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a b s t r a c t

The inflationary model proposed by Starobinsky in 1979 predicts an amplitude of the spectrum of
primordial gravitational waves, parametrized by the tensor to scalar ratio, of r = 0.0037 in case
of a scalar spectral index of nS = 0.965. This amplitude is currently used as a target value in the
design of future CMB experiments with the ultimate goal of measuring it at more than five standard
deviations. Here we evaluate how stable are the predictions of the Starobinsky model on r considering
the experimental uncertainties on nS and the assumption of ΛCDM. We also consider inflationary
models where the R2 term in Starobinsky action is generalized to a R2p term with index p close
to unity. We found that current data place a lower limit of r > 0.0013 at 95% C.L. for the classic
Starobinsky model, and predict also a running of the scalar index different from zero at more than
three standard deviation in the range dn/dlnk = −0.0006+0.0002

−0.0001. A level of gravitational waves of
r ∼ 0.001 is therefore possible in the Starobinsky scenario and it will not be clearly detectable by
future CMB missions as LiteBIRD and CMB-S4. When assuming a more general R2p inflation we found
no expected lower limit on r , and a running consistent with zero. We found that current data are able
to place a tight constraints on the index of R2p models at 95% C.L. i.e. p = 0.99+0.02

−0.03.
© 2019 Elsevier B.V. All rights reserved.

1. Introduction

After forty years from its first appearance in the literature,
the theory of primordial inflation still offers the most successful
solution to some of the inconsistency of the hot big bang cos-
mology i.e. the flatness, horizon and monopole problems [1–7].
It also gives a viable mechanism to seed the primordial per-
turbations that are needed to form the large scale structure of
the Universe we see at the present time such as galaxy clus-
ters, filaments and the anisotropies of the cosmic microwave
background (CMB). Along with density perturbations, also ten-
sor modes (primordial gravitational waves) are expected to be
produced during inflation [8,9]. The observations of such modes
will not only be a smoking gun for inflation but will also confirm
the quantum nature of inflationary perturbations. In the last
decade the experimental bounds on the amplitude of primordial
gravitational waves, the so-called tensor-to-scalar ratio r , have
seen a significant improvement. An upper limit of r0.002 < 0.064
has recently been provided by the Planck collaboration com-
bining Planck and Bicep2/Keck Array BK14 data [10], an order
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of magnitude better than the first constraints from the BICEP
experiment of r < 0.72 at 95% C.L. [11] in 2010. In the coming
years a new generation of CMB experiments (e.g. BICEP3 [12],
SPT-3G [13], CLASS [14] and Advanced ACTpol [15]) is expected
to bring the sensitivity on the amplitude of tensor modes in
the range r ∼ 0.01 - 0.001. Traces of primordial gravity waves
are also started to be sought by gravitational interferometers in
search of the so-called stochastic gravitational waves background,
the analogous of the CMB in terms of gravitational waves (for a
recent review see e.g. [16]). Unfortunately a direct detection of
the stochastic background is still missing, but an upper limit has
been placed on its amplitude from the first and second observing
runs of the LIGO/VIRGO collaboration [17,18]. While the search
for primordial gravitational waves have lead to rule out several
inflationary models [10,19,20], the significant improvement in
CMB probes expected in the next years could let us to better
identify the physical nature of inflation. Between the inflationary
models which have survived the most recent data, one of most
successful (and also the first to have been conceived) is the
Starobinsky R2 inflation, with R being the Ricci scalar, proposed
by A.A. Starobinsky [2]. Interestingly the R2 has also a crucial
role in solving the shortcomings of f (R) theories which have been
proposed as one of the possible alternatives to the cosmological
constant of the concordance ΛCDM model [21–32]. Because of
its agreement with current observations, the Starobinsky model
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is now considered as a ‘‘target’’ model for several future CMB
experiments as, for example, the Simons Observatory [33], CMB-
S4 [34], and the LiteBIRD satellite experiment [35]. Assuming the
current best-fit values of the scalar spectral index nS from the
Planck experiment, the Starobinsky model predicts a tiny tensor
amplitude namely r ≃ 0.003 for 60 e-folds. The goal of these
future experiments is therefore to have enough experimental sen-
sitivity to measure such signal with enough statistical significance
with δr < 0.001.

