
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/138823 holds various files of this Leiden 
University dissertation.  
 
Author: Chen, X. (G.) 
Title: Prediction sets via parametric and nonparametric Bayes: With applications in 
pharmaceutical industry 
Issue date: 2021-01-05 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/138823
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 4

Nonparametric Tests and Prediction Sets
for Functional Data

4.1 Introduction

This chapter studies data depth methodology in functional data analysis, for (i) detecting “outliers”,
(ii) constructing prediction sets, and (iii) performing two-sample tests. The motivation comes from
emerging types of functional data in biotech manufacturing. The following are examples of routine
tasks:

1. assess if the spectroscopy profile of a newly-manufactured batch is ‘within expectation’ relative
to the profiles of historical batches. A spectroscopy profile captures chemical and/or biophysical
characteristics of a material. A typical example is the absorption of light of different wavelengths
over a prefixed range.

2. assess the difference or similarity between two sets of time series representing a key process
attribute measured on a cell culture (or purification) before and after a critical process change.

3. compare particle size distributions before and after a change in starting material or process.

Currently these tasks are performed visually by well-trained specialists following a detailed protocol.
A more data-driven approach would remove human bias.

In functional data analysis the observations are functions t 7→ Xi(t) of a continuous argument t.
This setup fits the preceding examples, in which wavelength, time or particle size are conceptually
continuous variables. In practice, one observes the values of these functions only at a finite grid of
values t, and hence the observations are vectors Xi =

(
Xi(t1), · · · ,Xi(td)

)
. If we observe N curves at d

grid points, then the full data will be an N×d data matrix X. A data matrix resulting from functional
data is different than a data matrix resulting from just any N observational vectors, as the columns are
ordered and usually have a numerical reference. When visualizing the datamatrix, it is more intuitive to
plot N curves against this numerical index, than to think of N points in d-dimensional space. Also the
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number of columns, resulting from the sampling frequency of the grid points t1, · · · , td , is to a certain
extent a subjective choice. Ideally it should reflect our expectation on the variability of the underlying
functions. Less smooth functions should be observed on a finer grid, as otherwise important local
features may be missed. To make the distinction explicit, we shall refer to the observations Xi as
“functional vectors” .

The chapter is organized as follows. We start with an overview of functional data depth (FDD) in
Section 4.2, and propose two new constructions of FDD, with a view to outlier detection when the
population is multi-modal. Next we examine the sensitivity of different FDDs to different types of
outliers in Section 4.3, and show the potential advantage of centering the curves. In Section 4.4 we
discuss three approaches to construct a prediction set with functional data. We end the chapter in
Section 4.5 with a discussion of three approaches to two-sample testing with functional data.

Pre-processing of the functional data, such as landmark registration, may be needed to remove
contamination (e.g. a slight horizontal shift or stretching of a curve), and to ensure that the inference
can be focused on functional features of interest. This is usually case specific; it is beyond the scope
of this chapter. One may consult Chapters 3-5 in [45] for a detailed account.

4.2 Functional Data Depth (FDD)

4.2.1 Definition and Overview

We restrict to functions x:V 7→ R on an interval V = [a,b] ⊂ R. If ς is the set of all functions of
interest and P is the set of all probability measures on ς , then a statistical depth functional is a
mapping D:ς ×P 7→ R. A value D(x,P) is meant to measure centrality of the function x within the
distribution P, a higher value indicating that x is closer to the center of P. The ‘population depth’
D(x,P) will be estimated with the help of a random sample x1, . . . ,xn of functions from some P ∈P ,
and then leads to a measure of centrality ‘within a sample’.

For a discussion on functional depth when the functions x have more than one argument, we refer
to [11].

By discretizing a function x over a grid with d points, it becomes a vector in Rd , to which we can
apply any notion of data depth for random vectors. Several fundamental differences between such a
functional vector and a general multivariate observation need to be taken into account. Following the
summary in [48], we note:

1. A functional vector Xi, when visualized as a curve divides the two-dimensional plane into
upper and lower regions. This provides intuition on possible definitions of a “central” curve in
a sample. For instance, roughly 50% of the sample curves should lay entirely or mostly in the
upper or lower region defined by the “central” curve.
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2. The notion of centrality (or outlyingness) of a curve should not solely focus on addressing its
location relative to the population, but also on its shape. The vertical location of a curve x over
support [a,b] is commonly defined as

1
b−a

∫ b

a
x(t)dt. (4.1)

For depicting a functional pattern there are many possibilities.

3. A notion of centrality of a curve can involve a trade-off between global aspects across its full
support V and local aspects in the neighborhood of points in V .

4. Not all desirable properties of multivariate data depth (see [72]) are meaningful for functional
depth, such as full affine invariance. See [38], [20], [48] for a discussion. A list of desirable
properties of functional data depth was given in [38] and further refined in [20].

