all nonzero ideals of O dividing a. Let b be a nonzero ideal of O dividing

a such that Q ∈ U : b. Then for b ∈ b we have

bQ ∈ U ⊂ E(K),

so

bQ = τ−1
x (bQ) = bτ−1

x (Q).

Hence

Q− τ−1
x (Q) ∈ E[b] ⊂ E[a],

so that

σ(Q− τ−1
x (Q)) = Q− τ−1

x (Q).

It follows that

σ(Q)−Q = στ−1
x (Q)− τ−1

x (Q).

Thus

κ(x · σ)(Q+ Cyca(U)) = κ(τxστ
−1
x )(Q+ Cyca(U))

= τxστ
−1
x (Q)−Q

= τx(στ
−1
x (Q)− τ−1

x (Q))

= τx(σ(Q)−Q)

= x · κ(σ)(Q+ Cyca(U)),

128



3.6. KUMMER THEORY

where the latter · is the natural action of Ô/a on H . As the above holds for all Q ∈ U : a, we

have

κ(x · σ) = x · κ(σ).

Hence κ is Γ-linear, as desired.

Now we prove (b). By (a) we have

(Ô/a) · κ(G) = H.

Let R be the subring of Ô/a generated by Γ. As κ is Γ-linear (see (a)), we have

R · κ(G) = κ(G).

Then, since R is a subring of Ô/a, the image κ(G) is in fact an R-submodule of H . We will

first show that R is open in Ô/a, so that (Ô/a)/R is finite.

For p a maximal ideal of O let ip be as defined before Theorem 3.13. Then let

i′p =

ip + 1 if NF/Q(p) = 2 and ip = 0,

ip otherwise.

As for almost all p of O we have ip = 0 (see definition of ip), we have for almost all p of O

that i′p = 0. Now, for ease of notation, let P be the set of maximal ideals of O dividing a.

Then using Theorem 3.13(b) one easily sees that the group

Γ′ =
∏
i′p=0

(
Op/p

vp(a)
)∗ × ∏

vp(a)≥i′p
i′p>0

(
1 + pi

′
p
(
Op/p

vp(a)
))
×

∏
vp(a)<i′p

{1}

is a subgroup of Γ, where each product runs over p ∈ P , and where we identified the auto-

morphism groups in Theorem 3.13(b) with their image in (Ô/a)∗.

Observe that

Ô/a =
∏
p∈P

(Op/p
vp(a))×

∏
p maximal

p-a

{0},
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where p∞ = {0}, and consider the canonical morphism

ϕ : Ô/a −→
∏

vp(a)≥i′p
i′p>0

(
Op/p

i′p

)
×

∏
vp(a)<i′p

Op/p
vp(a)

of profinite rings, where each product runs over p ∈ P , and observe that it is surjective.

Observe that vp(a) < i′p implies that i′p > 0. Now, as there are only finitely many p with

i′p > 0, the codomain of ϕ is finite, and therefore discrete. Hence ker(ϕ) = ϕ−1({0}) is an

open ideal of Ô/a. We will show that

ker(ϕ) ⊂ Γ′ − Γ′ = {γ − γ′ : γ, γ′ ∈ Γ′}.

Then, as R is a ring containing Γ′, we have ker(ϕ) ⊂ R. Therefore ker(ϕ) being open in

Ô/a implies that R is open in Ô/a, as desired.

Let a = (ap)p∈P ∈ ker(ϕ). We will show that for every p ∈ P there are γp and γ′p in

the p-th component of Γ′, such that

ap = γp − γ′p. (∗)

If we restrict ϕ to a component where p ∈ P and vp(a) < i′p, then we have the identity map.

Thus, for p ∈ P with vp(a) < i′p we have ap = 0. Hence γp = γ′p = 1 proves (∗) in this case.

