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Chapter 1

Parametric Prediction Region based on
LMM

1.1 Introduction

The concept of tolerance region is of central importance in quality control. A tolerance region is a
prediction set for an unobserved or future observation, which takes account of both the random nature
of this observation and the uncertainty about its distribution. Parameters of the latter distribution are
estimated using past data, where it is desired to account for the statistical error resulting from simply
plugging in the estimated values.

Convential tolerance regions take the uncertainty of estimated parameters into account in one
of two ways. Either the region captures the future observation a fraction of 1−α times on average
over both future and past observations (the (1−α)-expectation tolerance region), or it captures the
future observation with probability at least 1−δ with 1−α confidence over past observations (the
(δ ,α)-tolerance region). (See Section 1.2 for precise definitions.) The second way appears to be
preferred in the pharmaceutical industry. The “on average" and “confidence" can refer to the sampling
distribution of the data in a frequentist sense, but can also refer to a posterior distribution in the
Bayesian statistical framework. The main focus on the present paper is the second, but we do relate it
to the frequentist setup.

Frequentist tolerance regions have been well studied in the literature. A general reference is the
book [28], especially for the situation that the data are i.i.d. For the linear mixed model (LMM), the
paper [51] provides an elegant solution to build one- and two-sided (δ ,α)-tolerance intervals, and
includes a comprehensive review of the literature. One purpose of the present paper is to provide a
Bayesian approach for the general LMM.
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The Bayesian formulation of tolerance regions dates back to at least 1964, but the subsequent
literature is relatively small. In his paper [1] Aitchison derived Bayesian (δ ,α)-tolerance regions
from a decision-theoretic framework, and contrasted them to the frequentist counterparts. In [2]
he extended his discussion to (1−α)-tolerance regions, which are a natural way to build Bayesian
prediction intervals.

A one-sided (δ ,α)-tolerance interval for a univariate future observation is usually easy to compute,
but two-sided tolerance intervals pose challenges, both conceptually and computationally. There
are at least two common approaches: intersecting two one-sided tolerance intervals, or fixing one
degree of freedom of the interval (e.g. the midpoint of the interval). The former approach is identical
to specifying probability masses in the two tails of the distribution of the future variable separately
and gives a valid construction, in view of Bonferroni’s inequality, but it yields longer intervals
than necessary. (They are called “anti-conservative” in the pharmaceutical industry in reference to
the customers, whereas statisticians might use the term “conservative”.) See [21] for an example
application. The second approach, fixing one degree of freedom, is the conventional choice, especially
in the frequentist framework, but requires untangling the dependence of the interval on the unknown
true parameter. Solutions are often not available in analytical form and computationally more
challenging. Wolfinger in [67] proposed an algorithm to derive a two-sided Bayesian interval for a
future normal variate, which was refined by Krishnamoorthy and Mathew [28]. Their algorithms have
been widely adopted in practice, and also in other literature (e.g.[27], [57], [56]).

Among other contributions to the literature we mention the following: [35] used the empirical
Bayes method to construct a one-sided tolerance interval given an i.i.d. sample from a normal
distribution; [22] derived a Bayesian tolerance interval that contains a proportion of observations with
a specified confidence; [14] and [68] focused on the sample size needed to attain a certain accuracy;
[57] and [56] allowed data from the unbalanced one-way random effects model and the balanced
two-factor nested random effects model; [36] discussed probability matching priors (PMP) in the
one-sided case to ensure second-order frequentist validity; [41] extended this to the two-sided case;
[42] incorporated it to a balanced one-way random effects model, and evaluated its performance
against the frequentist method MLS in [28].

Although the PMP approach has merit when the sample size is small, it is analytically demanding
even when data are i.i.d., and it seems difficult to extend to the general LMM setting. The algorithms
of Wolfinger [67] and Krishnamoorthy and Mathew [28] can be extended to LMM, but they overly
simplify the target function during optimization and may result in less satisfactory performance.

In this paper we propose a computationally efficient solution for the general case that the future
observation possesses a normal distribution. We show that this is easy to implement given any data
model for which a sample from the posterior distribution is available. We investigate when the shortest
interval is centered at the posterior mean of the parameter. We discuss the interval in particular for the
linear mixed model, and within this context show its good performance by simulation. We illustrate
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the method on an example that is representative for pharmaceutical applications. Finally we also
prove that the Bayesian interval has frequentist validity in the case of large samples.

1.2 Definitions and setup

Given are observed data X , with a distribution Pθ depending on a parameter θ , and future unobserved
“data” Z , with a distribution Qθ depending on the same parameter θ . In both cases the sample space is
arbitrary. A tolerance region is a set R(X) in the sample space of Z that captures Z with a “prescribed
probability”. It will typically be constructed using the observation X to overcome the problem that
θ , and hence the law of Z, is unknown. There are various ways to make the “prescribed probability”
precise, and these can be divided into frequentist and Bayesian definitions. The probability statement
will refer to both X and Z, and is fixed by one or two parameters α and δ , which are typically chosen
small, e.g. 5%.

The parameter θ will typically be chosen to identify the distribution of Z. The distribution of X
may also depend on unknown “nuisance” parameters. For simplicity of notation we do not make this
explicit in the following. We shall use the notation P or Pθ for general probability statements, which
may be reduced to Pθ or Qθ if the event involves only X or Z.

1.2.1 Frequentist definitions

The most common frequentist definition is the (δ ,α)-tolerance region. For a set R abbreviate
Qθ (R) = Pθ (Z ∈ R). Then R(X) is an (δ ,α)-tolerance region if

Pθ

(
x:Qθ

(
R(x)

)
> 1−δ

)
> 1−α, ∀θ . (1.1)

If we let Qθ

(
R(X)

)
denote the probability or coverage of R(X) under Qθ , for X held fixed, then

we can also write the display in the shorter form Pθ

(
Qθ

(
R(X)

)
> 1−δ

)
> 1−α , where the outer

probability Pθ refers to X , and the inequality must hold for all possible values of the parameter θ .
The latter reminds us of the definition of confidence sets, and indeed it can be seen that R(X) is
a frequentist (δ ,α)-tolerance region if and only if the set C (X) = {θ :Qθ

(
R(X)

)
> 1− δ} is a

confidence set for θ of confidence level 1−α .

An alternative is the α-expectation tolerance region, which requires that∫
Qθ

(
R(x)

)
dPθ (x)> 1−α, ∀θ . (1.2)

With the notational convention as before, the display can be written in the shorter form Eθ Qθ

(
R(X)

)
>

1−α , which is again required for all possible parameter values.
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Both definitions have the form of requiring that Eθ `
[
Qθ

(
R(X)

)]
> 1−α , for all θ , and some

given loss function `. In the two cases this loss function is given by `(q) = 1{q> 1−δ} for (1.1),
and `(q) = q for (1.2), respectively, where 1{·} is the indicator function.

1.2.2 Bayesian definitions

In the Bayesian setup the parameter θ is generated from a prior distribution Π, and the densities pθ

and qθ are the conditional densities of X and Z given θ , respectively. To proceed, it is necessary to
make further assumptions that fix the joint law of (θ ,X ,Z). The typical assumption is that X and Z
are independent given θ .

A natural Bayesian approach is to refer to the predictive distribution of Z, and define a tolerance
region R(X) to be a set such that P

(
Z ∈R(X)|X

)
> 1−α , i.e. a credible set in the posterior law of

Z given X . The inequality can be written in terms of the posterior distribution Π(·|X) of θ given X as∫
P
(

Z ∈R(X)|X ,θ
)

dΠ(θ |X)> 1−α.

Under the conditional independence assumption this becomes∫
Qθ

(
R(X)

)
dΠ(θ |X)> 1−α. (1.3)

This is like a frequentist α-expectation tolerance region (1.2), but with the expectation with respect to
X under Pθ replaced by the expectation with respect to θ under the posterior distribution.

An alternative, derived from a utility analysis by Aitchison [1], is the Bayesian (δ ,α)-tolerance
region, which is a set R(X) such that

Π

(
θ :Qθ

(
R(X)

)
> 1−δ |X

)
> 1−α. (1.4)

This may be compared to (1.1). We can also say that R(X) is a Bayesian (δ ,α)-tolerance region if
and only if the set C (X) = {θ :Qθ

(
R(X)

)
> 1−δ} is a credible set at level 1−α .

Both types of Bayesian regions satisfy
∫
`
[
Qθ

(
R(X)

)]
dΠ(θ |X)> 1−α , for the appropriate

loss function `. Solving the region R(X) from such an equation may seem daunting, but good
approximations may be easy to obtain using stochastic simulation. This is true even for complicated
data models, as long as one is able to implement an MCMC procedure for generating a sample from
the posterior distribution given X . We make this concrete in Section 1.3.1 for a Gaussian variable Z,
and illustrate this in Section 1.4 for an unbalanced linear mixed model (LMM).
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1.2.3 Comparison

The frequentist and Bayesian definitions differ in the usual way in that the frequentist probability in
(1.2) and (1.1) refers to the possible values of x in the sample space, whereas the Bayesian probability
in (1.3) and (1.4) conditions on the observed value of X and refers to the distribution of the parameter.

As is the case for credible sets versus confidence sets, the Bayesian approach may feel more
natural.

An advantage of Bayesian tolerance set is that while their form (1.4) is determined by the future
variable Z, through the prediction problem Qθ , the model for the data X enters only through the
posterior distribution Π(θ ∈ ·|X). If in the former the dependence on the parameter θ is not too
complicated, then the problem is solvable for even complicated data models. In contrast, the frequentist
problem permits explicit solutions only in very special cases, although approximations and asymptotic
expansions may extend their use (see [51]).

