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Geometric confinement strongly influences the behavior of microparticles in liquid environments. However,
to date, nonspherical particle behaviors close to confining boundaries, even as simple as planar walls, remain
largely unexplored. Here, we measure the height distribution and orientation of colloidal dumbbells above
walls by means of digital in-line holographic microscopy. We find that while larger dumbbells are oriented
almost parallel to the wall, smaller dumbbells of the same material are surprisingly oriented at preferred angles.
We determine the total height-dependent force acting on the dumbbells by considering gravitational effects
and electrostatic particle-wall interactions. Our modeling reveals that at specific heights both net forces and
torques on the dumbbells are simultaneously below the thermal force and energy, respectively, which makes
the observed orientations possible. Our results highlight the rich near-wall dynamics of nonspherical particles
and can further contribute to the development of quantitative frameworks for arbitrarily shaped microparticle
dynamics in confinement.

DOI: 10.1103/PhysRevE.102.062608

I. INTRODUCTION

The behavior of micron-sized colloidal particles under
confinement has been a subject of intensive research in en-
gineering, materials science, and soft matter physics [1]. Such
particles often serve as model systems for understanding the
effects of confinement on microscale processes, e.g., structure
formation and rheology, offering quantitative insights into the
behavior of biological systems [2–4]. This understanding is
further desirable for various applications where confinement
dictates the dynamics, ranging from improving microfluid
transport in lab-on-a-chip devices [5], growing low-defect
photonic crystals [6], and tuning pattern formation for materi-
als design [7–9].

Confinement can strongly affect hydrodynamic and elec-
trostatic (self-)interactions. These effects depend on particle-
wall separation as well as particle size and shape [10]. Yet,
the majority of research has focused on the behavior of
spherical particles, both from a theoretical and experimen-
tal standpoint. This includes the behavior of single spheres
close to a planar wall [11–19], between two walls [20–23],
and in microchannels [24,25]. Going beyond single-particle
dynamics, the collective behavior of sphere clusters and dense
suspensions has also been examined close to [26,27] as well
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as in between walls [28], in microchannels [29,30], and in
confining droplets [31].

However, microparticles involved in biological processes
and industrial applications typically depart from the ideal
spherical shape. Since the motion of nonspherical particles is
different from that of spherical ones [32–36], there is a need
to study the effect of confinement on nonspherical particles
[37] to gain proper understanding of both naturally occurring
and technologically relevant systems. For nonspherical col-
loids, dynamics have typically been measured far from walls
[35]. Despite predictions for axisymmetric particles [38] and
simulated studies for arbitrary shapes [39,40], the effect of
particle-wall separation remains experimentally unexplored.
Yet, the interplay between shape anisotropy and wall separa-
tion ought to be examined as well to develop accurate model
systems for molecular matter.

To date, a plethora of techniques has been employed for
colloidal studies, including optical microscopy [41], opti-
cal tweezers [21,42–44], light scattering [45–48], evanescent
wave dynamic light scattering [20,27,49–52], total internal
reflection microscopy (TIRM) [16,53,54], TIRM combined
with optical tweezers [55], holographic microscopy [56,57],
and holographic optical tweezers [26]. Each of these tech-
niques has its own strengths and weaknesses, especially
when it comes to measuring anisotropic particle dynam-
ics near walls with high spatiotemporal resolution in three
dimensions. For example, optical microscopy is a straightfor-
ward technique yet lacks sensitivity to out-of-plane motion.
Confocal microscopy, on the other hand, provides accurate
three-dimensional measurements but is relatively slow when
recording image stacks and additionally requires refractive
index matching and fluorescent labeling. Optical tweezers
confine particle motion and hence hinder long-term three-
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dimensional measurements, while light scattering determines
ensemble properties and is thus difficult to interpret in the case
of anisotropic particles [58]. TIRM is an elaborate technique
that provides high resolution, though its range is limited to
the near-wall regime, typically less than 400 nm from the wall
[16,53–55].

To overcome the above limitations, holographic mi-
croscopy may be employed instead, as it records both position
and shape [59] with high resolution [57], also in the out-of-
plane direction. In addition, it is even capable of resolving
weakly scattering objects as used in biology [56,60–62]
without the need for fluorescent labeling [63]. Moreover,
while measurements are typically performed using lasers, a
cost-effective holographic microscopy setup can also be con-
structed using a light-emitting diode (LED) mounted on an
existing microscope [62]. As a downside, analyzing holo-
graphic measurements may be computationally expensive
which, if desired, can be compensated by implementation of a
neural network [64] at the expense of some accuracy loss.

In this article, we measure colloidal dumbbell dynamics
above a planar wall, a simple model system that enables the
study of the effects of shape anisotropy on confined dynamics.
We accurately probe how the particle orientation is affected by
the presence of the wall and specifically the particle-wall sep-
aration by means of digital in-line holographic microscopy.
We find that smaller dumbbells are oriented at nonzero angles
with respect to the wall, while in contrast, larger dumb-
bells of the same material are oriented mostly parallel to
the wall. In all cases, we were able to identify the rela-
tion between particle orientation and particle-wall separation.
We further compare our experimental findings to a minimal
model for the dumbbell that combines gravitational and elec-
trostatic dumbbell-wall interactions. We find that, despite its
simplicity, the model provides qualitative insight into our ob-
servations. Our results highlight the importance of wall effects
on anisotropic particle motion, and may ultimately contribute
to the development of a quantitative framework for the dy-
namics of particles with arbitrary shapes in confinement, not
fully established at present in the literature.

II. METHODS

A. Materials

We used spherical silica particles of diameter (1.10 ±
0.04) μm [size polydispersity (PD) 3.7%] [65] prepared fol-
lowing the method of Ref. [66]. Briefly, 0.5 mL tetraethyl
orthosilicate (TEOS) diluted with 2 mL ethanol was added to
a mixture of 50 mL ethanol and 10 mL ammonia (25%). The
mixture was stirred magnetically for 2 h. The seed particles
were grown to the desired size by adding 5 mL TEOS diluted
with 20 mL ethanol during 2 h using a peristaltic pump. The
dispersion was stirred overnight and washed by centrifuging
and redispersing in ethanol three times. We obtained their
diameter and PD from transmission electron micrographs us-
ing IMAGEJ [67], fitting particle diameters with the software’s
built-in functions.

