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Chapter 5

Application:
Image-Based Filter for Silicon Oil
Particles1

5.1 Introduction

The objective of this chapter is to classify images as showing either a silicon oil (SO) or a non-silicon
oil (NSO) particle. Silicon oil particles have a clear profile, but non-silicon oil particles may have
many, also unknown forms. For this reason our chosen method of classification is based on agreement
of a future image with a data-base of images of SO particles, rather than on training a classifier on
samples of SO and NSO particles. In machine learning terms our approach is unsupervised, rather
than supervised. We measure the agreement by data depth, whence this chapter also presents an
application of data depth as described in the preceding chapter.

The images of interest are acquired from flow imaging microscopy (FIM), more precisely Micro-
Flow Imaging (MFI) 5200 in this study, which is prevalent in the pharmaceutical industry. Their
resolution varies by the total number of pixels, and by the average and range of brightness across
the pixels. Since our proposed SO filter/classifier is image based, rather than on the metadata of the
images, we expect that the methods developed here will lend themselves also to other FIM systems
with an output of 2D images in gray scale, such as FlowCAM.

The industrial background of the application is described in Section 5.2. In Section 5.3 we review
the state-of-the-art classification methods (or ‘filters’) currently used in the industry. These are all

1This chapter is based on joint work with Björn Boll and Migle Grauzinyte in Novartis Global Drug Development. A
significant part of the chapter is reworked into a paper, "Applying pattern recognition as a robust approach for silicone oil
droplet identification in flow-microscopy images of protein formulations", that has been accepted and published by Journal
of Pharmaceutical Sciences, DOI:https://doi.org/10.1016/j.xphs.2020.10.044.
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based on metadata of the images, in contrast to our new approach, which takes the full images as
inputs. Section 5.4 presents the data used, and the methods used to prepare the raw images for analysis.
The construction of our SO classifier is described in Section 5.5.

Section 5.6 compares the new filter against three benchmark approaches (summarized in Sec-
tion 5.3) on three groups of test data, consisting of images of particles that are clearly SO (I), likely
SO (II), or clearly NSO (III). The selection of these test datasets is motivated at the beginning of the
section. Evaluation criteria are the false negative rate for datasets (I) and (II), and the false positive rate
for dataset (III). The newly proposed filter is overall an improvement on the benchmark approaches.
Detailed conclusions and thoughts for future improvements are provided in Sections 5.7 and 5.8.

5.2 Industrial Background

Injections and parenteral infusions are typically contaminated by extraneous, mobile and undissolved
particulates, which are unintentionally present in the solutions [39]. Sources of contamination in
sterile and/or biologic products include the solution itself, its ingredients, the manufacturing process,
environmental factors, packaging, and the preparation of the product for administration. See [55] for
discussion and further sources.

Particles can be categorized by size, as visible (>100 µm), micron (1-100 µm), sub-micron (100-
1000 nm) and nanometer (<100 nm) particles [65]. In a vaguer sense, all particles of size <100 µm
can be called subvisible. Currently the US and European pharmacopoeia only have clear requirements
on the number of subvisible particles of sizes ≥10 and of sizes ≥25 µm, which are usually quantified
by light obscuration in the parenteral solution. However, regulatory changes are expected ( [15] and
USP<1787>), spurring industrial interest in the quantification of subvisible particles with techniques
that are orthogonal to light obscuration. A recent option is flow imaging microscopy (FIM), which
uses a camera with high magnification power to capture images of a liquid solution passing through a
thin flow cell. A detailed account of FIM, with a comparative evaluation of several instruments, is
offered in [70].

It is presently not uncommon to see FIM applied in quality control of protein therapeutics, which
takes an increasing share in the product portfolio of many pharmaceutical companies. Distinguishing
proteinaceous from other particles is important for assessing stability and for controlling other potential
risk factors (see [52]). However, the irregular shape of proteinaceous particles and their aggregation
make this task genuinely difficult. As a practical work-around, one tends to identify non-protein
particles of known shape, and counts the remaining observed particles as aggregated protein.

