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Abstract
We consider a multichannel wire with a disordered region of length L and a
reflecting boundary. The reflection of a wave of frequencyω is described by the
scattering matrixS(ω), encoding the probability amplitudes to be scattered from
one channel to another. The Wigner–Smith time delay matrix Q = −iS†∂ωS
is another important matrix, which encodes temporal aspects of the scattering
process. In order to study its statistical properties, we split the scattering matrix
in terms of two unitary matrices, S = e2ikLULUR (with UL = UT

R in the presence
of time reversal symmetry), and introduce a novel symmetrisation procedure
for the Wigner–Smith matrix: Q̃ = UR QU†

R = (2L/v) 1N − iU†
L∂ω (ULUR) U†

R,
where k is the wave vector and v the group velocity. We demonstrate that Q̃
can be expressed under the form of an exponential functional of a matrix Brow-
nian motion. For semi-infinite wires, L →∞, using a matricial extension of
the Dufresne identity, we recover straightforwardly the joint distribution for
Q’s eigenvalues of Brouwer and Beenakker (2001 Physica E 9 463). For finite
length L, the exponential functional representation is used to calculate the first
moments 〈tr(Q)〉, 〈tr(Q2)〉 and 〈[tr(Q)]2〉. Finally we derive a partial differen-
tial equation for the resolvent g(z; L) = limN→∞(1/N) tr

{
(z 1N − N Q)−1

}
in

the large N limit.

Keywords: disordered systems, random matrices, stochastic processes

1. Introduction

Scattering of waves in complex media has been the subject of intense investigations for several
decades, with applications in many areas of physics, ranging from compound-nucleus reactions
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[1, 2], chaotic billiards [3], electromagnetic waves in random media [4] to coherent electronic
transport [5, 6]. When the wave is elastically scattered by the static potential, the scattering
process is encoded in the on-shell scattering matrix, with elements Sab(ω) characterizing the
amplitude of the wave in the scattering channel a, if a wave of frequency ω was injected in
channel b (channels can be the open transverse modes of some wave guides). Given the N × N
scattering matrix S as a function of the frequency, it is possible to construct another important
matrix, known as the Wigner–Smith time delay matrix [7, 8]

Q = −iS† ∂ωS (1)

encoding several sets of times characterizing the scattering process (see references [9, 10] and
references therein for a recent review of these concepts).

In complex media, it is natural to investigate the statistical properties of these two matrices
(their sample to sample fluctuations). The most studied setting is a chaotic cavity, i.e. a zero-
dimensional situation. In such devices, the wave is injected through wave guides. The complex
nature of the dynamics inside the cavity naturally leads to a random matrix formulation. Such
a formulation can be justified from various microscopic or phenomenological models [11,
12], semiclassics [13] and also from some maximum entropy principle [6, 14]. For example,
assuming perfect contacts, it is natural to assume that S belongs to one of the circular ensem-
bles (COE, CUE or CSE), depending on the presence or absence of time reversal symmetry
and/or spin rotational symmetry [15]. Based on such assumptions, with additional modelling
of the frequency dependence [16], the distribution of the Wigner–Smith matrix eigenvalues for
chaotic cavities has been obtained by Brouwer, Frahm and Beenakker (BFB) [17, 18]. In order
to deal with a matrix statistically independent from the scattering matrix, BFB introduced the
symmetrised Wigner–Smith matrix

Qs = −iS−1/2 ∂S
∂ω

S−1/2, (2)

Its inverse Γ = τH Q−1
s , where τH is the Heisenberg time3, was shown to be distributed

according to a specific instance of the Laguerre ensemble of random matrix theory, P(Γ) ∝
(det Γ)βN/2 e−(β/2)tr{Γ}, where the distribution is defined over the set of Hermitian matrices
with positive eigenvalues. β is the Dyson index (β = 1 when time reversal symmetry holds
and β = 2 if not). Based on this distribution, many results have been obtained for ideal con-
tacts: cumulants [19] and distribution [20] of its trace tr {Q}, or other correlations [21–25] (see
the updated preprint version of reference [10] for an exhaustive review). Several generaliza-
tions of BFB’s distribution have been obtained more recently: the case of non-ideal contacts
has been studied [26, 27], BdG symmetry classes [26] and the effect of absorption (for ideal
contacts) [28].

Several results are also known beyond the zero-dimensional case. The case of a strictly one-
dimensional disordered wire of length L with a reflecting boundary, corresponding to N = 1
scattering channel, is best understood. In this case the wave is expected to be localised by the
disorder, on a typical scale ξ (the localisation length). A wave packet may remain trapped a long
time if the localisation centre is far from the edge of the disordered region, which gives rise to

3 τH = 2π/δω where δω is the mean level spacing between eigenmodes of the cavity.
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narrow resonances. In the high energy/weak disorder regime, when universality is expected, the
relation to universality of localisation properties was established, which has led to a represen-
tation of the Wigner time delay under the form of the exponential functional of the Brownian
motion (BM) [29] 4

Q (law)
= 2τξ

∫ L/ξ

0
dx e−2x+2B(x) (3)

where B(x) is a normalised Brownian motion, such that 〈B(x)〉 = 0 and 〈B(x)B(x′)〉 =
min

(
x, x′

)
(in references [30, 31] a different form, although equivalent to (3), was proposed).

The characteristic scale

τξ = ξ/v (4)

is the time needed by the particle with group velocity v to cover the localisation length ξ.
Using known results on exponential functionals of the BM [32, 33], the representation (3) has
allowed to derive the moments [29, 31] of Q and its full distribution PL(τ ) [31] for finite L.
The limit law of the Wigner time delay, for L →∞, was derived in references [29, 31] within
a continuous model and later in [34] within a tight binding discrete model 5

P∞(τ ) =
τξ
τ 2

e−τξ/τ . (5)

The exponential functional of the Brownian motion

Z(μ)
L =

∫ L

0
dx λ(x)2 with λ(x) = e−μ x+B(x) (6)

with other functionals have attracted a considerable interest in the mathematical community
[35–37]; the relation with several physical problems is reviewed in references [38, 39]. They
have also found several applications in mathematical finance, in the context of which Dufresne
has obtained the remarkable identity [40]

Z(μ)
∞

(law)
=

1
γ(μ)

for μ > 0, (7)

where γ(μ) obeys the Gamma-law

p(γ) =
1

2μΓ(μ)
γμ−1 e−γ/2. (8)

The representation (6) makes clear that (3) corresponds to a drift μ = 1. Hence the limit law
(5) is a direct consequence of the Dufresne identity (7).

Beyond the weak disorder/high energy universal regime in one dimension, some other
results have been obtained. In the strictly one dimensional case, various results were also
derived in the low energy/strong disorder regime [29, 41]. 6 The case of higher dimensions

4 An identity in law relates two quantities with same statistical properties. For example, the well-known scaling

property of the Brownian motion can be written B(λx)
(law)
=

√
λB(x).

5 See the arXiv version of reference [10] for a detailed review.
6 A non-trivial distribution for the time delay for the dimer model with delocalisation points [42] was also obtained in
chapter 6 of [41].
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has also been investigated [43] (see the review article [44]). More recently, the marginal dis-
tribution of the proper time delays was studied by Ossipov [45], claiming to describe also the
metallic regime in d > 2; we criticize this statement at the end of the paper.

Another interesting case, which is more tractable, is the intermediate situation of quasi-
one-dimensional systems, i.e. multichannel disordered wires. The assumption that channels
are statistically equivalent (isotropy) allows to derive analytical results, such as the Lyapunov
spectrum or the statistics of transmission probabilities [5]. The joint distribution of eigenvalues
of Γ = τξ Q−1 has been derived for a semi-infinite disordered wire in references [46, 47]

PN(γ1, . . . , γN) ∝
∏
i< j

|γi − γ j|β
∏

n

e−γn/2 for L →∞, (9)

corresponding to the matrix distribution

P(Γ) ∝ e−(1/2)tr{Γ}, (10)

defined over the set of Hermitian matrices with positive eigenvalues. For N = 1, the distribution
corresponds to (5). This is a different instance of the Laguerre ensemble of random matrix
theory than the one obtained for chaotic quantum dots and recalled above, after equation (2).
This result has been used to show that the distribution of the Wigner time delay, i.e. the trace
τW = (1/N)tr {Q}, becomes independent of N in the large N limit [48]:

P(β)
N (τ ) 	 Aβ

τ 2
exp

{
−

27τ 2
ξ

64β τ 2
+

(
2
β
− 1

)
9(2 −

√
3)τξ

8 τ

}
for L →∞ (11)

where Aβ is a normalisation. This shows in particular that, as in the N = 1 channel case, all
moments 〈tr{Q}n〉 are infinite for L →∞. The physical origin of the divergence lies in the
proliferation of very narrow resonances (this is discussed for the case N = 1 in reference [29]).
Much less is known for finite length L. Using the fact that NτW/(2π) = (2π)−1tr {Q} can be
interpreted as the density of states of the open system (see appendix A or reference [10]), for
weak disorder, we can write

〈tr {Q}〉 	 NL
k
. (12)

Nevertheless the behaviour of higher moments is an open question. It is the aim of the present
article to study this problem and provide some statistical information on the Wigner–Smith
time delay matrix for disordered wire of finite length L. For this purpose, we will obtain a gen-
eralisation of the representation (3), for N > 1. In particular, this will provide a straightforward
derivation of the distribution (9) for L →∞, by using an extension of the Dufresne identity (7)
to the multichannel case, when Q is an N × N random matrix. Furthermore, this will allow to
calculate the moments.