In addition, we used (2.1 ± 0.1) μm diameter (PD 2.8%)
spherical silica particles purchased from Microparticles
GmbH. In all experiments, dumbbell particles are naturally
occurring aggregates of two spherical particles. All solutions

were prepared with fresh ultra-pure Milli-Q water (Milli-Q
Gradient A10, 18.2 M�cm resistivity). Glass cover slips were
purchased from VWR and were used as received.

B. Holographic setup

We employed a digital in-line holographic microscopy
(DIHM) setup based on existing examples [62]. Our setup
made use of an inverted microscope (Nikon Ti-E) equipped
with a 60× oil immersion objective (NA = 1.4). To generate
a scatter pattern, we used a 660-nm LED source (Thorlabs
M660L4) at its maximum power (3120 mW, using a Thor-
labs LEDD1B LED driver), mounted on the lamphouse port
of the microscope instead of the standard bright-field lamp
[see Fig. 1(a) for a schematic]. Prior to each measurement,
we performed a Köhler illumination procedure in bright-field
mode to align the diaphragm and condenser. Additionally,
we employed a linear polarizer on top of the condenser to
improve the quality of the holograms by enforcing a specific
polarization direction.

C. Sample preparation and measurement details

Spherical silica particles of either 1.1 or 2.1 μm diameter
were spin coated from ethanol at dilute concentration onto the
glass cover slips, which fixed their position. The cover slips
were then placed at the base of the sample holder, serving
as the walls relative to which particle motion was measured.
The fixed-to-the-wall spheres served as reference points for
determining the position of said walls [see also Figs. 1(b)
and 1(c) as well as the discussion in Sec. II E]. Afterward, an
aqueous dispersion of particles of the same size was added in
the sample holder, which was subsequently entirely filled with
water and covered at the top with a glass cover slip to prevent
drift. The dispersion contained single spheres as well as small
fractions of dumbbell particles that consisted of two touching
spheres; see also Fig. 1(b) for an illustration. The motion of all
particles above the wall was recorded at a frame rate of 19 fps
for at least 6 min.

D. Analysis of holograms

For all measurements, the recorded holographic mi-
croscopy images were corrected with background as well
as dark-field images to minimize errors stemming from in-
terfering impurities along the optical train. Then, for each
measurement, the particle of interest was selected manually
and a circular crop around its hologram was taken [see also
Fig. 1(d)] to reduce the amount of pixels considered during
model fitting, thereby increasing computational efficiency.
From the holograms, we determine the three-dimensional po-
sition (x, y, z), the radius, R, and refractive index, n, of the
spheres and dumbbells as described in Subsecs. II D 1 and
II D 2, respectively.

1. Spherical particles

To fit the experimental data, we performed least-squares
fits of a model based on Mie scattering theory [56] using the
PYTHON package HOLOPY [68] [see Fig. 1(d) as an example].

The 3D position of the particles in time was fitted
in four steps [depicted in Fig. 1(e)]: The first three are
characterization steps to find the approximate 3D position
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FIG. 1. Measuring particle-wall separation with in-line holographic microscopy (HM). (a) Schematic representation of the light path of
our setup. (b) Holograms are formed by the interference of the reference field Eref with the scattered field Escat . We are interested in the gap
height hg [or equivalently the center of mass (c.m.) height hc.m.] with respect to a planar glass wall. (c) We determine the position of the wall
by fitting a plane to the positions of at least three particles fixed on the wall (blue). The gap height hg between a diffusing particle (yellow)
and the wall is the distance between the particle’s measured position and its position projected on the plane along n̂. (d) Comparison of an
experimental image for a sphere, the corresponding fitted model and residual. The low values of the residual indicate the good agreement
between experimental data and model. (e) The 3D position of the particles in time is fitted in four steps: The first three are characterization
steps, in which we find the approximate 3D position (fitting step 1) as well as appropriate guesses for the refractive index n (fitting step 2)
and radius R (fitting step 3). In the fourth step, we use these positions and the average n and R values to determine the 3D position accurately
(fitting step 4). All steps are explained in detail in Sec. II D1. Plot (e 2): Average n obtained from fitting step 2 for both spheres and dumbbells;
the inset shows a distribution from a single measurement. Plot (e 3): Average R obtained from fitting step 3 for both spheres and dumbbells;
the inset shows a distribution from a single measurement. For comparison, we show particle radii measured using TEM. Plot (e 4): Final 3D
position in time for an R = 0.55 μm sphere, as obtained in fitting step 4.

(fitting step 1) as well as appropriate guesses for the refractive
index n (fitting step 2) and the radius R (fitting step 3). In the
fourth step, we used these positions and the average values of
the radius and refractive index to determine the 3D position
accurately (fitting step 4). We will now discuss these steps in
detail. The subscripts correspond to the fitting step in which
each parameter was determined.

Fitting step 1. For each frame, we determined the rough
particle position (x1, y1, z1), using reasonable estimates for the
radius Re and refractive index ne.

Fitting step 2. For the current frame, we determined
z2 and characterized the particle refractive index n2, while
keeping the (x1, y1) position and the estimated radius Re

fixed. Example distributions and average values of the re-
fractive indices obtained in this fitting step are shown in
Fig. 1(e2).

Fitting step 3. While keeping the (x1, y1) position and
the estimated refractive index n2 fixed, we fitted z3 and
the radius R3. Example distributions and average values

of the radii obtained in this fitting step are shown in
Fig. 1(e 3).

Fitting step 4. Once the initial positions (x1, y1, z3) and
particle properties (n2, R3) were determined for all frames, we
calculated the time averaged over all frames properties (〈n2〉t ,
〈R3〉t ). Lastly, we performed a least-squares fit for each frame,
allowing (x, y, z) to vary, keeping (n = 〈n2〉, R = 〈R3〉) fixed
[Fig. 1(e 4)].

Following this procedure, we minimized unwanted corre-
lations between (z, R, n) that can arise when allowing all
parameters to vary at once during the fit. For every frame, save
the initial one, we used the values of the previous frame as
starting guesses to speed up the (convergence of the) analysis.