A routine task is to identify silicon oil (SO) particles and distinguish them from all other, non-
silicon oil (NSO) particles. SO particles are ball-shaped and are commonly present in prefilled
syringes, cartridges or vials, as lubrication for the glass barrel, the plunger or the stopper. Because
they look spherical from any viewing angle, classifying SO particles is considered feasible even when
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common FIM only captures 2D projections. Air bubbles are among the few kinds of entities, if not
the only one, that also have spherical projections and can occur in the pharmaceutical products under
consideration. However, their presence is avoided or minimized by sample preparation.

There are many types of possible NSO particles, which would make it difficult to compile a
representative data-base of such particles for training purposes. On the other hand, images of SO
particles are very similar, in particular after some pre-processsing. This makes it attractive to classify
a future image by similarity to SO pictures, rather than train a supervised classifier, which would
necessarily have to be trained on a non-representative set of example images.

From an industrial background preventing false positives (unjustly labeling particles as SO)
is more serious than false negatives (labelling SO as NSO). This is because SO particles are not
immunogenic, in contrast to some NSO particles.

In the industrial context classification algorithms are also referred to as filters.

5.3 Three Benchmark Approaches

The standard output from the MFI system (and similar systems) includes images and their corre-
sponding metadata. The images consist of the intact picture frames taken in a defined frequency and
sub-frames of “individual” particles. The sub-frames are captured in the intact frames by some generic
algorithm in the MFI system. Below we take this capturing as given and refer to the sub-frames
when using the word "images", unless specified otherwise. The metadata contains features of each
sub-frame, including morphological (e.g. aspect ratio, perimeter and circularity) and optical aspects
(e.g. intensity mean, SD, min and max across pixels), together with some descriptive information (e.g.
from which intact frame, ECD, area, coordinates of the sub-frame in an intact frame).

Existing filters of SO particles ([53],[46]) are all based on the metadata. We discuss two industry
standards, and a filter based on random forests.

Filter 1 (Benchmark-SRD). Strehl et al. [53] propose a filter based on five attributes from the
metadata. They first calculate an ‘S-factor’ as the product

S-factor =Circularity×AspectRatio× IntensityMax× IntensitySD.

They next determine a cut-off for the S-factor that depends on the particle size (ECD). But since their
original work were for the MFI 4100 system, we use the following cut-offs that are suited for the MFI
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5200 system, updated by as Torres et al. [47].

Cut-Off(ECD) =


29732× ln(ECD)+3913, 1.125≤ ECD < 2.875

46609× ln(ECD)−10464, 2.875≤ ECD < 6.125

3368×ECD+49124, ECD≥ 6.125

If the S-factor of a sub-frame is larger than the Cut-Off value, then the image is classified as "SO",
and otherwise as "NSO".

Filter 2 (Benchmark-AR). A sub-frame with Aspect ratio (AR) ≥ 0.85 is classified as "SO", and
otherwise as "NSO". This simple, empirical rule is sometimes used in practice.

Filter 3 (Benchmark-RF). In [46] the authors propose to use a random forest classifier based on the
metadata. As their training data are not accessible and it may be worth while to tune the random
forest to typical data in our domain, we fitted a random forest classsifier to our own dataset. We
compiled the metadata of samples of 1990 NSO and 2316 SO particles, including the 10 predictors:
ECD, Area, Perimeter, Circularity, Aspect Ratio, Maximum Feret Diameter, Intensity mean, STD,
min and max from MFI 5200. The sample of SO particles included carefully selected SO particles
and data from experiments measuring only SO particles. The sample of NSO particles was from
a study where the presence of SO was minor and experts had carefully excluded the SO particles.
We fitted a random forest model by the function randomForest() from the R package {randomForest,
4.6-14}, using the default setup, with the maximum number of terminal nodes (maxnodes) as a tuning
parameter. The value 4 for maxnotes was selected via a cross-validation procedure, to minimize the
chance of overfitting (see Figure 5.1). The prediction accuracy was 99.6% to the whole training set.
Two important features in the fitted model, as measured by the mean decrease in Gini index when
dropping the predictor, were the maximum intensity across all pixels and the aspect ratio.