However the prediction of r ≃ 0.003 is a first approxima-
tion that does not consider several caveats. First of all, there is
an experimental uncertainty on the value of nS derived under
ΛCDM and this affect the predicted value for r , since, for exam-
ple, for higher values of nS the expected value of r is smaller.
Secondly, there is a severe anomaly in the Planck data on the
amount of gravitational lensing present in the CMB angular spec-
tra. The lensing signal, parametrized by the parameter Alens, is
indeed larger than what expected in the ΛCDM scenario by
more than two standard deviations. Since Alens correlates with
nS , the lensing anomaly could affect the predictions on r . Fi-
nally, there is clearly no fundamental reason to believe that the
Starobinsky model is the correct inflationary scenario and, for
example, several generalization could be considered. The goal of
this paper is therefore to evaluate the amount of gravitational
waves predicted by Starobinsky model considering the current
uncertainties on nS and the possibility of an extension to the
ΛCDM model parametrized by Alens.

Moreover, we also consider a minimal generalization of
Starobinsky inflation, the so-called R2p models (with p ≈ 1).
These inflationary models were first proposed by [36,37] in the
context of higher derivative theories and subsequently were
applied to inflation providing a straightforward and elegant gen-
eralization of the R2 inflation [38–42]. While the introduction
of a variable index of the Ricci scalar in the inflationary action
complicates the simplicity of R2 inflation it allows significant
deviations from the benchmark value of the tensor amplitude of
the Starobinsky model and could in principle results in a better
agreement with data. In this paper we provide constraints on
Starobinsky inflation and on the more general R2p model using
CMB anisotropies data. In particular we make use of the publicly
available Planck 2015 and Biceps2/Keck array data releases. The
present work is structured as follows: in Section 1 we outline
the main features of the generalized Starobinsky models and we
derive the expression of the scalar spectral index, nS , its running,
αS and the tensor-to-scalar ratio r as function of the number of
e-foldings, N and the index p. In Section 2 we describe the method
employed for the comparison of the theoretical model with data,
while results are reported in Section 3. Finally in Section 4 we
draw our conclusions.

2. Theory

We start with the form of action for R2p inflation in the
Einstein frame as:

Sf = −
M2

pl

2

∫
√

−gd4xf (R) (1)

where Mpl = (8πG)(−1/2) is the reduced Planck mass. By applying
a conformal transformation of the form gE

µν = F (R)gµν and
defining a scalaron field as:

F (R) ≡ f ′(R) ≡ e
√

2
3 φ/Mpl (2)

the above action can be rewritten in the following form [43]:

Sϕ =

∫
d4x

√
−g

(
−

M2
pl

2
RE +

1
2
gµν∂µφ∂νφ − V (φ)

)
(3)

Fig. 1. The potential of R2p inflation for different values of p.

where the potential is given by:

V (φ) =
M2

pl

2
χF (χ ) − f (χ )

F (χ )2
(4)

where χ = χ (φ) is a solution of Eq. (2) for R = χ . In this paper
we focus on model where the f (R) can be written in the form:

f (R) = R +
R2p

M4p−2 (5)

where p is a real number close to unity and M ≃ 1013GeV is a
normalized energy scale from the amplitude of observed power
spectrum for the primordial perturbations. In such a model the
potential V (φ) assumes the form:

V (φ) = V0e
−2

√
2
3

φ
Mpl (e

√
2
3

φ
Mpl − 1)

2p
2p−1 (6)

where V0 = ( 2p−1
4p )M2

plM
2( 1

2p )
1

2p−1 . In Fig. 1 we report the behavior
of the potential, V (φ), for different values of the index p. As shown
in the figure, the behavior of the potential for the R2p model
depends significantly on the value of the index p.

• For p ≲ 1 the inflationary potential has only one vacuum
corresponding to the origin and there is only one regime in
which inflation can proceed. Therefore for p ≲ 1 we have
only a small deviation from a Starobinsky-like inflation with
the inflationary phase ending by violation of the slow-roll
conditions.

• In the opposite regime, p ≳ 1, the potential has a maximum
at:

φm

Mpl
=

√
3
2
ln

(
2p − 1
p − 1

)
(7)

and allows two different vacua, the origin and the positive
infinity. However it easily shown from Eq. (2) that positive
infinity does lead to an unphysical inflationary regime since
R

φ→∞

−−−→ ∞ [44,45]. In order to avoid this regime, we should
require that,

φi ≲ φm (8)

φ̇ =
dφ
dt

=
1
H

dφ
dN

< 0 (9)

to neglect the behavior of the inflationary potential for φ >

φm and discuss only the regime in which the inflaton evolves
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towards the true vacuum (φ = 0) where, again, inflation
ends by violation of the slow-roll conditions and the R2p

model leads only to small deviations from Starobinsky infla-
tion (we will show in the following that these conditions are
satisfied for all p > 1 allowing us to neglect the inflationary
regime for φ > φm).