2. Dumbbell particles

The steps followed to obtain particle properties and po-
sitions of the dumbbells were analogous to those of the
single spheres, only modified to additionally account for
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determining the dumbbell orientations. The scattering pattern
of the dumbbell, calculated using the T matrix (or null-field)
method [69], was modeled using the PYTHON package HOLOPY

[68]. We used three characterization fitting steps to find the
approximate 3D position and orientation (fitting step 1) as
well as appropriate guesses for refractive indices n(A), n(B)

(fitting step 2) and the radii R(A), R(B) (fitting step 3). R(A), R(B)

are the radii of the respective A and B spheres of the dumbbell
with refractive indices n(A), n(B). In the fourth and final step,
we used these positions, orientations, and the average values
of the radii and refractive indices to determine the 3D position
and orientation accurately (fitting step 4). We will now discuss
these steps in detail. The subscripts correspond to the fitting
step in which each parameter was determined.

Fitting step 1. In this first step, we determined
(x1, y1, z1, α1, β1, γ1) of the center-of-mass (c.m.), with
(R(A)

e , n(A)
e , R(B)

e , n(B)
e ) set to reasonable estimates. Here,

(α, β, γ ) correspond to the three Euler angles using the
ZY Z convention, while (x, y, z) denote the c.m. positions
and, again, numbered subscripts the fitting step in which the
parameter was obtained.

Fitting step 2. We determined the refractive in-
dices and z position (n(A)

2 , n(B)
2 , z2) while keeping

(x1, y1, α1, β1, γ1, R(A)
e , R(B)

e ) fixed.
Fitting step 3. Radii and z position (R(A)

3 , R(B)
3 , z3) were

fitted while (x1, y1, α1, β1, γ1, n(A)
2 , n(B)

2 ) were kept constant.
Fitting step 4. After determining the initial positions

(x1, y1, z3), orientations (α1, β1, γ1), and particle properties
(n(A)

2 , n(B)
2 , R(A)

3 , R(B)
3 ) for all frames, we calculated the time-

averaged properties (n(A) = 〈n(A)
2 〉t , n(B) = 〈n(B)

2 〉t , R(A) =
〈R(A)

3 〉t , R(B) = 〈R(B)
3 〉t ) over all frames. Then, we performed

a least-squares fit for each frame again, where we allowed
(x, y, z, α, β, γ ) to vary, keeping (R(A), R(B), n(A), n(B) ) fixed.

Following this procedure, we minimize unwanted correla-
tions between (α, β, γ , z, R(A), R(B), n(A), n(B) ) that can arise
when allowing all parameters to vary at the same time. For
every frame, save the initial one, we used the values of the
previous frame as starting guesses to speed up the analysis. On
that note, we additionally restricted the differences in rotation
angles between subsequent frames to be smaller than 90 deg.
Finally, we used the open-source TRACKPY implementation
[70] of the Crocker-Grier algorithm [71] to link the individual
sphere positions between frames into continuous trajectories,
ensuring a correct and consistent orientation of the dumbbell.
Because we assign specific labels to both particles in the first
frame of the video, we can distinguish the particles, and in
turn, between positive and negative orientations, throughout
the video.

E. Particle-plane separation

The position and orientation of the wall was accurately
determined from the three-dimensional positions of at least
three spin coated spheres that were irreversibly fixed to the
wall. This served two purposes: first, to speed up the fit of
the mobile particles under study by providing a reliable lower
bound on their axial position, and second, to accurately de-
termine their height from the wall. A reference point on the
plane rp = (0, 0, zp) and a normal vector n̂p [see the inset of

(a)

(b)

(c)

FIG. 2. Sphere-wall gap height and translational diffusion above
a planar wall. (a) The z positions of a spherical particle diffusing
above a wall, as well as that of the plane (directly below the particle)
obtained from the positions of three spheres fixed on the wall, are
plotted in time. Using the plane z position, the gap height hg be-
tween the diffusive particle and wall is determined. (b) Experimental
sphere-wall gap height distributions together with a fit with the model
from Ref. [10] which combines gravitational and electrostatic effects
for 1.1 μm (orange, fit parameters ρp = 2.1 g cm−3, 1/κ = 107 nm,
ζp = −41 mV) and 2.1 μm (blue, fit parameters ρp = 2.2 g cm−3,
1/κ = 207 nm, ζp = −52 mV) spheres. (c) Normalized translational
near-wall in plane diffusion coefficient of 1.1 μm (light) and 2.1 μm
(dark) spheres as function of normalized gap height. Error bars
denote standard deviations. Experimental data are plotted against
the theoretical prediction that follows from Ref. [75]. Inset shows
the non-normalized diffusion coefficient values for both sphere sizes
with gap height.

Fig. 1(c)] were determined for all the fixed particles for each
frame. Using rp and n̂p, the particle-plane separation along
the normal vector n̂p was determined for the mobile spheres
[see also Fig. 2(a)] from n̂p · (r − rp) − R, with r and R being
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the position and radius of the sphere, respectively. For the
dumbbells, particle-plane separation was determined using the
same procedure as the individual spheres; both the c.m. height,
hc.m. = n̂p · (rc.m. − rp), above the wall is reported, as well as
gap heights of both the lower and upper sphere. Note that since
the orientation of the dumbbell can flip, the lower (or upper)
sphere is not necessarily always the same physical particle.