5.4 Data and Image Pre-processing

Even though SO images acquired by the MFI system share some key feature, they also display visible
differences. Inspection of a set of images (see Appendix 1) reveals that, within their spherical shape,
SO particles display an inner white spot. This is due to the reflection of camera light. The position of
this spot depends on the position of the SO particle in the intact picture frame. Its size varies with the
size of the particle, and its shape is not necessarily spherical. When the white spot is close to the edge
of the spherical shape and the resolution of the image is low (which is typical for small particles), the
spherical shape may be gently breached. The spot can be very small or blur into the background, in
particular in the images of small particles. Thus small SO particles tend to show different patterns
than bigger SO particles.
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Fig. 5.1 Cross-validation curve to determine the maximum size of terminal nodes in benchmark filter
3. The data were randomly split 70:30 % in training and testing samples, with 50 repeats at each
candidate setting of the variable maxnodes (shown on the horizontal axis). The vertical axis gives the
proportion of correctly classified samples, with a blue square indicating the average in the training set,
a red dot the average in the test set with red bar indicating the standard deviation across 50 repeats.
The horizontal gray dashed line marks the lower end of the red bar at the candidate setting with the
highest average accuracy. The selected value 4 is the minimum integer for which the red bar contains
the horizontal gray dashed line.
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Algorithm 6: Pre-processing of raw images to a square image
Data: A a×b image/matrix X and an integer h.

1 Rescale the values in image X to improve the contrast:
∀ j,k, X jk:= (X jk−min({X jk} j,k)/(max({X jk} j,k)−min({X jk} j,k))) ;

2 Chop off empty edges: for every row and column, determine its average and range length
(maximum-minimum), chop off the row(s) and column(s) if the average is >0.78 and the
range length is <0.28;

3 Repeat step 1-2 one more time, resulting in a a′×b′ matrix;
4 Pad the image close to a square before resizing to avoid pattern distortion: If |a′−b′|6 1, no

padding is needed. If a′ > b′+1, pad b|a′−b′|/2c blank columns to each of the two sides of
the matrix. If b′ > a′+1, pad b|a′−b′|/2c blank rows to each of the two sides of the matrix.
A blank column/row has elements equal to the average of the maximum of the first
column/row and the maximum of the the last column/row;

5 Resize the matrix to an h×h matrix by linear interpolation, to ensure comparability across
images of different sizes: resize() from R package {EBImage, 4.22.1} was used in this
chapter;

Result: An h×h matrix

Features such as these are not captured in the metadata of the images, which motivates to build
a filter based on the complete images. To train our image-based (IB) filter, we selected 798 SO
images from the MFI system, aiming to include a representative set to cover the variation in the
aforementioned features (e.g. images of big and small sizes, the inner white spot having various
positions, shapes and sizes, the spherical hull gently breached by the white spot).

An image of a×b pixels can be viewed as an a×b matrix of numbers with values between 0 and
1, where 0 indicates pure black, 1 indicates pure white, and intermediate values correspond to gray
with different degrees of hue. We pre-processed the images to cut off empty edges, thus centering
the SO particle in the images, and to correct for the varying size and contrast and of the images. The
procedure is illustrated in Figure 5.2 and described precisely in Algorithm 6. This pre-processing
is meant to be consistently applied to all images, also future ones, and hence is part of the filter
constructed here.

Fig. 5.2 Illustration of the pre-processing procedure for images

As a convention, images of particles of sizes smaller than 5 µm (as determined by the variable
ECD in the metadata of the image) are not processed by any SO filters. Their low resolution prevents
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making a confident judgement, also by human experts after close scrutiny. Images of particle of sizes
exceeding 5µm usually have at least 7 rows or columns of pixels.

5.5 Construction of Image-Based (IB) Filter

Our objective is to build an accurate binary filter (classifier) for SO/NSO assignment using full images
as inputs. We approach this from the perspective of unsupervised learning, because images of NSO
particles, in contrast to SO particles, do not have a clear description and can take infinitely many
forms. Therefore, it would be difficult to form a good training set, and a filter based on supervised
learning would not be able to generalize its success against NSO stereotypes that are not seen in the
training data.

On the other hand, SO particles have fairly predictable 2D projections from any angle, making it
possible to use similarity of a new image to images in the training set the basis for classification.

