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a b s t r a c t

We perform a reconstruction of the coupling function between vacuum energy and geodesic cold dark
matter using the latest observational data. We bin the interaction in seventeen redshift bins but use
a correlation prior to prevent rapid, unphysical oscillations in the coupling function. This prior also
serves to eliminate any dependence of the reconstruction on the binning method. We use two different
forms of the correlation prior, finding that both give similar results for the reconstruction of the dark
matter–dark energy interaction. Calculating the Bayes factor for each case, we find no meaningful
evidence for deviation from the null interacting case, i.e. ΛCDM, in our reconstruction.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the most pressing questions in modern cosmology con-
cerns the true nature of dark energy: what is the physical driver
of the accelerated expansion of the Universe? This phenomenon
of accelerating expansion was first established by [1] and [2] and
is generally attributed to the existence of a positive cosmological
constant, Λ, in our Universe. While the cosmological constant is
the simplest proposed source of the accelerated expansion, it is
widely agreed that it has long suffered from theoretical problems:
namely, why its observed value and theoretically predicted value
differ so greatly [3–5], and why it has only come to dominate
over the other components in the Universe relatively recently [6].
However, some advocate that these are not problems of cosmol-
ogy but of particle physics or quantum field theory — or perhaps
not real problems at all [7].

In addition to these theoretical and philosophical issues, the
ever-increasing improvements in observational cosmology have
begun to reveal tensions in the values of cosmological parameters
within the wider ΛCDM model, particularly between high and
low redshift measurements of these quantities. The most striking
of these tensions is in the value of H0, the Hubble parameter at
redshift zero, which essentially informs us of the rate at which
the Universe is expanding.

A value of H0 can be measured without assuming a cosmolog-
ical model, using low redshift probes such as Type Ia supernovae
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which rely on the distance ladder to fix the distance–redshift re-
lation. A recent example of such a measurement is H0 = 73.45±

1.66 km s−1 Mpc−1 [8]. The value of H0 can also be calculated us-
ing information coming from the cosmic microwave background
(CMB) — the caveat being that a cosmological model must be
adopted. In doing so, the Planck collaboration reports H0 = 67.4±

0.5 km s−1 Mpc−1, when ΛCDM is assumed [9]. This signals a
tension of more than 4σ between the two measurements [10].

Some other measurements of H0 that are independent of the
distance ladder do not seem to relax the tension. For example,
the H0LiCOW doubly imaged quasar measurement found H0 =

72.5+2.1
−2.3 km s−1 Mpc−1 [11], the LIGO gravitational wave mea-

surement found H0 = 70+12.0
−8.0 km s−1 Mpc−1 [12] and the very

recent Megamaser Cosmology Project constraint was found to be
H0 = 73.9 ± 3.0 km s−1 Mpc−1 [13].

The inverse distance ladder approach used in [14] found H0 =

67.77 ± 1.30 km s−1 Mpc−1. This method entails anchoring the
distance ladder using the baryon acoustic oscillation (BAO) signal
combined with the size of the sound horizon at the drag epoch
rs(zd), which is in turn obtained either through CMB measure-
ments or Big Bang nucleosynthesis constraints on the baryon den-
sity Ωbh2. Anchoring the distance ladder in this way rather than
to Cepheid variable stars results in a value of H0 in agreement
with the Planck 2018 result quoted above.

Furthermore, another tension is becoming apparent in the
value of σ8. This parameter is a measure of the growth of cos-
mological perturbations and hence of the large scale structure
formation. The tension in its measured values is also between
high and low redshift probes [15,16].
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While it is entirely possible that these tensions are present
simply due to systematic errors or noise in the data, we must also
consider the possibility – following the well-known aphorism in
statistics that ‘‘all models are wrong’’ [17] – that the ΛCDMmodel
is simply incorrect.