• for p = 1 we recover the potential of Starobinsky in-
flation asymptotically approaching a constant value, V0 =

3/4M2Mpl, for large φ:

V (φ) =
3
4
M2Mpl

(
1 − e−

√
2
3

φ

Mpl

)
(10)

In the Einstein frame, the slow-roll parameters can be expressed
through the potential as:

ϵ =
M2

pl

2

(
V ′(φ)
V (φ)

)2

, η = M2
pl
V ′′(φ)
V (φ)

,

ζ 2
= M4

pl
V ′(φ)V ′′′(φ)

V 2(φ)

(11)

where prime denotes derivative w.r.t the scalar field φ. One can
express the number of e-folds, between an initial time ti and t ,
as:

NE ≡

√
1

2M2
pl

∫ φi

φ

V
V ′

dφ ≡

√
1

2M2
pl

∫ φi

φ

1
√

ϵ
dφ (12)

where φi = φ(ti). It is possible to show that during the slow-
roll regime the number of e-folds is approximately the same in
both the Einstein and Jordan frame which allows us to drop the
subscript E while we continue to follow dynamics of inflation in
the Einstein frame [43]. Let us start by describing first the general
case where p ̸= 1. When p ̸= 1, the slow-roll parameters of
Eq. (11) for the potential of Eq. (6) are defined as:

ϵ =

4
(
(p − 1)F − 2p + 1

)2

3(2p − 1)2
(
F − 1

)2 (13)

η =
4
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16
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)
F 4
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+ 4
(
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(15)

with F = e

√
2
3

φ
Mpl . Defining the end of inflation by ϵ = 1, one can

obtain the value of the scalaron when inflation end:

φf

Mpl
=

√
2
3
ln

[
(1 +

√
3)(2p − 1)

4p − (1 +
√
3)

]
(16)

Fig. 2. Time evolution of the scalar field φ for several value of the index p.

which is a value of order unity for p ≃ 1. The number of e-folds
between φi and φ can be instead derived from Eq. (12):

N(φ) = −
3p

4(p − 1)
ln

[
(p − 1)e

√
2
3

φi
Mpl − 2p + 1

(p − 1)e

√
2
3

φ
Mpl − 2p + 1

]
(17)

We can therefore neglect the contribution of φf to obtain the total
number of e-folds during inflation:

Nk = N(φf ) ≃ −
3p

4(p − 1)
ln

(
(p − 1)e

√
2
3

φi
Mpl

1 − 2p
+ 1

)
(18)

which can be inverted to obtain:√
2
3

φi

Mpl
≃ ln

[
(2p − 1)
(p − 1)

(
1 − Ck

)]
(19)

with C ≡ C(N, p) ≡ e−
4N(p−1)

3p and Ck = C(Nk, p). Comparing
Eq. (19) with Eq. (7) it is straightforward to see that φi ≲ φm
independently of the value of p. Finally, we can invert Eq. (17) to
obtain:

φ(N)
Mpl

=

√
3
2
ln

[
e4N(p−1)/3p

(
1 − 2p
p − 1

+ e

√
2
3

φi
Mpl

)
−

1 − 2p
p − 1

]
(20)

which we plot in Fig. 2 to show that φ is always a decreasing func-
tion of time. Therefore R2p models allow only for small deviations
w.r.t. Starobinsky inflation independently of the value assumed
by the index p. Armed with these relation we can eliminate the
dependency from the scalaron in Eqs. (13)–(15) to obtain the
slow-roll parameters as function of p and Nk only:

ϵ =
4C2

k (p − 1)2

3(Ck(1 − 2p) + p)2
(21)

η =
4(p − 1)

3((1 − 2p)Ck + p)2

(
2C2

k (p − 1) + pCk − p
)

(22)

ζ 2
=

16Ck(p − 1)2

9((1 − 2p)Ck + p)4

×

(
4(p − 1)2C3

k + p(8p − 7)C2
k − p(11p − 9)Ck + p(3p − 2)