Neither the frequentist nor the Bayesian formulation restrains the shape of the region R(x). One
may prescribe a fixed form and/or seek to optimize the shape with respect to an additional criterion,
such as the volume of the region. The Bayesian formulation is again easier to apply, as the optimization
will be given the data X . In the case of frequentist region it may be necessary to optimize an expected
quantity instead.

In general the two approaches give difference tolerance regions, but the difference may disappear
in the large sample limit. The requirements of the frequentist and Bayesian tolerance regions R(X)

for loss function ` and level α , can be given symmetric formulations, as:

E
(
`
[
Qθ

(
R(X)

)]
|θ
)
> 1−α, ∀θ , (1.5)

E
(
`
[
Qθ

(
R(X)

)]
|X
)
> 1−α. (1.6)

In the first the expectation is taken with respect to X , which gives an integral over x with respect to
the density pθ . In the second the expectation is relative to θ , which leads to an integral relative to the
posterior distribution given X . The integral of the first relative to the prior is identical to the integral of
the second relative to the Bayesian marginal distribution of X , but there is no reason that a Bayesian
tolerance region would also be a frequentist tolerance region.

However, Bayesian and frequentist inference typically merge if the informativeness in the data
tends to a limit. For instance, this is true for regular parametric models in the sense that Bayesian
credible sets are frequentist confidence sets, in the limit, with corresponding levels. The prior is then
washed out and the Bayesian credible sets are equivalent to confidence sets based on the maximum
likelihood estimator. This equivalence extends to tolerance regions, under some conditions. We defer
a discussion to Section 1.5.
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1.2.4 One-sided and two-sided tolerance intervals

For a one-dimensional future variable Z it is natural to choose R(x) an interval in the real line. The
endpoints of such an interval are referred to as tolerance limits.

The single finite tolerance limit of a Bayesian one-sided interval is determined by meeting the
(δ ,α) or α tolerance criterion. The pair of tolerance limits of a Bayesian two-sided interval might be
optimized to give an interval of minimal length, next to requiring that the tolerance criterion is met.

One-sided tolerance limits possess a straightforward interpretation and implementation. In
particular, the (δ ,α)-type has a simple description in terms of confidence intervals and posterior
quantiles:

• (−∞,U(X)] is a frequentist (δ ,α)-tolerance interval if and only if it is a (1−α)-confidence
interval for the induced parameter Q−1

θ
(1− δ ); it is a Bayesian (δ ,α)-tolerance interval if

U(X) is the (1−α)-quantile of the posterior distribution of Q−1
θ
(1−δ ) given X .

• [L(X),∞) is a frequentist (δ ,α)-tolerance interval if and only if it is a (1−α)-confidence
interval for Q−1

θ+(δ ); it is a Bayesian (δ ,α)-tolerance interval if L(X) is the (1−α)-quantile of
the posterior distribution of Q−1

θ+(δ ).

Here Q−1
θ
(u) = inf{z:Qθ (−∞,z] ≥ u} is the usual quantile function of Z, and Q−1

θ+(u) is the right-
continuous version of this quantile function. (The distinction between the two is usually irrelevant,
and linked to the arbitrary convention of including the boundary point in the tolerance intervals.) The
assertions follow by inverting the inequality Qθ

(
R(X)

)
> 1−δ , using the fact that for a cumulative

distribution function Q and its quantile functions: Q−1(u)6 x if and only if u6Q(x), and Q−1
+ (u)< x

if and only if u < Q(x−), for u ∈ [0,1] and x ∈ R.

A valid two-sided interval might be constructed as the intersection of two one-sided intervals,
each at half of the error rate, but this will be conservative and lead to needlessly wide intervals. It
makes good sense to try and minimize the length of the interval. We consider this in the next section
for the case that the future observation Z is univariate Gaussian.

1.3 Normally distributed future observation

Consider the case that the future observation Z is univariate Gaussian with mean ν and variance τ2.
Thus the parameter is θ = (ν ,τ), and Z ∼ Qθ = N(ν ,τ2). The probability that the future observation
is captured within a candidate tolerance interval [L,U ] is

Qθ [L,U ] = Φ

(
U−ν

τ

)
−Φ

(
L−ν

τ

)
.
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Fig. 1.1 The set GA,B,δ of pairs (ν ,τ) such that Φ

(
(U−ν)/τ

)
−Φ

(
(L−ν)/τ

)
> 1−δ , for A = 4, B = 3, δ = 0.1. The

number A is its horizontal point of symmetry and B is the half-length of its base. The base of the set (the line segment at
height τ = 0) corresponds to the tolerance interval [L,U ].

It is convenient to parametrize the interval [L,U ] by its midpoint A = (L+U)/2 and half length
B = (U−L)/2. For given [L,U ], or {A,B}, and δ ∈ (0,1), define the set

GA,B,δ = {θ = (ν ,τ):Qθ [L,U ]> 1−δ

}
.

For given [L,U ] the set GA,B,δ is shaped as in Figure 1.1. It is symmetric about the vertical line
ν = (L+U)/2 and intersects the horizontal axis τ = 0 in the interval [L,U ]. Changing A moves
the set GA,B,δ horizontally, while changing B changes its shape, with bigger B making the set both
wider and taller. Although we use the normal distribution as our example, similarly shaped sets and
conclusions would be obtainable for other unimodal symmetric distributions.

It follows that R(X) =
[
L(X),U(X)

]
satisfies inequality (1.1) and hence is a frequentist (δ ,α)-

tolerance interval for Z if and only if

Pθ

(
x:θ ∈ GA(x),B(x),δ

)
> 1−α, ∀θ .

In other words [L(X),U(X)] is an (δ ,α)-tolerance interval for Z if and only if GA(X),B(X),δ is an
(1−α)-confidence region for θ = (ν ,τ). Setting a joint confidence interval for location and dispersion
is a familiar problem, but here the shape is restrained to the form GA,B,δ and the focus will be on
minimizing B = B(X) (in some average sense). Solutions wil depend on the type of data X . Standard
solutions are available in closed form for the simplest models, and more generally as approximations.

Similarly R(X) =
[
L(X),U(X)

]
satisfies inequality (1.4) and hence is a (δ ,α)-Bayesian toler-

ance interval for Z if
Π

(
θ :θ ∈ GA(X),B(X),δ |X

)
> 1−α. (1.7)

It is natural to choose A(X) and B(X) to satisfy this inequality in such a way that B(X) is minimal.
In the resulting optimization problem the posterior distribution Π(θ ∈ ·|X) is a fixed probability
distribution on the upper half plane and optimization entails shifting and scaling the shape shown in
Figure 1.1 in a position such that it captures posterior mass at least 1−α , meanwhile minimizing
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its width. In Section 1.3.1 we show how to achieve this given a large sample from the posterior
distribution.

The data X determines the posterior distribution, but does not enter the optimization problem. The
parameter θ may not be the full parameter characterising the distribution of X , but our computational
strategy will work as long as θ is a function of this full parameter. For instance, if X follows a linear
regression model with predictor “time” and Z is an observation at time 0, then ν will be a function
the regression intercept; if X follows a random-effects model, then typically ν will depend on the
fixed effects and τ2 will be a specific linear combination of the variance components, depending on
practical interests.

Frequentist methods typically choose A(X) equal to a standard estimator of ν . One might guess
that the Bayesian solution will be to take A(X) equal to the posterior mean E(ν |X) of ν . This would
be convenient as it would reduce the optimization of (A,B) to the problem of only optimizing B.
However, the posterior mean does not necessarily give the minimal length interval. The following
lemma gives a sufficient condition.

Lemma 1.3.1. Suppose that the conditional distribution of ν given (X ,τ) is unimodal and symmetric
with decreasing density to the right of its mode and has mean E(ν |X ,τ) that is free of τ . Then the
shortest (δ ,α)-Bayesian tolerance interval [L,U ] for a future variable Z ∼ N(ν ,τ2) is centered at
the posterior mean E(ν |X).

Proof. We can decompose the probability on the left side of (1.7) as

Π

(
GA,B,δ |X

)
=
∫

Π

(
ν ∈ (GA,B,δ )τ |X ,τ

)
dΠ(τ|X),

where (GA,B,δ )τ is the section of GA,B,δ at height τ . By the unimodality and monotonicity the integrand
is maximized over A for every τ and a given B by choosing A = E(ν |X ,τ). If this does not depend on
τ , then this common maximizer A will maximize the whole expression. Since we need to determine
A and B so that the expression is at least 1−α , maximizing it over A will give the minimal B. By
assumption A = E(ν |X ,τ) = E(ν |X).

The condition of the preceding lemma is not unreasonable, but depends on the prior, as illustrated in
the following simple example. In Section 1.4 we show that for a LMM the condition is approximately
satisfied. Then choosing A equal to the posterior mean is a fast computational shortcut that may
perform almost as well as the optimal solution.

Example 1.3.1. The simplest possible data model is to let X = (X1, . . . ,Xn) be a random sample from
the N(ν ,τ2)-distribution. This example was already discussed by Aitchison [1].
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For the standard priors τ2 ∼ IG(α0,β0) and ν |τ ∼ N(a,τ2/b), the conditional posterior distribu-
tion of ν given τ is normal with mean

E
(

ν |τ,X
)
=

ba+nX̄
b+n

.

Since this is independent of τ . the preceding discussion shows that the shortest (δ ,α)-tolerance
interval is centred at this posterior mean.

Choosing the prior variance var(ν |τ) proportional to τ2, which is customary, is crucial for this
finding. For instance, if we set the prior ν to be independent of τ , say ν |τ ∼ N(a,b−1), then the
conditional posterior mean changes to

E
(

ν |τ,X
)
=

baτ2 +nX̄
bτ2 +n

.