In an attempt to extricate cosmology from this rather alarm-
ing predicament, many alternatives to the ΛCDM model have
been proposed. Some are as simple as allowing vacuum en-
ergy to interact with cold dark matter (CDM) (see e.g. [18–24]),
others introduce an additional scalar field to drive the acceler-
ated expansion (see [25] for a comprehensive review) and still
others eliminate general relativity entirely, exploring modified
gravity theories in which self-acceleration can be achieved (see
e.g. [26–29] for details of various modified gravity models past
and present).

It is worth noting that some modified gravity models are moti-
vated by the need to explain various features of large scale struc-
ture formation and thus do not necessarily alter the background
cosmology. Since H0 is a probe of the background expansion,
models that do have some effect on the background cosmology
are naturally more attractive when the motivation is to relax the
H0 tension.

In this work we choose the first option, introducing an inter-
action between the vacuum and cold dark matter, constructed in
such a way that the cold dark matter remains geodesic, thus lim-
iting any potentially pathological effects on structure growth. In a
previous work [22], we investigated whether a simple form of this
interaction could relieve the tensions present in ΛCDM, testing
the interaction acting in a single redshift bin and reconstructing
the interaction using four redshift bins. We found that, while
the interacting scenario does not manage to relieve cosmological
tensions, it is not ruled out by current observational data.

In this work, we continue that investigation by increasing
the number of redshift bins used in our reconstruction, thereby
increasing the redshift range that the interaction acts over and
ensuring a model-independent reconstruction. We also use the
up-to-date Planck 2018 likelihood [9], instead of the 2015 likeli-
hood used in our previous work. We study the constraining power
of a theoretical prior acting across the bins and reconstruct the
final interaction function. We then perform a Principal Compo-
nent Analysis and calculate the Bayesian evidence for each case
studied.

This paper is organised as follows: in Section 2 we recapitulate
the theory behind the interacting vacuum scenario that we test in
this work. In Section 3 we describe the implementation and nu-
merical analysis done, explaining the role of the theoretical priors
and the reconstruction. We present our results and discussion in
Section 4 and then conclude with Section 5.

2. The interacting vacuum

In this section, we limit ourselves to a basic discussion of the
interaction in a spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) background. We note that the interaction is con-
structed so that CDM remains geodesic; in brief, this is because
the energy–momentum flow 4-vector between the vacuum and
cold dark matter, Qµ, can be projected in two parts, one parallel
and one orthogonal to the CDM 4-velocity, Qµ

= Quµ
+f µ, where

f µ is the momentum exchange, f µ
= aµρc .

We set this momentum exchange to be equal to zero, implying
that the 4-acceleration aµ must be zero and thus ensuring that
CDM is always geodesic, as no additional acceleration due to the
interaction acts on the CDM particles. With this choice, in the
synchronous comoving gauge that we use to describe perturba-
tions, the interaction is unperturbed and fully encoded in the
background Q .

We refer the reader to [18] and [22] for a detailed treatment of
the covariant theory of the interaction, as well as the behaviour of
linear perturbations in this theory and the effect of the interaction
on structure growth.

In a spatially flat FLRW background, the interaction is intro-
duced between CDM and the vacuum in the following way:

ρ̇c + 3Hρc = −Q , (1)

V̇ = Q , (2)

where ρc and V are the energy densities of CDM and the vacuum
respectively, H = ȧ/a is the Hubble expansion, with a the cosmic
scale factor, and Q is the energy exchange between the compo-
nents. For Q = 0, V is constant and we recover a cosmological
constant, i.e. ΛCDM.

In order to reconstruct the behaviour of this interaction, we
must choose a model for Q . We make the following choice,

Q = −qHV , (3)

so that the coupled energy conservation equations (1), (2) become

ρ̇c + 3Hρc = qHV , (4)

V̇ = −qHV , (5)

where q = q(a) is a dimensionless function that encodes the
strength of the coupling between CDM and the vacuum. A pos-
itive value of q indicates that the vacuum is decaying and dark
matter is growing, whereas a negative value of q indicates that
dark matter is decaying and the vacuum is growing. We aim to
reconstruct the coupling as a function of redshift z, i.e. q(z), using
a cubic spline interpolation and a Gaussian process.