Let p ∈ P with i′p > 0 and vp(a) ≥ i′p. Then we have

1 + ap ∈ 1 + pi
′
p(Op/p

vp(a)),

so taking γp = 1 + ap and γ′p = 1 proves (∗) in this case.

At last, let p ∈ P with i′p = 0. By the definition of i′p we have at least three residue

classes modulo p. Therefore, we may choose up ∈ Op/p
vp(a) such that up 6≡ 0 (mod p) and

up 6≡ ap (mod p). Then putting γp = up and γ′p = up − ap proves (∗) in this last case as well.

Hence, we have ker(ϕ) ⊂ Γ′ − Γ′, so R is open in Ô/a, as desired.
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Now, the image κ(G) is a closed subgroup of H , so Lemma 3.19(b) states that κ(G) is

finitely generated. Thus, there is a finite subset X ⊂ κ(G) such that 〈X〉 = κ(G). Note that

we also have R ·X = κ(G). As R is open in Ô/a, it is also closed. Hence, by compactness

of Ô/a, the ringR is compact, so thatR·X is compact. The latter implies thatR·X is closed,

thus R ·X = R ·X = κ(G). It follows that κ(G) is finitely generated as an R-module.

Then by finiteness of (Ô/a)/R the quotient

(Ô/a) · κ(G)

R · κ(G)
(∗∗)

is finite. By (a) we have (Ô/a) · κ(G) = H and R · κ(G) = κ(G). Thus, the finite quotient

(∗∗) is equal to H/κ(G), which shows that κ(G) is open in H , as desired.

Proof of Theorem 3.16. Let a be a Steinitz ideal of O. By Proposition 3.20(b) we have that

κa(Gal(K(U : a)/K(E[a]))) is open in HomO

(
U : a

Cyca(U)
, E[a]

)
.

Observe that for any O-submodule V of U : a containing E[a] the map

HomO

(
U : a

V
,E[a]

)
−→ AutO,V (U : a)

given by f 7→ [Q 7→ Q + f(Q)] is an isomorphism of topological groups. Hence, we have

the identification

AutO,U+E[a](U : a) = HomO

(
U : a

U + E[a]
, E[a]

)
.

Moreover, we have the inclusion

Ha = HomO

(
U : a

Cyca(U)
, E[a]

)
⊂ H ′a = HomO

(
U : a

U + E[a]
, E[a]

)
.

Now, by Proposition 3.18(c) the O-module Cyca(U)/E[a] is finitely generated of the same

O-rank as U . Therefore, the quotient H ′a/Ha is finite, so that Ha is open in H ′a. As im(κa)

is open in Ha, and Ha is open in H ′a, it follows that im(κa) is open in H ′a, which proves the

theorem.
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7. Galois representations on division points

Throughout this section, let K be a number field, let K be an algebraic closure of K, let E

be an elliptic curve over K withO = EndK(E) 6= Z a Dedekind domain, and let U ⊂ E(K)

be an O-submodule.

In this section we combine Theorem 3.13 and Theorem 3.16 from the previous two

sections to prove the following theorem.

Theorem 3.21. LetK be a number field, and letE,O, and U be as above. Let a be a Steinitz

ideal of O. Then Gal(K(U : a)/K) is an open subgroup of AutO,U(U : a).

Proof. Let a be a Steinitz ideal of O. By elementary module theory over O, we have the

following short exact sequence

0 −→ AutO,U+E[a](U : a) −→ AutO,U(U : a) −→ AutO,U [a](E[a]) −→ 0. (∗)

Moreover, we have the commutative diagram

0 // Gal(K(U : a)/K(E[a])) //

��

Gal(K(U : a)/K) //

��

Gal(K(E[a])/K) //

��

0

0 // AutO,U+E[a](U : a) // AutO,U(U : a) // AutO,U [a](E[a]) // 0

of profinite groups, where the vertical maps are the canonical injective maps. By Theorem

3.16 the left vertical map is open, and by Theorem 3.13(a) the right vertical map is open. It

follows that the middle map is open, which proves the theorem.