Our filter consists of two sub-filters (or ‘tests’), each of which outputs a binary label SO/NSO. A
future image will be labeled as SO if either or both tests label it as SO. The first filter uses data depth
to assess similarity of a future image to a set of training SO images. The data depth is computed on
features of the images extracted by a principal component analysis. The second filter is more crude
and checks a pixel-wise distance of a future image to set of SO stereotypes in a reference book of
nonstandard SO images.

We found that the first filter rarely misclassified an image as NSO while it was SO. On the other
hand, the second filter was good at recognizing some nonstandard SO images, which were missed by
the first filter. Details on how each test was constructed are presented in the following subsections.

5.5.1 IB-Test 1: General SO Pattern Recognition

After pre-processing, an image is represented as a 20×20 matrix, and can be identified with a vector
in 400-dimensional space. The first filter is based on measuring the data depth of a future vector
in the distribution of a typical vector obtained from an image of a SO particle. Data depth enables
ranking of multivariate data in a center-outwards manner, low depth indicating an outlier, and can be
used as a measure of similarity. In the present case lower depth means that the future image does not
represent a SO particle. See Section 3.3 for a detailed description on depth and its usage in building
nonparametric prediction sets.

To reduce noise, the 400-dimensional image vector is first projected on the linear span of the first
20 principal components of the distribution of the SO particles. If the projection of a future image is
very different from the original image, then this is a first indication that it does not represent a SO
particle (see Figure 5.3). We used the 99.5% percentile of the distribution of the distance between a
typical vector obtained from an image of a SO image and its projection as a cut off for future images.
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The loadings of the 400-dimensional image vector on the first 20 principal components is a vector in
20-dimensional space. The distribution of a typical vector obtained from an image of a SO image
was approximated by a mixture distribution, and data-depth of a future vector is computed relative
to all mixture components separately. The maximum data depth over the 30 components is taken as
the final similarity measure. The maximum is taken, because the component weights resulting from
the training set are arbitrary, while a future image should be labeled as "SO" if it is close to any SO
stereotype. As a cut off for classification of a future image as SO, we chose again the 99.5% quantile
of the similarity measure in the training data.

Fig. 5.3 Illustration of Bad (top row) and Good (bottom row) approximation by extracted image
features.

We next elaborate on these steps.

The basic training set included 798 SO images, of various sizes. After pre-processing, each image
was represented by a 20×20 matrix, with entries between 0 and 1. The training set was augmented
by rotating every matrix by 90, 180 and 270 degrees, gving a total of 3192 matrices. Each matrix was
vectorized by sequentially concatenating its column vectors. The resulting 3192 vectors were joined
as rows in a data matrix X of dimensions 3192×400.

Principal component analysis (PCA) was performed using the covariance matrix XT X of the
vectorized images, yielding (orthogonal) eigenvectors ν1, · · · ,ν400 (or ‘image features’), scaled to
unit length (‖νi‖ = 1), and corresponding eigenvalues λ1 > · · · > λ400. The first 20 eigenvectors,
which preserved 98% of the total variation, were retained, and are visualized in Figure 5.4. (In the
picture the values in each eigenvector were rescaled to the interval [0,1], and the vectorization was
reverted back to a 20×20 matrix.) The visualization enhances the interpretation of the eigenvectors.
For instance, the first eigenvector (top-left of Figure 5.4 ) captures the spherical shape of the droplet
and the inner white spot, the second and the third eigenvectors (the second and the third in the first
row of Figure 5.4 ) encapsulate the different camera lighting angles on the droplet, and the forth
and fifth features represent a diagonal shift of the inner white spot. The decision to retain the first
20 eigenvectors depended, besides on explained variance, on these graphical evaluations. The 21th

and onward eigenvectors showed features that are not desired for a typical SO image (e.g. vertical or
horizontal elongation of a sphere).
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Fig. 5.4 First 20 (rescaled) eigenvectors of the covariance matrix of the 3192 training data (798
pre-processed 20×20 images with 3 augmentations for each via rotation). The first 5 eigenvectors
are in the first row from left to right, the second 5 in the second row, and so on.
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For Vk = [ν1, · · · ,νk] the 400× k matrix with as columns the first k eigenvectors, the loading
matrix of the original data can be computed as Λk = XVk. (We used k = 20.) The projection of a
training image X j· (1×400 vector, jth row of X) on the first k eigenvectors is given by ∑