3. Method

In this section, we describe the numerical codes used and the
modifications made to those codes, as well as the theoretical
priors and data considered in our analysis.

3.1. Modifying CAMB and CosmoMC

The first step in our analysis is to constrain the coupling
strength q(a) with cosmological data. To this end we make use
of modified versions of the CAMB [30,31] and CosmoMC codes [32,
33]. We bin the interaction function q(a) in terms of the cosmic
scale factor, with qi being the constant parameter value within
the ith bin.

We choose to extend our previous four bin analysis presented
in [22] to seventeen bins, with i = 1, . . . , 17; sixteen that are
uniform in scale factor from a = 1.0 to a = 0.14, plus a
single large bin that extends to a ≈ 0.0001. We use CosmoMC to
produce MCMC samples from the posterior distribution of the
interaction parameter in each bin, plus the baryon and cold dark
matter densities Ωbh2 and Ωch2, the amplitude of the primordial
power spectrum and the spectral index As and ns, and the value
of the Hubble parameter today, H0. We use flat priors on these
parameters, with the ranges specified in Table 1.

3.2. Correlation prior

Although we have no theoretically motivated model for the
behaviour of the coupling as a function of scale factor (or, equiv-
alently, time) we do have one theoretical prejudice: we do not
expect the coupling function to oscillate rapidly, as we consider
very fast changes of sign in the coupling function to be unphysi-
cal. We therefore take the step of including a theoretical prior on
the coupling parameter that actively suppresses high frequency
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Table 1
Prior ranges of the parameters sampled in our analysis.
Parameter Prior

Ωbh2
[0.005, 0.1]

Ωch2
[0.001, 0.99]

H0 [50, 100]
log 1010As [2.0, 4.0]
ns [0.8, 1.2]
qi [−6.0, 3.0]

oscillations, thereby allowing the low frequency modes that are
potentially present in the data to dominate.

The theoretical prior takes the form of a scale-factor-
dependent correlation between the values of the coupling func-
tion in each bin. Values of the function in neighbouring bins
are correlated, with the correlation growing weaker for bins of
greater separation. This correlation prior was first proposed in [34]
and the method has been subsequently used in the reconstruction
of the dark energy equation of state function w(z) by [35–37].
The correlation prior method was also used by [38] to reconstruct
the vacuum energy–CDM interaction at low redshifts only, up to
z = 1.5.

The correlation prior has further benefits in addition to sup-
pressing high frequency oscillations. It tends to improve the
convergence speed of MCMC chains, as the correlation can help to
constrain the coupling parameter in bins where the data is sparse.
Reconstruction bias, i.e. the dependence of results on the binning
strategy chosen is also controlled by the prior, provided that the
number of bins is sufficiently large, as we will describe below.

Following [34], we assume a correlation function that de-
scribes fluctuations around some fiducial model,

ξ (|a − a′
|) ≡ ⟨[q(a) − q̄(a)][q(a′) − q̄(a′)]⟩, (6)

and given a functional form for ξ , the corresponding covariance
matrix can be found:

Cij =
1

∆2

∫ ai+∆

ai

da
∫ aj+∆

aj

da′ξ (|a − a′
|), (7)

where ∆ is the bin width, q̄ is the fiducial model and a is the
cosmic scale factor. The fiducial model can be set to ΛCDM
(i.e. q̄(ai) = 0), but this may introduce an unwanted bias in favour
of this model into our results, so for comparison we consider a
case in which the fiducial model for each bin is calculated as the
mean of that bin with its two neighbouring bins. We refer to these
cases as fixed fiducial and mean fiducial respectively.