The prevalent functional depths may be classified into:

(i) Integrated depth (ID), proposed by [16],

(ii) Projection-based depth (PBD), proposed in [71] and in [12],

(iii) Geometrical depths, including band depth (BD) from [32], half-region depth (HRD) from [33]
and spatial depth (SD) for functional data proposed in [10], [9] and [50].

Consistency of the sample estimators of these depths and other desired statistical properties have been
proven by [16] for ID, [71] for PBD, [19] for BD and HRD, and [9] and [48] for SD. See [20] for a
comprehensive review.

Some multivariate depths are degenerate in the functional case, that is, the resulting D(x,P) is
the same for any x in the set ς (see [9] and [20]). This problem is known to burden BD and HRD
when the observed curves are very wiggly and hence cross each other frequently. In practice, the
degeneracy issue may be avoided by using the depths of the smoothed functions, instead of the raw
"fuzzy" curves. Such pre-processing is best left to the specific needs in the application context. To
alleviate this problem, modified versions MBD and MHRD were proposed. However, MBD and
MHRD are not good in detecting a spiky outlier curve (see Section 4.3 for illustration).

Besides being useful for the purposes described in the next sections, functional data depth can be
applied (a) to define a robust estimate of a typical (or "center") pattern, using the median or a trimmed
average ([16]); (b) to build a confidence band around the estimated "center" curve ([8], [7]); (c) to
define surrogate responses in a classification problem ([12], [44]).

4.2.2 ID and WID

Given a univariate depth D
(
x(t),Ft

)
of a functional value x(t) relative to its marginal distribution Ft ,

one can form an integrated depth (ID) as ID =
∫ b

a D
(
x(t),Ft

)
dt. The univariate depth can take any

form, such as Tukey depth or simplicial depth. For arithmetic simplicity [16] proposed the median
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depth D
(
x(t),Ft

)
= 1−

∣∣1/2−Ft
(
x(t)
)∣∣, where Ft also denotes the marginal cumulative distribution

function, which results in

ID(x,F) = b−a−
∫ b

a

∣∣∣∣12 −Ft
(
x(t)
)∣∣∣∣ dt.

In the sample version the population distribution function Ft is replaced by the empirical distribution
function of the observed data points x1(t), . . . ,xn(t) at t. The function depth.FM from the R package
fda.usc will be used to calculate this integrated depth in later sections.

In our practical situation of interest, the population usually is a mixture involving multiple
stereotypical functions. We propose a measure of functional depth, weighted integrated depth (WID),
that is appropriate for this situation. A useful population model is a mixture of Gaussian processes
(GPs), defined structurally as

X(t) = µ +Z(t), t ∈ [a,b],

µ ∼ N(mµ ,ε
2
µ),

Z|c∼ GPc(mc,kθc),

c∼ (wc)c=1,...C,

κθc(s, t) =Cov
(
Z(s),Z(t)|c

)
= l2

c exp

(
−(s− t)2

τ2
c

)
+ ε

2
c δs,t ,

(4.2)

where the scalar µ reflects the overall location of the curves, and the functions mc, for c = 1, . . . ,C,
are the different stereotypical curves after centering. In the model (4.2) the functions mc are the mean
functions of Gaussian processes, which are further specified by their covariance functions kθc . Given
a latent variable c with distribution (wc), the process Z is distributed as a Gaussian process with
parameters (mc,kθc). The covariance functions are specified by vectors of three positive numbers
θc = (lc,τc,εc), and are the sum of the Gaussian kernel, with spread and smoothness determined by lc
and τc, and a white noise function with variance ε2

c , reflecting observational noise. (The latter process
could be restricted to the finite grid at which the processes are observed.) The notation δs,t is used for
the Kronecker delta, i.e. δs,t = 1 if s = t and δs,t = 0 otherwise. The Gaussian kernel is chosen for
illustration, and because the resulting Gaussian process can adapt to any smoothness by proper choice
of τc. The distribution of Z is a mixture F = ∑

C
c=1 wcGPc(mc,kθc) of Gaussian distributions.

We define the WID of a centered function x ( i.e. a function x with
∫ b

a x(t)dt/(b−a) = 0) as

WID(x,F) =
C

∑
c=1

wcPZc∼GPc

(
O(x,mc,kθc)≤ O(Zc,mc,kθc)

)
, (4.3)
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where O(x,mc,kθc) is a weighted square distance of x relative to mc:

O(x,mc,kθc) =
∫ b

a

(
x(t)−mc(t)

)2

κθc(t, t)
dt. (4.4)

The weights in (4.4) are chosen so that the distances O(x,mc,kθc) are on the same scale across the
component Gaussian processes. The square distance (4.4) will be larger if x is further from the mean
curve of the cth cluster, and hence the corresponding probability in the definition of WID(x,F) will
be larger if x is closer to mc. All probabilities in (4.3) will be small if x is far from every mc. Thus
WID(x,F) measures data depth of x relative to the mixture distribution.