1.1. The model of multichannel disordered wires

Various models of multichannel disordered wires have been considered in the past. Dorokhov
introduced a first microscopic model in reference [49] describing N one-dimensional wires
with independent scalar random potentials and uniform couplings between neighbouring wires.
In reference [50], he analysed a different model for 1D chains subject to a random potential
with a matrix structure, i.e a model where the couplings between chains is random. A more
phenomenological scattering approach was followed by several authors (for a pedagogical
presentation of this approach and a review see reference [5]).
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Here, we are interested in universal properties of multichannel disordered wires, thus the
details of the model are not expected to be of importance. We have found convenient to study
the multichannel generalization of the Halperin model with a Gaussian white noise potential
[51]: the Schrödinger equation

Hψ(x) = ε ψ(x) with H = −1N ∂2
x + V(x), (13)

where ψ(x) is a column vector with N components, coupled by the potential V(x). We consider
the case where V(x) is an N × N matrix Gaussian white noise with zero mean and correlations〈

Vab(x)V∗
cd(x′)

〉
= σ Cab,cd δ(x − x′), (14)

where σ is the disorder strength (with dimension [σ] = L−3). We will assume isotropy among
the channels, i.e. the invariance of the statistical properties of V(x) under orthogonal (β = 1)
or unitary (β = 2) transformations. For β = 1 this is equivalent to the model of reference [50].
This leads to the correlations between channels 7

Cab,cd =
β

2
δacδbd +

(
1 − β

2

)
δadδbc =

⎧⎨⎩
1
2

(δacδbd + δadδbc) forβ = 1 (TRS),

δacδbd forβ = 2 (no TRS).
(15)

An important scale of the problem is the elastic scattering rate 1/τ e, related to the self energy
ΣR

ab by [52]:
1

2τe
= − Im ΣR

aa. (16)

Introducing the free retarded Green’s function GR
a,b(x, x′) = δa,b

1
2ik eik|x−x′ | for energy ε = k2,

we get the perturbative expression of the self energy, at lowest order in the disorder,

ΣR
ab 	

∑
c

σ Cac,bc GR
c,c(0, 0) = − iσ

2k

∑
c

Cac,bc (17)

We deduce the elastic mean free path �e = vτ e, where v = ∂ε/∂k = 2k is the group velocity,
in terms of the disorder strength σ

�e 	
2k2

μσ
(18)

where

μ =
∑

b

Cab,ab = 1 +
β

2
(N − 1) (19)

As we will see, for weak disorder ε = k2 � σ2/3, the localisation length is given by

ξ 	 8k2

σ
	 4μ �e = 2 [2 + β (N − 1)] �e (20)

which is the well-known dependence in β and N (obtained within the DMPK approach for a
completely different model in reference [5]).

7 (14) and (15) correspond to the distribution P[V(x)] = exp
(
− 1

2σ

∫
dx tr

{
V(x)2

})
.
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Below, we study the scattering problem on R
+ for a potential defined on [0, L] (and

vanishing outside the interval). The eigenstate corresponding to inject the wave in channel
b ∈ {1, . . . , N} is an N-component vector denoted ψ(b)

ε (x). We write the ath component, i.e.
the amplitude in channel a, in the free region as[

ψ(b)
ε (x)

]
a
=

1√
hv

(
δab e−ik(x−L) + Sab(ε) eik(x−L)

)
for x � L. (21)

The prefactor ensures the normalisation [53] 〈ψ(a)
ε |ψ(b)

ε′ 〉 = δab δ(ε− ε′).

1.2. Statement of the main results

Our analysis is based on a new symmetrization procedure of the Wigner–Smith matrix. Assum-
ing that all channels are controlled by the same wave vector k in the absence of disorder, we
extract rapid oscillations of the scattering matrix S = S̃ e2ikL, where S̃ is controlled by slow
variables. We use a ‘square root trick’ in order to decompose it in terms of two unitary matri-
ces S̃ = ULUR. In the presence of TRS (β = 1), UL = UT

R ensures the property S̃ = S̃T. In the
absence of TRS (β = 2), they are chosen such that they obey two matrix stochastic differential
equations (SDE) of convenient form. Then, the Wigner–Smith matrix is symmetrised as

Q̃ = UR QU†
R =

2L
v

1N − iU†
L ∂ε (ULUR) U†

R,

where v is the group velocity. The first term is the result in the absence of the disorder: 2L/v
is the time needed to go back and forth in the sample when V = 0. Our analysis relies on the
decoupling between fast and slow variables in the high energy/weak disorder regime and on
an isotropy assumption (invariance under exchange of channels). One of our main result is the
matrix SDE

∂

∂L
Q̃ =

1N

k
− 2μ

ξ
Q̃+

1√
ξ

(
Q̃ η(L) + η(L) Q̃

)
(Stratonovich),

for μ = 1 + β
2 (N − 1) and where η(x) is a normalised Hermitian Gaussian white noise,〈

ηab(x)η∗cd(x′)
〉
= Cab,cd δ(x − x′) with (15). From this matrix SDE, we deduce a represen-

tation of the Wigner–Smith time delay matrix under the form of an exponential functional of
a matrix Brownian motion

Q̃ (law)
= 2τξ

∫ L/ξ

0
dx Λ(x)†Λ(x) (22)

where Λ(x) obeys the matrix SDE

∂xΛ(x) = −μΛ(x) + η(x)Λ(x) (Stratonovich),

with Λ(0) = 1N. We may also write

Λ(x) = T e−μx+
∫ x

0 dt η(t) (23)

where T denotes chronological ordering, to make the contact with formulae (3) and (6) more
explicit. For N = 1 channel, we recover (3) (i.e. the form (6) for μ = 1). The representation
(22) has allowed us to recover straightforwardly the result of Beenakker and Brouwer (9), by
using a matrix generalization of the Dufresne identity

Q̃ (law)
= 2τξ Γ

−1 for L →∞

6
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where Γ obeys the Laguerre distribution (10).

As an application of the matrix SDE for Q̃, we show on the example of 〈tr {Q}〉,
〈

tr{Q}2
〉

and
〈
tr
{
Q2

}〉
, how moments can be computed.

Finally, we reconsider the problem studied by Ossipov [45], within our model based
on isotropy assumption. We recover Ossipov’s equation for the resolvent g(z; L) =

limN→∞(1/N) tr
{[

z 1N − N Q/(2τξ)
]−1

}
, which casts doubts on Ossipov’s claim to describe

the metallic phase in dimension d > 2, as our model describes disordered wires transversally
ergodic.

1.3. Outline

In section 2, starting from a representation of the Wigner–Smith matrix in terms of the wave
function, we show that localisation properties in multichannel disordered wires explain the
origin of the relation with exponential functional of the matrix Brownian motion. The follow-
ing sections are devoted to a more precise derivation of this relation, with no prior knowl-
edge of the localisation properties. The analysis is based on the study of matrix stochastic
differential equations (MSDE): the main SDE are derived section 3. Then, section 4 dis-
cusses the elimination of the fast variables in the high energy regime, leading to new MSDE
for slow variables. A new symmetrisation procedure of the Wigner–Smith matrix is intro-
duced in section 5. The isotropic assumption is introduced in section 6, which allows, together
with the new symmetrisation, the decoupling of the scattering matrix and the symmetrised
Wigner–Smith matrix, leading eventually to the representation as an exponential functional of
the matrix Brownian motion. The relation with the matricial generalization of the Dufresne
identity is discussed in section 7. The representation is used in section 8 in order to derive
the first moments for finite length. Finally, in section 9, we discuss the resolvent of the
Wigner–Smith matrix in the large N limit, i.e. the Stieltjes transform of the density of
eigenvalues.