)
(23)

The final step is now to relate inflationary observables namely
the scalar spectral index ns, the tensor-to-scalar ratio r and the
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running of the scalar index αs ≡ dns/dln k to the slow-roll
parameters. Since the inflationary observables are invariant under
conformal transformations [46,47] we can evaluate them making
use of relations we derived in the Einstein frame. Up to leading
order, we can express the inflationary observables as:

ns = 1 − 6ϵ + 2η, αs = 16ϵη − 24ϵ2
− 2ζ 2, r = 16ϵ

(24)

making use of Eqs. (21)–(23) we obtain:

r =
64C2

k (p − 1)2

3 [Ck(1 − 2p) + p]2
(25a)

nS = 1 −
8(p − 1)

[
C2
k (p − 1) − p(Ck − 1)

]
3 [Ck(1 − 2p) + p]2

(25b)

αS = −
32pCk(p − 1)2(Ck − 1)(Ck − 3p + 2)

9 [Ck(1 − 2p) + p]4
(25c)

The consistency relations between above equations take the fol-
lowing form:

nS − 1 = −
(3p − 2)

√
r

√
3p

+
8(1 − p)

3p
−

r(3p − 1)
8p

(26)

αS =
4(1 − p)(3p − 2)

√
r

3
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−
(15p2 − 20p + 6)r

6p2

−
(3p − 2)(8p − 3)r

3
2

16
√
3p2

. −
(2p − 1)(3p − 1)r2

64p2

(27)

Now, let us consider the case p = 1. The slow-roll parameters
Eq. (11) when p → 1 reduce to

ϵ =
4

3(e

√
2
3

φ
Mpl − 1)2

(28)

η = −
4(e

√
2
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φ
Mpl − 2)

3(e
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ζ 2
=
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√
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9(e

√
2
3

φ
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(30)

By using the Eq. (12), the total number of e-folds in this case is
obtained as

Nk ≃
3
4
e

√
2
3

φi
Mpl (31)

Finally for the spectral index, the running spectral index and the
tensor-to-scalar ratio, we have from Eqs. (24):

nS = 1 −
2
Nk

, αS = −
2
N2
k
, r =

12
N2

k
(32)

We show in Fig. 3 the scalar spectral index nS (left panel) and its
running αS (right panel) as function of the tensor-to-scalar ratio r
for different value of the index p. We superimpose on the curves
drawn according to Eqs. (26)–(27) the Planck 2015 bounds on
nS to show how the models considered in the present work can
fit with observations of CMB anisotropies. We see from the left
panel of Fig. 3 that for arbitrary small values of r the scalar index
saturates to a maximum value which depends only on p, namely

nS − 1 =
8(1 − p)

3p
(33)

for 1.01 ≲ p ≲ 1.02, the saturation value falls well within the
Planck bound on nS , this model are therefore well in agreement
with Planck data for a tensor-to-scalar ratio consistent with zero.
For p ≳ 1.02 the value of nS is always outside the Planck bounds,
thus we expect these models to be ruled out by current data.
Model with p ≲ 1.01 are within the Planck bounds only for a
finite range of values of the tensor amplitude r these models are
not ruled out only if their range is contained in the Planck upper
limit for r < 0.1. For αS we see a similar behavior as r → 0
(right panel of Fig. 3), but the saturation value now is zero for
every value of the index p since αS ∝

√
r for r → 0. Therefore we

expect that Planck data will be able to give a bound on p if it is let
free to vary while the bounds on r and αS will be consistent with
zero. Conversely for the Starobinsky model we expect to have a
bound on r in the range 10−4–10−3 and thus an indication for a
non zero running at more than two standard deviation.