This is X̄ if τ = 0 and shrinks to the prior mean a as τ → ∞. For illustration, let a = 0, b = 0.1, α0 =

β0 = 0.01. Given data with n = 3, x̄ = 10, s2 = 1, we approximated the posterior distribution of (ν ,τ)
given X by a Gibbs sampler, using the full conditional posteriors, where s2 = ∑(xi− x̄)2/(n−1):

ν |τ,X ∼ N
(

baτ2 +nX̄
bτ2 +n

,
τ2

bτ2 +n

)
,

τ
2|ν ,X ∼ IG

(
α0 +

n
2
,β0 +

(n−1)s2 +nX̄2 +nν2−2nνX̄
2

)
.

The contour plots of the posterior distribution in the left panel of Figure 1.2 show dependence between
ν and τ given X , and ensuing functional dependence of E(ν |τ,X) on τ . Using Algorithm 2, as
explained in Section 1.3.1, we computed the shortest tolerance interval (i.e. the smallest B̂) for every
possible location A of the interval, for A in a neighbourhood of the posterior mean E(ν |X). The right
panel of Figure 1.2 shows B̂ as a function of Â. The minimum value is not taken at the location of the
posterior mean E(ν |X), which is indicated by a dashed line.

Admittedly the data in this example has been tweaked to illustrate the principle. Inspection of
the vertical scale for B̂ shows that the global minimal length of a tolerance interval is only slightly
smaller than the length of the interval centred at the posterior mean of ν . In Section 1.4 we show, by
theoretical derivation, a similar phenomenon for linear mixed models, and in Section 1.5 we study
this approximation in a large sample context.

1.3.1 Computational strategy

In this section we elaborate on the computation of the two-sided (δ ,α) Bayesian tolerance interval for
a normally distributed univariate future variable Z, as discussed in Section 1.3. We also compare our
approach to the one taken in [67] and [28]. We assume given a large sample of values θ j = (ν j,τ j)
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X−aixs: ν   versus   Y−axis: τ
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Fig. 1.2 Left panel: density-level contourplots of MCMC approximation to realization of posterior distribution ν ,τ|X in
Example 1.3.1 (prior parameters: a = 0, b = 0.1, α0 = β0 = 0.01; data x̄ = 10, s2 = 1, n = 3). Right panel: corresponding
half-lengths B (vertical axis) of the (δ = 0.05,α = 0.1)-tolerance interval centered at A (horizontal axis); the minimal
length is not taken at the posterior mean E(ν |X), whose location is indicated by the abscissa of the dotted line.

from the posterior distribution of θ = (ν ,τ) given X . This could be the result of an MCMC run of a
sampler for the posterior distribution, or, depending on the data model, of using an analytic formula
for the posterior distribution. We shall use the sample values (ν j,τ j) to approximate expectations
under the posterior distribution, whence they need not be independent, and values from a (burnt-in)
MCMC run will indeed qualify. Possible dependence together with sample size will determine the
error due to simulation.

The idea is to replace the posterior distribution in (1.4) by the empirical distribution of the values
{θ j}J

j=1. For a given interval R(X) = [L,U ] we can (in theory) compute the values Qθ j [L,U ] and
next search for the interval [L,U ] of minimal length U−L such that

1
J

#
(

Qθ j [L,U ]> 1−δ

)
.
= 1−α,

where .
= means approximately equal, yielding a slightly conservative or anti-conservative solution in

case exact equality is not attainable due to discretization.

Algorithm 1 was proposed by Wolfinger [67] and later refined (or corrected) by Krishnamoorthy
and Mathew [28], Chapter 11. This algorithm has a convenient graphical representation and has been
widely adopted in practice. The idea is to compute for every θ j the quantiles L j = Q−1

θ j
(δ/2) and

U j = Q−1
θ j
(1−δ/2), yielding intervals [L j,U j] with Qθ j [L j,U j]> 1−δ , and next setting the tolerance

interval [L,U ] equal to an interval that is symmetric about the posterior mean and contains a fraction
1−α of the intervals [L j,U j] (Krishnamoorthy and Mathew, referred to as KM), or is contained in a
fraction α of these intervals (Wolfinger, W). The graphical interpretation is to plot the points (U j,L j)

in the x-y-plane and search for a point (U,L) on the line y+ x = 2ν̂ , for ν̂ the posterior mean or some
other useful estimator, such that a fraction 1−α of the points are in the left-upper quadrant relative to
the point [L,U ] (see Figure 11.1 in [28] for an example). The KM method results in an interval that is
more confident (KM) than the prescribed level 1−α , and appears not to optimize the length of the
interval.
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Algorithm 1: WKM solution for two-sided tolerance interval
Data: Given α,δ ,{(ν j,τ j)}J

j=1

1 Let Â = ∑ j ν j/J ;
2 Calculate two quantiles sequences: {L j ≡ Q−1

ν j,τ j
( δ

2 )}
J
j=1 and {U j ≡ Q−1

ν j,τ j
(1− δ

2 )}
J
j=1 ;

3 Find a point (L̂,Û) such that L̂+Û = 2Â satisfying one of the following ;

4 (W) argminL̂,Û

∣∣∣#S
J −α

∣∣∣, where S = {(L j,U j):L j ≤ L̂,U j ≥ Û};

5 (KM) argminL̂,Û

∣∣∣#S
J −1+α

∣∣∣, where S = {(L j,U j):L j ≥ L̂,U j ≤ Û};
Result: two-sided tolerance interval [L̂,Û ]

Here we propose another algorithm that directly utilizes (1.4). We seek to minimize B under the
constraint that the interval [L,U ] = [A−B,A+B] satisfies (1.4). This takes two steps: for fixed A we
optimize over B; next we perform a grid search over A. Because given A, the optimizer over B will
yield equality in (1.4), B̂ will be the solution to

Π

[
Φ

(
A+B−ν

τ

)
−Φ

(
A−B−ν

τ

)
≥ 1−δ |X

]
= 1−α. (1.8)

The posterior mean E(ν |X) will typically be close to the optimal solution for A, and is a good starting
point for this parameter. As a fast approximation we may also set A to this value and omit the grid
search. The posterior mean can be approximated by the average of the sample values ν j.

In practice we replace the posterior distribution in equation (1.8) by an average over the sample
values (ν j,τ j). Given Â we approximate B̂ by the (1−α)-quantile of the points g j computed as the
solutions to

Qν j,τ j [Â−g j, Â+g j]≡Φ

(
Â+g j−ν j

τ j

)
−Φ

(
Â−g j−ν j

τ j

)
= 1−δ . (1.9)

The motivation for this procedure is that (ν j,τ j) ∈ GA,B,δ if and only if Qν j,τ j [A−B,A+B]> 1−δ ,
whence precisely the points (ν j,τ j) with g j 6 B̂ satisfy Qν j,τ j [Â− B̂, Â+ B̂] > 1−δ and hence are
inside the set GÂ,B̂,δ , whereas the other points are outside this set. This makes the posterior mass of
the set equal to 1−α up to simulation error.

Given Â and (ν j,τ j), the function g 7→ Qν j,τ j [Â−g, Â+g] in (1.9) is increasing, from the value 0
when g = 0 to 1 as g→ ∞ (see Figure 1.3). The solutions g j to each equation (1.9) can be found fast
by a Newton-Raphson algorithm, with some caution on choosing the initial value for g j (the algorithm
will diverge if the initial value is chosen in the domain where Qν j,τ j [Â−g j, Â+g j] is very close to 1).
An appropriate algorithm is listed in Algorithm 2. Note that the (middle) expression in (1.9) does not
change if ε:= Â−ν j is replaced by −ε .
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Fig. 1.3 Left panel: plot of the curves g 7→Φ( ε+g
τ

)−Φ( ε−g
τ

) for various settings of ε and τ . Right panel: derivatives of
these curves.

Algorithm 2: Proposed solution for two-sided tolerance interval
Data: Given α,δ ,{(ν j,τ j)}J

j=1

1 Let Â = ∑ j ν j/J ;
2 for j = 1,2, ...,J do
3 Solve equation (1.9) by a Newton-Raphson algorithm as follows;
4 if |Â−ν j|< τ j then
5 g0 = |Â−ν j|+ τ j

6 else
7 g0 = |Â−ν j|
8 set initial value for g j at g0;
9 while ω > 0.0001 do

10 let qν j,τ j [Â−g j, Â+g j] be the first-order derivative of Qν j,τ j [Â−g j, Â+g j];

11 g j = g j−
Qν j ,τ j [Â−g j,Â+g j]−1+δ

qν j ,τ j [Â−g j,Â+g j]
;

12 ω = Qν j,τ j [Â−g j, Â+g j]−1+δ ;

13 The above loop results in {g j}J
j=1, and let B̂ be its (1−α)th sample quantile;

Result: two-sided tolerance interval [Â− B̂, Â+ B̂]
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1.4 Data from a linear mixed model

In this section we apply the preceding to a model that is representative for practice in pharmaceutical
quality control: the linear mixed model (LMM). We assume that the data X are acquired in an LMM
design, and that the future variable Z is defined in terms of the same LMM. We concentrate attention
to the two-sided (δ ,α)-tolerance interval.

In the LMM we observe a vector X =Uβ +V γ + e, for known (deterministic) matrices U and V
of covariates, a vector of fixed effects parameters β , an unobserved random effect vector γ , and an
error vector e. Assume that γ and e are independent, with

γ ∼ N(0,D), e∼ N(0,σ2I). (1.10)

Then the data X follows a N(Uβ ,C)-distribution, for C = V DV T +σ2I, and the full parameter is
(β ,D,σ2).