k
i=1(X j·νi)νi,

which leads to the matrix X∗ = ΛkV T
k for the projections of all training images relative to the standard

basis. The squared Euclidean distanced between the original training images and their projections
(the squared distances between the rows of X and X∗) ranged from 0.58 to 2.04, with 99.5% sample
percentile approximately equal to 1.4. The latter sample percentile was chosen as the upper threshold
for assessing whether a future image is well approximated by its projection on the eigenvectors (and
hence similar to SO), or not.

We clustered the loadings (the rows of Λ20) of the training data using the K-Means algorithm,
with K = 30 clusters. The latter value was based on evaluation of the average patterns across the
clusters, with a focus on assessing their variability and avoiding duplication. Intuitively, increasing
the number of clusters (i.e. choosing larger K) would enhance the ability to recognize a future SO
image, but lower the cardinalities of the clusters and increase the chances of duplicated stereotypes.
In the end we determined that 30 clusters are appropriate in this case, leading to cluster sizes between
44 and 163. Trimmed means of the images of the 30 clusters are shown in Figure 5.5.

For each of the 30 clusters, the mean vector and covariance matrix of the loadings of the training
data were calculated, and next the 0.5% percentile of Mahalanobis depth was derived via simulation.
The details are as follows. Let c j ∈ {1, · · · ,30} be the member indicators of the training data
( j = 1, · · · ,3192), and Bl = { j: c j = l,∀ j} be the indices of the clusters. For each cluster, we
simulated 5000 data points from the multivariate Gaussian distribution with parameters the sample
mean and sample covariance matrix of the vectors {Λ j.} j∈Bl , and then calculated 0.5% percentile of
the Mahalanobis data depth of these simulated data relative to {Λ j.} j∈Bl . Taking 0.5% percentile as
the lower-sided threshold gives a 99.5% prediction set per cluster, since larger depth means the data
point is closer to the center. Across the 30 clusters these 0.5% percentiles range from 0.023 to 0.025,
which motivated a lower threshold of 0.02 for the maximum depth over the 30 clusters of a future
image.

The projection and loadings of a future image, and its data depth to the clusters, can be computed
similarly. The filter will consider the image to be SO if the square Euclidean distance between the
image and its projection is small enough and its depth relative to at least one of the clusters is large
enough. The two thresholds were set at 1.4 and 0.02, respectively, both reflecting a 99.5 % prediction
set based on the training data.

In summary, the first part of our filter is as follows.

IB-Filter: Test 1. A future image is pre-processed in the manner described in Section 5.4 and
vectorized to a 1× 400 vector y. Its loadings to the extracted 20 features V20 are calculated as
ηy = yV20. The projected image is calculated as ηyV T

20 and its square distance to the original image
is dPC(y) = (y−ηyV T

20)(y−ηyV T
20)

T . The Mahalanobis depths relative to the clusters l = 1, · · · ,30
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Fig. 5.5 Trimmed means of the 30 clusters obtained via 30-Means applied to the loading matrix.
Trimmed means were computed as pixel-wise averages, after discarding the 10% most extreme values.
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are MDy,l = MD(y,{Λ j.} j∈Bl ), giving the maximum depth MDy = max(MDy,1, · · · ,MDy,30) as the
final similarity measure. The future image is considered to be a SO particle if dPC(y) < 1.4 and
MDy > 0.02.

5.5.2 IB-Test 2: Reference books of SO stereotypes

The second part of the filter is to check similarity of a future image against a reference book of SO
stereotypes. The rationale of this test is our expectation that the first part of the filter might neglect
some important nonstandard (unpopular) SO patterns (e.g. non-spherical white spot for a modestly
large SO image, or a small SO image with gently breached sphere hull).

This test is performed separately on ‘large’ and ‘small’ images, small images being defined as
images that originally had fewer than 9 rows or columns. The reason is that small-size SO images tend
to show more idiosyncratic patterns than modest or large ones (discussed at the start of Section 5.4),
and sizing them up to 20×20 would introduce profound distortion. Instead we resized smaller images
to 9×9, by the same pre-processing procedure discussed in algorithm 6.