F. Sphere height distribution

To model the height distributions of the spherical particles
above the wall in Sect. IIIA, we used a model that combines
electrostatic and gravitational effects [10,72] to calculate the
total height-dependent force F (hc.m.) in the z direction [see
also schematic in Fig. 1(b)]:

F (hc.m.) = Fe(hc.m.) + Fg, (1)

Fe(hc.m.) = 64πεκR

(
kBT

e

)2

tanh

(
e�w

4kBT

)

tanh

(
e�p

4kBT

)
e−κhc.m. , (2)

Fg = −4

3
πR3(ρp − ρ f )g, (3)

with hc.m. the height of the center of the sphere, Fe(hc.m.)
the force due to overlapping electric double layers of the
particle and the wall, Fg the gravitational force, ε the di-
electric permittivity of water, kB the Boltzmann constant,
T = 300 K the temperature, e the elemental charge, �p and
�w the Stern potentials of the particle and wall respectively,
ρp ≈ 2.0 g cm−3 the particle density, ρ f the density of water,
g the gravitational acceleration, and κ−1 the Debye length.
Based on the pH of our solution (pH ≈ 5.5), we find that
the solution ionic strength is approximately I = 10−5.5 =
3 × 10−6 M. Therefore, the Debye length is expected to be
κ−1(nm) = 0.304/

√
I (M ) = 175 nm [73], in good agreement

with the fit values of 100 to 230 nm that we obtained by fitting
Eqs. (7) and (11) to the experimental data for both sphere
and dumbbell particles, respectively. We neglected van der
Waals interactions; we used the Derjaguin approximations for
Fe. For the electrostatic potential, we used the Debye-Hückel
approximation,

�(r) = �s
R

r
exp (−κ (r − R)), (4)

with �(r) the electrostatic potential at a distance r from the
center of the particle and �s the Stern potential. By setting
�(r = 1/κ ) equal to the here measured ζ potential of the
spherical particles (see values in Sec. III A), we calculated
an approximate value for the Stern potential. This we sub-
sequently used as a starting value for the least-square fit of
the model to our experimental height distributions. For the
wall, we converted the ζ potential value of −55 mV [74] to
an approximate Stern potential using Eq. (4). For ρp and �p

we used ±2σ bounds; we fixed �w to the calculated value as
discussed above and put no restrictions on κ .

To calculate the expected height distribution, we first ob-
tained the electrostatic and gravitational potential energy,
φe(hc.m.) and φg(hc.m.), respectively, from the force,

φe(hc.m.) = Fe(hc.m.)/κ, (5)

φg(hc.m.) = −Fghc.m., (6)

which we then used to derive the appropriate Boltzmann
distribution,

p(hc.m.) = A exp

(
−φe(hc.m.) + φg(hc.m.)

kBT

)
, (7)

up to a normalization constant A [10].

G. Sphere near-wall diffusion

To test the validity of our measuring approach and the
accuracy of our extracted gap heights above the wall, we
sought to compare our measurements to theoretical predic-
tions. To this end, and since well-established predictions exist
for spheres alone, we determined the translational diffusion
coefficient for our sphere measurements as function of gap
height. To calculate the translational diffusion coefficient with
gap height in Sec. III A, we proceeded as follows: Instead of
binning particle trajectories in time leading to bins with large
height variations, we split all trajectories into shorter trajec-
tories for which the gap height stayed within a certain height
range, typically binning the total height range in bins of 0.30
and 0.12 μm for the 1.1- and 2.1-μm spheres, respectively.
For each height bin, the in-plane mean squared displacement
(MSD, 〈�r2〉) was calculated. The in-plane translational dif-
fusion coefficient D and its error (standard deviation) were
obtained from the first data point, typically an average of at
least 300 measurements, of the MSD corresponding to a lag
time �t of 0.053 s using 〈�r2〉 = 4D�t .

H. Modeling forces and torques on the dumbbell

To elucidate dumbbell behaviors above the wall presented
in Sec. III C, we extended the sphere model of Sec. II F to
our dumbbells. To this end, we approximated the gravitational
and electrostatic forces acting on a dumbbell, by assuming
that the spheres which comprise the dumbbell interact with
the wall individually, as though the other is not present. That
is, we use the expressions from Eqs. (1)–(3) on each sphere;
see Sec. III D for the results. This approximation ignores the
distortion of the electrostatic double layer caused by the pres-
ence of the other sphere, but allows us to derive predictions
efficiently. We discuss the consequences of this approximation
in Sec. III D. The total force and torque acting on the dumbbell
c.m. are thus given by

FDB = F (h1) + F (h2), (8)

TDB = [(r1 − rc.m.) × F (h1)êz

+ (r2 − rc.m.) × F (h2)êz] · êx (9)

with hi, ri the height and position of sphere i, θp the angle
between the long axis of the dumbbell and the wall, and ê j

the unit vector along the j ∈ [x, y, z] axis [see Fig. 1(b) for a
schematic].
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From the force expressions acting on the individual spheres
of the dumbbell, we calculated the corresponding potential
energy:

φDB(hc.m., θp) = −2Fghc.m. + 2Fe(hc.m.)

κ
cosh (κR sin θp).

(10)

Equation (10) assumes both spheres to have the same radius;
see Eqs. (A4)–(A7) for a general expression for dumbbells
made of spheres of unequal radii. This potential can be de-
rived with respect to the hc.m. to obtain the force and to θp

to obtain the torque. We subsequently used the potential to
derive the appropriate height distribution for the dumbbell
c.m. pDB(hc.m., θp) up to a normalization constant,

pDB(hc.m., θp) ∝ K exp

[
−φDB(hc.m., θp)

kBT

]
(11)

pDB(hc.m.) ∝
∫ π

2

− π
2

dθp cos (θp)K exp

[
−φDB(hc.m., θp)

kBT

]
,

(12)

pDB(θp) ∝
∫ hmax

R
dhc.m.K exp

[
−φDB(hc.m., θp)

kBT

]
, (13)

where we evaluated Eq. (12) by numeric integration over all
possible plane angles θp, and Eq. (13) by numeric integra-
tion over all possible heights hc.m.; hmax was set to 5 μm.
K represents the particle-wall hard-core interaction potential
contribution to the Boltzmann weight: K = 1 if both spheres
of the dumbbell are above the wall; otherwise K = 0. We have
calculated the probability as function of the lowest dumb-
bell gap height (i.e., the separation between the wall and the
bottom of the lower sphere of the dumbbell) by substituting
hc.m. = hg,l + R + R sin θp in Eq. (12). Equivalently, for the
upper gap height, we substituted hc.m. = hg,u + R − R sin θp in
Eq. (12) to derive its distribution.