Consider predicting a new observation Z = uT β + vT γ ′+ e′ with given fixed and random effects
coefficients u and v and newly generated random effect vector γ ′ and error e′, with γ ′ ∼ γ and
e′ ∼ N(0,σ2). Thus γ ′ is assumed equal in distribution to, but independent of γ , and similarly for e′.
This target for prediction is reasonable in many contexts, but sometimes another choice, in particular
for γ ′, may be more relevant. Typically γ will carry a group structure matched by a block structure
in V . The vector v will then have nonzero coordinates corresponding to a single group. The target
corresponds to setting the distribution Qθ of Z equal to N(ν ,τ2), with

ν = uT
β , τ

2 = vT Dv+σ
2.

The “prediction” parameter θ = (ν ,τ) is of smaller dimension than the full parameter” (β ,D,σ2)

governing the distribution of the data X , whence part of the latter full parameter should be considered
a nuisance parameter. To set a Bayesian tolerance interval we need a posterior distribution of θ given
the data X . This will typically be inferred from a posterior distribution of the full parameter, resulting
from a prior distribution on (β ,D,σ2).

The (conditional) posterior distribution for a conditional prior β |D,σ2 ∼ N(0,Λ), where Λ may
depend on (D,σ2), satisfies

β |D,σ2,X ∼ N
(
(UTC−1U +Λ

−1)−1UTC−1X ,(UTC−1U +Λ
−1)−1

)
.

In general E(ν |D,σ2,X) = uT E(β |D,σ2,X) will depend on D and σ2 (hidden in C) and hence
typically also on τ2. Therefore Lemma 1.3.1 does not apply, and there appears to be no reason that a
shortest tolerance interval would be centered at the posterior mean of ν . To obtain the shortest interval
Algorithm 2 should be augmented with a search on possible centerings A.
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As in the standard i.i.d. model in Example 1.3.1, the dependence on σ2 can be removed by choos-
ing the variances Λ and D proportional to σ2. If D=σ2D0 and Λ=σ2Λ0, then C will be σ2(V D0V T +

I) =:σ2C0 and the conditional posterior mean of β will be (UTC−1
0 U +Λ

−1
0 )−1UTC−1

0 X . However,
the dependence on D0 (through C0) remains, in general.

Letting the prior covariance matrix Λ tend to infinity corresponds to the noninformative prior. If
all other quantities are fixed and Λ→ ∞, then

E(β |D,σ2,X)→ (UTC−1U)−1UTC−1X .

The limit is the maximum likelihood estimator of β in the model where C is known. Since this is still
dependent on C (and hence D and σ2), it seems that for both the Bayesian and frequentist tolerance
intervals the two parameters ν and τ cannot be separated in general. The choice Λ = λ (UTC−1U)−1

leads to λ/(1+λ ) times the maximum likelihood estimator.

1.4.1 Approximations to the conditional posterior mean

For special designs the dependence of E(β |D,σ2,X) on (D,σ2) is only mild and can be quantified.
We discuss some examples.

Example 1.4.1 (One-way random effects). Suppose X is a vector with coordinates Xik = β + γi +

eik, for i = 1, . . . ,m and k = 1, . . . ,n, ordered as (X11, . . . ,X1n,X21, . . . ,Xmn), where β ∈ R and γ =

(γ1, . . . ,γm)
T with i.i.d. γi ∼ N(0,d2), so that D = d2Im, for Im the (m×m)-identity matrix. As prior

on β we choose a one-dimensional normal distribution N(0,λ 2).

The matrix U is the mn-vector 1mn with all coordinates equal to 1, while V is the (mn×m)-matrix
with ithe column having 1s in rows (i−1)n+1 to in and 0s in the other rows. Then V TV = nIm, and
UTV = n1m, and it can be verified that C1mn = (nd2 +σ2)1mn and hence C−1U = (nd2 +σ2)−11mn.
The coefficient vector of E(β |D,σ2,X) is

(UTC−1U +λ
−2)−1UTC =

(
mn+

nd2 +σ2

λ 2

)−1

1T
mn.

For λ = ∞, this is free of d2 and σ2, while for finite, fixed λ and m,n→ ∞, the coefficient vector is
(mn)−1

(
1+O(d2/(mλ 2))+O(σ2/(mnλ 2))

)
.

The dependence on d and σ can be removed by choosing d = d0σ and λ = λ0

√
nd2

0 +1σ .

Example 1.4.2. Suppose Xik = uT
ikβ + vT

ikγi + eik, ordered as in the preceding example, but now with
observed covariates uik ∈ Rp and vik ∈ Rq, fixed effects parameter β ∈ Rp and i.i.d. random effects
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γi ∼ Nq(0,Dq). The corresponding matrices U and V are

U =


U1
...

Um

 , V =


V1 · · · 0
...

. . .
...

0 · · · Vm

 , Ui =


uT

i1
...

uT
in

 , Vi =


vT

i1
...

vT
in

 .

Then C =V DV T +σ2I is an (mn×mn)-block-diagonal matrix with blocks ViDqV T
i +σ2In, and

UTC−1U =
m

∑
i=1

UT
i (ViDqV T

i +σ
2In)

−1Ui,

UTC−1 =

(
UT

1 (V1DqV T
1 +σ

2In)
−1, . . . ,UT

m (VmDqV T
m +σ

2In)
−1
)
.

The matrices UT
i Vi and V T

i Vi are of dimensions p×q and q×q, and are sums over the n observations
(for k = 1, . . . ,n) per group i, as defined by the random effect γi. In convential asymptotics we could
view them as n times a matrix of fixed order. Then, for D0 = σ−2Dq,

(ViD0V T
i + I)−1 = I−Vi(D−1

0 +V T
i Vi)

−1V T
i

= I−Vi(V T
i Vi)

−1
[
D−1

0 (V T
i Vi)

−1 + I
]−1

V T
i

= I−Vi(V T
i Vi)

−1
[
I−D−1

0 (V T
i Vi)

−1 +(D−1
0 (V T

i Vi)
−1)2 + · · ·

]
V T

i

= PV⊥i
+Vi(V T

i Vi)
−1D−1

0 (V T
i Vi)

−1V T
i

−
∞

∑
k=2

(−1)kVi(V T
i Vi)

−1(D−1
0 (V T

i Vi)
−1)kV T

i , (1.11)

where PV⊥ is the projection on the orthocomplement of the linear span of the columns of V . If V T
i Vi

is large, then the series on the right can be neglected, as its terms contain multiple terms (V T
i Vi)

−1.
There is then still dependence on D and σ2 in the second term, which may dominate.

In a full random effects model we shall have uik = vik, for every (i,k), and then Ui = Vi. Then
UT

i PV⊥i
= 0 and UT

i Vi(V T
i Vi)

−1 = Ip. If n−1V T
i Vi stabilizes as n→ ∞,

σ
2UTC−1U =

m

∑
i=1

∞

∑
k=1

(−1)k−1D−1
0 ((V T

i Vi)
−1D−1

0 )k−1 = m
(

D−1
0 +O

(1
n

))
,

σ
2UTC−1 =

∞

∑
k=1

(−1)k−1
(

D−1
0 (V T

i Vi)
−1)kV T

i

)m

i=1

=

(
D−1

0 (V T
i Vi)

−1
(

I +O
(1

n

))
V T

i

)m

i=1
.
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Thus we find that

(UTC−1U +Λ
−1)−1UTC−1

=

(
1
m

(
I +O

(
D0

n

)
+

D0Λ−1

m

)−1(
(V T

i Vi)
−1
(

I +O(
1
n

))
V T

i

))m

i=1

.

To first order this is free of D and σ2 with relative remainders of the order D0/n and D0Λ−1/m.

If every random effect is matched by a fixed effect with the same covariate vector (supplying
a common mean value to the random effects), but there are more fixed than random effects, then
uT

ik = (vT
ik, ū

T
ik), which implies Ui = (Vi,Ūi) for an (n× (p−q))-matrix Ūi. The preceding formulas

must then be adapted to, where the approximations refer to ignoring the series in (1.11), for Wi =

Vi(V T
i Vi)

−1,

σ
2UTC−1U .

=
m

∑
i=1

[0 0
0 ŪT

i PV⊥i
Ūi

+

(
D−1

0 D−1
0 W T

i Ūi

ŪT
i WiD−1

0 ŪT
i WiD−1

0 W T
i Ūi

)]
,

σ
2UTC−1 .

=

( 0
ŪT

i PV⊥i

+

(
D−1

0 W T
i

ŪT
i WiD−1

0 W T
i

))m

i=1

.

It is reasonable to expect that the matrices ŪT
i Wi = ŪT

i Vi(V T
i Vi)

−1 will settle down as, as will the
matrices n−1ŪT

i PV⊥i
Ūi. Then up to lower order terms

(UTC−1U)−1UTC−1 .
=

m

∑
i=1

 D−1
0 D−1

0 W T
i Ūi

ŪT
i WiD−1

0 ŪT
i PV⊥i

Ūi

−1(D−1
0 W T

i

UT
i PV⊥i

)m

i=1

.

Here the three appearances of D−1
0 in the top row cancel each other (as follows by factorizing out the

block diagonal matrix with blocks D−1
0 and Ip−q from the inverse matrix), while the factor ŪT

i WiD−1
0

in the bottom row is a factor 1/n smaller in order than the matrix ŪT
i PV⊥i

Ūi and hence can be set to 0
up to order 1/n. It follows that again the matrix is free of D and σ2 up to order 1/n.