Thus two reference books (or ‘galleries’) of SO images were formed, one of 68 images of 20×20
pixels and a second one of 33 images of 9×9 pixels (see Appendix of the chapter). A future image is
pre-processed to either 20×20 or 9×9, based on whether its number of rows and columns is greater
than 10 or smaller than 9, and its pixel-wise distance is computed to all images in the corresponding
reference book. If the minimum distance is smaller than a threshold, the future image is classified as
SO. The distance employed was the L1-distance between the pixel values, and the threshold was set to
the 99% and 90% percentiles of the distances of the images in the training datasets, for larger and
smaller images, respectively.

The reference books were prepared from training datasets, as follows. The training dataset
included the same matrix of dimensions 3192×400 containing as rows the vectorized 20×20 images,
used to construct the first part of the filter, and in addition a 2060× 81 matrix, in which each row
is a vectorized 9× 9 image. The second matrix was prepared from the 419 ‘small’ images in the
original training sample of 798 images, resized to 9×9 pixels by algorithm 6, and augmented to a
set of 1676 images by rotating each image over 90, 180 and 270 degrees. The data matrices were
reduced in dimension by PCA and next clustered to 30 clusters by the K-means algorithm applied to
the rows of the loading matrix, following the procedure described in Section 5.5.1. For small pictures
we retained 22 principal components, explaining 99% of the variation in the loadings (see Figure 5.6
for a graphical representation of the eigenvectors) and also 30 clusters. The 30 clusters means were
placed in initial reference books, separately for large and small images, which were next enlarged as
follows. We computed the L1-distance

d(x,y) =
h

∑
i=1
|xi− yi|,
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between every training image (row of the data matrix) and every element of the initial reference book
(cluster average), where h = 400 or h = 81 for large and small images, respectively, and selected the
10 % images that were most deviant from the reference book, i.e. had the largest minimum distance.
These images were added to the iniital reference books. Following visual inspection the latter sets
of images were next reduced to sets of 68 and 33 images. Visual inspection focused on the picture
clearly being a SO particle, and, for instance, excluded pictures with a severe breach of the spherical
shape of the SO particle.

Having thus formed references books R(20 and R(9) of large and small images (matrices of
dimensions 68×400 and 33×81), we computed the minimum L1-distance of all training images to
the corresponding reference book, and choose the 99% and 90% percentiles of these minima (38 and
6, respectively) as cut offs for the L1-distance of a future distance. Choosing 90% percentile as the
cut off for small images is due to our finding of large portion of unsatisfactory SO pattern during the
visual inspection for its final reference book.

In summary, the second part of the filter is as follows.

IB-Filter: Test 2. A future image of dimensions a×b is pre-processed to 20×20 pixels if max(a,b)>
9, and to 9×9 otherwise, in the manner described in Section 5.4, and vectorized to a 1×400 or 1×81
vector y. The L1-distance of y to every row of the reference book R(h) is computed, where h = 20 or
h = 9 for large and small images, respectively. The distance dREF(y,R(h)) of y to the reference book
R(h) is defined as the minimum of these distances. If dREF(y,R(h)) < c, the image is labeled as SO,
otherwise NSO. Here c = 38 when h = 20 and c = 6 when h = 9.

5.6 Performance Evaluation

Three groups of data were used to evaluate the performance of the benchmark filters and our proposal,
categorized as: (I) clearly SO, (II) unclear SO, (III) clearly NSO. Table 5.1 summarizes these data.
These three groups correspond to common situations, which a specialist faces in practice when
manually labeling an image as SO or NSO. For each group, the metadata were used for the benchmark
filters, and the raw images were the input to our image-based filter. The majority of test images are
small to modest-size (almost all particles are < 20µm), with around 30% of the images falling into
the small category (number of rows and columns ≤ 9). This is useful for testing purposes, since the
main challenge will be in recognizing SO images of lower resolution. Simple cases of NSO particles,
e.g. very elongated images, were also excluded from the datasets. The performance of the filters is
expected to be significantly better when applied to real sample measurements.