We use the Crittenden–Pogosian–Zhao (CPZ) form for the cor-
relation function, as proposed in [34],

ξ (|a − a′
|) = ξ (0)/[1 + (|a − a′

|/ac)2], (8)

where ac is the correlation length. As previously stated, we want
to ensure that our results are independent of the number of bins
used. To ensure that we eliminate this potential reconstruction
bias, we require that

N > Neff, (9)

where N is the number of bins, and

Neff = (amax − amin)/ac . (10)

The parameters amax and amin are the limits of the scale factor
range used in our analysis, a = 1.0 and a = 0.0001. Following
the previous results of [39,40], we choose ac = 0.06. This means
that Neff = 16.7. Therefore, to ensure that N > Neff, we choose
N = 17.

The strength of the prior is determined by ξ (0), but follow-
ing [39], we use the variance of the mean instead, defined as

σ 2
q ≈ πξ (0)ac/(amax − amin). We set σq = 0.6. We found that

this choice is sufficient for the prior to provide some constraining
power, but not so much that it completely dominates over the
constraints from data in each bin. We discuss this point further
in Section 4.3.

3.3. Observational data

The data used in this work is a combination of the Planck
2018 measurements of the CMB temperature and polarisation [9],
the BAO measurements from the 6dF Galaxy Survey [41] and the
combined BAO and redshift space distortion (RSD) data from the
SDSS DR12 consensus release [42], together with the Pantheon
Type Ia supernovae sample [43].

We note that some works in the literature that find a resolu-
tion to the H0 tension in an interacting dark energy scenario do
so by omitting the BAO data from their analyses (see e.g. [44]).
This is because, without using BAO, the high redshift constraint
on H0 becomes weaker, and a late time solution to the tension
is possible. If BAO are used in combination with supernovae
catalogues then late time solutions become disfavoured, and in-
teracting dark energy models will therefore struggle to resolve
the tension (see e.g. [45,46]). However, this reasoning does not
justify the exclusion of these datasets from model constraining
analysis and we therefore make a point of including multiple BAO
measurements in this work.

We also note that, due to the coupling between the vacuum
and cold dark matter in this scenario, RSD do not directly con-
strain the growth factor f as they do in ΛCDM [46,47]. Instead,
the RSD constrain what we denote as the interaction growth
factor, fi,

fi = f −
Q

Hρc
, (11)

where f is the usual growth factor for CDM,

f =
d lnD
d ln a

, (12)

with D being the amplitude of the linear growing mode.

4. Results and discussion

In this section, we describe and discuss the main results of our
investigation, beginning with the results of the MCMC analysis,
then moving to the reconstruction of the coupling function, the
Principal Component Analysis performed and finally the findings
of our Bayesian evidence calculation.

4.1. MCMC parameter inference

In Fig. 1 we plot the 1D marginalised posteriors for the in-
teraction parameter qi in each of the seventeen bins, where i =

1 denotes the bin starting at z = 0, up to i = 17 for the
wide bin at high redshift. The posterior distributions for qi are
generally broader in the mean fiducial case compared to the fixed
fiducial case. This is to be expected, as the mean fiducial case
essentially has one additional free parameter with respect to the
fixed fiducial, this being q̄, the fiducial value for the correlation
prior.

We find that the null interacting case (q = 0), coinciding with
the ΛCDM limit of the model, is always within 1σ of the achieved
constraints. However, the bounds found on the interaction pa-
rameter in every bin means the interacting scenario is still viable.
It is clear from an Ockham’s razor standpoint that the ΛCDM
scenario should be favoured over both the interacting cases. We
quantify this statement using the Bayes factor in Section 4.4.
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Fig. 1. The 1D marginalised posteriors of the interaction parameter in each bin. In each panel we report the best fit value of the interaction parameters and their
68% confidence level bounds for the fixed fiducial (red) and mean fiducial (blue) case. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 2 shows the marginalised values of the standard cos-
mological parameters sampled in our MCMC analysis, while in
Fig. 2 we show the 2D marginalised joint distributions for the
cosmological parameters H0, Ωm (the total matter density param-
eter) and σ8. To preserve the readability of the plot, we choose to
only show the results of the mean fiducial case in this figure. As
can be inferred from Fig. 1, the constraints on the cosmological
parameters in the fixed fiducial case are almost identical to those
in the mean fiducial case. In both cases we found the value of H0
to be completely consistent with the Planck 2018 ΛCDM value of
67.4 ± 0.5 km s−1 Mpc−1 [9]. The value of σ8 given by Planck is

0.81±0.006, which is comfortably within 1σ of the values for σ8
we find in both interacting cases.