III. RESULTS AND DISCUSSION

A. Characterization, height distribution, and diffusion with wall
gap height, of spherical particles above the wall

First, we measured the sphere dynamics above a planar
wall both to assess the sensitivity of our LED-based in-line
holographic microscopy setup, as well as to verify our new
method of using fixed particles to accurately locate the posi-
tion of the wall. Indeed, despite the simplicity of our setup, we
find an excellent agreement between the measured holograms
and the Mie scattering-based model; see Fig. 1(d) for a direct
comparison that additionally shows the residual between data
and model. Moreover, in steps 2 and 3 of Fig. 1(e), we show
the refractive indices and particle radii that we obtained during
characterization, respectively. Both parameters agree with ex-
pectations: the refractive index, nsilica = (1.42 ± 0.02), agrees
with the value provided by the supplier (1.42) and at the same
time the radius of the particles [(0.51 ± 0.03) μm] follows our
TEM results [(0.48 ± 0.03) μm].

For high-precision measurements, careful consideration
should be given to the determination of both the position
and local orientation of the wall, from which the gap height
can be derived, as walls in experiments may be tilted. Here,
we achieved such precision [see Fig. 2(a)] by using at least

three fixed particles that define a plane and by subsequently
obtaining the position of the diffusing particle relative to said
plane. Note that the position and orientation of the plane is
fitted accurately to the positions of the bottom of the fixed
particles, since our method also measures the radii of the fixed
particles at the same time.

In Fig. 2(b), we report the distribution of gap heights
between the diffusing spheres of two different sizes and the
wall. We find that the height distributions can faithfully be
described using established methods that combine a baromet-
ric height distribution with electrostatic interactions (see also
Sec. II F and Ref. [10]). In comparison, the height distribu-
tions of the 1.1- and 2.1-μm spheres feature qualitatively
different behaviors. As expected, the smaller spheres probe
a wider range of gap heights, while the axial motion of the
larger spheres is more confined. However, we note that the
median gap height of the larger spheres is slightly greater
than that of the smaller ones, which is in line with the higher
surface charge that we measured for these particles using laser
doppler microelectrophoresis. The corresponding ζ potentials
are (−35 ± 6) mV and (−54 ± 7) mV for the 1.1- and 2.1-μm
batches, respectively. The excellent agreement that we ob-
tained between the prediction and our experiment for different
particle parameters further verifies the sensitivity of our setup.
We conclude that our method of localizing the plane, and
thereby the wall, using fixed control particles allows for high-
precision measurements of colloidal systems near walls.

Finally, to further evaluate our method, we determined
the height-dependent translational diffusivity of the spheres,
presented in Fig. 2(c). Additionally, in the same figure, we
compared our data to the theoretical prediction for transla-
tional diffusion with wall gap height of Ref. [75], which
covers the entire separation range from the far-field regime
captured by Faxén [76] to the near-wall regime captured by
lubrication theory [15]. We find that both particle sizes fol-
low the prediction within error, with small random variations
between individual measurements, which demonstrates that
we can accurately determine the diffusion constant across the
whole range of here accessible sphere-wall gap heights.

B. Dumbbell height distribution above the wall

Having established the validity of our setup and method,
we proceeded to study the near-wall behavior of our colloidal
dumbbells. These dumbbells were formed by random aggre-
gation of two individual spheres caused by Van der Waals
attraction; we expect that the spheres do not roll with respect
to each other. Analogously to the spheres, we measured the
three-dimensional position of dumbbells of two sizes (long
axes 2.2 and 4.2 μm respectively), formed either by two
1.1-μm or two 2.1-μm spheres. We first checked the quality
of our hologram analysis in Figs. 3(a) and 3(d), where the
good agreement between the model and our experimental
images is shown. In this model, the free parameters are the
c.m. position, the dumbbell orientation, the radii, and the re-
fractive indices of the two touching spheres composing the
dumbbell. We note that the obtained values agreed with the
single spheres results [Figs. 1(e 2) and 1(e 3)].

Figure 3(b) shows the positions of the 1.1-μm spheres
composing the dumbbell (dumbbell long axis 2.2 μm) as
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(arb. units)

(arb. units)

(a)

(e) (f)

(b) (c)

(d)

FIG. 3. Height distributions of colloidal dumbbells above a planar wall. (a) Comparison of an experimental image, the fitted model, and the
residual for a 2.2-μm dumbbell, the low values of which indicate the good agreement between experimental data and model. (b) Gap heights
for the two 1.1-μm spheres that form the dumbbell as function of time. (c) Center of mass (c.m.) dumbbell height distributions [same particle as
in panel (b)], with the corresponding gap heights of the lower (L) and upper (U) spheres as inset. Solid lines indicate the theoretical prediction
of Eq. (12) (fit parameters ρp = 2.0 g cm−3, 1/κ = 103 nm, ζp = −30 mV). (d) Comparison of an experimental image, the fitted model, and
the residual for a 4.2-μm dumbbell, the low values of which indicate the excellent agreement between data and model. (e) Gap heights for
the two touching 2.1-μm spheres that form the dumbbell as function of time. The inset enlarges a short sequence of the measurement to
indicate the frequent flipping of the dumbbell. (f) Center of mass (c.m.) dumbbell height distributions [same particle as in panel (e)], with the
corresponding dumbbell gap heights of the lower (L) and upper (U) spheres as inset. Solid lines indicate the theoretical prediction of Eq. (12)
(fit parameters ρp = 2.1 g cm−3, 1/κ = 228 nm, ζp = −61 mV).

function of time, revealing that one of the spheres is posi-
tioned higher than the other in relation to the wall. Moreover,
it clearly shows that twice during the duration of our 8-min
measurement, the spheres drastically changed positions; i.e.,
a flip between upper and lower spheres occurred. Based on
the estimated rotational diffusion time τr = 8πηR3

eff/(kBT ) ≈
2 s (with viscosity η = 8.9 × 10−4 Pa s and the radius of a
sphere of volume equal to the dumbbell Reff = (2R3)1/3 ≈
0.69 μm), this flip should have been observed more fre-
quently if it were a purely diffusive process, faraway from
the wall. For the larger dumbbells in Fig. 3(e), which
move further from the wall, we observe, despite their larger
size (τr ≈ 13 s), frequent flips between the upper and lower
spheres.