3. Comparison with recent experimental data and expected
signal

As stated in the previous sections the aim of this paper is
to show how stable are the prediction of the Starobinsky model
on inflationary parameters when a model-dependent approach is
used to sample the cosmological parameter space. The general
approach when looking at constraints from observations on infla-
tionary models (see e.g. [11,19,20,48]) is to let the parameters nS ,
r and αS free to vary assuming them to be independent from one
another and then comparing the prediction of a specific model
with the allowed parameter space. On the one hand, this allows
to explore the inflationary sector in a model independent way but
has the drawback of not allowing to sample the whole parameter
space of a specific theory. Furthermore the assumption that nS , r
and αS are independent from one another is also in contrast with
the prediction of any theory of inflation that assumes the validity
of the slow-roll conditions (see e.g Eqs. (26) and (27) and also [9]).
In this work we choose a different approach: we impose an
inflationary model a priori (here, R2p inflation) and we extract the
posterior distribution of the parameters of that specific model.
In particular, we exploit Eqs. (24) to reduce the number of infla-
tionary parameters to only two: the total number of e-folds, Nk,
and the index, p. While this approach is more model-dependent,
it may results in constraints that are not achievable with the
standard approach in which the inflationary parameter are inde-
pendently sampled and any value of nS , r and αS is permitted.
The theoretical models are calculated using the latest version
of the Boltzmann integrator CAMB [49], and we use publicly
available version of the Monte Carlo Markov Chain (MCMC) code
CosmoMC [50] (Nov 2016 version) to extract constraints on cos-
mological parameters. To compare our theoretical models with
data, we use the full 2015 Planck temperature and polarization
datasets which also includes multipoles ℓ < 30. Eventually we
combine the Planck likelihood with the Biceps/Keck 2015 B-mode
likelihood. We modified the code CosmoMC to include the total
number of e-folds, Nk, and the index, p, as new independent
parameters and to calculate the inflationary parameters nS , r and
αS throughout Eqs. (25). In what follows we will also refer to
the total number of e-folds only as N dropping the subscript k.
Along with the inflationary parameters, we consider the following
cosmological parameters: the baryon ωb = Ωbh2 and the CDM
density ωch2, the angular size of the sound horizon at decoupling
θS , the optical depth τ , the amplitude of scalar perturbations AS
and the phenomenological lensing parameter Alens. The flat prior
imposed for these parameters are reported in Table 1.
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Fig. 3. The spectral index (left) and the running spectral index (right) versus tensor-to-scalar ratio with respect to the different values of p. The dashed line on the
left panel shows the case for p = 1. The gray band show the 68% and 95% C.L. constraints on the spectral index from Planck 2015. The black lines show the case
p = 1.

Table 1
Range of the flat prior on the parameters varied in the MCMC analysis.
Parameter ωb ωc θs τ ln(1010As) N p Alens

Prior [0.005–0.1] [0.001 − 0.99] [0.5 − 10] [0.01 − 0.8] [2–4] [20 − 100] [0.9–1.05] [0–2]

4. Results for Starobinsky inflation

We report the bounds on the inflationary parameters for the
Starobinsky model obtained using the full Planck 2015 likeli-
hood (Planck) and its combination with Bicep/Keck 2015 data
(Planck+BK14) in Table 2. The 68% and 95% C.L. contour plots are
showed in Fig. 4 instead. Let us start by discussing the results
from the Planck datasets alone (without the inclusion of Alens). As
we can see from the first column of Table 2, we found evidence
for a non-zero tensor-to-scalar ratio at the 2-σ level when using
the full Planck 2015 data (r0.002 ∼ 0.0036). This result is not
coming from an actual presence of tensor perturbations in Planck
data but rather it is arising from the correlation between r0.002
and nS present in the model considered. In fact, Planck data are
only able to place an upper bound on the value of the tensor-
to-scalar ratio due to the poor polarization data at large scales
(r0.002 < 0.11 in a one-parameter extension of the ΛCDM model)
while they are able to place a strong constraint on the scalar
spectral index at the accuracy of ∼ 0.6% (nS = 0.968 ± 0.006)
when the standard approach is used to sample these parameters.
Enforcing a dependence of nS from r0.002 therefore limits the
parameter space for the tensor-to-scalar ratio and force its value
to fit in the available range for nS . This situation can be better
understood looking at Fig. 3, where we show the behavior of
the scalar index as a function of tensor-to-scalar ratio. The same
argument can be applied to the running of the scalar index αS
for which we find an evidence to be negative (αS ∼ 0.0006)
at the 3-σ level. Again, we stress that this is not due to an
indication of a running in the data but to the specific correlation
which arises in Starobinsky inflation between the running and the
other inflationary parameters. However these bounds show either
that future measurements of r0.002 and αS have the potential
to rule out the Starobinsky inflation, either that they should be
considered in the analysis of future data being key parameters