As discussed in the introduction, the tensions in the values
of H0 and σ8 are commonly used as motivations for alternative
models of dark energy. However, as we also found in our previous
work [22], the interacting vacuum fails to resolve the tensions
when using the particular datasets chosen here. This can clearly
be seen in the left panel of Fig. 2, where the constraint on H0 in
the interacting scenario is shown in conjunction with both the
Planck and local measurements. As we mentioned in Section 3.3,
for the case of the H0 tension in particular, this is attributable
to the fact that by including BAO and Type Ia supernovae in
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Fig. 2. 68% and 95% confidence levels in the H0–Ωm plane (left panel) and Ωm–σ8 plane (right panel) for the mean fiducial case. The grey bands in the left panel
denote the 68% and 95% confidence levels of the Riess et al. local measurement of H0 = 73.45 ± 1.66 km s−1 Mpc−1 [8].

Table 2
Marginalised values of the cosmological parameters and their 68% confidence
level bounds.
Parameter Fixed fiducial Mean fiducial

Ωbh2 0.022 ± 0.00015 0.022 ± 0.00013
Ωch2 0.11 ± 0.025 0.11 ± 0.030
log 1010A 3.05 ± 0.0058 3.05 ± 0.0064
ns 0.97 ± 0.0040 0.97 ± 0.0048
H0 68.22 ± 0.74 68.15 ± 0.80
σ8 0.91 ± 0.18 0.91 ± 0.22

the same analysis the tension is shifted to a discrepancy in the
sound horizon scale that cannot be resolved with a late time
solution [48–50].

The situation is slightly less clear with respect to the σ8
tension. In ΛCDM, the tension appears between CMB measure-
ments coming from Planck and large scale structure constraints
on growth such as those from the Dark Energy Survey (DES) [51].
This mild tension can be seen in the right panel of Fig. 2, with the
ΛCDM constraints plotted in black, the filled contour correspond-
ing to Planck and the open contour to DES. The DES constraint
in the interacting scenario is plotted in the open blue contour —
again, in the interests of legibility we only show the mean fiducial
case.

From this plot, we can see that the tension is relaxed in
the interacting case, but only due to the increased size of the
contours, which in turn is due to the additional free parameters
in the interacting model with respect to ΛCDM. This should not
be regarded as a true relaxation of the tension. Note that for the
DES constraints presented here we implemented an aggressive
cut of the non-linear scales in the data. Since we are only testing
linear scales, we should not use this part of the data to obtain our
constraints.

4.2. Reconstructing the coupling function

With the results of our MCMC analysis, we can reconstruct
the coupling as a function of redshift. We show the results of
using two different methods for the reconstruction: a simple
cubic spline interpolation and a Gaussian process.

A Gaussian process is defined as a collection of random vari-
ables, any finite number of which have a joint Gaussian distribu-
tion [52]. It is completely specified by its mean and its covariance.
In practice, the random variables represent the value of a given
function f (x) at a location x. There are a wide range of choices
for the covariance function, or kernel, that is used to relate the
function values at each point. In this work, we choose to use one
of the simplest, the squared exponential kernel, given by

k(x, x̃) = σ 2 exp
(

−
(x − x̃)
2ℓ2

)
. (13)

The hyperparameters ℓ and σ that appear in this kernel corre-
spond to the approximate length scale over which the function
varies, and the variance of the function at each point respec-
tively. We optimise these by maximising the log-likelihood of the
functions they produce.

In summary, the Gaussian process takes some given training
data and constructs the best possible function that describes that
data, given the kernel imposed. The training data passed to the
Gaussian process in our case are the mean posterior values of
the coupling parameter in each bin along with the corresponding
1σ errors given by our MCMC analysis, thereby allowing us to
reconstruct the coupling function q(z).