The filters were compared on their false negative rate (i.e. error in labeling SO as NSO) for test
sets (I) and (II), and on their false positive rate (i.e. error in labeling NSO as SO) for test set (III). As
SO particles are not immunogenic, while some types of NSO particles could cause immunogenic
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Fig. 5.6 First 22 (rescaled) eigenvectors of the covariance matrix of 1676× 81 training data (419
pre-processed 9×9 images with 3 augmentations for each via rotation). The first 5 eigenvectors are
in the first row from left to right and the sequence follows.

Table 5.1 Summary of Testing datasets

Small Image Not-Small Image

Category Selection Criteria # ECD (99% perc.) # ECD (99% perc.)

(I) Clearly SO Recognize easily 233 7.375 700 16.375
(II) Unclear SO Moderately certain 537 7.125 373 8.625
(III) Clearly NSO Recognize easily 263 6.47 1361 19.375
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concerns for bio-pharmaceuticals, the false positive rates could be considered as the more important
criterion. The results are summarized in Tables 5.2–5.4, and visualized in Figure 5.7.

Table 5.2 Misclassification rates (False Negative) in group (I): Clearly SO

Number
Benchmark

AR
Benchmark

SDR
Benchmark

RF
IB-Filter
(Test 1)

IB-Filter
(Test 2)

IB-Filter
(full)

Small 233 0.013 0.021 0.652 0.021 0.266 0.009
Not-Small 700 0.163 0.051 0.491 0.099 0.023 0.017

Total 933 0.125 0.044 0.532 0.079 0.084 0.015

Table 5.3 Misclassification rates (False Negative) in group (II): Unclear SO

Number
Benchmark

AR
Benchmark

SDR
Benchmark

RF
IB-Filter
(Test 1)

IB-Filter
(Test 2)

IB-Filter
(full)

Small 537 0.084 0.324 0.873 0.235 0.378 0.212
Not-Small 373 0.496 0.603 1.000 0.464 0.249 0.206

Total 910 0.253 0.253 0.925 0.329 0.325 0.210

Table 5.4 Misclassification rates (False Positive) in group (III): Clearly NSO

Number
Benchmark

AR
Benchmark

SDR
Benchmark

RF
IB-Filter
(Test 1)

IB-Filter
(Test 2)

IB-Filter
(full)

Small 263 0.517 0.319 0.015 0.137 0.076 0.163
Not-Small 1361 0.248 0.282 0.324 0.012 0.071 0.071

Total 1624 0.291 0.288 0.274 0.032 0.071 0.086
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5.7 Conclusion

As shown in the previous section, our IB-filter keeps a good balance in trading off the false positive
and false negative rates. It outperforms the benchmark filters in almost all cases, the exceptions being
that it gives the second lowest false negative rate for small unclear SO images (trailing AR) and the
second lowest false positive rate for small NSO images (trailing RF). AR achieves the lowest error rate
in labeling small unclear SO at the cost of having the highest error rate in labeling small NSO images.
RF achieves its excellent false positive rate for small images by labeling the majority of testing set
as NSO, which leads to very high error rates for classifying small clearly SO images (65.2%) and
unclear SO images (87.3%).

Although it is not the focus of this chapter, we further studied the highly unsatisfactory perfor-
mance of RF, which may be surprising, as the error on the training set was only 0.4%, while the
tree sizes had been properly tuned by cross validation to prevent overfitting. We suspected that the
key issue was that the NSO images in the RF training set were obtained from different materials
than the NSO material in the testing set, giving little overlap between the NSO images in training
and test sets. We prepared another training set for RF, consisting of the original 2316 SO samples
and a new set of 1317 NSO samples, obtained from measurements from similar material as used
for the NSO samples in the test set. The maximum number of terminal nodes of the trees in the
random forrest was determined at 11, by a similar cross-validation procedure as stated in the caption
of Figure 5.1. The performance of the two RF models (training the original and the new dataset) is
visualized in Figure 5.8. It can be observed that the error rate in labeling small NSO images increases,
but the overall false positive and false negative rates decrease. This is a warning to practitioners that
an RF-based SO filter will need to be trained per drug product. Even with this improvement, the
performance with respect to the false positive rate comes close to our IB-filter, but still falls behind
with respect to the false negative rates.