8. Existence of the density

Throughout this section, let K be a number field, let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain, let W be an O-submodule of E(K), and let V be
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anO-submodule of W such that W/V ∼= O/I , where I is a nonzero ideal ofO. Let P be the

set of prime ideals of O dividing I , let U = V : I , and let L = K(U). Let F be the fraction

field of O, and let n = rkO(U) (see Definition 3.17).

Let ΩK be the set of maximal ideals of OK . Choosing a model of E over a finitely

generated subring of K, we may talk about the reduction of E modulo p for almost all max-

imal ideals p of OK , and denote it by Ep. For the definition of good, bad, ordinary, and

supersingular reduction we refer to [Sil94].

Let S be the subset of ΩK consisting of the primes where Ep is not defined, the primes

of bad reduction for E, the primes of supersingular reduction for E (see [Sil94]), and the

primes dividing I . By [Lan87, Theorem 12, §13.4] the set of supersingular primes has density

zero. As there are only finitely many primes for whichEp is not defined, finitely many primes

of bad reduction for E, and finitely many primes dividing I , the set S has density zero too.

Now, for every p ∈ ΩK \ S we have a reduction map

πp : W −→ Ep(κ(p))

of O-modules, where κ(p) is the residue field of OK at p. We define

A(W,V ) = {p ∈ ΩK \ S : ker(πp) ⊂ V },

for which we often simply write A.

In this section we prove the following theorem.

Theorem 3.22. Suppose that I is not divisible by any prime number p that splits completely

in O. Then the set A has a natural density equal to

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U : pi) : L]

(
1− 1

[L((U : pi), (W : pi+1)) : L(U : pi)]

)
.

The proof of this theorem, given at the end of this section, follows the same lines as the proof

of Theorem 2.10.
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Lemma 3.23. Let R be a commutative ring, and let ϕ : N −→ N ′ be a morphism of R-

modules. Let X be an R-submodule of N such that N/X ∼=R R/a, where a is an ideal of R.

Then ker(ϕ) ⊂ X if and only if ϕ(N)/ϕ(X) ∼=R R/a.

Proof. ‘Only if’: note that there is a canonical isomorphism

N/(X + ker(ϕ)) −→ ϕ(N)/ϕ(X)

induced by ϕ and the projection map ϕ(N) −→ ϕ(N)/ϕ(X). Hence, if ker(ϕ) ⊂ X , then

ϕ(N)/ϕ(X) ∼=R N/X ∼=R R/a.

‘If’: on the other hand, suppose that ϕ(N)/ϕ(X) ∼=R R/a. As R is commutative, any

surjective map R/a −→ R/a of R-modules is an isomorphism. It follows that the canonical

map

f : N/X −→ ϕ(N)/ϕ(X)

induced by ϕ and the projection map ϕ(N) −→ ϕ(N)/ϕ(X) is an isomorphism. Now, the

kernel of f , which is trivial, contains (ker(ϕ) +X)/X , so that ker(ϕ) +X = X . Hence, we

have ker(ϕ) ⊂ X , as desired.

Let ϕ : ΩL −→ ΩK be given by q 7→ q∩K, and let S ′ = ϕ−1(S). Then for every q ∈ ΩL \S ′

we have the reduction map πq : U −→ Eq(κ(q)), where κ(q) is the residue field of L at q.

Now, since W/V ∼=O O/I , we have IW ⊂ V , so that W ⊂ U . Hence, we may define

A′ = {q ∈ ΩL \ S ′ : ker(πq|W ) ⊂ V }.

Similarly to the case of S, also S ′ has density zero.

Lemma 3.24. Suppose that d(A′) exists. Then d(A) exists and we have

d(A) =
1

[L : K]
d(A′).
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Proof. First, note that for all p ∈ ΩK \ S and q ∈ ΩL \ S ′ dividing p, we have p ∈ A if and

only if q ∈ A′.