2. Wigner–Smith matrix, localisation and exponential functional of the BM

This section presents some (partly heuristic) arguments explaining the origin of our main result,
equation (22), from the localisation properties in multichannel disordered wires. The model
under investigation in the article, introduced in section 1.1, is the Schrödinger equation (13)
for an N component wave function. We study here the scattering problem, i.e. eigenstates of the
form (21). For a given energy ε, we can construct N independent solutions {ψ(a)(x)}a=1,...,N ,
corresponding to inject the incoming wave in one of the N channels. The study of these N
solutions can be ‘parallelised’ if we gather the N independent column vectors in the N × N
matrix wave function

Ψε(x) =
(
ψ(1)(x) · · ·ψ(N)(x)

)
(24)

which behaves, in the disorder free region, as

Ψε(x) =
1√
4πk

(
1N e−ik(x−L) + S(ε) eik(x−L)

)
for x � L. (25)

The solution obeys the Schrödinger equation

−Ψ′′
ε (x) + V(x)Ψε(x) = εΨε(x) for x � 0. (26)

7
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As shown in appendix A, the wave function matrix is related to the Wigner–Smith matrix by
the exact relation∫ L

0
dx Ψ†

ε(x)Ψε(x) =
1

2π

(
Q+

S − S†

4iε

)
(27)

which assumes Dirichlet boundary conditions Ψε(0) = 0.
Equation (27) allows to understand easily the origin of the relation between the

Wigner–Smith matrix and exponential functionals of the BM; we follow and extend the argu-
ment given in reference [29] for the case N = 1. In the high energy/weak disorder regime, we
can neglect the last term of (27) and write

Q 	 2π
∫ L

0
dx Ψ†

ε(x)Ψε(x). (28)

The wave function Ψε(x) presents fast oscillations on the scale k−1 while its envelope is a
smooth function, damped over scales given by the Lyapunov spectrum.

For N = 1 (strictly one-dimensional case), we recall the argument of reference [29] leading
to the representation (3): the wave function in the disordered region may be parametrised as
ψ(x) = 1√

πk

[
ϕ(x)/ϕ(L)

]
sin θ(x) where ϕ(x) is an envelope and θ(x) a phase which controls

the rapid oscillations. The presence of ϕ(L)−1 ensures the matching on the behaviour (21).
In the integral

∫ L
0 dx |ψ(x)|2, one can average over the fast oscillations, which corresponds to

perform ψ(x) → 1√
2πk

ϕ(x)/ϕ(L) in the integral. The growth of the envelope is controlled by
the Lyapunov exponent γ, inverse localisation length ξ = 1/γ: it is known to obey the SDE
ϕ′(x) = [γ +

√
γ η(x)]ϕ(x) [54], where η(x) is a normalised Gaussian white noise (the fact that

the diffusion and the drift are equal is known as ‘single parameter scaling’ [55] ; see the recent
broader discussion [56]). A change of variable x → L − x in the integral eventually leads to
the representation (3).

We now extend the argument to the multichannel case. Let us now assume that averag-
ing over the fast oscillations of the matrix wave function corresponds to perform a similar
substitution

Ψε(x) −→ 1√
2πk

Φ(x)Φ(L)−1 (29)

in (28), where Φ(x) describes the smooth evolution of the envelope of the wave function. It is
expected to obey the MSDE

∂xΦ(x) =
(
μ̃D +

√
D η(x)

)
Φ(x) (30)

where η(x) a normalised N × N matrix Gaussian white noise. The drift μ̃ and the diffusion
constant D can be related to the well-known localisation properties from the three following
remarks:

• The Lyapunov spectrum of X′(x) = η(x)X(x) in the orthogonal case has been obtained
by Le Jan [57] and Newman [58]: γn = β

2 (N − 2n + 1) for n ∈ {1, . . . , N} (for
the unitary case, see [59]). Thus (30) is related to the Lyapunov spectrum γn =
D
[
μ̃+ (β/2)(2n − 1 − N)

]
for n ∈ {1, . . . , N}.

• The Lyapunov spectrum characterizing localisation in multichannel disordered wires is
known [5] γn ∝ 1 + β(n − 1).

• The N = 1 case coincides with the striclty one dimensional Lyapunov exponent γ1 = σ
8k2

(for high energy) [54].

8
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The three remarks lead to D = σ/(8k2) and μ̃ = 1 + β
2 (N − 1) ≡ μ, coincinding with the

drift introduced above, equation (19). Thus, the Lyapunov spectrum for Φ(x) (i.e. for the wave
function Ψε(x)) is

γn =
σ

8k2
(1 + β (n − 1)) for n ∈ {1, . . . , N}. (31)

The localisation length is given by the smallest Lyapunov exponent

ξ =
1
γ1

=
8k2

σ
. (32)

The substitution (29) leads to

Qconjecture
=

1
k

∫ L

0
dx

(
Φ(L)†

)−1
Φ(x)† Φ(x)Φ(L)−1 (33)

(remind that (29) has not been fully justified). The change of variable Λ(x/ξ) = Φ(L
− x)Φ(L)−1, allows to rewrite the functional as

Qconjecture
= 2τξ

∫ L/ξ

0
dx Λ(x)† Λ(x) where ∂xΛ(x) = (−μ+ η(x))Λ(x) (34)

for Λ(0) = 1N. The scale is 2τξ = ξ/k. The matrix Dufresne identity states that (34) has a limit

law for L →∞: precisely, Γ
(law)
=

(∫∞
0 dx Λ(x)† Λ(x)

)−1
is distributed according to the Wishart

distribution

P(Γ) = CN,β (det Γ)μ−1−β(N−1)/2e−(1/2)tr{Γ} for μ >
β

2
(N − 1), (35)

which is proven in section 7 (and for β = 1 in reference [60]). The distribution is defined over
the set of positive Hermitian matrices, Γ > 0, i.e. matrices with positive eigenvalues. CN,β is a
normalisation constant. Using (19) we recover the distribution (10).

The above derivation makes clear the relation between the statistical properties of the
Wigner–Smith matrix and localisation properties, which emphasizes their universal char-
acter. However the argumentation of this section has a weakness: the substitution (29) is
a rather strong assumption. Adding a unitary matrix U(x), controlled by slow variables,
to the wave function would not change the Lyapunov spectrum, however the substitution
Ψε(x) −→ (2πk)−1/2Φ(x)U(x)U(L)−1Φ(L)−1, would not lead to (34). In the next sections, we
follow a more rigorous approach based on the analysis of matrix SDE, which generalizes to the
mulichannel case the method of reference [31] for N = 1. We will show that the symmetrised
Wigner–Smith matrix admits the representation (34).

3. Matrix stochastic differential equations for S and Q

In this section, we derive the main matrix stochastic differential equation (MSDE) for the
scattering matrix and the Wigner–Smith matrix, at the heart of our analysis. A convenient
starting point is to introduce the Riccati matrix

Z(x) = Ψ′(x)Ψ(x)−1 (36)

(we drop the energy label ε in the wave function). From (26), it is straightforward to get

∂xZ(x) = −ε 1N − Z(x)2 + V(x) with ε = k2, (37)

9
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with the initial condition Z(0) = ∞1N, corresponding to the Dirichlet condition Ψ(0) = 01N.
Equation (25) makes clear that the scattering matrix can be expressed as

S = [k 1N − iZ(L)] [k 1N + iZ(L)]−1, (38)

or equivalently

Z(L) = ik(S − 1N)(S + 1N)−1. (39)

Using (37), we can write an equation describing the evolution of S upon increasing L:

∂LS = 2ik S +
1

2ik
(1N + S)V(L)(1N + S) (40)

One can check that this equation preserves the unitarity S† = S−1. Additionally, for β = 1, we
have V(x)T = V(x) therefore ST = S.

Derivation of (40) with respect to ε = k2 provides the MSDE satisfied by Q:

∂LQ =
1N

k
+

1
2ik

[
QV(L) (1N + S) − (1N + S†) V(L)Q

]
+

1
4k3

(1N + S†)V(L)(1N + S).

(41)

In the next section, we analyse these equations in the weak disorder limit and identify fast and
slow variables. Elimination of fast variables leads to simplified MSDE describing the variables
on large scales.

4. Averaging over fast variables in the weak disorder limit

In the weak disorder limit σ � k3, the evolution of S andQ is controlled by two length scales:

• The wavelength λ̄ = 1/k controls the fast oscillations (which are present in the absence
of disorder, V(x) = 0);

• The localisation length ξ = 8k2/σ � λ̄, or the mean free path �e ∼ ξ/N, which is the
typical length scale for the evolution of the other variables.