5.8 Discussion

This study confirms the potential of image-based filters based on the data depth of a future image in
the distribution of SO images. In particular, our proposed filter makes a good trade-off between false
positive and false negative rates. The advantages over the benchmark approaches come from two
parts: (1) metadata has limited representation of image features that are important to distinguish SO
and NSO particles, particularly for small particles, and (2) the benchmark filters were mostly built in
a supervised manner.

We elaborate on the second point. The patterns of NSO images are arbitrary, as they are random
2D projections of free-shape 3D objects. A formulation of the binary classification problem SO/NSO
as a supervised learning task is therefore ill-posed. A training dataset will necessarily differ from



126 An Application: Image-Based Filter for Silicon Oil Particles

Fig. 5.8 Misclassification rates of the two RF models across the three testing sets. The original RF
model (RF, red bars) was trained on NSO images of a material different from the NSO testing set.
The second model (RF0, blue bars) was trained on NSO images from a similar material as the NSO
testing set.
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future data in essential features, and the usefulness of a supervised filter will be limited to a restricted
domain.

By choosing to train a filter based only on SO images, we accept that there will be some patterns
of NSO images that overlap with the distribution of SO images, but this is acceptable if the primary
focus is on recognizing particles that give strong evidence that they are are SO. The overlapping
patterns introduce an inevitable trade-off between false positives and false negatives, which is shared
by any image-based or metadata-based filters. We learnt that this challenge is more serious for small
particles, since small SO images have less regular patterns, e.g. the spherical hull may be breached by
the light reflection, or the white spot may all but disappear.

Another minor merit of pursuing an image-based filter is its applicability across different versions
of MFI systems. For instance, our image-based filter is theoretically applicable to images in gray
scale, regardless of the type of flow image system it originates from. In contrast, metadata from
different versions of MFI system may summarize the images under different definitions, even if the
summarized features are labeled with the same names.

The following points can be improved in future work.

• While pre-processing is necessary to standardize input images of arbitrary size for analysis, the
current algorithm for padding and resizing can be improved with respect to distortion of the
original patterns.

• Although this study is adequate to demonstrate the value of an image-based filter, more careful
selection of a larger set of SO training images could easily improve performance. Furthermore,
instead of our distinction between small and particles (number of rows and columns smaller
than 10), a systematic study may be carried out to determine appropriate bin sizes.

• The settings of the first part of the filter (Test 1) in our image-based filter may be further
optimized. Instead of using the maximum depth across 30 clusters, one may seek the average of
the highest two depth values, or measure another degree of agreement with several key clusters.
The intuition is that, if the testing image has a standard SO pattern, it is likely to get high depth
values in more than one cluster.

• One may develop a better algorithm to extract individual images from the intact images, in
order to minimize the chance of presence of multiple particles in one image, or truncation of a
particle.
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5.9 Appendix 1: Gallery on variations of SO/NSO images

This Appendix shows the gallery of selected SO and NSO particles: examples of Clearly SO images
in Figure 5.9, Unclear SO images in Figure 5.10, and Clearly NSO images in Figure 5.11.

Fig. 5.9 Examples of Clearly silicon oil (SO) particles that can be easily recognized.
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Fig. 5.10 Examples of Unclear silicon oil (SO) particles that experts are moderately certain that they
are SO based on images.
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Fig. 5.11 Examples of Clearly non-silicon oil (NSO) particles that can be easily recognized.



5.9 Appendix 1: Gallery on variations of SO/NSO images 131



132 An Application: Image-Based Filter for Silicon Oil Particles

5.10 Appendix 2: Gallery of the Reference book in Test 2 of IB-Filter

Fig. 5.12 Reference book of SO images of size 20×20.
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Fig. 5.13 Reference book of SO images of size 9×9.
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5.11 Appendix 3: Gallery of example images from the testing dataset.

Fig. 5.14 Examples of Clearly Oil images in the testing set.
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Fig. 5.15 Examples of Unclear Oil images in the testing set.
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Fig. 5.16 Examples of Clearly NSO images in the testing set.