There are many packages and codes available to perform Gaus-
sian process regression. In this work, we use the Gaussian process
regressor available in the Python library george1 [53].

The results of our reconstructions for the cubic spline and the
Gaussian process are shown in Figs. 3 and 4 respectively. It is
clear to see that the Gaussian process results in a smoother q(z)
function, but that the high redshift part of the reconstruction is
biased towards the ΛCDM value of q = 0, due to the baseline
that the Gaussian process is fixed to return to in the absence of
information.

This is particularly obvious in the mean fiducial case, where
the values of q themselves are very negative but the combination
of the Gaussian process baseline and the large 1σ errors on q
result in the reconstruction returning to zero. This is a problem
that the cubic spline does not suffer from, hence the indication

1 https://github.com/dfm/george.

https://github.com/dfm/george
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Fig. 3. The results of the cubic spline reconstruction of the coupling function q(z). Red and blue lines and areas refer to the fixed fiducial and mean fiducial cases
respectively, and the shaded areas denote the 1σ confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. The results of the Gaussian process reconstruction of the coupling function q(z). Red and blue lines and areas refer to the fixed fiducial and mean fiducial
cases respectively, and the shaded areas denote the 1σ confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

of a trend away from ΛCDM at high redshift in the mean fiducial
case.

The most interesting features of the reconstruction are the
points where q(z) appears to peak or trough, for example, the
peak at around z = 1, which is clear in both the spline and
Gaussian process, or the trough at around z = 3, more obvious in
the Gaussian process reconstruction. A promising line of enquiry
would be to focus on the behaviour of the interaction at these
points by using additional datasets in the analysis, but as z = 3
is beyond the upper limit of the commonly used low-redshift
probes, such as Type Ia supernovae, exploring the interaction in
detail at this epoch may be more difficult.

A potential future constraint may come from the weak lensing
of the Lyman-α forest in the spectra of high-redshift quasars,
which probes the matter distribution at redshifts of 2 to 3.5 [54].
Furthermore, the Square Kilometre Array is predicted to be able
to probe redshifts of between 3 and 25 using 21 cm intensity
mapping [55,56]. Both of these new techniques could therefore be

used to constrain any interacting dark energy model which affects
large scale structure growth or has other high redshift effects.

4.3. Principal component analysis

In this work, we have aimed to be agnostic when it comes
to the reconstruction of the interaction function and so used a
larger number of bins than in [22], i.e. the minimum number to
satisfy the criterion given by Eq. (9). However, it is also possible
to investigate how many modes in the result are informed by the
observational data used and whether any are informed by the
prior alone, and thus understand how many effective additional
degrees of freedom our reconstruction has [57]. To do this, we
perform a principal component analysis.

Principal component analysis, or PCA, can be thought of as
finding the directions in the data that carry the most information.
It also acts to decorrelate the errors on the interaction parameter
in each bin. In practice, this involves computing the eigenvalues
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Fig. 5. Percentage variance explained by each principal component in the fixed
fiducial case.

Fig. 6. Percentage variance explained by each principal component in the mean
fiducial case.

and eigenvectors of the inverse covariance matrix (i.e. the Fisher
matrix) of the data. In our case, the covariance matrix is one
of the products obtained after running GetDist2 [58] on our
MCMC chains. We perform the PCA on the Fisher matrix for
the qi alone, after marginalising over the other cosmological and
nuisance parameters.

The Fisher matrix is given by

F = W TΛW , (14)

where W is the decorrelation matrix and its rows define the
eigenvectors; Λ is a diagonal matrix whose elements are the
eigenvalues λi. The eigenvalues correspond to the amount of
variance carried in each principal component and therefore de-
termine how well qi can be measured, i.e. σ (qi) = λ

−1/2
i .