In practice F will be unknown and replaced by an estimator Fn =∑
C
c=1 ŵcGPc,n, based on a random

sample {xi}n
i=1 from the distribution of X in (4.2). This involves estimators {ŵc}Cc=1, {m̂c}Cc=1 and

{θ̂c}Cc=1 of the parameters wc, mc and θc. A rough, but computationally efficient, method of estimation
could be to cluster first the curves x1, . . . ,xn, after centering, next let the weights ŵc be proportional
to the sizes of the clusters, and estimate the remaining parameters by fitting the Gaussian process
model to the curves in the corresponding cluster. As a final note, a pruning procedure may be needed
to remove very small clusters. Centering of a curve xi can be done by subtracting the trapezium-
rule approximation vi = 0.5∑

d−1
j=1 (t j+1− t j)

(
xi(t j)+ xi(t j+1)

)
/(b−a) to its weighted integral. The

numbers {vi}n
i=1 may be ranked separately using a univariate depth measure. In practice we may

observe curves of similar patterns but with varying vertical locations, and decomposing depth in a
measure for curve pattern and vertical height will provide more insight.

The probabilities in (4.3) may be approximated by simulating large samples {x∗b}B
b=1 from the

estimated Gaussian process GPc,n and computing

B−1
∑

B
b=1 1{O(x,m̂c,kθ̂c

)≤O(x∗b,m̂c,kθ̂c
)}.

If the chosen estimators ŵc, m̂c and θ̂c converge to their population counterparts, then the correspond-
ing estimator of WID(x,F) will also be asymptotically consistent.

4.2.3 PBD, RPD and MPD

Projection-based depth (PBD) defines the depth of a vector as the smallest univariate depth of its
one-dimensional projections. It is developed for multivariate data in [71]. The outlyingness of x ∈ Rd

relative to a distribution F on Rd is defined as

O(x,F) = sup
‖u‖=1

|u′x−µ(Fu)|
σ(Fu)

,

where Fu is the univariate distribution of u′X if X ∼ F , for a given u ∈ Rd , and (µ(Fu),σ(Fu)) are
any pair of location and scale functionals of Fu, e.g. (mean, standard deviation) or (median, median
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absolute deviation). (If σ(Fu) = 0, the quotient is read as 0.) The population depth of x is then defined
to be 1/

(
1+O(x,F)

)
. For a sample version, the distributions Fu are replaced by their empirical

counterparts.

Multivariate projection-based depth was generalized to functional data by [12]. The idea is to
replace the vectors u by functions and x′u by the integrals

∫ b
a x(t)u(t)dt. Because there are too many

possible choices for function u, [12] proposed a random projection depth (RPD) based on functions
u1, . . . ,uB generated from a Gaussian distribution and standardized to norm 1, given by

RPD(x,F) =
1

1+O(x,P)
, (4.5)

where

O(x,F) =
1
B ∑

u∈{u1,...,uB}

∣∣∣∣∣
∫ b

a u(t)x(t)dt−µ(Fu)

σ(Fu)

∣∣∣∣∣ , (4.6)

and where Fu denotes the distribution of
∫ b

a u(t)X(t)dt for X ∼ F , for a given u, with location and
scale µ(Fu) and σ(Fu). (The functions u could be normed, but this will be irrelevant if the µ and σ

are scale invariant.) The properties of this RPD will not only depend on the choice of (µ,σ), but also
on B and the assumed stochastic process for u. In practice the functions will only be evaluated on
a grid and the integrals will be approximated by sums. The function depth.RP from the R package
fda.usc will be used to calculate RPD.

We investigate an alternative, which is relevant under the population model given by the mixture
of Gaussian processes as in (4.2). Rather than the random directions we use the mean functions mc of
the components, leading to

MPD(x,P) =

1+max
c

wc

∣∣∣∣∣
∫ b

a mc(t)x(t)dt−µ(Fmc)

σ(Fmc)

∣∣∣∣∣
−1

. (4.7)

Here Fmc is the distribution of
∫ b

a mc(t)X(t)dt if X ∼ GPc. We choose (µ,σ) to be the median and
median absolute deviation to avoid the impact of outliers.

In the sample version, we first estimate wc and mc from data {xi(t): t = t1, · · · , td}n
i=1, by the same

procedure as described for for WID. Furthermore, we evaluate µ(Fmc) and σ(Fmc) based on large
samples from GPc.