Now, let p ∈ A, and let q ∈ ΩL \ S ′ be a prime dividing p. We will show that p splits

completely in L.

As p is of ordinary reduction, the reduction Ep of E modulo p has endomorphism ring

O. Moreover, by [Len96, Theorem 1] we have

N = Ep(κ(p)) ∼=O O/(π − 1),

where π is the Frobenius endomorphism of Ep. As O is Dedekind, every submodule of the

cyclic module N is again cyclic. Therefore πp(W ) and πp(V ) are cyclic. Now, since p ∈ A,

we have ker(πp) ⊂ V , so Lemma 3.23 implies that

πp(W )/πp(V ) ∼=O O/I.

Hence, by cyclicity πp(V ) = Iπp(W ), so that πp(V ) ⊂ IN . Let M = Ep(κ(p)) where κ(p)

is an algebraic closure of the residue field κ(p). By Proposition 3.3(a) we have

πp(V ) :M I ⊂ N +M [I].

Moreover, since N ∼=O O/(π− 1), we have (π− 1) ⊂ I . Then O/(p− 1) maps surjectively

to O/I , so that M [I] ⊂ N . It follows that πp(V ) :M I ⊂ N . We conclude that p splits

completely in L.

Thus, for x ∈ R≥1 we have

#{q ∈ ΩL : q ∈ A′ ∧ NL/Q(q) ≤ x} = [L : K] ·#{p ∈ ΩK : p ∈ A ∧ NK/Q(p) ≤ x}.
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Hence, we have

d(A′) = lim
x→∞

#{q ∈ ΩL : q ∈ A′ and NL/Q(q) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= lim
x→∞

[L : K]#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

.

As

lim
x→∞

#{q ∈ ΩL : NL/Q(q) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= 1,

we have

d(A′) = [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{q ∈ ΩL : NL/Q(q) ≤ x}

= [L : K] lim
x→∞

#{p ∈ ΩK : p ∈ A and NK/Q(p) ≤ x}
#{p ∈ ΩK : NK/Q(p) ≤ x}

= [L : K] d(A).

It follows that d(A) exists and that d(A) = 1
[L:K]

d(A′).

Lemma 3.25. We have A′ = {q ∈ ΩL \ S ′ : πq(W ) = πq(U)}.

Proof. Let q ∈ ΩL \S ′, and recall that S ′ has density zero. As q is of ordinary reduction, the

reduction Eq of E modulo q has endomorphism ring O. Moreover, by [Len96, Theorem 1]

we have

N = Eq(κ(q)) ∼=O O/(π − 1),

where π is the Frobenius endomorphism of Eq. Since O is Dedekind, every submodule of

the cyclic module N is again cyclic.

By Proposition 3.3(b) we have I · U = V , and by O-linearity of πq we have

πq(I · U) = I · πq(U).
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Therefore

πq(U)/πq(V ) = πq(U)/(Iπq(U)).

On the other hand E[I] ⊂ U and Eq[I] ⊂ πq(U) ⊂ N , so that the cyclicity of N implies that

πq(U)/πq(V ) ∼=O O/I.

It follows that πq(W ) = πq(U) if and only if πq(W )/πq(V ) ∼=O O/I . By Lemma 3.23, the

latter holds if and only if ker(W −→ E(κ(q))) ⊂ V .

Proof of Theorem 3.22. As W ⊂ U , we have for every p ∈ P and i ∈ Z≥0 that

W : pi ⊂ U : pi.

Let M = L(V : I∞) = L(W : I∞) = L(U : I∞) and note that

M = L(U : p∞ : p ∈ P).

For p ∈ P with residue characteristic p, the finite subfields of L(U : p∞) have p-power de-

gree over L. Hence, since I is not divisible by two distinct primes having the same residue

characteristic, we have for distinct p and q in P that

L(U : p∞) ∩ L(U : q∞) = L.