By fitting the c.m. height distribution of the dumbbell in
Figs. 3(c) and 3(f) using Eq. (12) (solid black line), we con-
clude that our simple model for a dumbbell particle near a
wall describes the experimental height distribution very well.
Furthermore, the fit parameters we have obtained from this
fit agree with the single sphere fit parameters from the height
distribution in Fig. 2(b). Additionally, we calculate the height
distribution of the dumbbell gap heights of the lower (L) and
upper (U) spheres, as shown in the inset of Figs. 3(c) and
3(f). Compared to the theoretical prediction from Eq. (12),
we observe a slight shift toward smaller heights for the lower

and, conversely, greater heights for the upper sphere in the
experiments. This may indicate that to fully describe the ex-
perimental data, higher order effects need to be taken into
account, such as the distortion of the electric double layer
of one sphere by the presence of the other sphere and the
wall. These effects become more pronounced when the dumb-
bells are closer to the wall, as can be seen when comparing
Figs. 3(c) and 3(f).

C. Dumbbell orientation with respect to the wall

The stable and significant differences in sphere positions of
Fig. 3(b) already indicated that these dumbbells are oriented
at an angle relative to the wall. On the other hand, for larger
dumbbells of the same material, the spheres being approxi-
mately at the same height at all times in Fig. 3(e) suggested
a roughly parallel orientation with the wall. We verify our
observations in Figs. 4(a) and 4(d), where we visualize orien-
tations that the dumbbells assumed during the measurements
at 15-s intervals. Indeed, from the snapshots we clearly see
that, while flipping between lower and upper sphere did oc-
cur, the height above as well as orientation with respect to
the wall remained relatively constant for the larger dumbbell
[Fig. 4(d)]. Conversely, the smaller dumbbell featured a richer
behavior that includes notable changes in height, orientation,
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FIG. 4. Dumbbell orientation with respect to the planar wall as function of height. (a) Schematics based on the experimentally tracked
positions of a 2.2-μm dumbbell at random times, showing out of plane rotations in addition to height variations. (b) Distribution of plane
angles for a 2.2-μm dumbbell. The difference in peak heights is due to the respective length of the parts of the measurement where the
dumbbell assumed a negative or positive orientation (see inset). We distinguish negative from positive orientations as outlined in Sec. II D2.
The solid line indicates the expected distribution based on Eq. (13) [same parameters as in Fig. 3(c)]. The inset shows the plane angle in time.
(c) Plane angle with c.m. height for the 2.2-μm dumbbell. The red area indicates geometrically forbidden configurations. (d) Schematics based
on the experimentally tracked positions of a 4.2-μm dumbbell at the same times as in panel (a), showing significantly fewer out of plane
rotations compared to the smaller dumbbell of panel (a). (e) Distribution of plane angles for a 4.2-μm dumbbell. The solid line indicates the
expected distribution based on Eq. (13) [same parameters as in Fig. 3(f)]. The inset shows the plane angle in time. (f) Plane angle with c.m.
height for the 4.2-μm dumbbell. In panels (c) and (f), the dashed lines are a contour plot of the kernel density estimation, corresponding to
12.5%, 25%, 37.5%, 50%, 62.5%, and 75% of the data.

and flipping between which of the two spheres is the lowest
[Fig. 4(a)].

In what follows, we further quantify our observations by
calculating the angle, θp, between the long dumbbell axis
and wall [see schematic of Fig. 4(b)]. Strikingly, we observe
in Fig. 4(b) a double-peaked structure not predicted by our
model: We find no parallel orientations with respect to the wall
for the 2.2-μm dumbbell. Instead, the dumbbell is more likely
to be oriented at an angle between 25 and 56 deg (median
32 deg) with the wall. In separate bright-field microscopy
measurements, we verified that dumbbells of this size and
material indeed show frequent out-of-plane rotations. The pre-
ferred range of orientations is robust and persists even when
the dumbbell flips, i.e., when the lower sphere becomes the
upper sphere. The difference in peak heights in Fig. 4(b) is
due to the respective length of the parts of the measurement
where the dumbbell assumed a negative or positive orienta-
tion. Such preferred orientations are surprising, since an angle
distribution centered around 0 deg is naively expected in view
of the effects of buoyancy and electrostatics; see the expected
distribution depicted by the solid line in Figs. 4(b) and 4(e).

Examining the larger and hence heavier 4.2-μm dumbbells
in Fig. 4(e), we notice that these indeed have assumed mostly

flat orientations with the wall, with the most probable angles
ranging between 2.2 and 9.6 deg (median 6 deg). However, the
double-peak structure in the angle probability density func-
tion that we observed for the smaller dumbbells persists to
some degree even for these larger particles, indicating that
the increased gravitational force leads to a suppression of
the interaction which causes the dumbbells to adopt a non-
parallel orientation. We hypothesize that the observed angle
distributions for both dumbbell sizes stem from a higher order
electrostatic effect not accounted for in our theory. However,
we cannot exclude a more subtle interplay of other effects,
such as buoyancy and hydrodynamics.

Naturally, the question arises of whether changes in height
relate to changes in dumbbell orientation. To test for this,
we plot the measured angles as a function of center-of-mass
height. We find that for the smaller dumbbells, there is a clear
preference for lower angles at low heights in Fig. 4(c), the
preference for which disappears with height. That is, further
from the wall, the dumbbells may adopt a wider range of
orientations. For the larger dumbbell, we also find a nar-
rower distribution of angles at lower heights in Fig. 4(f).
However, we note that both angle and height distributions
are considerably narrower compared to those that correspond
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(a)

(e) (f)

(b)
(c)

(d)