1.4.2 Numerical examples

We evaluate the small sample performance of our proposed algorithm via a simulation study, with data
generated from a one-way random effects model. We observe (Xik: i = 1,2, . . . ,m;k = 1,2, . . . ,ni),
where Xik is the kth value of the ith group and satisfies Xik = ν + γi + eik for i.i.d. γi ∼ N(0,d2)

independent of the i.i.d. error eik ∼ N(0,σ2). We are interested in the two-sided (δ ,α)-tolerance
interval related to a future observation Z = ν + γ +e∼Qθ = N(ν ,τ2), where γ and e are independent
copies of the γi and eik. The parameter is θ = (ν ,τ2), for τ2 = d2 +σ2.
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We used 6 different parameter settings. In every setting the overall mean was set equal to ν = 0,
and the group variance to d2 = 1. The intra-correlation σ2/(d2 + σ2) was chosen equal to the
numbers 0.1,0.3,0.5,0.7,0.9. In every setting the number of groups was m = 6 and the group sizes
were (n1, . . . ,n6) = (2,3,4,2,3,4). This simulation setup is the same as in [51], and facilitates a
cross-comparison against the performance of a standard frequentist solution.

We computed the (δ = 0.1,α = 0.05)-tolerance interval [L,U ] by Algorithm 2, for every of
K = 1000 replicates of the data in each parameter setting, and computed the true coverage Qθ [L,U ] of
these intervals using the true parameter θ of the simulation. We dub an interval with true coverage no
less than 1−δ as “qualified”, and compared the empirical fraction of qualified intervals out of the K
replicates to the nominal value 1−α . The procedure is considered to perform well in the frequentist
sense if this empirical fraction is close to this nominal value. Here we must allow for the simulation
error, which has a standard error of

√
p(1− p)/K, for p the true coverage, which is unknown, but

hopefully close to 1−α .

For each simulated dataset the posterior distribution of (ν ,d,σ2) was approximated by a standard
Gibbs sampler (with the vector of random effects γi added in as a fourth parameter), before utilizing
Algorithm 2. Two setups of priors were deployed, both with independent priors on the three parameters
ν ,d,σ . The first is the vanilla setup with vague marginal prior distributions ν ∼ N(0,1000), d2 ∼
IG(0.001,0.001) and σ2 ∼ IG(0.001,0.001). The second uses the same prior on σ2, but uses a t-
distribution for ν given by the hierarchy ν |σ0∼N(0,σ2

0 ) and σ2
0 ∼ IG(0.001,0.001), and the prior on

d given by the structural equation d = |ξ |ω for independent ξ ∼ N(0,1) and ω2 ∼ IG(0.001,0.001).
The latter specification can also be understood as over-parameterizing the distribution of the random
effect two parameters instead of one, as γ|ξ ,ω ∼N(0,ξ 2ω2). This “data augmentation” or “parameter
expansion” is meant to enhance the mixing rate of the Gibbs sampler, in particular when the number
of groups m is small. See [6] for a comparison of methods (including non-Bayesian methods) to fit the
LMM. A more accurate approximation to the posterior should have positive impact on the subsequent
tolerance interval. Finer amendments should be possible for concrete cases.

In all simulation settings the tolerance intervals were constructed both by fixing the center point A
at the posterior mean E(ν |X), and by seeking an optimal value of A to minimize the half length B of
the interval. Thus four tolerance intervals were calculated based on each simulated dataset. To save
on computation time the optimization over A was carried out only approximately. Still for 85% of the
simulation cases a shorter interval was obtained than the interval at the posterior mean, in a few cases
as much as 20% shorter, but in 75% of the cases no more than a few percentage points. Table 1.1
reports the quotients of the lengths.

The proportions of qualified intervals (the ones which attain true coverage 1− δ = 0.9) are
listed in Table 1.2. They are reasonably close to the nominal value 1−α = 0.95, with deviations
in both directions up to several percentage points. The performance seems to depend on the true
intra-correlation. This dependence follows a similar pattern as for the high-order asymptotic solution
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in [51] without correction for imbalance, and is close to their solution that includes correction when
the intra-correlation is small or very big. The tolerance intervals centered at the (approximately)
optimal value have shorter length and attain lower confidence, but their performance seems to surpass
slightly the intervals centered at the posterior mean E(ν |X).

The difference in performance of Algorithm 2 between the two prior setups is within the order of
the simulation error.

Table 1.1 Interval length at optimal value of A relative to fixing A at E(ν |X)

under Vanilla setup under Parameter Expansion setup

Min 0.25thqu. Median 0.75thqu. Min 0.25thqu. Median 0.75thqu.

intra− correlation

0.1 0.8420 0.9958 0.9984 0.9993 0.8625 0.9969 0.9991 0.9997

0.3 0.8244 0.9943 0.9984 0.9994 0.8569 0.9969 0.9989 0.9997

0.5 0.8192 0.9905 0.9981 0.9992 0.8374 0.9954 0.9985 0.9995

0.7 0.8193 0.9897 0.9979 0.9992 0.8020 0.9947 0.9984 0.9994

0.9 0.8102 0.9889 0.9980 0.9993 0.8058 0.9925 0.9980 0.9993

Table 1.2 Approximated Confidence for (δ = 0.1,α = 0.05)-Bayesian tolerance interval

under Vanilla setup under Parameter Expansion setup

A = E(ν |X) A = Optimal A = E(ν |X) A = Optimal

intra− correlation

0.1 0.972 0.969 0.968 0.963

0.3 0.964 0.955 0.955 0.949

0.5 0.936 0.921 0.925 0.917

0.7 0.925 0.907 0.915 0.911

0.9 0.952 0.941 0.940 0.935

1.5 Frequentist justification of the Bayesian procedure

In this section we show that Bayesian tolerance regions are often also approximate frequentist tolerance
regions, of corresponding levels. We consider an asymptotic setup, with data X = Xn indexed by a
parameter n→ ∞, in which the Bernstein-von Mises theorem holds. The latter theorem (see [59],
Chapter 10) entails that the posterior distribution Πn(·|Xn) of θ can be approximated by a normal
distribution with deterministic covariance matrix, centered at an estimator θ̂n = θ̂n(Xn),

Πn(·|Xn)−N
(

θ̂n,
1
n

Σθ

)
P→ 0, (1.12)
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(in total variation norm), where the estimators θ̂n = θ̂n(Xn) satisfy

√
n(θ̂n−θ)

θ
 N(0,Σθ ). (1.13)

For instance, under regularity conditions this is valid for Xn a vector of n i.i.d. observations from
a smooth parametric model, with θ̂n the maximum likelihood estimator and Σθ the inverse Fisher
information matrix. The Bernstein-von Mises theorem can be used to show that Bayesian and
frequentist inference (testing and confidence sets) merge for large sample sizes. In this section we
investigate this for tolerance intervals.

We shall show that Bayesian tolerance regions Rn(Xn) such that the functions

h 7→ Q
θ̂n(Xn)+h/

√
n

(
Rn(Xn)

)
, n = 1,2, . . . , (1.14)

stabilize asymptotically to a deterministic function are asymptotically frequentist tolerance regions, for
any given loss function ` and level α . The crux of this stability condition is that the randomness which
enters the functions (1.14) through Xn in θ̂n(Xn) asymptotically cancels the randomness which enters
through Xn in Rn(Xn): the Bayesian tolerance regions Rn(Xn) should be “asymptotically pivotal”
with respect to the estimators θ̂n. Some type of stability condition appears to be necessary, because
the shape of a Bayesian tolerance region is left free by its definition.

An informal proof of the frequentist validity of Bayesian tolerance regions is as follows. Replacing
the posterior distribution in (1.6) by its normal approximation (1.12) from the Bernstein-von Mises
theorem, we find that ∫

`
[
Qϑ

(
Rn(Xn)

)]
dN
(

θ̂n,
1
n

Σθ

)
(ϑ)

.
= 1−α. (1.15)

By the substitution ϑ = θ̂n +h/
√

n this can be rewritten in the form∫
`
[
Q

θ̂n+h/
√

n

(
Rn(Xn)

)]
dN
(

0,Σθ

)
(h) .

= 1−α. (1.16)

By the stability assumption the integrand

h 7→ gn(h;Xn):= `
[
Q

θ̂n+h/
√

n

(
Rn(Xn)

)]
(1.17)

in this expression is asymptotically the same as a deterministic function h 7→ g∞(h). In view of (1.13)
the integral in (1.16) is then approximately equal to Eθ g∞

(√
n(θ − θ̂n)

)
, which in turn, again by

stability, is asymptotically the same as Eθ gn

(√
n(θ − θ̂n);Xn

)
, or

Eθ `
[
Q

θ̂n+
√

n(θ−θ̂n)/
√

n

(
Rn(Xn)

)]
= Eθ `

[
Qθ

(
Rn(Xn)

)]
.
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Thus the final expression, which is the frequentist level of the tolerance region Rn(Xn), is asymptoti-
cally equal to 1−α .

For an (δ ,α)-tolerance region `
(

Qθ (Rn(Xn)
)

is the indicator of the set Ĝn = {θ :Qθ

(
Rn(Xn)

)
>

1−δ} and the function (1.17) is the indicator of the set

Ĥn =
√

n(Ĝn− θ̂n).

Thus the stability condition is that the latter sets approximate to a deterministic set, as n→ ∞.
Condition (1.16) becomes

N(0,Σθ )(Ĥn)
.
= 1−α. (1.18)

This equality allows to “solve” one aspect of the sets Ĥn; in general additional constraints will be
imposed to define their shape. As the normal distribution in this display is fixed, it is not unnatural
that these constraints would render the sets Ĥn also to become fixed, in the limit: stability is natural.