It follows that G = Gal(M/L) decomposes as a product over p ∈ P of the Galois groups

Gp = Gal(L(U : p∞)/L), that is, we have G =
∏

p∈P Gp. Now, for all p ∈ P and i ∈ Z≥0 let

Gp,i = Gal(M/L(U : pi)),

let

Hp,i = Gal(M/L((U : pi), (W : pi+1))) ⊂ Gp,i,
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and note that we have

· · · ⊂ Gp,i+1 ⊂ Hp,i ⊂ Gp,i ⊂ · · ·

by the above. Define

Cp,i = Gp,i \Hp,i,

and

Cp =
∞⋃
i=0

Cp,i.

One easily sees that Cp is a disjoint union of sets Cp,i. At last, define

C =
⋂
p∈P

Cp.

To prove that C is closed under conjugation in G, open in G, and that λ(∂C) = 0,

where λ is the Haar measure on G, one easily imitates the Galois theoretic proofs of lemma’s

2.14, and 2.15.

The rest of the proof is an imitation of the proof of Theorem 2.10. One uses Lemma

3.25 to show that d(A′) = λ(C). Then by Lemma 3.24 and the decomposition

G =
∏
p∈P

Gal(L(U : p∞)/L),

one finds

d(A) =
1

[L : K]

∏
p∈P

∞∑
i=0

1

[L(U : pi) : L]

(
1− 1

[L((U : pi), (W : pi+1)) : L(U : pi)]

)
,

as desired.

9. Rationality of the density

Throughout this section, let K be a number field, and let E be an elliptic curve over K with

O = EndK(E) 6= Z a Dedekind domain. Let W be an O-submodule of E(K), and let V be
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an O-submodule of W such that W/V ∼= O/I where I is a nonzero ideal of O. Let P be the

set of prime ideals of O dividing I , let U = V : I , and let L = K(U). Let F be the fraction

field of O, and let n = rkO(U) (see Definition 3.17). Write N for the field norm NF/Q.

In this section we prove the following theorem.

Theorem 3.26. Suppose that I is not divisible by any prime number p that splits completely

in O. Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P

AutO,U : pjp (U : p∞) ⊂ Gal(L(U : p∞)/L).

Then the density d(A(W,V )) equals

1
[L:K]

∏
p∈P

[
1

[L(U : pjp ):L]
· N(p)n(N(p)−1)

N(p)n+1−1
+
∑jp−1

i=0

(
1

[L(U : pi):L]
− 1

[L(U : pi,W : pi+1):L]

)]
.

We remark that (jp)p∈P , as in the theorem above, exist by Theorem 3.21.

Lemma 3.27. Let p ∈ P , and let i ∈ Z≥0. Then the following hold.

(a) The degree [L(U : pi+1) : L(U : pi)] divides N(p)n+1, and if i ≥ jp, it is equal to

N(p)n+1.

(b) The degree [L(U : pi,W : pi+1) : L(U : pi)] divides N(p), and if i ≥ jp, it is equal to

N(p).

Proof. Write X = U : pi+1. By Proposition 3.3(b) we have pX = U : pi. Then the inclusions

E[p] ⊂ U ⊂ pX imply that the morphism

f : AutO,pX(X) −→ HomO(X/pX,E[p])

of groups given by σ 7→ [x+pX 7→ σ(x)−x] is an isomorphism. AsX is a finitely generated

O-module of rank n whose torsion submodule is cyclic and contains E[p], we have

X ∼=O M ⊕ (O/b),
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where b is an ideal of O divisible by p and M is a finitely generated projective O-module of

rank n. It follows that

X/pX ∼=O (O/p)n+1.

Since E[p] ∼=O O/p and #(O/p) = N(p), the group AutO,pX(X) has order N(p)n+1.