4.2.4 BD and MBD

For an arbitrary subset I ⊂ {1, . . . ,n}, we define the ‘band’ formed by the set of sample functions
xI = {xi: i ∈ I} as

B(xI) = {(t,y): t ∈V, min
k∈I

(xk(t))6 y6max
k∈I

(xk(t))}.
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Next for G(x) =
{(

t,x(t)
)

: t ∈ [a,b]
}

the graph of an arbitrary function x, define the sample band
depth (BD) of x relative to x1, . . . ,xn as

BDn,J(x) =
J

∑
j=2

 1(n
j

) ∑
I⊂{1,...,n}; |I|= j

1{G(x)⊆B(xI)}

 . (4.8)

Here J is a fixed integer with 2 6 J 6 n, which is commonly recommended to be chosen equal to
J = 3, in view of the computational burden.

A modified version (MBD) is obtained by not requiring that the full graph be contained in the
band, but instead measure the length of the interval on which x falls within the band, i.e. the length of
the set

A(xI) = {t ∈V : min
k∈I

(xk(t))6 x(t)6max
k∈I

(xk(t))}.

Next we replace the indicator function 1(·) by the Lebesgue measure of A(xI), and define

MBDn,J(x) =
J

∑
j=2

 1(n
j

) ∑
I⊂{1,...,n}; |I|= j

λ (A(xI))

λ (V )

 . (4.9)

The functions BD and MBD from the R package roahd will be used to calculate BD and MBD in later
analyses.

4.2.5 HRD and MHRD

The half-region depth measures the proportion of sample curves that are above or below a given
function. Define the hypograph (hyp) and epigraph (epi) of a function x with support V as

hyp(x) = {(t,y) ∈V ×R: y6 x(t)},

epi(x) = {(t,y) ∈V ×R: y > x(t)}.

Then for G(xi) the graph of the sample function xi, the sample half-region depth (HRD) of x is defined
as

HRDn(x) = min{K1(x),K2(x)}, (4.10)

where

K1(x) =
1
n

n

∑
i=1

1{G(xi)⊂hyp(x)},

K2(x) =
1
n

n

∑
i=1

1{G(xi)⊂epi(x)},

are the proportions of sample values with graph fully below or above x.
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This depth measure can be modified by not requiring that a sample function is everywhere below
of above x, but by measuring the length of the sets where this is the case, in the same spirit as MBD
relaxes BD. we define MHRD as

MHRDn(x) = min{K∗1 (x),K∗2 (x)}, (4.11)

where

K∗1 (x) =
1

nλ (V )

n

∑
i=1

λ{t ∈V : x(t)6 xi(t)},

K∗2 (x) =
1

nλ (V )

n

∑
i=1

λ{t ∈V : x(t)> xi(t)}.

The functions HRD and MHRD from the R package roahd will be used to calculate HRD and MHRD
in later analyses.

4.3 Topic I - Visualization of Outliers

Given a sample of curves, a future curve can be viewed as an outlier if (a) it is at an abnormal location,
e.g. the entire curve lays above or below the majority of the sample curves, (b) its pattern is not
similar to any of the sample curves, or (c) a combination of (a) and (b). Additionally, a deviation
in pattern in the sense of (b) may be global or a local. In this section, we use a simulated dataset to
examine the sensitivity of the different FDDs with respect to outlier functions of different designs,
and illustrate the potential advantage to monitor outliers via the depth values of curves after centering.
A bivariate plot is presented as a useful tool to separate outlyingness due to (a) or (b).

We consider a population that is a mixture of two stochastic components (M1) and (M2), specified
below, with weights pM1 and pM2 = 1− pM1:

• (M1) X(t) = µ +4t + ε(t), where µ ∼ N(0,0.92) and ε is a centered Gaussian process with
covariance kernel κ(s, t) = 0.1exp

(
−(t− s)2/0.07

)
, for 0≤ s, t ≤ 1.

• (M2) X(t) = µ +0.9sin(3πt)+4t + ε(t), where µ ∼ N(0,0.42) and ε is a centered Gaussian
process with covariance kernel κ(s, t) = 0.05exp

(
−(t− s)2/0.02

)
, for 0≤ s, t ≤ 1.

The curves are observed at 50 equally spaced points in [0,1].

We design the following three outlier curves:

• (Outlier-1: Global pattern deviation): a sample curve from X(t) = −1.5+7t + ε(t), where ε is
the same as (M1).

• (Outlier-2: Sharp local spike): the sum of a sample curve from (M1) and the function that is 4.5
when t ∈ (0.7,0.75) and zero otherwise.
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• (Outlier-3: Modest local spike): the sum of a sample curve from (M1) and the function that
is 2.5 when t ∈ (0.7,0.75) and zero otherwise. In addition, the curve location is chosen to be
relatively low so that the modest spike is among the sample curves.