in studying the feasibility of inflationary models (see also [51]).
We can see from Fig. 4 and the third column of Table 2 that
the combination of BK14 and Planck data do not significantly
modify the bounds coming from the Planck datasets alone. The
main reason for this is that the combination of Planck and Biceps2
data is compatible with every value of the tensor-to-scalar ratio
satisfying r0.002 < 0.07 [20] and therefore is not able to improve
the constraints of Planck data alone since the bounds on r0.002
now fall well within this limit. It is worth noting that, the slight
decrease in the best-fit value of r0.002 when including BK14 is
caused by an increase in the best-fit value of the reionization
optical depth that requires a smaller scalar spectral index which
in turns demand a smaller tensor ratio and a more negative
running. We see from Fig. 4 and the second column of Table 2
the addition of the parameter Alens leads to changes in the best-
fit of all other parameters while not affecting their bounds. Here,
the main difference with our base model is an increasing in nS of
the 0.4% and a reduction of 1.8% of the scalar amplitude AS . This
in turn leads to a reduction of the optical depth τ from 0.08 to
0.06. To account for this shift, Planck data requires Alens > 1 to
give more smoothing on the acoustic peaks of the scalar spectrum
than in the base ΛCDMmodel (see e.g. [52,53] for a more detailed
discussion). The parameters N , αS and r0.002 best-fit values are
consequently shifted due to the correlation with nS introduced
by Starobinsky inflation. The combination of Planck and BK14
data do not significantly modify the situation described here,
since again the bound on r0.002 are around an order of magnitude
smaller than the sensibility of the two datasets δr ∼ 10−1. It is
worth noting that both for Planck alone and for Planck+BK14 the
inclusion of Alens provides a better fit to the data with ∆χ2

= 4
again underlying the preference for more lensing power in Planck
data.
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Fig. 4. Constraints at 68% and 95% C.L. for the full Planck 2015 likelihood (Planck) and its combination with the Biceps/Keck 2015 B-mode likelihood (Planck+BK14)
for the inflationary parameters for Starobinsky inflation p = 1.

Table 2
Constraints on inflationary parameters for a Starobinsky inflation (p = 1) from the Planck and Planck+BK14 datasets with and
without the inclusion of the parameter Alens . Constraints on parameters are at the 68% C.L.

Planck Planck+Alens Planck+BK14 Planck+BK14+Alens

Ωbh2 0.02226 ± 0.00016 0.02241 ± 0.00017 0.02224 ± 0.00016 0.02242 ± 0.00017

Ωch2 0.1196 ± 0.0015 0.1182 ± 0.0016 0.1198 ± 0.0015 0.1182 ± 0.0015

ln(1010As) 3.096 ± 0.033 3.045 ± 0.041 3.104 ± 0.032 3.045 ± 0.040

N 59+6
−10 66+8

−10 59+6
−10 67+8

−10

nS 0.9656 ± 0.0048 0.9691+0.0053
−0.0047 0.9652 ± 0.0048 0.9692 ± 0.0049

αS −0.00060+0.00019
−0.00014 −0.00049+0.00018

−0.00012 −0.00062+0.00019
−0.00015 −0.00049+0.00018

−0.00012

r0.002 0.00363+0.00085
−0.0011 0.00294+0.00070

−0.0011 0.00371+0.00089
−0.0011 0.00292+0.00070

−0.0011

τ 0.081 ± 0.017 0.057 ± 0.020 0.084 ± 0.017 0.057 ± 0.020

χ2 12948 12944 13594 13590

5. Results for near-Starobinsky inflation

We report the constraints on the inflationary parameters for
general R2p model with p ≃ 1 in Table 3. The 68% and 95%
C.L. contour plots are showed in Fig. 5 instead. We start again
discussing the results from the Planck datasets alone (without

the inclusion of Alens) reported in the first column of Table 3.
As expected the inclusion of the index p in the analysis does
not significantly modify the bounds on the standard cosmolog-
ical parameters (Ωbh2, Ωch2, AS, nS and τ ) coming from the
Planck datasets alone. Conversely the constraints on inflationary
parameters are largely changed by the inclusion of the index p.
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Fig. 5. Constraints at 68% and 95% C.L. for the full Planck 2015 likelihood (Planck) and its combination with the Biceps/Keck 2015 B-mode likelihood (Planck+BK14)
for the inflationary parameters for R2p models.

Table 3
Constraints on inflationary parameters for near-Starobinsky inflation (p ≃ 1) from the Planck and Planck+BK14 datasets with and
without the inclusion of the parameter Alens . Constraints on parameters are at the 68% C.L. for Ωbh2, Ωch2 and AS while constraints
on αS ,N and p are at 95% C.L. since their posteriors are highly non-Gaussian. Upper bound are also at 95% C.L.