Now, recall that we have an injective morphism

ϕ : Gal(L(X)/L(pX)) −→ AutO,pX(X)

of groups, implying that [L(X) : L(pX)] divides N(p)n+1. Moreover, if i ∈ Z≥jp , then one

easily checks that ϕ is an isomorphism. The latter shows that

[L(X) : L(pX)] = N(p)n+1,

which proves (a).

To prove (b), write

Y = W : pi+1,

and observe that Gal(L(pX, Y )/L(pX)) maps injectively to AutO,pX(Y + pX). One easily

checks that

AutO,pX(Y + pX) −→ HomO

(
Y + pX

pX
,E[p]

)
sending σ 7→ [x+ pX 7→ σ(x)− x] is an isomorphism, and that

Y + pX

pX
∼=O

Y

Y ∩ pX

holds. Therefore, for the first statement of (b) it suffices to show HomO

(
Y+pX
pX

, E[p]
)

has

order dividing N(p). We will show that the order of Y/(Y ∩ pX) equals N(p), which finishes

the proof of the first statement of (b).

To this end, recall that U = V : I , so that I · U = V . We claim that

Y/(V : pi+1) ∼=O O/I, (∗)

140



3.9. RATIONALITY OF THE DENSITY

and prove it as follows.

As Y is a finitely generatedO-module of rank n whose torsion submodule is cyclic and

contains E[pi+1], we have

Y ∼=O N ⊕ (O/c),

where c is an ideal of O divisible by pi+1 and N is a finitely generated projective O-module

of rank n. It follows that
Y

pi+1Y
∼=O (O/pi+1)n+1.

By Proposition 3.3(b) we have pi+1Y = W , so that the index (Y : W ) of W in Y equals

N(pi+1)n+1. Similarly, one shows that

(
(V : pi+1) : V

)
= N(pi+1)n+1.

Now, observe that

(Y : V ) = (Y : W ) · (W : V )

and

(Y : V ) =
(
Y : (V : pi+1)

)
·
(
(V : pi+1) : V

)
,

from which it follows that

(Y : (V : pi+1)) = (W : V ) = N(I).

Moreover, the annihilator of Y/(V : pi+1) is equal to I . Indeed, from I · W ⊂ V we see

I · Y ⊂ V : pi+1. Conversely, for x ∈ O with

x ·
(

Y

V : pi+1

)
= 0,

we have

x · Y ⊂ V : pi+1.
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Multiplying the latter by pi+1 and using Proposition 3.3(b) we see that x ·W ⊂ V , which

implies that x ∈ I .

Thus, we have that Y/(V : pi+1) has order N(I) and its O-annihilator equals I . As up

to isomorphism there is only one O-module of order N(I) and with O-annihilator I , namely

O/I , this finishes the proof of the claim (∗).

Observe that we have the following inclusions

V : pi+1 ⊂ pY +
(
V : pi+1

)
⊂ Y ∩ pX ⊂ Y.

Then by (∗) we have that Y/(Y ∩pX) is cyclic. Moreover, as Y
pY+(V : pi+1)

is annihilated by p,

it follows that Y/(Y ∩ pX) is also annihilated by p. Therefore Y/(Y ∩ pX) is a vector space

of dimension 0 or 1 over O/p, so that Y/(Y ∩ pX) has order 1 or N(p).

Suppose that Y/(Y ∩ pX) has order 1. Then by definition of Y and X we have

W : pi+1 ⊂ p(U : pi+1).

Multiplying by pi+1 and using Proposition 3.3(b) we find

W ⊂ pU = p(V : I).

Writing I = Jp for some ideal J of O, we obtain

W ⊂ p((V : J) : p) = V : J,

so that JW ⊂ V . However, the latter means J · (W/V ) = 0, which is a contradiction, since

W/V has annihilator I and J strictly contains I . It follows that Y/(Y ∩ pX) has order N(p),

as desired. We conclude that

[L(pX, Y ) : L(pX)] | N(p).