We simulated 250 curves from (M1), and 250 curves from (M2) and added the three outlier curves,
giving a dataset of 503 curves in total. The 503 curves are shown in the top left panel of Figure 4.1.
The top right panel gives the same curves but centered vertically by subtracting the constant

FL(x) =
1
d

d

∑
j=1

x(t j) (4.12)

from each curve x. These are estimates for the ‘functional locations’
∫ 1

0 x(t)dt of the curves.

We calculated the depth of all 503 individual curves within the total sample using every of the
methods ID, WID, BD, MBD, HRD, MHRD, RPD and MPD. To facilitate visual comparison, we
rescaled the depth values to the interval [0,1], by substracting per method the minimum depth over
the 503 curves and dividing by the range of the depth values. These rescaled values are plotted in the
bottom left panel of Figure 4.1, while the bottom right panel shows the same but now for the centered
curves. The depth values of WID are absent in the left plot, since this method is designed for centered
curves, while BD and HRD are absent in the right plot in view of the degeneracy of these methods for
the original curves (the curves cross each other too often).

We may expect that the FL-centered curves are more suitable for discovering functional patterns.
Besides, we found that clustering the centered curves lead to more accurate recovery of the two
clusters in the data (needed for WID and MPD calculation).

Details of the calculations are as follows. For WID and MPD we clustered the curves by the
K-means method, with K = 2, the correct number of clusters in this case. In practice, we would
determine a suitable value of K by a preliminary analysis. Given the clustering the center curve per
cluster was estimated by pointwise α−trimmed means with α = 0.05, to avoid the influence of the
extreme values. For WID, we set the value of κθc(t, t)+ ε2

µ in (4.4) for every t equal to the pointwise
variance of the functions in a cluster averaged over the 50 grid points. We used here the fact that in the
present data the variance is constant in t. In practice we would make full inference on the parameters
of the Gaussian processes.

Ideally the depth values of the three outlying curves would be smallest among all depth values. In
the left bottom panel of Figure 4.1, we see that only BD is sensitive enough to detect all the three
outliers in this way. This comes at a high computational burden as the number of the curves increases.
The HRD method seems to be sensitive to a sharp local spike, while the other FDDs all perform
poorly overall.

Centering the curves appears to enhance the sensitivity to outliers for all FDDs. All FDDs except
MHRD and RPD can detect the global pattern deviation. MBD and MPD are not sensitive to the
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Fig. 4.1 Top: the complete set of 503 simulated curves (top left) and the corresponding centered
curves (top right): 250 sampled from (M1), 250 from (M2) and 3 outlier curves. Bottom: scaled
FDDs of eight methods based on the original curves (bottom left) and on the centered curves (bottom
right). Outlier curves are marked with different colors, line and point types.

local spike, as can be expected from their design through integrating a deviation metric over the full
support, while WID has a higher sensitivity by integrating a squared deviation metric. MHRD is good
at detecting a local spike, even if this is of modest strength. RPD fails in assigning any of the three
outliers the lowest depth value.

The advantage of using the centered curves is clear in the preceding. However, centering does
neglect the vertical location of the curve, which itself can be a source of the outlyingness. To remedy
this one can calculate the univariate depths of the locations FL(x) of the curves. In Figure 4.2 these
are plotted against the corresponding FDD values based on the centered curves. If a future curve
shows up at the left side of this bivariate plot, then it is likely a shape outlier, while a location outlier
will show up at the bottom of the point cloud. Points in the bottom left corner are outlying relative to
both aspects.
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Fig. 4.2 Plot of univariate depth of curve locations versus FDD value of the centered curves. The
four panels show the four types of FDD: WID, MPD, MBD and MHRD. In every case the univariate
depth is the median depth 1−

∣∣1/2−Fn
(
FL(x)

)∣∣, where Fn is the empirical cumulative distribution
function of the sample of curve locations LF(xi).
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4.4 Topic II - Prediction Sets

In this subsection, we discuss two approaches to build a prediction set for functional data using depth
values. In our practice, constructing a prediction set is needed for monitoring a future abnormal curve
or assessing comparability of two groups of curves. In the latter application, one may be requested to
compare a test group with only 3–5 individuals to a large reference group. A rigorous statistical test
might then lack power, but we could build a prediction set based on the reference data, and conclude
that the groups are “comparable” if the samples from the test group are within this prediction set.

Practitioners often build a prediction set for functional data by combining pointwise prediction
intervals into a prediction band for a curve. A future curve is considered abnormal if any point of its
graph falls outside the band. Although this has an intuitive visual interpretation, a drawback is that
the coverage of the band may be much smaller than the coverage of the individual intervals, and this
may be hard to correct. In addition, this approach neglects curves with abnormal patterns, as long as
their values are within the band.