The idea is to perform some averaging over short scale λ̄= 1/k to get rid of the fast oscilla-
tions and obtain equations describing the evolution of S andQ on the larger scale ξ ∼ (k3/σ) λ̄.
The main difficulty is that MSDE, as equation (40), must be manipulated with care. A rigorous
approach is to relate the MSDE to a Fokker–Planck equation for a matrix distribution: this can
be achieved for matrix random process [59], however it is quite cumbersome. In the present
paper, we discuss this approach in appendix B for the specific case N = 2 and β = 1. Here we
have found more convenient to work directly with MSDE by identifying effective independent
noises. We have kept some control over the method by comparing the outcome with the more
rigorous Fokker–Planck approach in a specific case (appendix B).

4.1. The scattering matrix

The starting point is to remove the fast oscillations by introducing

S̃ = e−2ikx S (42)

10
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(from now on, x must be understood as the size of the disordered region). From equation (40),
we obtain the MSDE satisfied by S̃:

∂xS̃ =
1

2ik
(e−ikx + S̃eikx) V(x) (e−ikx + eikxS̃). (43)

Thus

∂xS̃ =
1

2ik

[
(1N + S̃) cos kx − i (1N − S̃) sin kx

]
V(x)

[
cos kx (1N + S̃)

− i sin kx (1N − S̃)
]
. (44)

We can rewrite this equation as

∂xS̃ =
1

2ik

{
[V1(x) − i V2(x)] + S̃ [V1(x) + i V2(x)] S̃ + S̃ V(x) + V(x) S̃

}
, (45)

where we have introduced

V1(x) = cos(2kx) V(x) and V2(x) = sin(2kx) V(x). (46)

In the high energy limit, the trigonometric functions oscillate fast compared to the typical
length scale for the evolution of S̃ . In this limit, V1(x), V2(x) and V(x) become independent
Gaussian white noises, as we now demonstrate. Let us compute the correlations between the
different processes:〈∫ x

0
(V1)ab

∫ x′

0
(V1)∗cd

〉
= σ

∫ min(x,x′)

0
Cab,cd cos2(2kt) dt 	 σ

2
Cab,cd min

(
x, x′

)
, (47)

〈∫ x

0
(V1)ab

∫ x′

0
(V2)∗cd

〉
= σ

∫ min(x,x′)

0
Cab,cd cos(2kt) sin(2kt) dt 	 0, (48)

〈∫ x

0
(V1)ab

∫ x′

0
V∗

cd

〉
= σ

∫ min(x,x′)

0
Cab,cd cos(2kt) dt 	 0. (49)

The same properties holds for V2. Over large scales � λ̄ = 1/k, the correlations between
the three noises V1(x), V2(x) and V(x) vanish. Due to their Gaussian nature, they can thus be
considered as three independent matricial Gaussian white noises, such that

V1(x)
(law)
= V2(x)

(law)
=

1√
2

V(x). (50)

Remark: from our derivation of appendix B, equation (45) must be interpreted in the
Stratonovich sense.

4.2. The Wigner–Smith matrix

We introduce S = e2ikx S̃ in the MSDE (41):

∂xQ =
1N

k
+

1
2ik

{
Q
[
V + V1S̃ + iV2S̃

]
−
[
V + S̃†V1 − iS̃†V2

]
Q
}

+
1

4k3

[
V + S̃† VS̃ + S̃†(V1 − iV2) + (V1 + iV2)S̃

]
. (51)

11
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In the high energy/weak disorder limit, we can drop the last term of (51) which is subleading
(anticipating on the result, Q typically grows exponentially with the system size, while the
neglected term is bounded). We obtain

∂xQ 	 1N

k
+

1
2ik

{
Q
[
V + V1S̃ + iV2S̃

]
−
[
V + S̃†V1 − iS̃†V2

]
Q
}
. (52)

We recall that S̃ satisfies (45). Both (45) and (52) must be interpreted in the Stratonovich sense.

5. The ‘square-root trick’ and a new symmetrisation of the Wigner–Smith
matrix

In chaotic cavities, an important step for the determination of the distribution of the
Wigner–Smith matrix eigenvalues was the introduction of the symmetrised Wigner–Smith
matrix Qs = S1/2QS−1/2 [18]. This makes S and Qs independent and ensures that Qs is real
symmetric for β = 1. However, such a symmetrisation is not possible for multichannel 1D
wires as we cannot get a simple MSDE satisfied by S1/2. To circumvent this problem we fol-
low here a different strategy: we introduce two unitary matrices UL and UR which satisfy the
equations

∂xUL =
1

2ik

(
1
2

(V1 − iV2)U−1
R +

1
2
UL UR (V1 + iV2)UL + V UL

)
, (53)

∂xUR =
1

2ik

(
1
2
U−1

L (V1 − iV2) +
1
2
UR (V1 + iV2)UL UR + UR V

)
. (54)

One can easily check that these equations preserve the unitarity of both UL and UR. Further-
more, we can deduce from (53) and (54) an SDE for the matrix ULUR, which coincides with
equation (45), thus

S̃ = ULUR (55)

This provides a factorisation of the scattering matrix which can be used to take some sort of
‘square root’ (a similar trick was used in reference [26] in the orthogonal case). Furthermore,
for orthogonal symmetry class, we can easily check that UR = UT

L , thus

S̃ = ULUT
L = UT

RUR = S̃T for β = 1. (56)

This allows us to introduce an alternative symmetrisation of the Wigner–Smith matrix

Q̃ = UR QU†
R = e−2ikxU†

L ∂ε(e2ikxULUR) U†
R, (57)

where we have used that S = e2ikx S̃ = e2ikxULUR.
We can obtain the MSDE satisfied by Q̃ by combining equations (52) and (54). We thus

obtain

∂xQ̃ =
1N

k
+

1
2k

(
Q̃W[UL,UR, V1, V2] + W[UL,UR, V1, V2] Q̃

)
, (58)

where we have introduced the Hermitian matrix

W[UL,UR, V1, V2] =
1
2i

(
UR V1 UL − U†

L V1 U†
R

)
+

1
2

(
UR V2 UL + U†

L V2 U†
R

)
. (59)
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Integrating (58) over [0, L] leads to

Q̃ =
1
k

X(L)

(∫ L

0
dx X(x)−1X†(x)−1

)
X†(L), (60)

where X(x) solves the MSDE

∂xX(x) =
1
2k

W[UL,UR, V1, V2] X(x). (61)

The problem is now to study the equation (61), with UL and UR satisfying equations (53) and
(54), respectively.

We stress that, up to now, we have made no assumption on the distribution of the random

potential V (and V1
(law)
= V2

(law)
= V/

√
2), like isotropy. Gaussian distribution was assumed in order

to simplify the discussion, although it is not essential as the analysis only involves the second
moment of the disorder: see equations (47)–(49).

6. Isotropic case: decoupling of S̃ and Q̃

We now rescale the matrix Gaussian white noise as V →
√
σ η, with

〈
ηab(x)η∗cd(x′)

〉
=

Cab,cd δ(x − x′). In this section, we use the mathematical notation for SDE, based on dB(x) =
η(x)dx satisfying

dBab(x)dB∗
cd(x) = Cab,cd dx with Cab,cd =

β

2
δacδbd +

(
1 − β

2

)
δadδbc (62)

We deduce the useful relation

dB(x)O dB(x) =

[
β

2
tr {O} 1N +

(
1 − β

2

)
OT

]
dx (63)

for any matrix O uncorrelated with dB(x). In particular, setting O = 1N , we get

dB(x)2 = μ dx 1N whereμ = 1 +
β

2
(N − 1). (64)

6.1. Warm up: case N = 1

It is helpful to start the analysis by considering the case N = 1: averaging over the fast variable
was performed in the Fokker–Planck equation in reference [31] (see also [30]). Let us see how
equations (52) and (45) yield the known result (3) by manipulating the SDE. Let us denote
S̃ = eiα. Equations (45) and (52) reduce to

dα(x) = −
√
σ

k

[
dB(x) +

1√
2

(cosα dB1(x) − sinα dB2(x))

]
, (65)

dQ(x) =
1
k

[
dx +

√
σ√
2

(sinα dB1(x) + cosα dB2(x))Q
]

, (66)

where B(x), B1(x) and B2(x) are three independent normalised Brownian motions. As men-
tioned above, these two equations are interpreted in the Stratonovich sense. Relating them to
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SDE in the Itô sense, we get here the same equations. Let us now choose the Itô convention
for convenience. We define two new noises

dw1(x) = cosα(x) dB1(x) − sinα(x) dB2(x) (67)

dw2(x) = sinα(x) dB1(x) + cosα(x) dB2(x). (68)

Since we work with the Itô convention, we have 〈dw1(x)〉 = 〈dw2(x)〉 = 0. The strength of the
noises is dw1(x)2 = dw2(x)2 = dx and they are clearly uncorrelated, dw1(x)dw2(x) = 0. The
two new noises are thus independent, and we can rewrite

dα(x) = −
√
σ

k

[
dB(x) +

1√
2

dw1(x)

]
(Itô) (69)

dQ(x) =
1
k

[
dx +

√
σ√
2

dw2(x)Q
]

(Itô) (70)

All the manipulations have assumed that SDE are in the Itô sense. Converting the second
equation to Stratonovich convention, we obtain

∂xQ
(law)
=

1
k
+

(
V(x)√

2k
− σ

4k2

)
Q =

1
k
+

(
2 η(x)√

ξ
− 2

ξ

)
Q, (71)

where V(x) is the original potential and η(x) a normalised Gaussian white noise. Thus, we have
recovered the result of reference [31] and equation (3), following a more simple procedure.