Now, note that we have the equality

#(X/pX) = #

(
Y + pX

pX

)
·#
(

X

Y + pX

)
,
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where by the above we have

#(X/pX) = N(p)n+1 and #

(
Y + pX

pX

)
= N(p),

so that

#

(
X

Y + pX

)
= N(p)n.

Then

[L(X) : L(pX, Y )] | N(p)n.

Suppose that i ∈ Z≥jp . Then by (a) we have [L(X) : L(pX)] = N(p)n+1. As [L(X) :

L(pX, Y )] divides N(p)n and [L(pX, Y ) : L(pX)] divides N(p), it follows that [L(X) :

L(pX, Y )] = N(p)n and [L(pX, Y ) : L(pX)] = N(p).

Proof of Theorem 3.26. This is completely analogous to the proof of Theorem 2.21, using

Theorem 3.22 instead of Theorem 2.10 and Lemma 3.27 instead of Lemma 2.23.

10. Main theorem

Let K be a number field, and let E be an elliptic curve over K with O = EndK(E) 6= Z a

Dedekind domain. Let W ⊂ E(K) be anO-submodule, and let V ⊂ W be anO-submodule

such that W/V ∼=O O/I where I is a nonzero ideal of O. Let U = V : I , and let L = K(U).

Let n = rkO(W ) (see Definition 3.17), and let P be the set of prime ideals of O dividing I .

Let (jp)p∈P ∈ (Z≥0)P such that for every p ∈ P we have

AutO,U : pjp (U : p∞) ⊂ Gal(L(U : p∞)/L).

We remark that such jp exist by Theorem 3.21.

Theorem 3.28. Suppose that I is not divisible by any prime number p that splits completely

in O. Let A(W,V ) be defined as above Theorem 3.22. Then the following statements hold.
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(a) The density d(A(W,V )) exists and equals a positive rational number in the interval

[
1

[L:K]
·
∏

p∈P
N(p)−1

N(p)n(jp−1)+jp (N(p)n+1−1)
,
∏

p∈P

(
1− N(p)n−1

N(p)(n+1)jp ·(N(p)n+1−1)

)]
whose denominator divides

[L : K]
∏
p∈P

(
N(p)(n+1)jp · N(p)n+1 − 1

N(p)− 1

)
.

(b) d(A(W,V )) = 1 if and only if V = W or W is finite.

Observe that Theorem 13 in Section 3.1 follows from the above theorem.

Proof. By Theorem 3.26 we have that d(A(W,V )) exists and is equal to

1
[L:K]

∏
p∈P

[
1

[L(U : pjp ):L]
· N(p)n(N(p)−1)

N(p)n+1−1
+
∑jp−1

i=0

(
1

[L(U : pi):L]
− 1

[L(U : pi,W : pi+1):L]

)]
,

which is rational.

Now, let p ∈ P . By Lemma 3.27 we have for all i ∈ Z≥0 that

[L(U : pi+1) : L(U : pi)] | N(p)n+1

and

[L(U : pi,W : pi+1) : L(U : pi)] | N(p).

To ease the notation, for i ∈ Z≥0 write

Ti =
1

[L(U : pi) : L]
− 1

[L(U : pi,W : pi+1) : L]
,

and note that

Ti =
1

[L(U : pi) : L]

(
1− 1

[L(U : pi,W : pi+1) : L(U : pi)]

)
.
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Hence [L(U : pi,W : pi+1) : L(U : pi)] = 1 implies Ti = 0. Using Lemma 3.27 we obtain for

p ∈ P that
1

[L(U : pjp) : L]
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+

jp−1∑
i=0

Ti

is greater than or equal to

1

N(p)(n+1)jp
· N(p)n+1 − N(p)n

N(p)n+1 − 1
=

N(p)− 1

N(p)n(jp−1)+jp(N(p)n+1 − 1)
.

Thus, we have the lower bound

d(A(W,V )) ≥ 1

[L : K]
·
∏
p∈P

N(p)− 1

N(p)n(jp−1)+jp(N(p)n+1 − 1)
.