After finding the eigenvalues and eigenvectors of the covari-
ance matrix, the eigenvectors are sorted according to decreasing
value of their corresponding eigenvalues. The first eigenvector
after this sort is performed corresponds to the first principal
component, the second eigenvector corresponds to the second
principal component and so on, until the Nth eigenvector for the
Nth principal component is found (where the covariance matrix
is N × N).

We show the results of our PCA in Figs. 5 and 6. From these
plots we can see that in the fixed fiducial case around 15% of
the total variance is in the first principal component, we reach

2 https://github.com/cmbant/getdist.

Fig. 7. Showing that the data permeates all the modes.

around 50% with four principal components and 90% with 10.
These results indicate that it would be unwise to reduce the
effective degrees of freedom by discarding some of the principal
components, as even the higher components contain a significant
amount of information (above PC10 the remaining seven compo-
nents together still contain approximately 11% of the variance).
This is less true in the case of the mean fiducial, in which around
25% of the total variance is contained in the first principal com-
ponent, rising to nearly 50% with just two principal components
and reaching 90% with seven. The final four principal components
together contain just 1% of the variance.

To investigate whether the correlation prior dominates over
the data, we also ran an MCMC chain without any data, using the
prior alone to constrain the interaction. This prior alone case used
q̄ = 0, as in the case of the fixed fiducial. We plot the eigenvalues
of the fixed fiducial case and the prior alone case as a function
of principal component number in Fig. 7. This plot shows that
the data permeates all the modes, meaning that the prior does
not completely dominate over the data at any point and thus the
selected prior strength was indeed sufficient to help constrain the
interaction without washing out the information coming from the
data. Note that we only show the result for the case of the fixed
fiducial prior alone and the fixed fiducial prior plus data, as the
result for the mean fiducial is extremely similar.

If we had found that the data dominated for say, the first three
principal components and then the prior dominated over the
rest, we would be able to conclude that our analysis effectively
only had an additional three degrees of freedom compared to
the ΛCDM case. However, this does not equate to doing an
analysis using only three bins, as the principal components do not
correspond to the bins themselves, but to the eigenvectors of the
covariance matrix of the interaction parameter in each bin. We
therefore conclude that the best strategy for an analysis such as
this is to use as many bins as is computationally feasible, with
the correlation prior being used to help constrain bins where
data is scarce. The alternative is to increase the strength of the
correlation prior, but this comes with its own pitfalls, as if the
prior is too strong, it will completely wash out any contribution
from the data. A balance can be achieved, but to ensure that the
reconstruction remains independent of the number of bins used,
the correlation length and therefore the prior strength should be
determined by following Eqs. (9) and (10).

4.4. Bayesian evidence and χ2

Finally, we want to compare the results for each case in a
Bayesian way, which means making use of Bayes’ theorem [59]:

P(θ |D,M) =
P(D|θ,M)P(θ |M)

P(D|M)
, (15)

https://github.com/cmbant/getdist
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Table 3
The Bayes factor and ∆χ2 for each case.
Case Bayes factor (log B12) ∆χ2

Fixed fiducial 1.64 −2.5
Mean fiducial −0.52 −2.2

Table 4
The Jeffreys scale, originally given in [63] and modified in [62].
Bayes factor Interpretation

|log B12| < 1 Not worth more than a bare mention
1 < |log B12| < 2.5 Weak
2.5 < |log B12| < 5 Significant
5 < |log B12| Strong

where θ is the parameter vector, D is the data vector and M is
the model. The numerator contains the likelihood and the prior,
and the denominator is the evidence (sometimes known as the
marginal likelihood). These combine to form the posterior prob-
ability distribution P(θ |D,M), which is the distribution sampled
in our MCMC analysis.

As noted by [60], the use of model selection criteria such
as the Bayesian Information Criterion (BIC), Akaike Information
Criterion (AIC) and Deviance Information Criterion (DIC) are not
strictly Bayesian as they do not take into account the prior infor-
mation. We therefore use the Bayes factor as our model compar-
ison tool, defined in the following way:

log B12 = log
[
P(D|M1)
P(D|M2)

]
, (16)

= log[P(D|M1)] − log[P(D|M2)], (17)

where D is the data vector, M1 and M2 are the models to be
compared, and P(D|M) is the Bayesian evidence, the normalising
factor in Bayes’ theorem.