An alternative is to build a prediction set using functional depth values. A first possibility is to use
the depth values directly, and define a prediction set as the set of curves with depth higher than some
threshold. This is reasonable, since FDD ranks curves in a center-outwards manner, where a higher
depth value indicates that a curve is closer to the "center" (and hence more "typical"). Given a FDD,
it suffices to determine the threshold to ensure a desired coverage. The sensitivity of such a prediction
set to different types of abnormality depends on the chosen FDD and how it is calculated (based on
the original curves or the centered curves). For instance, in Section 4.3 Outlier-2 and 3 were seen to
be within the 95%, or even 90%, prediction sets for most choice of data-depth (see Figure 4.1).

Another approach is to project the curves to a set of basis functions, and to build a prediction set
based on the multivariate depth measure of the projection coefficients. We shall use the (functional)
eigenbasis of the reference sample, and likelihood depth based on a Bayesian density estimator for
the distribution of the coefficient vectors, as described in Section 3.6, to build a prediction set. Since
an outlier curve may be badly approximated by the eigenfunctions, but still have similar projection
coefficients, we also perform a preliminary test on the distance between the curve and its projection.
If this distance is larger for the new curve than for any of the reference curves, or exceeds a large
quantile of the latter distances, than the new curve is classified as an outlier. By using a very large
quantile, this test will be stringent, and the preliminary check will hardly change the coverage of the
prediction set.

The eigenfunctions ξ1,ξ2, . . ., or ‘functional principal components’, of a sample x1, . . . ,xn of
curves sequentially maximize the sum of squares ∑i ν2

il of the loadings νil =
∫ b

a

(
xi(t)− x̄(t)

)
ξl(t)dt

of the centered xi on ξl , under the constraints that
∫ b

a ξl(t)2 dt = 1 and
∫ b

a ξl(t)ξ j(t)dt = 0, for l > j.
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Fig. 4.3 Top row: first three eigen-functions ξ1,ξ2,ξ3 corresponding to the centered set of 500
reference curves. Bottom row: average curve u(t) = x̄(t) (solid line), and average curve +qupp×ξl(t)
(line made of ’+’) and −qlow × ξi(t) (line made of ’-’), where qupp is the 0.95 quantile of the
coefficients {νil}n

i=1 and qlow is the 0.05 quantile, for l ∈ {1,2,3}.

Given the first L eigen-functions, a sample curve xi can be approximated by

x̂i(t) = x̄(t)+
L

∑
l=1

νilξl(t) (4.13)

A new function can be similarly projected onto the span of ξ1, . . . ,ξL. In practice the functions will be
discretized on a grid and the integrals will be approximated by sums. The number L of basis functions
will typically be chosen much smaller than the number of grid points. Details on functional principal
component analysis can be found in Chapter 8 of [45]. We use the R package { f da.usc,version 2.0.1}
for FPCA in this study.

We implemented this method on the dataset generated in Section 4.3, consisting of a reference
sample of 500 curves and three outlying curves, visualized in the top-left panel of Figure 4.1. We
decided to retain the first three basis functions, which explained 94% of the total variation in the 500
reference curves. They are shown in the top panels of Figure 4.3, and superimposed as deviations on
the mean function u = x̄ in the bottom panels of the same figure.

The coefficients of the three outlying curves xn+1 were calculated as νn+1,l =
∫ b

a (xn+1(t)−
x̄(t))ξl(t)dt, and their projections similarly to (4.13) (shown in Figure 4.4). We calculated the square
distances between all xi and their projections x̂i as ∆i =

∫ b
a

(
xi(t)− x̂i(t)

)2 dt. For the reference sample
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Fig. 4.4 The three outlier curves (solid lines) and their approximation based on {ξl}3
l=1 (visualized in

Figure 4.3). Deviations ∆ between the observed and the approximated are shown in the title.

these ranged from 0.002–0.184, while for the three outlying curves these values were 0.408, 0.949
and 0.255, all exceeding 0.184.

We computed the likelihood data depth based on fitting a Bayesian nonparametric density estimator
to the vectors {(vi1,vi2,vi3)}n

i=1 of coefficients relative to the first three eigenfunctions. This density
estimator assumes a Dirichlet process mixture of Gaussians as a prior. We used the SUGS algorithm,
described in Section 3.6, to approximate the posterior mean density, with the prior hyper-parameters
set to: κ0 = 0.1, ν0 = 7, and µ0 and Λ0 set to be the sample mean and the inverse of the sample
covariance matrix of {(vi1,vi2,vi3)}n

i=1. We used 50 random permutations of the input sequence for
SUGS, and selected the sequence with the highest predictive likelihood to perform the final fit. Given
a sequence of input data, the predictive likelihood is the log-likelihood of the last 20% of the data
based on the density estimator trained on the first 80% of the data via SUGS. The prediction set was
then set equal to functions with a likelihood depth greater than the threshold set to achieve Bayesian
1−δ−expectation coverage, as in (3.12). This threshold was 1.8×10−5 for δ = 0.01 (99% coverage),
and 6.5×10−5 for δ = 0.05. The likelihood depths of the three outlying curves were 2.9×10−11 for
Outlier-1 (global deviation), 2.0×10−6 for Outlier-2 (sharp local spike), and 6.8×10−4 for Outlier 3
(modest local spike). Hence only the Outlier-3 sits in the prediction set.