Theorem 1.5.1. Suppose that (1.12)–(1.13) hold, the loss function ` is bounded, and suppose that
there exist (deterministic) functions fn,1, fn,.2:Rd → R with the property that fn,i(hn)→ f∞(h) for
some function f∞ and any sequence hn→ h with limit h in a set of probability one under the normal
distribution in (1.13) and such that

fn,1(h)6 `
[
Q

θ̂n+h/
√

n

(
Rn(Xn)

)]
6 fn,2(h), h ∈ Rd . (1.19)

Then
∫
`
(

Qθ (Rn(Xn))
)

dΠ(θ |Xn)→ 1−α ∈ (0,1) in probability implies that Eθ `
(

Qθ (Rn(Xn))
)
→

1−α , as n→ ∞, for every θ .

Proof. We may assume without loss of generality that the functions fn,i are uniformly bounded. Then
the condition fn,i(hn)→ f∞(h) for every sequence hn→ h implies that E fn,i(Yn)→ E f∞(Y ), whenever
the sequence of random vectors Yn tends in distribution to the random vector Y , in view of the extended
continuous mapping theorem (see [58], Theorem 1.11.1). Thus by (1.13), for i = 1,2,

Eθ fn,i

(√
n(θ̂n−θ)

)
→
∫

f∞ dN(0,Σθ ).

By assumption the function gn given in (1.17) is sandwiched between fn,1 and fn,2. Therefore
Eθ `
(

Qθ (Rn(Xn))
)
= Eθ gn

(√
n(θ̂n−θ);Xn

)
tends to the same limit.

By (1.12) we have∫
`
(

Qθ (Rn(Xn))
)

dΠ(θ |Xn) =
∫

gn(h;Xn)dN(0,Σθ )(h)+o(1).

Again by sandwiching of gn(h;Xn) this is asymptotic to
∫

fn,i dN(0,Σθ ), and hence tends to
∫

f∞ dN(0,Σθ ).
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1.5.1 Normal predictions

An (α,δ ) tolerance interval Rn(Xn) = [An−Bn,An +Bn] for a one-dimensional Gaussian variable
Z ∼ N(ν ,τ2) is the base (the section at τ = 0) of a set of the form

GA,B,δ =

{
θ = (ν ,τ):Φ

(
A+B−ν

τ

)
−Φ

(
A−B−ν

τ

)
> 1−δ

}
.

The values An and Bn are determined so that Π(GAn,Bn,δ |Xn) > 1−α , for Π(·|Xn) the posterior
distribution of θ = (ν ,τ), and so that the length 2Bn of the interval is minimal.

Under (1.12) the posterior distribution contracts (at rate 1/
√

n) to the Dirac measure at θ̂ , which
tends to the true parameter under (1.13). Hence the equation Π(GAn,Bn,δ |Xn)> 1−α forces θ̂ = (ν̂ , τ̂)

to be contained in GAn,Bn,δ with probability tending to one. This implies that An− ν̂→ 0 in probability
and hence Φ(Bn/τ̂)−Φ(−Bn/τ̂)→ 1−δ , whence Bn/τ̂ → ξδ/2, for ξδ the upper δ -quantile of the
standard normal distribution.

The function θ 7→ `
(

Qθ ([A−B,A+B])
)

corresponding to the (α,δ ) tolerance interval is the
indicator of the set GA,B,δ , and the stability condition (1.19) is that the (indicator functions) of
the sets Ĥn =

√
n(GAn,Bn,δ − θ̂) are asymptotically deterministic. These sets can be written Ĥn =

{(g,h):Kn(g/
√

n,h/
√

n)> 0}, for the stochastic processes

Kn(g,h) = Φ

(
An +Bn− ν̂−g

τ̂ +h

)
−Φ

(
An−Bn− ν̂−g

τ̂ +h

)
− (1−δ ). (1.20)

By a second-order Taylor expansion we see that these processes satisfy (1.21) with

ân = Kn(0,0) = Φ

(
An +Bn− ν̂

τ̂

)
−Φ

(
An−Bn− ν̂

τ̂

)
− (1−δ ),

b̂n =
∂

∂h
Kn(0,0) = ψ

(
An +Bn− ν̂

τ̂

)
1
τ̂
−ψ

(
An−Bn− ν̂

τ̂

)
1
τ̂
,

V (g,h) = h.

Here ψ(x) = φ(x)x =−φ ′(x). (Note that the partial derivative of Kn relative to its first argument g
vanishes at (0,0).) Since An, Bn, ν̂ and τ̂ tend in probability to nontrivial limits, the conditions of
Lemma 1.5.1 are satisfied and hence the sets Ĥn are asymptotically sandwiched between pairs of
deterministic sets. Functions fn,i as in (1.19) can be constructed from these sets by letting ε → 0 and
M→ ∞ slowly with n.

It follows that the conditions of Theorem 1.19 are satisfied and hence the Bayesian (α,δ ) tolerance
sets are asymptotic frequentist (α,δ ) tolerance sets.

The convergence An− ν̂ → 0 in probability means that the tolerance intervals are asymptotically
centered at the (asymptotic) posterior mean. If the posterior distribution of θ is exactly normal
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N
(
(ν̂ , τ̂),Σθ

)
with a diagonal covariance matrix, then E(ν |Xn,τ) is free of τ and Lemma 1.3.1 shows

that the tolerance interval is centered exactly at the posterior mean. This is more generally true if the
posterior distribution of ν given (τ,Xn) is normal with mean free of τ .

For a nondiagonal matrix Σθ this is not necessarily true, and in general the normal distribution
will be an approximation only. The approximation An− ν̂ → 0 can then be improved to order n−1/4,
and an asymptotic expression for the half length Bn of the interval is as follows.

Theorem 1.5.2. If the Bernstein-von Mises theorem (1.12)–(1.13) holds, then the Bayesian (α,δ )

tolerance interval [An−Bn,An +Bn] of minimal length is a frequentist (α,δ ) tolerance interval. Its
center and half length satisfy An = ν̂ +oP(n−1/4) and Bn = τ̂ξδ/2 +(ξα/ξδ/2)n−1/2 +oP(n−1/2).

Proof. Since An− ν̂ → 0 and Bn → ξδ/2, there exist intervals In and Jn around ν0 and ξδ/2 that
shrink to these points that contain An and Bn with probability tending to one. Define functions
Fn,Gn: In× Jn→ R by

Fn(A,B) = Π(GA,B,δ |Xn),

Gn(A,B) = N(0,Σθ )

{
(g,h):h6

√
nKn(0,0;A,B)
−2ψ(ξd/2)/τ̂

}
,

Here Kn(h,g;A,B) is the expression on the right side of (1.20), but with (An,Bn) replaced by a generic
(A,B). We shall show that these functions satisfy the conditions of Lemma 1.5.2 with cn = τ̂ξδ/2 and
ξ (α) = (ξα/ξδ/2)n−1/2, whence the theorem follows from the lemma.

In view of (1.12) we have supA,B

∣∣Fn(A,B)−N(0,Σθ )(ĤA,B,δ )
∣∣→ 0, for

ĤA,B,δ =
{
(g,h):Kn(g/

√
n,h/
√

n;A,B)> 0
}
.

The supremum here and in the following is taken over (A,B) ∈ In× Jn. By a second-order Taylor
expansion, for functions ηn,1 and ηn,2 with supA,B ηn,i(A,B)→ 0 and a constant b independent of
(A,B),

√
n
∣∣∣Kn(g/

√
n,h/
√

n;A,B)−Kn(0,0;A,B)

−
(
−2ψ(ξδ/2)/τ̂ +ηn,1(A,B)

) g√
n
+ηn,2(A,B)

h√
n

∣∣∣6 b
g2 +h2
√

n
.

As in the proof of Lemma 1.5.1, this shows that, with Cn = {(g,h):g2 + h2 6 Ln} and Ln → ∞

sufficiently slowly

sup
A,B

∣∣∣N(0,Σθ )(ĤA,B,δ ∩Cn)−N(0,Σθ )

{
(g,h) ∈Cn:h6

√
nKn(0,0;A,B)
−2ψ(ξδ/2)/τ̂

}∣∣∣→ 0.
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Because N(0,Σθ )(Cc
n)→ 0, this is then also true without intersecting the sets by Cn. This finishes the

proof that supA,B

∣∣Fn(A,B)−Gn(A,B)
∣∣→ 0.

From the unimodality of the normal distribution it is clear that A 7→ Gn(A,B) is maximal at
A = ν̂ , for every B. It is elementary to verify by Taylor expansion that Gn(ν̂ , B̂)→ 1−α , for
B̂ = τ̂ξδ/2 +(ξα/ξδ/2)n−1/2.

Finally, again by Taylor expansion there exist functions ηn,3 with supA,B ηn,3(A,B)→ 0 such that

Kn(0,0,A, B̂)6 Kn(0,0, ν̂ , B̂)+(A− ν̂)2
(

φ
′(B̂/τ̂)/τ̂ +ηn,3(A,B)

)
.

As φ ′(x) < 0, for x > 0, we obtain that
√

nKn(0,0,A, B̂) is strictly smaller than
√

nKn(0,0, ν̂ , B̂) if
√

n(A− ν̂)2 is bounded away from zero, but then

N(0,Σθ )

{
(g,h):h6

√
nKn(0,0;A, B̂)
−2ψ(ξδ/2)/τ̂

}
is strictly smaller than its asymptotic value 1−α at A = ν̂ unless

√
n(A− ν̂)2→ 0. This verifies the

last displayed condition of Lemma 1.5.2.