We calculate the Bayesian evidence from our MCMC chains for
both of the two correlation prior cases studied to determine the
support for each case over ΛCDM. This analysis was performed
using the MCEvidence code as presented in [61]. In each case,
we use ΛCDM as model 1. We summarise our findings in Table 3.

To interpret these values, we make use of the Jeffreys scale,
as shown in Table 4. As pointed out in [62], the qualitative inter-
pretations originally given by Jeffreys [63] are quite strong in the
context of cosmology, where choosing suitable priors can often
be an uncertain process. We therefore adopt the interpretations
given in [62].

We find that the Bayes factor for the fixed fiducial case is 1.64.
According to the Jeffreys scale, this reflects a weak preference for
ΛCDM over the interacting case. The Bayes factor for the mean
fiducial case is −0.52. In our evidence calculation, negative values
indicate that model 2 is preferred over model 1, where model
1 is always ΛCDM. This result is therefore a slight indication
for the mean fiducial case being favoured over ΛCDM. However,
according to the Jeffreys scale, the very small absolute value of the
Bayes factor means this is not worth more than a bare mention.

The fact that we find stronger evidence in favour of ΛCDM in
the case where the fiducial is fixed as q = 0 could point to a slight
bias in the results caused by the choice of fiducial model. How-
ever, the evidence in favour of the interaction when the fiducial is
calculated as the mean of neighbouring bins is sufficiently small
for us to confidently say that the choice of fiducial model does
not drastically alter the result of a reconstruction.

However, it has been argued that the Bayesian evidence is not
a good model comparison tool when there is uncertainty in the
choice of priors [64]. We therefore also compute the ∆χ2 for
each case, removing the contribution of the priors to the χ2 so

that the values we compare come from the data only. We find
∆χ2

= −2.5 in the fixed fiducial case and ∆χ2
= −2.2 in

the mean fiducial case, neither of which represents a significant
improvement in fit over ΛCDM.

In summary, it is clear that we cannot conclusively state
that ΛCDM is preferred over the interacting case, but the hints
given by the evidence indicate that an interesting future direction
would be to repeat this type of analysis with the newest datasets
as they are released, to see if there is any strengthening in the
evidence for or against ΛCDM. It is also worthwhile studying
what possible improvements on current constraints can be made
by future surveys.

5. Conclusions

In this work we have reconstructed a dark matter–vacuum
energy interaction, using a correlation prior to control the re-
construction bias. We implemented two different versions of the
prior: a fiducial value for the prior that is fixed in each bin and a
fiducial value that is computed as the mean of the neighbouring
bins.

In our model comparison, we found evidence in favour of
ΛCDM over the fixed fiducial model, but the Bayes factor in that
case was small enough to classify the evidence on the Jeffreys
scale as weak. In contrast, we found evidence for an interaction
when comparing the ΛCDM case to the mean fiducial case, but
the Jeffreys scale in that case classified the evidence as not worth
more than a bare mention.

From our work, it is clear that a correlation prior, when effec-
tively tuned so as not to drown out the constraining power of the
data, can improve the convergence speed of high-dimensionality
MCMC sampling. The prior also eliminates any potential recon-
struction bias, making it a good choice for any form of reconstruc-
tive analysis.

Finally, we note that many recent works have found evidence
for an interaction in the dark sector or for dynamical dark energy
(see e.g. [36,65–68]), and the attractive properties of such models
combined with the deficiencies of ΛCDM that we discussed in
the introduction are sufficient to merit their continued study. It is
clear that the large amounts of new data which upcoming surveys
are expected to yield will be a vital clue in the hunt for the true
nature of dark energy, and robust forecasting for the constraints
these surveys are expected to provide on alternative dark energy
models will become ever-more important.
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