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Localization landscape for Dirac fermions
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In the theory of Anderson localization, a landscape function predicts where wave functions localize in a
disordered medium, without requiring the solution of an eigenvalue problem. It is known how to construct the
localization landscape for the scalar wave equation in a random potential, or equivalently for the Schrödinger
equation of spinless electrons. Here, we generalize the concept to the Dirac equation, which includes the effects
of spin-orbit coupling and allows us to study quantum localization in graphene or in topological insulators and
superconductors. The landscape function u(r) is defined on a lattice as a solution of the differential equation
Hu(r) = 1, where H is the Ostrowski comparison matrix of the Dirac Hamiltonian. Random Hamiltonians
with the same (positive-definite) comparison matrix have localized states at the same positions, defining an
equivalence class for Anderson localization. This provides for a mapping between the Hermitian and non-
Hermitian Anderson model.

DOI: 10.1103/PhysRevB.101.081405

Introduction. The localization landscape is a new tool in the
study of Anderson localization, pioneered in 2012 by Filoche
and Mayboroda [1], which has since stimulated much compu-
tational and conceptual progress [2–11]. The “landscape” of a
Hamiltonian H is a function u(r) that provides an upper bound
for eigenstates ψ at energy E > 0,

|ψ (r)|/|ψ |max � E u(r), |ψ |max = max
r

|ψ (r)|. (1)

This inequality implies that a localized state is confined to spa-
tial regions where u � 1/E . Extensive numerical simulations
[9] confirm the expectation that higher and higher peaks in u
identify the location of states at smaller and smaller E .

Such a predictive power would be unremarkable for par-
ticles confined to potential wells (deeper and deeper wells
trap particles at lower and lower energies). But Anderson
localization happens because of wave interference in a random
“white noise” potential, and inspection of the potential land-
scape V (r) gives no information on the localization landscape
u(r).

Filoche and Mayboroda considered the localization of
scalar waves, or equivalently of spinless electrons, governed
by the Schrödinger Hamiltonian H = −∇2 + V . They used
the maximum principle for elliptic partial differential equa-
tions to derive [1] that the inequality (1) holds if V > 0 and u
is the solution of

[−∇2 + V (r)]u(r) = 1. (2)

Our objective here is to generalize this to spinful electrons,
to include the effects of spin-orbit coupling, and study the
localization of Dirac fermions.

Construction of the landscape function. Our key innovation
is to use Ostrowski’s comparison matrix [12–15] as a general
framework for the construction of a localization landscape on
a lattice. By definition, the comparison matrix H of a complex

matrix H has elements

Hnm =
{|Hnn| if n = m,

−|Hnm| if n �= m.
(3)

In our context the index n = 1, 2, . . . labels both the discrete
space coordinates as well as any internal (spinor) degrees
of freedom. The comparison theorem [12] states that if the
comparison matrix is positive-definite, then [16]

|H−1| � H −1, (4)

where both the absolute value and the inequality is taken
elementwise.

We apply Eq. (4) to an eigenstate � of H at energy E ,

|E−1�n| = |(H−1�)n| �
∑

m

|(H −1)nm||�m|

� |�|max

∑
m

( H −1)nm, (5)

with |�|max = maxn |�n|. We now define a landscape function
u with elements un in terms of a set of linear equations with
coefficients given by the comparison matrix,

H u = 1 ⇔
∑

m

Hnmum = 1, n = 1, 2, . . . N, (6)

which implies that ∑
m

( H −1)nm = un. (7)

Substitution into Eq. (5) thus gives the desired inequality

|�n|/|�|max � |E |un. (8)

As a sanity check, we make contact with the origi-
nal landscape function [1] for the Schrödinger Hamiltonian
HS = p2/2m + V , with V > 0. The Laplacian is discretized

2469-9950/2020/101(8)/081405(5) 081405-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6946-0035
https://orcid.org/0000-0002-5245-3517
https://orcid.org/0000-0003-4316-5190
https://orcid.org/0000-0003-3410-5460
https://orcid.org/0000-0003-4748-4412
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.081405&domain=pdf&date_stamp=2020-02-12
https://doi.org/10.1103/PhysRevB.101.081405