6.2. Strategy for N > 1

Let us now consider the case of isotropic noise, which corresponds to a correlator of the form
(14) and (15). We consider equation (61) instead of the symmetrised Wigner–Smith matrix Q̃,
since they can be easily related via (60).

Let us first rewrite equations (53), (54) and (61) in the form

dX =

√
σ/2
2k

W[UL,UR, dB1, dB2] X (72)

dUL =

√
σ

2ik

(
1√
2
UL Wu[UL,UR, dB1, dB2] + dB(x)UL

)
, (73)

dUR =

√
σ

2ik

(
1√
2

Wu[UL,UR, dB1, dB2]UR + UR dB(x)

)
, (74)

where W is given by equation (59) and we have denoted

Wu[UL,UR, dB1, dB2] =
1
2

(
U†

L dB1 U†
R + UR dB1 UL

)
+

1
2i

(
U†

L dB2 U†
R − UR dB2 UL

)
. (75)

B1, B2 and B are now three independent normalised Brownian motions, each satisfying (62).
The idea is the following: since the Bi’s are isotropic, the noises W and Wu can be shown to be
independent, and we can thus decouple the equations for UL and UR from the equation for X
(and thus Q̃).

In order to do so, the procedure is the following:

(a) Convert the stochastic equations from Stratonovich to Itô convention in order to decouple
the matrices from the noises at coinciding points;
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(b) Show that the two noises W and Wu are independent Gaussian white noises (independently
of UL and UR), and then replace them with new ones with the same distribution, but which
do no involve UL or UR;

(c) Convert the new equations back to Stratonovich convention.

Concerning the first point, we only need to convert the equation for X, since we will no
longer be interested in the unitary matrices.

6.3. Conversion to the Itô convention

Converting a stratonovich MSDE (72) into the Itô convention brings an additional drift8

Drift =
1
2

∑
i, j

(
(dX)i j

∂(dX)
∂Xi j

+ (dUL)i j
∂(dX)
∂(UL)i j

+ (dUR)i j
∂(dX)
∂(UR)i j

)
. (76)

The MSDE dX (72) depends on UL and UR only through W, which is linear in UL, UR, U†
L and

U†
R. Thus,

Drift =

√
σ/2
4k

(W[UL,UR, dB1, dB2]dX +W[dUL,UR, dB1, dB2] X + W[UL, dUR, dB1, dB2] X)

=

√
σ/2
4k

(√
σ/2
2k

W[UL,UR, dB1, dB2]2 + W[dUL,UR, dB1, dB2]

+ W[UL, dUR, dB1, dB2]

)
X. (77)

Let us look at the second term. When replacing W and dUL by their expressions, we obtain
products of the different noises dB, dB1 and dB2. Since they are independent, the only non
vanishing terms will involve products of the same noise. We thus obtain

W[dUL,UR, dB1, dB2] = −
√
σ/2
4k

(
UR dB2

1 U
†
R + UR dB1 ULUR dB1 UL

+ UR dB2
2 U

†
R − UR dB2 ULUR dB2 UL + h.c.

)
. (78)

Since dB1(x)
(law)
= dB2(x)

(law)
= dB(x), this reduces to

W[dUL,UR, V1, V2] = −
√
σ/2
2k

UR dB2 U†
R, (79)

Similarly,

W[UL, dUR, V1, V2] = −
√
σ/2
2k

U†
L dB2 UL. (80)

8 The simplest way to perform the Stratonovich → Itô conversion is as follows. Consider the Stratonovich SDE
dx(t) = α(x(t))dt + b(x(t))dW(t), and define (dx)noise = b(x)dW(t). The corresponding Itô equation is obtained by
writing dx(t) = α(x) dt + b

(
x + 1

2 (dx)noise

)
dW(t) = a(x) dt + b(x) dW(t) with a(x) = α(x) + 1

2 b′(x)b(x), where we
have used dW(t)2 = dt. This simple procedure can be applied whatever the nature of the process is (scalar, vector,
matrix, . . . ).
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So that we finally get

Drift =
σ

16k2
W[UL,UR, dB1, dB2]2X − σ

16k2

(
UR dB2 U†

R + U†
L dB2 UL

)
X. (81)

This equation holds for any type of correlated matrix noise dB1(x). Now making the assumption
that the noise is isotropic, we deduce from (64),

Drift =
σ

16k2
W[UL,UR, dB1, dB2]2X − σ

8k2

(
1 + β

N − 1
2

)
Xdx. (82)

We do not evaluate the first term now, as it will cancel out in the following when we will get
back to the Stratonovich form. Nevertheless, it can be easily evaluated from the correlator of
W, which we now analyse.

6.4. Characterisation of the effective noises W and Wu

Let us now study the distribution of the noises W[UL,UR, dB1, dB2] and Wu[UL,UR, dB1, dB2],
given respectively by equations (59) and (75). We first compute

WabW∗
cd = WabWdc = −1

4

(
UR dB1 UL − U†

L dB1 U†
R

)
ab

(
UR dB1 UL − U†

L dB1 U†
R

)
dc

+
1
4

(
UR dB2 UL + U†

L dB2 U†
R

)
ab

(
UR dB2 UL + U†

L dB2 U†
R

)
dc

(83)

Expanding and keeping only the non-vanishing terms, and using that dB1
(law)
= dB2

(law)
= dB, we

obtain

WabW∗
cd =

1
2

∑
pqrs

(
(UR)ap(UL)qb(U†

L)dr(U†
R)sc + (U†

L)ap(U†
R)qb(UR)dr(UL)sc

)
× dBpq(x)dBsr(x)∗. (84)

In the isotropic case, using the expression of the correlator (62), we get

Wab[UL,UR, dB1, dB2] W∗
cd[UL,UR, dB1, dB2] = Cab,cd dx. (85)

Similarly, we obtain

Wab(Wu)∗cd =
1
4i

∑
pqrs

(
(UR)ap(UL)qb(U†

L)dr(U†
R)sc − (U†

L)ap(U†
R)qb(UR)dr(UL)sc

)
× dB1(x)pqdB1(x)∗sr, (86)

which, in the isotropic case yields

Wab[UL,UR, dB1, dB2](W∗
u )cd[UL,UR, dB1, dB2] = 0, (87)

showing that W and Wu are uncorrelated. Therefore, we have shown that

W[UL,UR, dB1(x), dB2(x)]
(law)
= dB(x), (88)

so that we can rewrite the MSDE (72) as

dX = (Drift) X +

√
σ/2
2k

dB(x) X (Itô), (89)
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where the drift is given by equation (82). Isotropy has been used to perform unitary transfor-
mations such that the unitary matrices UL and UR can be removed from the MSDE for X(x).
Eventually, we have obtained an MSDE which involves no other matrix than X.

6.5. Back to the Stratonovich convention

We can now convert the Itô equation (89) into a Stratonovich one. One has to add the drift term

−1
2

∑
i j

(dX)i j
∂(dX)
∂Xi j

= − σ

16k2
dB(x)2X (90)

to the Itô equation. This cancels out the first term in (82), and we thus get

∂xX = −μ

ξ
X +

1√
ξ
η(x) X (Stratonovich) (91)

where we recall that μ = 1 + β N−1
2 and dB(x) = η(x)dx, so that η(x) is a Hermitian Gaus-

sian white noise. Therefore, the matrix X is an exponential of a matrix Brownian motion,
equation (23). The symmetrised Wigner–Smith matrix Q̃ is expressed as a functional of this
exponential of Brownian motion via equation (60). This extends the result known for N = 1 to
higher number of channels.