Planck+p Planck+p+Alens Planck+BK14+p Planck+BK14+p+Alens

Ωbh2 0.02223 ± 0.00016 0.02240 ± 0.00018 0.02223 ± 0.00016 0.02240 ± 0.00018

Ωch2 0.1198 ± 0.0015 0.1184 ± 0.0016 0.1201 ± 0.0015 0.1184 ± 0.0016

ln(1010AS) 3.092 ± 0.033 3.043 ± 0.041 3.101 ± 0.032 3.046 ± 0.041

N 60+40
−30 59+40

−30 59+40
−30 61+40

−30

p 0.995+0.021
−0.033 0.990+0.025

−0.039 0.994+0.021
−0.030 0.993+0.020

−0.027

nS 0.9644 ± 0.0049 0.9683 ± 0.0051 0.9640 ± 0.0049 0.9683 ± 0.0051

αS −0.00084+0.00084
−0.0013 −0.00083+0.00080

−0.0011 −0.00090+0.00088
−0.0013 −0.00077+0.00072

−0.0010

r0.002 < 0.0515 < 0.0750 < 0.0483 < 0.0422

τ 0.079 ± 0.017 0.056 ± 0.020 0.082 ± 0.017 0.057 ± 0.020
χ2 12949 12945 13595 13590

When p is varied, the number of e-folds of inflation are basically
unconstrained within the flat range we imposed in our runs while
the 2-σ bound on the tensor-to-scalar ratio is relaxed to only
an upper bound. We note however that the upper limit on r is
halved with respect to the bound reported in the Planck 2015
release (r < 0.11), again this is due to the correlation between
the inflationary parameters arising in R2p inflationary models.
The bound on αS is also worsen by a factor ∼ 4 leading to a

running consistent with zero nearly at 2-σ level. Interestingly
instead we are able to constraints the index p with an accuracy
of the 0.2%–0.3%. In order to understand why this is happening
we should look again at Fig. 3. As we can see from the left panel
of Fig. 3, for arbitrary small value of r , the scalar index saturates
to a constant value which is only a function of the index p (see
also Eq. (26)). For 1.0 ≲ p ≲ 1.02, the saturation value of nS
falls well within the Planck constraints for r → 0 therefore for
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these models we do not find any lower limit on the amplitude
of tensor modes. For p > 1.02 the value of nS is always outside
the Planck bound making these models incompatible with Planck
data, instead models with p < 1.0 are compatible with Planck
data only for value of the tensor-to-scalar ratio in the range
10−2 < r < 10−1. This behavior of the scalar index for different
value of p leads to the highly non-Gaussian posteriors for p and
αs of Fig. 5 and to the disappearance of the lower bound on r .
Including Alens, we again see the shift in the best fit values of AS
and nS as for the case where p is kept fixed leading to a worsening
of the limit on r of the 45% and of the constraints on p of the
20%. We see from the third column of Table 3 and Fig. 5 that
the combination of Planck and BK14 datasets improves slightly
the upper limit on tensor amplitudes while the other parameter
bounds are virtually unchanged. The inclusion of Alens now only
changes the bound on αS shifting the best-fit toward zero by
the 14% and improving the 2-σ constraints by the same amount.
Again we notice that the inclusion of Alens provides a better fit to
the data with ∆χ2

≃ 4 − 5

6. Conclusions

In this paper, we have obtained constraints on inflationary
parameters using a set of recent CMB data and under the as-
sumption of the Starobinsky model. We have also considered a
particular class of inflationary models that generalize Starobinsky
inflation and the possibility of an extension to ΛCDM described
by the Alens parameter.

We can summarize our results as follows:

• When conservatively considering Starobinsky inflation, cor-
responding to p = 1, and using the full Planck 2015 like-
lihood we obtain an upper limit on the tensor to scalar
ratio r > 0.0017 at 95% C.L. and an indication for a nega-
tive running at more than two standard deviations. While
smaller values for r are allowed, also values of r ∼ 0.006
are now inside the 95% C.L. Interestingly, models with a
larger value of r would also predict a more negative value
of the running αs. The maximum value of αs ∼ −0.001
(see Fig. 4), however, is not within the reach of the future
CMB-S4 experiment that is expected to have a sensitivity
on the running of ∆αs ∼ 0.0026 [34]. The combination
of the Planck and BK14 datasets leaves our results almost
unchanged. As discussed above, this is related to the fact
that our results are coming from the Planck bound on nS and
from assuming inflationary consistency relations between
nS , r and αS and therefore they are not significantly affected
from the inclusion of the BICEP2 B-mode likelihood.