FIG. 5. Force and torque acting on a dumbbell obtained by balancing electrostatics and gravity. (a) Force as function of θp and hc.m. for
the 2.2-μm dumbbell. For all orientations, there is a height range for which the net force is zero. (b) Torque as function of θp and hc.m. for
the 2.2-μm dumbbell. (c) The probability of observing a combination of θp and hc.m. for the 2.2-μm dumbbell, as predicted by Eq. (11) and
measured in the experiments (dashed line). (d) The force as function of θp and hc.m. for the 4.2-μm dumbbell. The area where the net force is
zero is smaller compared to the smaller dumbbell in panel (a). (e) The torque as function of θp and hc.m. for the 4.2-μm dumbbell. For the same
range of angles as in panel (b), the torque on the larger dumbbell is considerably higher than the thermal energy for the majority of angles,
causing the dumbbell to adopt a flat orientation with respect to the wall. (f) The probability of observing a combination of θp and hc.m. for
the 4.2-μm dumbbell. In panels (a), (b), (d), and (e), the red lines indicate regions where both the force and torque are simultaneously small
compared to the thermal energy, indicating a possibility of observing the dumbbell at those heights and orientations. Values outside the indicated
range of the color bars are clipped to visualize the low force and torque region relevant to the experiments, while white regions represent
sterically forbidden combinations of height and angle. Dashed lines are a contour plot of the kernel density estimation of the experimental data
(see Fig. 4).

to the smaller dumbbell. At the same time, the particle-wall
separation distance is typically greater than that of the smaller
dumbbell: While the smaller dumbbell moves closely to the
wall [see also the red area in Fig. 4(c), which indicates ge-
ometrically forbidden configurations caused by particle-wall
overlap], the larger dumbbell does not come into close contact
with the wall.

D. Theoretical considerations for preferred
dumbbell orientations

To gain insight into the preferred orientations and minimal
angle measured in Sec. III C, we extended the gravity and
electrostatics model for a sphere above the wall [Eqs. (1)–(3)]
to the dumbbell. Briefly, Eqs. (8)–(9) model the dumbbell
as two connected (but otherwise noninteracting) spheres, by
balancing electrostatic and gravitational forces. This approxi-
mation ignores the distortion of the electrostatic double layer
caused by the presence of the other sphere but allowed us

to probe the origin of the dumbbell orientation described in
Sec. III C, by examining whether the combined effects of
electrostatics and gravity would result in zero force and torque
solutions as function of plane angle and height above the wall.

By applying the reduced model of Sec. II H to the experi-
mental data, we reach a number of interesting conclusions in
Fig. 5, where we plot the results from the model. Figure 5(a)
shows that the net force on the 2.2-μm dumbbell vanishes
for a range of heights and orientations. That is, for each
given orientation there exists a narrow distribution of heights
where the force balance is zero. As expected for a particle
with a larger mass, for the 4.2-μm dumbbell in Fig. 5(d), the
range of heights where the net force vanishes is considerably
narrower compared to the 2.2-μm dumbbell of Fig. 5(a). To
answer whether such configurations are expected to be stable,
one must additionally consider the possibility of a reorienting
torque stemming from the combined effect of gravity and
electrostatics acting on the dumbbell. We expect that the in-
terplay between the magnitude of this reorienting torque and
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a random torque, stemming from thermal fluctuations, causes
changes in the dumbbell orientations with respect to the wall.
In the case of a reorienting torque that is large in comparison
to the random torque (≈1 kT), we expect a mostly parallel ori-
entation with respect to the wall. In contrast, for a reorienting
torque that is small compared to the random torque, we expect
largely fluctuating orientations. In what follows, we examine
the presence and magnitude of the reorienting torque.

Interestingly, for the smaller 2.2-μm dumbbells, a regime
arises where both net forces and reorienting torques are
simultaneously below the thermal force and energy, respec-
tively, for certain combinations of dumbbell-wall separations
and nonzero plane angles [as indicated by the red lines in
Figs. 5(a) and 5(b)]. The presence of such a regime that spans
throughout state space suggests that the large variations of the
angle as found in Fig. 4 [evidenced also in the dashed lines of
Figs. 5(a) and 5(b)] are expected. This is further corroborated
by the angle probability plot that follows from our model
in Fig. 5(c) for heights relevant to our experiment. For the
largest dumbbells, our minimal modeling [Figs. 5(d)–5(f)]
agrees well with the almost parallel orientations observed in
the experiments [Fig. 4(f)], which mostly fall within the high
reorienting torque regime [see dashed line in Fig. 5(d)].

Our minimal dumbbell model also sheds light on the rela-
tion between height and orientation observed in Figs. 4(c) and
4(f), indicated also by the dashed lines in Fig. 5. Although
the agreement is not fully quantitative, the model shown in
Figs. 5(c) and 5(f) predicts an increase in the most proba-
ble angle with greater heights, similar to our experiments.
Moreover, the height and orientation combinations that the
dumbbells experimentally adopt most often coincide with the
zero net force regime [and equivalently nonzero probabilities
in Figs. 5(c) and 5(f)] for both dumbbell sizes, as evidenced
by the overlap between the experimental data and the areas of
higher probability.

Finally, we notice that the range of experimentally ob-
served angles for the 2.2-μm dumbbells does not fully
coincide with the range of angles that fall within the low
force and torque regime from the model. For torques below
the thermal energy, the model also allows for angles below
17 deg, which we did not observe here for these dumbbells.
We note that the discrepancy between our model and ex-
periment does not stem from a difference in size between
the two spheres in the dumbbell. As can be seen in Figs. 6
and 7, where we additionally account for (an experimentally
relevant) 5% dispersity in the sphere sizes, the most prob-
able heights are only slightly shifted toward greater values.
However, the overall dumbbell behavior that the model yields
remains the same with or without polydispersity in the sphere
size. We hypothesize that this discrepancy may be resolved by
considering higher order electrostatic effects. However, higher
order effects, together with the possibility of dynamic charge
redistribution in the double layers which may be relevant here,
cannot be described by a simple analytical model.

IV. SUMMARY AND CONCLUSION

We have measured the height of colloidal particles relative
to planar walls with high precision by means of holographic
microscopy. The position of the wall was tracked in time by

following the position of spheres fixed on its surface, thereby
allowing for an accurate measurement of the location and
orientation of the plane and wall. For spheres, the obtained
height distributions and diffusivities as function of height
are in line with well-known theoretical predictions. More
importantly, we studied the height distributions and orienta-
tions of colloidal dumbbells relative to walls. We found that
smaller dumbbells assume nonparallel orientations with the
wall and further examined the connection between orientation
and particle-wall separation. Conversely, we found that larger
dumbbells of the same material were always oriented almost
parallel to the wall.