Lemma 1.5.1. Suppose that for every M > 0 the stochastic processes (Kn(h):h ∈ Rd) satisfy

sup
‖h‖6M/

√
n

√
n
∣∣Kn(h)− ân + b̂nV h

∣∣ P→ 0, (1.21)

for random variables ân and b̂n > 0 such that b̂−1
n is bounded in probability, and a linear map

V :Rd → R. If the sets Ĥn = {h ∈ Rd :Kn(h/
√

n) > 0} satisfy N(0,Σ)(Ĥn)→ 1−α ∈ (0,1), then
√

nân/b̂n→ ξα

√
V ΣV T and for every ε,M > 0, with probability tending to 1,{

h ∈ Rd :‖h‖6M,V h6ξα

√
V ΣV T − ε

}
⊂ Ĥn ⊂

⊂
{

h ∈ Rd :V h6 ξα

√
V ΣV T + ε or ‖h‖> M

}
.

Proof. Define εn(h) =
√

n
(

Kn(h)− ân + b̂nV h
)

and set ε̂n = sup‖h‖6M/
√

n |εn(h)|, for given M. Then

by assumption ε̂n→ 0 in probability, and
∣∣Kn(h/

√
n)− ân+ b̂nV h/

√
n
∣∣6 ε̂n, for every h with ‖h‖6M.

From the latter inequality we find that

‖h‖6M,Kn(h/
√

n)> 0⇒ b̂nV h6
√

nân + ε̂n,

‖h‖6M, b̂nV h6
√

nân− ε̂n⇒ Kn(h/
√

n)> 0.

This implies that{
‖h‖6M,V h6 (

√
nân− ε̂n)/b̂n

}
⊂ Ĥn ⊂

{
V h6 (

√
nân + ε̂n)/b̂n or ‖h‖> M

}
.
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Combining this with the fact that N(0,Σ)(Ĥn)→ 1−α ∈ (0,1) and the fact that V h∼ N(0,V ΣV T )

if h∼ N(0,Σ), we conclude that there exists δM > 0 such that δM → 0 as M→ ∞ such that (
√

nân−
ε̂n)/b̂n 6 ξα−δM

√
V ΣV T + oP(1) and (

√
nân + ε̂n)/b̂n > ξα+δM

√
V ΣV T + oP(1), for every M. This

implies that
√

nân/b̂n = ξα

√
V ΣV T +oP(1). We substitute this in the last display to obtain the result

of the lemma.

Lemma 1.5.2. Let Fn,Gn: In×Jn→R be functions on rectangles In×Jn ⊂R2 that are nondecreasing
in their second argument, such that

sup
A,B
|Fn(A,B)−Gn(A,B)| → 0,

and such that for numbers cn ∈ Jn and continuous functions ξ :(0,1)→ R,

sup
A

Gn(A,cn +ξ (α)/
√

n) = Gn(0,cn +ξ (α)/
√

n)→ 1−α, every α ∈ (0,1),

limsup
n

sup
A:|A|>δnn−1/4

Gn(A,c+ξ (α)/
√

n)< 1−α, some δn→ 0.

Then Bn:= inf(B: supA Fn(A,B)> 1−α

)
satisfies Bn = cn+ξ (α)/

√
n+o(n−1/2), and Â:= argmaxA Fn(A,Bn)

satisfies Â = o(n−1/4).

Proof. The functions F̄n and Ḡn defined by F̄n(B) = supA Fn(A,B) and similarly for Gn satisfy
supB |F̄n(B)−Ḡn(B)|→ 0. Combined with the assumptions on Gn, this gives that F̄n(cn+ξ (α)/

√
n)→

1−α , for every α . The definition of Bn and monotonicity of F̄n now readily give that cn+ξ (α2)/
√

n6
Bn 6 cn + ξ (α1)/

√
n for every α1 < α < α2, eventually, or equivalently ξ (α1) 6

√
n(Bn− cn) 6

ξ (α2), eventually. By the continuity of ξ it follows that
√

n(Bn− cn)→ ξ (α).

By the uniform approximation of Fn by Gn, we have that

sup
|A|>δnn−1/4

Fn(A,Bn) = sup
|A|>δnn−1/4

Gn(A,Bn)+o(1),

which is strictly smaller than 1−α , eventually, by assumption. Simiarly Fn(0,Bn) = Gn(0,Bn)+

o(1)→ 1−α . It follows that the maximum of A 7→Fn(A,Bn) is taken on the interval (−δnn−1/4,δnn−1/4).
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1.6 Annex : Extra Insights on KMW solution in Section 1.3.1

Let us rewrite (1.8) as

Π

[ E1︷ ︸︸ ︷(
Qθ (−∞, Â+B]−1+

δ

2

)
−

E2︷ ︸︸ ︷(
Qθ (−∞, Â−B]− δ

2

)
≥ 0 |X

]
= 1−α.

The KM criterion is to seek a value of B (denoted as B̂∗) satisfying Π(E1 ≥ 0,E2 ≤ 0|X) = 1−α .
With provided Â and δ , it should be clear that {θ :E1 ≥ 0,E2 ≤ 0} ⊂ {θ :E1−E2 ≥ 0} for ∀B > 0,
and both sets expand as B grows. Therefore, the B satisfying Π

(
{θ :E1 ≥ 0,E2 ≤ 0}|X

)
= 1−α

must be larger than the B satisfying Π

(
{θ :E1−E2 ≥ 0}|X

)
= 1−α . This is identical to say, if we

plug B̂∗ into Π(E1−E2 ≥ 0|X), it results in a total posterior mass strictly larger than 1−α .

Now, rewrite (1.8) as

Π

[(
1−Qθ (−∞, Â+B]

)
+Qθ (−∞, Â−B]≤ δ |X

]
= 1−α.

The W criterion tries to optimize

Π

[ E1︷ ︸︸ ︷(
1− δ

2
−Qθ (−∞, Â+B]

)
+

E2︷ ︸︸ ︷(
Qθ (−∞, Â−B]− δ

2

)
> 0 |X

]
= α,

by requiring Π(E1 ≥ 0,E2 ≥ 0|X) = α , which is more stringent than it should be. Follow the similar
reasoning, the estimate B̂∗ fulfilling the W criterion will result in a total posterior mass strictly larger
than α , and in turn less than 1−α on its dual side.

1.7 Annex: Gibbs Sampler for one-way Random Effect model

In this annex, we work out the Gibbs sampling scheme for deriving Bayesian estimates for a one-way
random effect model. We consider two common formulations of one-way the random effect model
together with two choices of priors, namely:

Formulation (a) yi j = µi + εi j, µi ∼ N(µ,τ2)

Formulation (b) yi j = µ +ai + εi j, ai ∼ N(0,τ2)

Prior (a) µ ∼ N(µ0, σ2
0 ) where µ0 and σ2

0 are given

Prior (b) µ ∼ N(µ0, σ2
0 ) where µ0 is given and σ2

0 ∼ IG(a0,b0)
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This gives four combinations, which are treated in Sections 1.7.1-1.7.4, with more precise
definitions in the start of each section. To be clear, the density function of a inverse-gamma (denoted
by IG) distribution is parameterized in the following way:

x∼ IG(α,β ), f (x) =
β α

Γ(α)
x−α−1exp

[
−β

x

]
, (x > 0).

1.7.1 Scenario 1: Formulation (a) and Prior (a)

Given data points yi j, being the jth measure from the ith group, we assume that

yi j = µi + εi j, µi ∼ N(µ,τ2), εi j ∼ N(0,σ2)

where i ∈ {1,2, · · · ,m}, j ∈ {1,2, · · · ,ni}, and any pair from {µi} ∪ {εi j} are assumed mutually
independent. To further simplify the expressions, let θ denote the vector of parameters (µ,τ,σ)′ that
govern the distribution of yi j, and let yi be the vector

(
yi1,yi2, · · · ,yini

)′. Then yi is independent to yi′

for all i 6= i′ given θ . The prior of θ is set as the following:

p(θ) = p(µ)p(τ2)p(σ2), where

µ ∼ N(µ0, σ
2
0 ), τ

2 ∼ IG(a1,b1), σ
2 ∼ IG(a2,b2)

µ0, σ
2
0 ,a1,b1,a2,b2 are given.

The posterior can then be derived as below.

p(θ | Data) ∝ p(θ)p(Data | θ)

= p(θ)p( y1, · · · , ym | µ1, · · · ,µm,µ,τ
2,σ2)

=
p(θ)p( y1, · · · , ym, µ1, · · · ,µm | µ,τ2,σ2)

p(µ1, · · · ,µm | µ,τ2)

=
p(θ)Q

p(µ1, · · · ,µm | µ,τ2)
∝ p(θ)Q
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First, we work out the details of Q:

Q = p( y1, · · · , ym | µ1, · · · ,µm,µ,τ
2,σ2)p(µ1, · · · ,µm | µ,τ2)

=
m

∏
i=1

(2π)−
1
2 (τ2)−

1
2 exp

[
−(µi−µ)2

2τ2

]
ni

∏
j=1

(2π)−
1
2 (σ2)−

1
2 exp

[
−
(yi j−µi)

2

2σ2

]
=

m

∏
i=1

(2π)−
1
2 (τ2)−

1
2 exp

[
−(µi−µ)2

2τ2

]
(2π)−

ni
2 (σ2)−

ni
2 exp

[
−

∑ j(yi j−µi)
2

2σ2

]
= (2π)

−m−∑ni
2 (τ2)−

m
2 (σ2)−

∑ni
2 exp

[
−∑i(µi−µ)2

2τ2

]
exp

[
−

∑i ∑ j(yi j−µi)
2

2σ2

]

= (2π)
−m−∑ni

2 (τ2)−
m
2 (σ2)−

∑ni
2 exp

[
−∑i µ2

i −2µ ∑i µi +mµ2

2τ2

]

exp

[
−

∑i ∑ j y2
i j−2∑i µiniȳi +∑i niµ

2
i

2σ2

]
(1.22)

Below we derive the conditional distributions of each element of θ given the other coordinates
and the observations, the so-called full conditionals, used in a Gibbs sampling scheme. For brevity
we denote the full set of conditioning variables by · · · , even though this set is different in different
instances. It is helpful to remember, that a quadratic function Ax2 +Bx+ c can be re-written as
A(x+ B

2A)
2− B2

2A +C if A 6= 0. This allows to recognize the values of the mean and the variance if the
conditional posterior is Gaussian.