• Considering the phenomenological lensing parameter Alens
shifts the best-fit values of r and αS due to the degeneracy
between Alens and the scalar parameters nS and AS . When
Alens is considered, the upper limit is now r > 0.0013 at
95% C.L., i.e., the amount of gravitational waves predicted
is significantly smaller. Future CMB experiments should,
therefore, target to a ∆r ∼ 0.0003 sensitivity if they plan
to falsify the Starobinsky model at the level of five standard
deviations. This sensitivity is about a factor two better than
the one predicted for the CMB-S4 experiment.

• For a more general R2p inflation and using the full Planck
likelihood, we found no lower limit for the tensor mode
amplitude. Conversely, we obtain a tight constraint on the
index p at the 95% C.L. confirming that small departures
from the Starobinsky model are allowed by the Planck data
with values in the range 0.962 ≤ p ≤ 1.016. The inclusion
of Alens worsen this constraint by the 20%. When considering
the combination of the full Planck dataset with the BK14

dataset again we do not find any improvement w.r.t. to the
Planck datasets alone. However, including Alens now do not
worsen the constraints on p but only shift the best fit of αS
to a less negative value.

We, therefore, confirmed that Starobinsky inflation provides
an excellent fit to the most recent data, but that uncertainties
on ns and on the value of Alens could easily bring the expected
value of r in the region of r ∼ 0.001. If the primordial inflationary
background is at this level, it will not be detectable either by the
Simons Observatory [33], that has an expected sensitivity around
∆r ∼ 0.002, either by the LiteBIRD satellite that is planned to
have a sensitivity of ∆r ∼ 0.001. It will also be barely detectable
by CMB-S4 [34] that is expected to reach a target sensitivity
of ∆r ∼ 0.0006. Moreover, the goal of the CMB-S4 mission
to ‘‘achieve a 95% confidence upper limit of r < 0.001" [34]
can be severely affected if the primordial gravitational waves
background is in the region of r ∼ 0.001.

However, values of r could also reach the r ∼ 0.006 region,
allowing, in this case, a statistically significant detection at about
three standard deviations for the Simons Observatory and at
about ten standard deviations for CMB-S4. In the optimistic case
of r ∼ 0.006 we also expect a running of the spectral index
αs ∼ −0.001. Unfortunately this value cannot be detectable even
by future CMB experiments as CMB-S4 (with expected sensitivity
of ∆αs ∼ 0.002 [34]), but it could be reachable when informa-
tion from future lensing or galaxy clustering measurements are
included. Small departures from the Starobinsky model are also
possible and in agreement with observations. In this case, we
found no predicted lower limit to r .

We conclude noting that the inflationary prediction on curva-
ture perturbation may be spoiled by a reheating phase accompa-
nied by some parametric resonance (see e.g. [54,55]). This process
can also take place in a Starobinsky-like inflation as showed
in [56]. While the prediction on the inflationary observables
coming from the post-inflationary evolution of the scalar field
strongly depends on the inflationary model under consideration
and on the coupling between the inflaton and the entropy field
responsible for the reheating mechanism, the general outcome of
such a reheating phase is to suppress the value of the tensor-
to-scalar ratio by enhancing the amplitude of primordial density
fluctuations. The reheating phase can therefore significantly mod-
ify the prediction in the (ns − r) plane for a chosen inflationary
model. However, this does not apply to the constraints drawn in
this work. In the present analysis, infact, the bound on r comes
from the functional dependence imposed by the R2p models be-
tween r and ns. Since the value of ns is tightly constrained by
the Planck data so it is the value of r provided that Eqs. (25)
hold. A successful Starobinsky-like model including a reheating
phase must be able to predict an amplitude of scalar fluctuations
consistent with Planck data leading to the same constraints for ns
and r we found in this work. Conversely the requirement that the
reheating phase must give a value of As compatible with Planck
data can be used to place strong constraint on the reheating
mechanisms. However a detailed study of the reheating phase
in Starobinsky-like inflationary models is out of the scope of the
present paper and we left if for a future work.
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