We confirmed the coverage of the prediction set in a simulation study, using the mixture of
Gaussian curves (M1) and (M2) with weights pM1 = 0.5, described in Section 4.3, as population
model. We generated a validation set of 5000 curves from this population, and checked inclusion in
the prediction sets computed from 100 different samples of 500 curves. For each of the 100 samples
we computed the first three eigenfunctions, the likelihood depth of the 500 coefficient vectors, and the
lower thresholds of the prediction sets for 90%, 95% and 99% coverage. We found that proportions of
0.9019, 0.9486 and 0.9889 of the 5000 validation curves belonged to the prediction sets, all of which
are very close to their nominal values.
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In all calculationss curves were discretized to a grid of 50 equally spaced nodes in [0,1]. The
first three eigenfunctions explained between 93-95% of the total variation across the 100 simulated
datasets.

4.5 Topic III - Two Functional Sample Testing

Assume given a reference group {xi}nx
i=1 of nx curves and a test group {y j}

ny
j=1 of ny curves, asssumed

to be i.i.d. samples from distributions with mean curves µX and µY , respectively. An ubiquitous
question in practice is whether the two distributions are equal or not. Here the curves may be
preprocessed, for instance centered, if it is desired to focus on a difference of particular patterns
between the two groups.

We discuss three approaches to conduct two-sample testing with functional data: a rank test from
[32], a permutation test, and a bootstrap test. We illustrate the tests on growth curves of groups of
boys and girls, originally from [45], used in [32], and compare the results to [32]. The motivation for
the new tests is that the rank test proposed in [32] requires to split the reference sample in a seemingly
arbitrary way.

4.5.1 Rank Test

The rank test proposed by [32] starts by randomly dividing the reference group into two parts, a
‘baseline’ sample Z = {zk}n0

k=1 ⊂ {xi}nx
i=1 and a ‘reference’ sample consisting of the remaining nx−n0

curves xi. It is advised to choose n0 not too small, for instance n0 = max(nx/2,ny).

For a given functional depth measure D(x,P) and Pn0 the empirical distribution of Z, a score of
a function x is defined as ∑k 1{Dn(zk,Pn0 )≤Dn(x,Pn0 )}. The scores of all functions in the pooled sample
of nx−n0 remaining ‘non-baseline’ functions xi and the ny functions y j are computed, ordered, and
R(xi) and R(y j) are set to be their ranks in this pooled sample. If there are ties among the scores, the
rank is defined as the midpoint of the unadjusted ranks, as usual. The proposed test statistic W is the
sum of the ranks {R(y j)}

ny
j=1 of the test group.

The scores are a measure of centrality relative to the distribution Pn0 , which should be close to
the distribution of the xi. Thus we may expect that the scores in the test group will be smaller, and
hence their ranks in the pooled sample to be smaller as well. Thus the null hypothesis that there is no
difference between the reference and test group is rejected for small values of W .

Under the null hypothesis that there is no difference, the ranks in the pooled sample should be a
uniform permutation of the numbers {1,2, · · · ,nx +ny−n0}, adjusted for ties if there are any. Thus
the test statistic W has the same null distribution as the sum of a random sample of size ny without
replacement drawn from {1, · · · ,nx +ny−n0}, adjusted for ties if there are any.
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4.5.2 Permutation Test

Given any two-sample test statistic, a permutation test compares the value of the statistic on the
two observed samples to the values on all pairs of samples obtained by splitting the pooled sample
x1, . . . ,xnx ,y1, . . . ,yny arbitrarily in groups of sizes nx and ny. If the sample sizes are large, one often
uses a randomly chosen set of splits rather than all splits, together with the original split. Because
under the null hypothesis all splits are equally likely to give the original grouping, the P-value of the
permutation test can be computed as the proportion of splits giving a larger value of the test statistic
than the observed value.

If the test statistic is a distance ∆(µ̂X , µ̂Y ) between estimated mean functions in the two samples,
then this P-value becomes ∑

B
b=1 1{∆(µ̂(b)∗

X ,µ̂
(b)∗
Y )>∆(µ̂X ,µ̂Y )}

/B, where b ranges over all splits. The null
hypothesis is rejected when this is smaller than the significance level. The number of possible splits is(nx+ny

nx

)
. If this is too large, then B will be chosen a preset value and a random selection of splits will

be used.