For the upper bound, we have for i ∈ Z≥0

L(U : pi,W : pi+1) ⊂ L(U : pi+1),

so that
jp−1∑
i=0

Ti ≤ 1− 1

[L(U : pjp) : L]
.

Then for p ∈ P , write dp = [L(U : pjp) : L] and note that we have

1

dp
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+

jp−1∑
i=0

Ti ≤
1

dp
· N(p)n(N(p)− 1)

N(p)n+1 − 1
+ 1− 1

dp

≤ 1− 1

N(p)(n+1)jp

(
1− N(p)n(N(p)− 1)

N(p)n+1 − 1

)
= 1− N(p)n − 1

N(p)(n+1)jp · (N(p)n+1 − 1)
,

where we use that dp = [L(U : pjp) : L] ≤ N(p)(n+1)jp (see Lemma 3.27). Thus, as [L : K] ≥

1, an upper bound for d(A(W,V )) is∏
p∈P

(
1− N(p)n − 1

N(p)(n+1)jp · (N(p)n+1 − 1)

)
.
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Now, we want to find x ∈ Z≥1 such that x · d(A(W,V )) ∈ Z. By Lemma 3.27 we have

N(p)(n+1)jp · [L(U : pjp) : L]−1 ∈ Z.

As for i ∈ {0, . . . , jp − 1} the fields L(U : pi) and L(U : pi,W : pi+1) are contained in

L(U : pjp), we have

N(p)(n+1)jp ·
jp−1∑
i=0

Ti ∈ Z.

It follows that the denominator of d(A(W,V )) divides

[L : K]
∏
p∈P

(
N(p)(n+1)jp · N(p)n+1 − 1

N(p)− 1

)
,

which finishes the proof of (a).

From the lower bound, we see that d(A(W,V )) is nonzero. From the upper bound, we

see that d(A(W,V )) = 1 only if I = O or n = 0, that is, only if V = W or W is finite. On

the other hand, if V = W or W is finite, we easily see that d(A(W,V )) = 1, which finishes

the proof of (b).
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Samenvatting

De Nederlandse vertaling van de titel van dit proefschrift is Delingspunten in de getalthe-

orie. Het proefschrift bestaat uit drie hoofdstukken, waarvan de eerste twee hoofdstukken

delingspunten van elementen van de multiplicatieve groep van een getallenlichaam betref-

fen. Het derde hoofdstuk betreft delingspunten van punten op een elliptische kromme met

complexe vermenigvuldiging over een getallenlichaam.

In hoofdstuk één kijken we naar lichaamsuitbreidingen van getallenlichamen verkre-

gen door het adjungeren van alle radicalen van eindig voortgebrachte multiplicatieve onder-

groepen, zogeheten maximale radicale uitbreidingen. We bewijzen stellingen over de struc-

tuur van de pro-eindige groepen die optreden als Galoisgroep van een maximale radicale

uitbreiding van een getallenlichaam.

In hoofdstuk twee bestuderen we de Galoisgroepen van alle radicale uitbreidingen

van getallenlichamen en bewijzen wij hiermee stellingen over de natuurlijke dichtheid van

bepaalde verzamelingen van priemen van getallenlichamen.

In hoofdstuk drie voeren we het analogon uit van hoofdstuk twee voor elliptische krom-

men met complexe vermenigvuldiging over een getallenlichaam. We bestuderen de Galois-

groepen van lichaamsuitbreidingen van getallenlichamen verkregen door het adjungeren van

delingspunten van een elliptische kromme met complexe vermenigvuldiging over een getal-

lenlichaam. Hiermee bewijzen we het analogon van de dichtheidsstelling van hoofdstuk twee
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voor het geval van elliptische krommen.

In alle genoemde gevallen hebben de genoemde Galoisgroepen een open beeld binnen

een geschikt gedefiniëerde groep van moduulautomorfismen.
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