G. LEMUT et al. PHYSICAL REVIEW B 101, 081405(R) (2020)

FIG. 1. Landscape function u(x) (red) and normalized wave-
function profile |�(x)|/E |�max| (blue) for the six lowest (twofold
degenerate) eigenstates of the disordered 1D Rashba Hamiltonian
(11) (parameters V0 = 4t0, λ̄ = 0, δλ = 3h̄/a, hard-wall boundary
conditions). The 1D array has n = 1, 2, . . . , 200 sites; in the plot
x = n shows the first spinor component and x = n + 1/2 shows
the second spinor component. The wave functions are labeled
by the corresponding energy levels {E1, . . . E6} = {3.273, 3.3371,

3.414, 3.446, 3.508, 3.516} (in units of t0).

in terms of nearest-neighbor hoppings on a lattice. For each
dimension

p2 �→ (h̄/a)2(2 − 2 cos ka) ⇒
(HS)nm = t0(2δnm − δn−1,m − δn+1,m) + Vnδnm, (9)

with lattice constant a and hopping matrix element t0 =
h̄2/2ma2. The comparison matrix HS is equal to HS and is
positive-definite, so that Eq. (6) is a discretized version of the
original landscape equation HSu = 1 [1,18].

Rashba Hamiltonian. Our first application is to introduce
spin-orbit coupling of the Rashba form,

HR = HS + 1
2 {λ, px}σy − 1

2 {λ, py}σx. (10)

(The anticommutator {· · · } enforces Hermiticity when λ is
spatially dependent.) The comparison matrix is now no longer
equal to the Hamiltonian, in one dimension (1D) one has

(HR)i j = (HS)i j − h̄

4a
|λi + λ j |(δi−1, j + δi+1, j )σx. (11)

The i, j, indices label the spatial positions, and the spinor
indices are implicit in the Pauli matrix.

As a test, to isolate the effect of spin-orbit coupling,
we place all the disorder in the Rashba strength λn, which
fluctuates randomly from site to site, uniformly in the interval
(λ̄ − δλ, λ̄ + δλ). The electrostatic potential is a constant
offset V0, chosen sufficiently large that HR is positive-definite
[19]. Examples in 1D and in 2D are shown in Figs. 1 and 2.
The highest peaks in the landscape function match well with
the lowest eigenfunctions.

Dirac Hamiltonian. We next turn to Dirac fermions, first in
1D. The Dirac Hamiltonian

HD = vF pxσx + V σ0 + μσz (12)
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FIG. 2. Same comparison as in Fig. 1, but now for the 2D Rashba
Hamiltonian, discretized on a 100×100 square lattice (parameters
V0 = 6t0, λ̄ = 2δλ = 2h̄/a, periodic boundary conditions).The left
panel shows the spinor norm |�n(r)| for the ten lowest (twofold
degenerate) eigenstates of HR. The right panel shows the localization
landscape. The black contours (computed at 10% of the peak height
of |�|) identify the location of the ten eigenstates—to show the close
correspondence with the local maxima of u(r).

contains a scalar potential V proportional to the 2×2 unit
matrix σ0 and a staggered potential μ proportional to σz, act-
ing on the two-component wave function � = (ψA, ψB). This
would apply to a graphene nanoribbon on a substrate such
as hexagonal boron nitride, which differentiates between the
two carbon atoms in the unit cell without causing intervalley
scattering [20].

The symmetric discretization ∂x� �→ (1/2a)[�(x + a) −
�(x − a)] suffers from fermion doubling [21,22]—it corre-
sponds to a sin ka dispersion with a second species of massless
Dirac fermions at the edge of the Brillouin zone (k = π/a).
To avoid this, and restrict ourselves to a single valley, we use
a staggered-fermion discretization in the manner of Susskind
[23,24],

pxσx� �→ (−ih̄/a)

(
ψB(x) − ψB(x − a)

ψA(x + a) − ψA(x)

)
. (13)

The corresponding dispersion [25]

E (k) = ±t1
√

2 − 2 cos ka, t1 = h̄vF/a, (14)

has massless fermions only at the center of the Brillouin zone
(k = 0).