We showed that, despite its simplicity, a minimal model
accounting for gravity and electrostatics not only faithfully
describes the dumbbell height distribution but also predicts
stable configurations for a large range of orientations and
dumbbell-wall separations. However, our model predicts a
larger range of stable orientations than was found in our ex-
periment, indicating that refinements that account for higher
order electrostatic effects may need to be considered. We thus
hope that our findings will encourage further investigations
of near-wall particle dynamics. Our results highlight the rich
dynamics that nonspherical particles exhibit in the proximity
of walls and can aid in developing quantitative frameworks for
arbitrarily shaped particle dynamics in confinement.
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APPENDIX: COLLOIDAL DUMBBELLS OF
DIFFERENTLY SIZED SPHERES: PLANE HEIGHT

AND ORIENTATION PROBABILITY DENSITY

Here we derive the electrostatic and gravitational forces on
a dumbbell of two unequally sized spheres of radii R = R1, R2

and use it to calculate the potential energy and probability
density function in terms of center-of-mass (c.m.) height hc.m.

and plane angle θp. The force F (R, h) on one of the spheres
is given by Eq. (1). The net force FDB(R1, R2, hc.m., θp) is then
given by

FDB = F (R1, h1) + F (R2, h2), (A1)

h1 = hc.m. + R3
2(R1 + R2) sin θp

R3
1 + R3

2

, (A2)

h2 = h1 − (R1 + R2) sin θp. (A3)
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(a)

(e) (f) (g)

(b) (c)

(d)

(i) (j) (k)(h)

FIG. 6. Effect of sphere size dispersity on dumbbell plane height and orientation probability density for dumbbells of the same volume
as the 2.2-μm dumbbells (R = 0.54 μm). All gravitational and electrostatic potentials were calculated according to Eqs. (A5) and (A6),
respectively. All probabilities were calculated according to Eq. (A7). (a) Gravitational potential for R1 = R2 = R. (b) Electrostatic poten-
tial for R1 = R2 = R. (c) PDF for R1 = R2 = R. (d) Gravitational potential for R1 = 0.975R, R2 = 1.024R. (e) Electrostatic potential for
R1 = 0.975R, R2 = 1.024R. (f) PDF for R1 = 0.975R, R2 = 1.024R. (g) Probability difference p(0.975R, 1.024R) − p(R, R). (h) Gravitational
potential for R1 = 0.605R, R2 = 1.212R. (i) Electrostatic potential for R1 = 0.605R, R2 = 1.212R. (j) PDF for R1 = 0.605R, R2 = 1.212R. (k)
Probability difference p(0.605R, 1.212R) − p(R, R).

Equation (A1) can be integrated to give the potential energy
φDB(R1, R2, hc.m., θp)

φDB = φDB,g + φDB,e, (A4)

φDB,g = −[Fg(R1)h1 + Fg(R2)h2], (A5)

φDB,e = B(R1)

κ
exp [−κh1] + B(R2)

κ
exp [−κh2]. (A6)

This potential can be differentiated with respect to hc.m.

to obtain the force and with respect to θp to obtain
the torque. We subsequently used the potential to obtain
the appropriate height distribution for the dumbbell c.m.
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FIG. 7. Effect of sphere size dispersity on dumbbell plane height and orientation probability density for dumbbells of the same volume
as the 4.2-μm dumbbells (R = 1.04 μm). All gravitational and electrostatic potentials were calculated according to Eqs. (A5) and (A6),
respectively. All probabilities were calculated according to Eq. (A7). (a) Gravitational potential for R1 = R2 = R. (b) Electrostatic poten-
tial for R1 = R2 = R. (c) PDF for R1 = R2 = R. (d) Gravitational potential for R1 = 0.975R, R2 = 1.024R. (e) Electrostatic potential for
R1 = 0.975R, R2 = 1.024R. (f) PDF for R1 = 0.975R, R2 = 1.024R. (g) Probability difference p(0.975R, 1.024R) − p(R, R). (h) Gravitational
potential for R1 = 0.605R, R2 = 1.212R. (i) Electrostatic potential for R1 = 0.605R, R2 = 1.212R. (j) PDF for R1 = 0.605R, R2 = 1.212R. (k)
Probability difference p(0.605R, 1.212R) − p(R, R).

pDB(R1, R2, hc.m., θp) up to a normalization constant,

pDB(R1, R2, hc.m., θp) ∝ K exp

[
−φDB

kBT

]
. (A7)

K represents the particle-wall hard-core interaction potential
contribution to the Boltzmann weight: K = 1 if both spheres
of the dumbbell are above the wall; otherwise K = 0.

We show the results of Eqs. (A5)–(A7) in Figs. 6 and 7
for dumbbells of the same volume as the 2.2- and 4.2-μm
dumbbells, respectively. The individual contributions of the
gravitational and electrostatic potential to the net potential
energy are shown in the first and second columns, respec-
tively, in Fig. 6 (dumbbells of the same volume as the 2.2-μm
dumbbells) and Fig. 7 (dumbbells of the same volume as
the 4.2-μm dumbbells). Clearly, the electrostatic potential is
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not negligible compared to the gravitational potential, and
therefore, the height from the surface is greatly influenced
by electrostatic repulsion despite the relatively short Debye
length, which is on the order of 150 nm. To demonstrate the
effect of unequal sized lobes of the dumbbell, we have calcu-
lated their effect on the dumbbell plane height and orientation
probability density for two cases: an experimentally relevant
5% size polydispersity and a highly anisotropic dumbbell
particle, also called snowman particle, for which R2 ≈ 2R1.
We have chosen R1, R2 in such a way that the total mass of

the dumbbell is the same as for the R1 = R2 = R case. As a
convention, positive angles denote the orientation where the
sphere of the smaller radius R1 is higher than the sphere of
the larger radius R2, as given in Eqs. (A2) and (A3). The
results are shown in Figs. 6 and 7. Compared to the case
where both spheres are equal, increasing the size dispersity
between the two spheres has two effects: First, the distribution
around θp = 0 is no longer symmetric, as shown in Figs. 6
and 7(d)–7(k). Second, a larger range of both angles and c.m.
heights becomes accessible.
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