Posterior for µi, ∀i ∈ {1,2, · · · ,m}

p(µi | · · ·) ∝ exp

[
−µ2

i −2µµi

2τ2 − −2µiniȳi +niµ
2
i

2σ2

]

∝ exp

[
−(σ2 +niτ

2)µ2
i −2(niȳiτ

2 +µσ2)µi

2τ2σ2

]
(1.23)

The above formula implies that µi | · · · ∼ N(niȳiτ
2+µσ2

σ2+niτ2 , τ2σ2

σ2+niτ2 ).

Posterior for µ

p(µ | · · ·) ∝ exp

[
−

µ2−2µ0µ +µ2
0

2σ2
0

− mµ2−2µ ∑i µi

2τ2

]

∝ exp

[
−
(τ2 +mσ2

0 )µ
2−2(µ0τ2 +∑i µi σ2

0 )µ +µ2
0 τ2

2σ2
0 τ2

]
(1.24)
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The above formula implies that µ | · · · ∼ N(
µ0τ2+∑i µi σ2

0
τ2+mσ2

0
,

σ2
0 τ2

τ2+mσ2
0
).

Posterior for τ2

p(τ2 | · · ·) ∝ (τ2)−a1−1 exp
[
−b1

τ2

]
(τ2)−

m
2 exp

[
−∑i(µi−µ)2

2τ2

]

∝ (τ2)−(a1+
m
2 )−1 exp

[
−2b1 +∑i(µi−µ)2

2τ2

]
(1.25)

The above formula implies that τ2 | · · · ∼ IG(a1 +
m
2 ,b1 +

∑i(µi−µ)2

2 ).

Posterior for σ2

p(σ2 | · · ·) ∝ (σ2)−a2−1 exp
[
− b2

σ2

]
(σ2)−

∑i ni
2 exp

[
−

∑i ∑ j(yi j−µi)
2

2σ2

]

∝ (σ2)−(a2+
∑i ni

2 )−1 exp

[
−

2b2 +∑i ∑ j(yi j−µi)
2

2σ2

]
(1.26)

The above formula implies that σ2 | · · · ∼ IG(a2 +
∑i ni

2 ,b2 +
∑i ∑ j(yi j−µi)

2

2 ).

1.7.2 Scenario 2: Formulation (a) and Prior (b)

Keep the setup in Scenario 1 except its prior p(θ), which will now be replaced by the following

p(θ) = p(µ)p(τ2)p(σ2), where

µ ∼ N(µ0, σ
2
0 ), σ

2
0 ∼ IG(a0,b0), τ

2 ∼ IG(a1,b1), σ
2 ∼ IG(a2,b2)

µ0,a0,b0,a1,b1,a2,b2 are all given.

It can be seen that Q will stay the same as in (1.22) under this construction of the prior for µ , and
hence the full conditionals of µi,µ,τ

2,σ2 remain unchanged as in (1.23) - (1.26). The full conditional
of σ2

0 is also needed to build the Gibbs sampler, and can be derived as follows.

p(σ
2
0 | · · ·) ∝ (σ

2
0 )
−a0−1 exp

[
− b0

σ2
0

]
(σ

2
0 )
− 1

2 exp

[
−(µ−µ0)

2

2σ2
0

]

∝ (σ
2
0 )
−(a0+

1
2 )−1 exp

[
−2b0 +(µ−µ0)

2

2σ2
0

]
(1.27)
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The above formula implies that σ2
0 | · · · ∼ IG(a0 +

1
2 ,b0 +

(µ−µ0)
2

2 ).

1.7.3 Scenario 3: Formulation (b) and Prior (a)

We now assume a different formulation for the distribution of yi j, suggested in [17] among others,
which is believed to lead to a better performance of the resulting Gibbs sampler. Let

yi j = µ +ai + εi j, ai ∼ N(0,τ2), ε ∼ N(0,σ2)

where i ∈ {1,2, · · · ,m}, j ∈ {1,2, · · · ,ni}, and the variables in the set {ai}i ∪{εi j}i, j are assumed
mutually independent. The rest of the setting is the same as in Scenario 1. With these updated
notations, the posterior is given by

p(θ | Data) ∝
p(θ)p( y1, · · · , ym, a1, · · · ,am | µ,τ2,σ2)

p(a1, · · · ,am | τ2)

=
p(θ)Q′

p(a1, · · · ,am | τ2)
∝ p(θ)Q′

where Q′ can be elaborated as below.

Q′ = p( y1, · · · , ym | a1, · · · ,am,µ,τ
2,σ2)p(a1, · · · ,am | µ,τ2)

=
m

∏
i=1

(2π)−
1
2 (τ2)−

1
2 exp

[
− a2

i

2τ2

]
ni

∏
j=1

(2π)−
1
2 (σ2)−

1
2 exp

[
−
(yi j−µ−ai)

2

2σ2

]
= (2π)

−m−∑ni
2 (τ2)−

m
2 (σ2)−

∑ni
2 exp

[
− a2

i

2τ2

]
exp

[
−

∑i ∑ j(yi j−µ−ai)
2

2σ2

]
(1.28)

The last factor in (1.28) can be further detailed as

exp

[
−

∑i ∑ j y2
i j−2µ ∑i(niȳi)−2∑i(niaiȳi)+µ2

∑i ni +2µ ∑i(niai)+∑i nia2
i

2σ2

]
(1.29)

Posterior for ai, ∀i ∈ {1,2, · · · ,m}

p(ai | · · ·) ∝ exp

[
− a2

i

2τ2 −
−2(niaiȳi)+2µniai +nia2

i

2σ2

]

∝ exp

[
−(σ2 +niτ

2)a2
i −2τ2ni(ȳi−µ)a2

i

2τ2σ2

]
(1.30)

The above formula implies that ai | · · · ∼ N( τ2ni(ȳi−µ)
σ2+niτ2 , τ2σ2

σ2+niτ2 ).
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Posterior for µ

p(µ | · · ·) ∝ exp

[
−

µ2−2µ0µ +µ2
0

2σ2
0

− −2µ ∑i(niȳi)+µ2
∑i ni +2µ ∑i(niai)

2σ2

]

∝ exp

[
−
(σ2 +∑i ni σ2

0 )µ
2−2[µ0σ2 +(∑i niȳi−∑i niai)σ2

0 ]µ +µ2
0 σ2

2σ2
0 σ2

]
(1.31)

The above formula implies that µ | · · · ∼ N(
µ0σ2+(∑i niȳi−∑i niai)σ2

0
σ2+∑i ni σ2

0
,

σ2
0 σ2

σ2+∑i ni σ2
0
).

Posterior for τ2

p(τ2 | · · ·) ∝ (τ2)−a1−1 exp
[
−b1

τ2

]
(τ2)−

m
2 exp

[
−∑i a2

i

2τ2

]

∝ (τ2)−(a1+
m
2 )−1 exp

[
−2b1 +∑i a2

i

2τ2

]
(1.32)

The above formula implies that τ2 | · · · ∼ IG(a1 +
m
2 ,b1 +

∑i a2
i

2 ).

Posterior for σ2

p(σ2 | · · ·) ∝ (σ2)−a2−1 exp
[
− b2

σ2

]
(σ2)−

∑i ni
2 exp

[
−

∑i ∑ j(yi j−µ−ai)
2

2σ2

]

∝ (σ2)−(a2+
∑i ni

2 )−1 exp

[
−

2b2 +∑i ∑ j(yi j−µ−ai)
2

2σ2

]
(1.33)

The above formula implies that σ2 | · · · ∼ IG(a2 +
∑i ni

2 ,b2 +
∑i ∑ j(yi j−µ−ai)

2

2 ).

1.7.4 Scenario 4: Formulation (b) and Prior (b)

Keep the setup in Scenario 3 except its prior p(θ), which will now be replaced by the prior setting of
Scenario 2.

It can be seen that Q′ will stay the same as formula (1.28), and hence the colorred full conditionals
for ai,µ,τ

2,σ2 remain unchanged and are given in (1.30)-(1.33). The full conditional for σ2
0 is also

needed to build the Gibbs sampler, and it is exactly the same as (1.27) in Scenario 2.
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1.7.5 Additional Note

Giving the prior setting (b), we assume that the priors of µ ,τ2 and σ2 are mutually independent, and
hence their corresponding posteriors are not conditionally conjugate. The posterior of µ and τ2 are
mutually dependent under formulation (a), while the posterior of µ and σ2 are mutually dependent
under formulation (b). Since we usually have much more information to estimate σ2 than τ2 in the
data, formulation (b) may perform better.

A regime is to set σ2
0 = τ2ω under formulation (a) or σ2

0 = σ2ω under formulation (b), for some
large ω reflecting the non-informativeness. Thus, p(µ | · · ·) becomes

N(
µ0 +ω ∑i µi

1+mω
,

ωτ2

1+mω
)

in (1.24), and

N(
µ0 +(∑i niȳi−∑i niai)ω

1+ω ∑i ni
,

ωσ2

1+ω ∑i ni
)

in (1.31).