The comparison matrix takes the form

(HD)i j =
( |Vi + μi|δi j −t1(δi j + δi+1, j )

−t1(δi j + δi−1, j ) |Vi − μi|δi j

)
. (15)

We take random V (x) ∈ (V̄ − δV, V̄ + δV ) and μ(x) ∈
(μ̄ − δμ, μ̄ + δμ), chosen independently and uniformly at
each lattice site. The condition |Vi ± μi| > 2t1 ensures a
positive-definite HD. As shown in Figs. 3 and 4, the landscape
function computed from HDu = 1 again accurately identifies
the locations of the low-lying eigenfunctions (near the band
edge in Fig. 3 and near the gap in Fig. 4).

For the 2D Dirac equation we consider a chiral p-wave
superconductor, with a Bogoliubov–de Gennes Hamiltonian
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FIG. 3. (a) Random scalar potential V (x) (red) and staggered
potential μ(x) (black) for the 1D Dirac Hamiltonian (12) (parame-
ters V̄ = 3t1, μ̄ = 0, δV = δμ = t1, hard-wall boundary conditions).
(b) Corresponding localization landscape (red) and eigenfunctions of
the 12 lowest energy levels (blue), at energies En near the band edge
plotted in the inset (c). The peaks in the localization landscape are
not correlated in any obvious way with the random potentials, but
they accurately predict the location of the low-lying modes.

[26]

HBdG = 	(pxσx + pyσy) + (V + p2/2m)σz. (16)

The Pauli matrices act on the electron-hole degree of free-
dom of a Bogoliubov quasiparticle, and the Hamiltonian is
constrained by particle-hole symmetry: σxHBdGσx = −H∗

BdG.

FIG. 4. Same as Fig. 3(b), but now for a gapped system (V̄ =
δV = 0, μ̄ = 3.5 t1, δμ = 1.5 t1). The eigenfunctions of the 20 levels
closest to the gap are shown (blue, 2.3 t1 < |En| < 2.5 t1). There are
only ten distinct peaks, because of an approximate ±E symmetry.
The landscape function (red, rescaled by a factor 1/4) accurately
identifies the location of the states near the gap.

FIG. 5. Comparison of the landscape function (2D color scale
plot) with wave-function amplitudes (3D profile) of the chiral p-wave
superconductor with Hamiltonian (16) (parameters 	 = 1, V̄ = 6,
δV = 4, in units of t0 = h̄2/2ma2). The wave functions show the five
Andreev levels with smallest En > 0 (E1, E2, . . . , E5 = 3.763, 3.799,
3.875, 3.882, 3.893). (The charge-conjugate states at −En have the
same spinor amplitude |�|.) The colors of the wave-function profile
correspond to the landscape function, so a red wave-function peak
indicates that u(x, y) peaks at the same position.

(A scalar offset ∝σ0 is thus forbidden.) The pair potential
	 opens a gap in the spectrum in the entire Brillouin zone,
provided that the electrostatic potential V is nonzero. The gap-
closing transition at V = 0 is a topological phase transition
[27].

We take a uniform real 	 (no vortices) and a disordered
V (x, y), fluctuating randomly from site to site in the interval
(V̄ + δV, V̄ − δV ). Positive V ensures we do not cross the
gap-closing transition, so we will not be introducing Majo-
rana zero modes [28] (the levels are Andreev bound states).
Unlike in the case of graphene we can use the symmetric
discretization p �→ sin ka—there is no need for a staggered
discretization because the kinetic energy p2 �→ 2 − 2 cos ka
prevents fermion doubling at k = π/a. Results are shown in
Fig. 5.

Equivalence classes. In the final part of this Rapid Commu-
nication we move beyond applications to address a conceptual
implication of the theory. Two complex matrices A, B are
called equimodular if |Anm| = |Bnm|. By the construction (3),
they have the same comparison matrix, A = B, and therefore
the same landscape function uA = uB, uniquely determined
by the same equation AuA = 1 = BuB. We thus obtain an
equivalence class for Anderson localization: Equimodular
Hamiltonians have localized states at the same position,
identified by peaks in the landscape function.