An alternative test statistic is the centrality of the mean difference curve µ̂X− µ̂Y within an estimate
of the distribution of this difference under the null hypothesis. For {µ̂(b)∗

X − µ̂
(b)∗
Y }B

b=1 the mean
difference curves after B reassignments of the group labels, the latter distribution can be estimated as
the empirical distribution FB of these difference curves. The test statistic on the original sample then
becomes D(µ̂X − µ̂Y ,FB+1) and the P-value is evaluated as ∑

B
b=1 1{D(µ̂

(b)∗
X −µ̂

(b)∗
Y ,FB)6D(µ̂X−µ̂Y ,FB)}

/B.

4.5.3 Bootstrap Test

The bootstrap procedure is the same as the permutation procedure, except that the new samples are
now formed by drawing nx and ny curves with replacement from the pooled sample of curves.

When the sample sizes nx and ny of the two groups are highly unbalanced, some caution is
necesssary. For instance, the chance of redrawing all curves from the testing group is ( nx

nx+ny
)nx+ny ,

which can be larger than desired if ny/(nx +ny) is extremely small.

4.5.4 Example Analysis

The example dataset, shown in Figure 4.5, consists of the growth curves of 39 boys and 54 girls, In
[32] the P-value of the rank testing procedure was found to be 0.0001 with BD, 0.1199 with MBD,
and 0.1636 with ID. We applied the permutation and bootstrap test with B = 5000 and test statistics
(1) L1-Delta ∆(x,y) =

∫ b
a

∣∣x(t)− y(t)
∣∣dt, (2) L2-Delta ∆(x,y) =

∫ b
a

(
x(t)− y(t)

)2 dt, (3) MBD, or
(4) ID. We found that BD was too computationally intensive to be calculated at such large sample
size.
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Fig. 4.5 Growth curves (left subplot) of boys (in blue) and girls (in red), and their 1st derivative curves
(right subplot).

Table 4.1 P-values of the different test procedures with the growth curve dataset

Setting Rank Test1 Permutation Bootstrap

L1-Delta - 0.0010 0.0018
L2-Delta - <0.0001 <0.0001
MBD 0.1199 0.0836 0.0744
ID 0.1636 0.1098 0.0984

The results are summarized in Table 4.1. For illustration the redrawn curves {µ̂(b)∗
X − µ̂

(b)∗
Y }B+1

b=1

are shown in Figure 4.6.

Figure 4.5 shows that there is a clear difference between the curves of the two groups, with a
change in pattern starting around age 12. The pointwise difference curve µ̂boys− µ̂girls is also clearly
different from the difference curves simulated by the permutation or bootstrap procedure, shown in
Figure 4.6. Permutation and Bootstrap tests with L1 and L2-Delta all return very small p-values.
However, MBD and ID are not sensitive enough to flag this obvious deviation, due to their global
definition, while the deviation is local. Actually, if we perform the two-sample testing based on the
first derivative of the original curves (shown in the right subplot of Figure 4.5), all instances of the
permutation and the bootstrap tests in Table 4.1 return p-values <0.0001. This is explained by the fact
that the first derivative curves of girls starts to show different pattern already around age 9 comparing
to boys, while the full range of observation is from age 1 to 18.

As a visual instrument, one may build a prediction band based on the data from the girls, and see
starting from what age the growth curves of the boy increase outside the band (see Figure 4.7 for

1results are cited from [32]
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Fig. 4.6 Pointwise difference curve µ̂boys− µ̂girls between original mean curves of boys and girls
(black line), and 5000 simulated difference mean curve µ̂

(b)∗
boys− µ̂

(b)∗
girls with the permutation procedure

(grey lines in the left subplot) or the bootstrap procedure (grey lines in the right subplot).

illustration). We constructed such a prediction band by performing FPCA on the observed growth
curves X = {xi(t)}54

i=1, t ∈ [1,18] for girls, retaining the first 7 eigen-functions, which explained 99.5%
of the total variation. We simulated 1000 vectors ν∗bl from the multivariate normal distribution with
mean and covariance matrix being the sample mean and covariance matrix of the loading vectors
of the 54 girl’s curves, and then calculated 1000 curves via x∗b(t) = u(t)+∑l ν∗blξl(t), where u is the
mean of the girl’s curves and ξl are the eigenfunctions. Determine a 95% prediction set S∗95 based
on {ν∗b}1000

b=1 and their likelihood depths, and denote B95 = {b: ν∗b ∈ S∗95}. The representative band is
{(t,y): t ∈ [1,18], minb∈B95(x

∗
b(t))6 y6maxb∈B95(x

∗
b(t))}.

Fig. 4.7 Growth curves of the boys (in blue) and the prediction band (in red) of the girls, the band
intended to cover at least 95% of the girl population.