From the expression (60) of Q̃ and the stochastic equation for X, equation (91), we can
derive the MSDE

∂

∂L
Q̃ =

1N

k
− 2μ

ξ
Q̃+

1√
ξ

(
Q̃ η(L) + η(L) Q̃

)
(Stratonovich) (92)

This equation is a central result that will be used below.

7. Matrix generalization of the Dufresne identity

In this section, we discuss the relation with the work of Rider and Valkó [60] and extend their
result. We have obtained the symmetrised Wigner–Smith matrix under the form of an expo-
nential functional of the matrix BM (60). A first difference with Rider and Valkó’s functional
concerns the form of the integral. A second difference is that the matrix BM of Rider and Valkó
involves a non Hermitian noise with N2 independent real entries (orthogonal class), while we
have considered a Hermitian real or complex noise (orthogonal or unitary class).

7.1. Exponential functional

Let us introduce

Λ(x/ξ)† = X(L)X(L − x)−1 , x ∈ [0, L]. (93)

From (91), we get that Λ satisfies the MSDE

∂xΛ = −μΛ + η(x)Λ, (94)

where η(x) is the Hermitian Gaussian white noise and μ = 1 + β(N − 1)/2. The initial condi-
tion is obviously Λ(0) = 1N. The representation (60) can be rewritten in a more simple form
with the new matricial random process:

Q̃ (law)
= 2τξ

∫ L/ξ

0
dx Λ(x)†Λ(x) (95)
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7.2. ‘Gauge’ transformation

Rider and Valkó in reference [60] have considered the matricial stochastic process

∂xM(x) = −μM(x) + χ(x) M(x), (96)

where χ(x) is an N × N real matrix, whose elements are N2 independent normalised real Gaus-
sian white noises. Thus the noise matrix is non Hermitian,χ(x) �= χ(x)†. Let us rather consider
(96) when the matrix elements of χ(x) are N2 independent complex noises. We decompose it
into Hermitian and anti-Hermitian parts:

χ = η + i A , η =
χ+ χ†

2
, A =

χ− χ†

2i
, (97)

thus 〈ηab(x)ηcd(x′)〉 = Cab,cd δ(x − x′). In order to relate (96) to (94), we ‘gauge out’ the non-
Hermitian part

M = U Λ where ∂xU = i A U. (98)

It is straightforward to get

∂xΛ(x) = −μΛ(x) + U(x)−1 η(x) U(x)Λ(x). (99)

These equations are understood in the Stratonovich convention. We use the mathematical
notation dΛ = −μΛdx + U−1dB(x)UΛ, where dB(x) = η(x)dx. Let us now go to the Itô
convention. Using equation (64), we get

dΛ = −μ

2
Λ dx + U−1 dB(x) U Λ

(law)
= − μ

2
Λ dx + dB(x)Λ (Itô). (100)

Now going back to the Stratonovich convention, we deduce dΛ = −μΛdx + dB(x)Λ, i.e.
equation (94).

7.3. Matrix Dufresne identity

Using the connection with the MSDE studied in reference [61], we generalize in this paragraph
Rider and Valkó’s result for β = 1 to both symmetry classes (β = 1 and 2). The matricial
process studied in reference [61], which arises in a different multichannel localization model,
is

∂xZ = |ε|2 − 2μ gZ − Z2 +
√

g [η(x)Z + Z η(x)] . (101)

It was shown to be characterized by the stationary matrix distribution (in the x →∞ limit)

P(Z) ∝ (det Z)−1−μ−β(N−1)/2 exp

[
− 1

2g
tr
{
Z + |ε|2Z−1

}]
. (102)

The distribution was obtained from the analysis of the related matrix Fokker–Planck equation
(the case where the noise η is not isotropic was also considered in reference [61]). The mapping
to our problem can be easily realised: we set

Z → k |ε|2 Q̃ and g → 1/ξ (103)

in equations (101) and (102). For μ > β(N − 1)/2, it is possible to take the limit |ε| → 0 and
recover the MSDE (92) while the distribution (102) takes the form

P(Q̃) ∝
(

det Q̃
)−1−μ−β(N−1)/2

e−τξ tr{Q̃−1}. (104)
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The change of variable Γ = 2τξ Q̃−1 leads to the Wishart distribution

P(Γ) = CN,β (det Γ)μ−1−β(N−1)/2e−(1/2)tr{Γ} for μ >
β(N − 1)

2
(105)

where CN,β is a normalisation. Having shown the relation between the MSDE (92) and the
representation (95), we conclude that(∫ ∞

0
dx M(x)†M(x)

)−1

=

(∫ ∞

0
dx Λ(x)†Λ(x)

)−1
(law)
= Γ, (106)

is distributed according to (105), where Λ(x) solves (95) for a Hermitian noise and M(x) solves
(96) for a non Hermitian noise. Here, the derivation was done for arbitrary drift μ, thus extend-
ing the Dufresne identity to the case of matrix BM, for orthogonal and unitary classes. Coming
back to the multichannel disordered wire model, the drift is given by (19), leading to (10), i.e.
to Beenakker & Brouwer’s result (9).

8. Application: moments 〈tr {Q}〉,
〈

tr{Q}2
〉

and
〈
tr
{
Q2

}〉
In this section we show that the representation (95) in terms of exponential functional of the
matrix BM, or equivalently the MSDE (92), can be used to compute the moments of the form
〈tr{Qn}m〉. We consider the first moments. Our starting point is to rewrite the MSDE (92) in
the Itô convention. We use the notation dB(x) = η(x) dx as in the previous section. Using (63)
and (64), we get:

dQ̃ =

(
1N

k
+

β

2ξ

[
tr
{
Q̃
}

1N − N Q̃
])

dx +
1√
ξ

(
Q̃ dB(x) + dB(x) Q̃

)
(Itô) (107)

We deduce immediately the equation for the trace

dtr
{
Q̃
}
=

N
k

dx +
2√
ξ

tr
{
Q̃ dB(x)

}
(Itô) (108)

and thus

d 〈tr {Q}〉 = N
k

dx, (109)

where we have used tr
{
Q̃n

}
= tr {Qn}. After integration over [0, L], we recover the expected

behaviour, equation (12),

〈tr {Q}〉 = NL
k

=
2NL
v

, (110)

where v = 2k is the group velocity.

Next, we write an equation for
[
tr
{
Q̃
}]2

. Using Itô’s formula9 we have

d

(
tr
{
Q̃
}2

)
= 2tr

{
Q̃
}

dtr
{
Q̃
}
+
(

dtr
{
Q̃
})2

(Itô) (111)

9 Using the notations of the footnote 6, a simple way to recover Itô’s formula is as follows: d f (x) = f (x + dx) −
f (x) = f ′(x) dx + 1

2 f ′′(x) dx2 = f ′(x) dx + 1
2 f ′′(x) [(dx)noise ]2. This form is appropriate to be applied to the case of

MSDE.
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Using (
tr
{
Q̃ dB(x)

})2
= tr

{
Q̃2

}
dx, (112)

we deduce

dtr
{
Q̃
}2

=

[
2N
k

tr
{
Q̃
}
+

4
ξ

tr
{
Q̃2

}]
dx +

4√
ξ

tr
{
Q̃
}

tr
{
Q̃ dB(x)

}
(Itô) (113)

This makes clear that we have to derive also an equation for tr
{
Q̃2

}
. From (107), the

application of the Itô formula gives

d
(
Q̃2

)
=

{
2Q̃
k

+
1
ξ

[
β

2
tr
{
Q̃2

}
1N + 2β tr

{
Q̃
}
Q̃+

(
2(2 − β) − βN

2

)
Q̃2

]}
dx

+
1√
ξ

[
Q̃2 dB(x) + 2Q̃ dB(x) Q̃+ dB(x) Q̃2

]
(Itô) (114)

A trace gives

dtr
{
Q̃2

}
=

(
2
k

tr
{
Q̃
}
+

4
ξ

[
β

2
tr
{
Q̃
}2

+

(
1 − β

2

)
tr
{
Q̃2

}])
dx

+
4√
ξ

tr
{
Q̃2 dB(x)

}
(Itô). (115)

Averaging (113) and (115), we deduce a simple linear problem

∂

∂L

(〈
tr{Q}2

〉〈
tr
{
Q2

}〉) =
2NL
k2

(
N
1

)
+

4
ξ

(
0 1
β

2
1 − β

2

)(〈
tr{Q}2

〉〈
tr
{
Q2

}〉) (116)