We have checked this for the 2D Rashba Hamiltonian (10):
Randomly varying the sign of the coefficient λ(r) from site
to site shifts the energy levels around, but the states remain
localized at the same positions. More generally, one could try
to vary the coefficients over the complex plane, preserving
the norm. This would produce a non-Hermitian eigenvalue
problem, and one might wonder whether the whole approach
breaks down. It does not, as we will now demonstrate.
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FIG. 6. (a) Energy levels and (b), (c) localized eigenstates of
the non-Hermitian Hamiltonian H from Eq. (17) and its Hermitian
counterpart Heff from Eq. (18). The calculations are performed
on a 2D square lattice (lattice constant a ≡ 1, bandwidth W0 = 8,
periodic boundary conditions) for potentials V1 and V2 randomly and
independently chosen at each site, uniformly in the interval (−1, 1).
A constant offset V0 = 1 was added to V1 in order to ensure a positive
Veff . The mapping from H to Heff preserves the spatial location of
the localized states, while the ordering of the energy levels |En| in
absolute value is changed. (b) and (c) show the eigenstates of the five
lowest-energy levels of Heff and the corresponding eigenstates of H.
The locations are preserved but E2 of H is pushed to higher absolute
values.

The non-Hermitian Anderson Hamiltonian [29,30]

H = −∇2 + V1(r) + iV2(r) (17)

has been studied in the context of a random laser [31]: a dis-
ordered optical lattice with randomly varying absorption and
amplication rates, described by a complex dielectric function
V1 + iV2. On a d-dimensional square lattice (lattice constant
a), the discretization of −∇2 �→ a−2 ∑d

i=1(2 − 2 cos kia) pro-
duces a spectral bandwidth of W0 = 4d/a2.

The Hermitian Hamiltonian

Heff = −∇2 + Veff , Veff = ∣∣ 1
2W0 + V1 + iV2

∣∣ − 1
2W0, (18)

is positive-definite if Veff (r) > 0 for all r. The transforma-
tion from complex V to real Veff does not change the land-

scape function, because H = H eff = Heff . The localization
landscapes are therefore the same and we would expect the
eigenstates [32] of H and Heff to appear at the same positions,
provided that Veff > 0. This works out, as shown in Fig. 6.

Conclusion and outlook. We have shown that the com-
parison matrix H provides a route to the landscape function
for Hamiltonians that are not of the Schrödinger form H =
−∇2 + V . We have explored Hamiltonians for massive or
massless Dirac fermions, with or without superconducting
pairing. The broad generality of the approach is highlighted by
the application to the non-Hermitian Anderson Hamiltonian.

The localization landscape can be used as a tool to quickly
and efficiently find low-lying localized states in a disordered
medium, since the landscape function u(r) is obtained from
a single differential equation Hu = 1. These applications
have been demonstrated for the Schrödinger Hamiltonian
[5–8], and we anticipate similar applications for the Dirac
Hamiltonian in the context of graphene or of topological
insulators.

The comparison matrix offers a conceptual insight as well:
Since equimodular Hamiltonians have the same comparison
matrix, they form an equivalence class that localizes at the
same spatial positions. This notion is distinct from the familiar
notion of “universality classes” of Anderson localization [33],
which refers to ensemble-averaged properties. The equiva-
lence class, instead, refers to sample-specific properties.

As an outlook to future research, it would be interesting
to extend the approach from wave functions to energy levels.
This has been recently demonstrated for the Schrödinger
Hamiltonian [9], where the peak height of the localization
function predicts the energy of the localized state. The cor-
relation between peak heights and energy levels evident in
Fig. 1 suggests that the comparison matrix has this predictive
power as well. Another direction to investigate is to see if the
comparison matrix would make it possible to incorporate spin
degrees of freedom in the many-body localization landscape
introduced recently [34].
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