It is useful to use the spectral decomposition

Mβ =

(
0 1
β

2
1 − β

2

)
=

∑
σ=±

λσ Πσ , (117)

where the eigenvalues λ± and the corresponding projectors are

λ+ = 1 and Π+ =
1

1 + β
2

⎛⎜⎝β

2
1

β

2
1

⎞⎟⎠ (118)

λ− = −β

2
and Π− =

1

1 + β
2

(
1 −1

−β

2
β

2

)
. (119)

Integration of (116) gives(〈
tr{Q}2

〉〈
tr
{
Q2

}〉) =
2N
k2

∫ L

0
dx x e

4
ξ Mβ (L−x)

(
N
1

)
. (120)
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Using eMβ y =
∑

σeλσy Πσ , some simple algebra gives

〈
tr{Q}2

〉
=

Nτ 2
ξ

2

⎧⎪⎨⎪⎩1 + βN
2

1 + β
2

[
e4L/ξ − 1 − 4L

ξ

]
+

(
2
β

)2
(N − 1)

1 + β
2

[
e−2βL/ξ − 1 +

2βL
ξ

]⎫⎪⎬⎪⎭
(121)

〈
tr
{
Q2

}〉
=

Nτ 2
ξ

2

{
1 + βN

2

1 + β
2

[
e4L/ξ − 1 − 4L

ξ

]
−

2
β (N − 1)

1 + β
2

[
e−2βL/ξ − 1 +

2βL
ξ

]}
(122)

For N = 1, we recover
〈
Q2

〉
=

τ2
ξ

2

(
e4L/ξ − 1 − 4L

ξ

)
[29], as it should.

We remark that〈
tr{Q}2

〉
−
〈
tr
{
Q2

}〉
= τ 2

ξ N(N − 1)
4
β

[
L
ξ
+

e−2βL/ξ − 1
2β

]
. (123)

Introducing the proper time delays {τa}a=1,...,N , the eigenvalues of the Wigner–Smith matrix
(see [10]), we see that (123) corresponds to

∑
a �=b 〈τaτb〉 and hence provides some information

about the correlations between proper times.
These expressions can be used to obtain the statistical properties of the proper time delays.

In the limit of long disordered region, L � ξ, the fact that
〈

tr{Q}2
〉
	
〈
tr
{
Q2

}〉
shows that

proper times are weaky correlated. Using that all channels are equivalent, we get the mean
value

〈τa〉 =
L
k
= 2τξ

L
ξ

, (124)

the second moment
〈
τ 2

a

〉
= (1/N)

〈
tr
{
Q2

}〉
〈
τ 2

a

〉
	 τ 2

ξ

N β

2(β + 2)
e4L/ξ, (125)

and from (123), the correlation

〈τaτb〉 = τ 2
ξ

4
β

[
L
ξ
+

e−2βL/ξ − 1
2β

]
	 τ 2

ξ

4L
βξ

for a �= b, (126)

demonstrating that, in disordered multichannel wires, the proper times are characterized by
weak anti-correlation Cov(τa, τb) 	 −(2τξ L/ξ)2.

9. Resolvent

9.1. Resolvent and density of eigenvalues

We re-examine the problem considered by Ossipov [45], within our disordered model. From
the MSDE (92), we can deduce an equation for the evolution of the density of eigenvalues of
the matrix Q̃, and thus of Q. We introduce the resolvent matrix

G(z; L) =

(
z1N − N

2τξ
Q̃(L)

)−1

. (127)
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The matrix Q̃ is rescaled by a factor N, as we expect from the distribution (10) that its eigen-
values scale as O(N−1) for large number of channels. From the MSDE (92), we can write the
equation satisfied by G(z; L):

∂LG =
N
ξ

G2 − 2μ
ξ

G (zG − 1N) +
1√
ξ

[(zG − 1N) η(L) G + G η(L) (zG − 1N)] , (128)

where we have omitted the arguments of G for clarity. Writing dB(x) = η(x) dx along with the
relations (64) and (63), we can convert this equation to the Itô convention. We get

∂LG =
N
ξ

G2 − 2μ
ξ

G, (zG − 1N)

+
1
ξ

(2zG − 1N)

[
− μG + (2zG − 1N)

(
β

2
tr {G}+

(
1 − β

2

)
G

)]
+

1√
ξ

[(zG − 1N) η(L) G+ G η(L) (zG − 1N)] (Itô). (129)

We can now take the expectation value, which yields

∂L 〈G〉 = N
ξ

〈
G2

〉
− 4μz

ξ

〈
G2

〉
+

3μ
ξ

〈G〉+ β

2ξ

(
〈tr {G}〉 − 4z 〈Gtr {G}〉+ 4z2

〈
G2tr {G}

〉)
+

1
ξ

(
1 − β

2

)(
〈G〉 − 4z

〈
G2

〉
+ 4z2

〈
G3

〉)
. (130)

Using that ∂zG(z) = −G(z)2 and ∂2
z G(z) = 2G(z)3, we can write

∂L 〈G〉 = −N
ξ
∂z 〈G〉+ 4μz

ξ
∂z 〈G〉+ 3μ

ξ
〈G〉+ β

2ξ

(
〈tr {G}〉 − 4z 〈Gtr {G}〉

− 4z2 〈(∂zG)tr {G}〉
)
+

1
ξ

(
1 − β

2

)(
〈G〉+ 4z 〈∂zG〉+ 2z2

〈
∂2

z G
〉)

. (131)

In the limit N →∞, it is expected that the resolvent

g(z; L) =
1
N

tr {G(z; L)} (132)

becomes deterministic, so we can take it out of the expectation values. Hence

∂L 〈G〉 = −N
ξ
∂z 〈G〉+ 4μz

ξ
∂z 〈G〉+ 3μ

ξ
〈G〉+ β

2ξ

(
Ng − 4Nzg 〈G〉 − 4Nz2g 〈∂zG〉

)
+

1
ξ

(
1 − β

2

)(
〈G〉+ 4z 〈∂zG〉+ 2z2

〈
∂2

z G
〉)

. (133)

Taking the trace of this equation, and keeping only the leading order terms in N for consistency,
we deduce a partial differential equation for g(z; L):

∂g(z; L)
∂L

=
N
ξ

∂

∂z

(
2

(
β z − 1

2

)
g(z; L) − βz2g(z; L)2

)
(134)

The density of eigenvalues ρ(λ; L) can then be obtained from g(z; L) as

ρ(λ; L) = − 1
π

Im
[
g(λ+ i0+; L)

]
. (135)
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In order to connect our equations with the result of reference [45], we should have kept the
last subleading term in (133), leading then to

∂g(z; L)
∂L

=
1
ξ

∂

∂z

[
N

(
2

(
β z − 1

2

)
g(z; L) − βz2g(z; L)2

)
+ (2 − β)

∂

∂z
(z2g(z; L))

]
. (136)

For β = 1, equation (136) exactly coincides with equation (12) of reference [45] (upon rescal-
ing z → z/4 and hence g → 4g, due to a different definition). A nice solution of equation (136)
was obtained by using the analogy with the Burgers equation.

9.2. Discussion

In his article [45], Ossipov has claimed that his ‘approach provides (. . . ) foundation for the
arguments of the scaling theory of Anderson localization’, and that ‘scattering isotropy (. . . )
is not used in our approach’, which ‘allows to study the problem in higher dimension’. We
disagree with these statements.

For β = 1, one can write Q = O diag(τ1, . . . , τN)OT, where the orthogonal matrix O
gathers the eigenvectors of the Wigner–Smith matrix. Ossipov has argued that the derivation
of his equation (12), i.e. (136) for β = 1, relies on assumptions that S and O would be con-
trolled by fast variables, while the eigenvalues {τ 1, . . . , τN} would be the only slow variables.
First, let us stress that reference [45] (and its supplementary material) only provides statistical
information on the moments or correlations of the elements of two matrices S and O. The
correlations between eigenvalues and eigenvectors of Q were not investigated in reference
[45], nor the relaxation of the variables. Second, matrices are characterised by many degree of
freedom, thus a clear separation of fast and slow variables may be difficult, even numerically.
Third, in our paper, working with S̃ instead of the scattering matrix S has eliminated the fast
variables. This has led to matrix stochastic differential equations for S̃ and the symmetrised
Wigner–Smith matrix Q̃. Using the isotropy assumption, these MSDE have been decoupled,
leading to the matrix SDE (92) for Q̃. Thus we have obtained that the matrix Q̃ is controlled by
slow variables, i.e. both its eigenvalues and eigenvectors are slow variables. Their decoupling
relies on the isotropy assumption.

The fact that we have recovered Ossipov’s equation within a model based on isotropy
assumption, emphasizes that Ossipov’s central equation (12) has the same physical content as
the equation obtained within the DMPK approach (Ossipov agrees that his ‘equation (8) [from
which his equation (12) is derived] coincides with the DMPK equation’). These equations
describe disordered wires which are transversally ergodic, i.e. are inherently restricted to
the quasi-one-dimensional regime and cannot encode the physics of Anderson localisation in
dimension d � 2.

10. Conclusion

We have studied the Wigner–Smith time delay matrix Q for multichannel disordered wires of
length L. Using an isotropy assumption, we have been able to use the decoupling between fast
and slow variables both for the scattering matrix and the Wigner–Smith matrix (the two length
scales associated with fast and slow variables are the wavelength λ̄ and the elastic mean free
path �e, respectively). For this purpose, the new symmetrisation of the Wigner–Smith matrix
was crucial. We have provided some matrix stochastic differential equations for matrices con-
trolling the slow variables, which have eventually led to a representation of Q̃, the symmetrised
Q-matrix, under the form of an exponential functional of a matrix Brownian motion (BM). This
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representation is a generalization of the result for N = 1, obtained by one of us with Comtet
[29, 31].

We stress that our approach is based on the analysis of a matricial random process (like in
reference [61]), rather that a derivation of a Fokker–Planck equation for the eigenvalues, like
in the standard DMPK approach.

In the limit of semi-infinite disordered region, L →∞, by making use of an extension of the
recent matrix Dufresne identity of Rider and Valkó [60], we have recovered straightforwardly
the distribution of the Q’s eigenvalues found by Brouwer and Beenakker [46, 47] by different
means.

Furthermore, our exponential functional representation allows to study the statistical prop-
erties of Q for finite L: we have derived the first moments. In particular, we have shown that〈
tr
{
Q2

}〉
and

〈
tr{Q}2

〉
both behave as ∼ exp[4L/ξ]. The structure of the calculation (with

the result for N = 1 of reference [29]) suggests to conjecture the form

〈tr {Qn1} tr {Qn2} · · · tr {Qnk}〉 ∼ e2n(n−1)L/ξ where n =

k∑
i=1

ni. (137)

in the general case
In section 2, we have followed an alternative approach for the derivation of the expo-

nential functional representation of the BM. Although this derivation was less rigorous, it
emphasizes the universal character of the results. Interestingly, it suggests that Q has also a
representation in terms of exponential functional of the BM. This point still deserves some
clarifications.

Finally, our analysis opens the natural question of finding extensions of our results. Elimina-
tion of fast variables relies on a high energy/disorder and some isotropy assumption (invariance
between exchange of channels). Would it be possible to relax the second hypothesis ? Is there
an exponential functional of the BM representation for non identical channels ? For example
by considering the case of channel dependent wave vectors, k1N → diag(k1, . . . , kN), and/or
anisotropic correlations Cab,cd , which are relevant to describe more realistic mutlichannel
disordered wires.
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Appendix A. Wigner–Smith matrix in terms of the stationary scattering
states: derivation of equation (27)

A relation similar to equation (27) was derived by Friedel [62] and Smith [8] for centro-
symmetric potential. A proof for the more general case of metric graphs was given in references
[63, 64] (cf equations (43) and (53) of the first reference, or equation (14) of the second). Here,
we briefly adapt the derivation of reference [65] for metric graphs to the case of multichannel
disordered wires. We consider Φ =

√
hvΨ, which presents the ‘asymptotic’ behaviour

Φ(x) = 1N e−ik(x−L) + S(ε) eik(x−L) for x � L. (A.1)
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Step 1: let us define the N × N matrix

Ω(x)
def
=

∂Φ†

∂x
∂Φ

∂ε
− Φ† ∂

2Φ

∂x∂ε
, (A.2)

which satisfies

∂Ω(x)
∂x

= Φ†(x)Φ(x). (A.3)

Step 2: we compute Ω(x) at the boundaries. Dirichlet boundary condition gives Ω(0) = 0.
Using the expression of the scattering state (A.1), we find

Ω(L) = −2ik S† ∂S
∂ε

− i
2k

(S − S†). (A.4)

Step 3: we combine∫ L

0
dx

∂Ω(x)
∂x

= Ω(L) − Ω(0) (A.5)

with (A.3) and (A.4). Multiplication by 1/(4πk) we end with the matricial identity (27).
Equation (27) and the DoS—Note that the trace ρ(x; ε) = tr

{
Ψ†

ε(x)Ψε(x)
}

has the inter-
pretation of the local density of states, thus we recover the Krein–Friedel relation [63–65]∫ L

0
dx ρ(x; ε) =

1
2π

tr {Q}+ tr
{
S − S†}
8iπε

. (A.6)

Appendix B. Effective MSDE from the Fokker–Planck equation for N = 2 and
β = 1

In this appendix, we show a rigorous procedure to average over the fast variables based on the
Fokker–Planck equation. Let us consider for simplicity N = 2 and β = 1. We take a noise of
the form

V =

( √
σ1 v1

√
σ2/2 v2√

σ2/2 v2
√
σ3 v3

)
, (B.1)

where v1, v2 and v3 are independent Gaussian white noises of unit variance. Setting σ1 = σ2 =
σ3 = σ corresponds to the isotropic case (15).

We parametrise the scattering matrix in terms of its eigenvalues and eigenvectors

S = OT e2iΦ O, (B.2)

where

Φ = Diag(φ1,φ2) (B.3)

and O is a rotation matrix:

O =

(
cos θ − sin θ
sin θ cos θ

)
. (B.4)
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Using this parametrisation in equation (40), we obtain the equations for φ1, φ2 and θ:

d
dx

⎛⎝φ1

φ2

θ

⎞⎠ =

⎛⎝k
k
0

⎞⎠+
1
k

b(φ1,φ2, θ)

⎛⎝v1

v2

v3

⎞⎠ (Stratonovich), (B.5)

where b is the following 3 × 3 matrix

⎛
⎜⎜⎜⎜⎜⎝

−√
σ1 cos2θ cos2φ1

√
σ2√
2

sin(2θ) cos2φ1 −√
σ3 sin2θ cos2φ1

−√
σ1 sin2θ cos2φ2 −

√
σ2√
2

sin(2θ) cos2φ2 −√
σ3 cos2θ cos2φ2

√
σ1 cos φ1 cos φ2 sin(2θ)

2 sin(φ1 − φ2)

√
σ2 cos(2θ) cosφ1 cosφ2√

2 sin(φ1 − φ2)
−√

σ3
cos φ1 cos φ2 sin(2θ)

2 sin(φ1 − φ2)

⎞
⎟⎟⎟⎟⎟⎠

.

(B.6)

Since the two phases evolve rapidly (on the scale 1/k), we denote

φ1 = kx + φ̃1 , φ2 = kx + φ̃2. (B.7)

Our aim is to obtain equations describing the evolution of φ̃1, φ̃2, and θ. We will average over
the fast variables kx, at the level of the Fokker–Planck equation

∂P
∂x

(φ̃1, φ̃2, θ) =
1
2

3∑
i, j,l=1

∂

∂Xi
bil

∂

∂X j
b jlP, (B.8)

where X = (φ̃1, φ̃2, θ). The idea is to average over kx on one period (the slow variables φ̃1, φ̃2,
and θ can be considered constant on this scale). For this, we need all the derivatives to be in
the front (which corresponds to converting the SDEs to Itô). Then, after averaging, we obtain
an equation of the form

∂P
∂x

(φ̃1, φ̃2, θ) =
3∑
i, j

∂

∂Xi

(
−ãi +

1
2

∂

∂X j
c̃i j

)
P, (B.9)

which we can interpret as a new Fokker–Planck equation, with a drift ã (in Itô) and a new matrix
c̃ which we need to decompose into the form c̃ = b̃b̃T in order to write the corresponding SDE.
To perform this factorisation, let us consider the contribution of each noise independently. We
first set σ2 = σ3 = 0 to keep only v1. The resulting matrix c̃ is of rank 3, while the original
matrix bbT was of rank 1. This means that the noise v1 gave rise to 3 independent Gaussian
white noises, all controlled by the same variance σ1. We can factorise this matrix for σ2 =
σ3 = 0 as c̃ = b̃1b̃T

1 , where

b̃1 =

√
σ1

2k

⎛⎜⎜⎜⎜⎜⎜⎝
−cos2θ −cos2θ cos(2φ1)√

2

√
2 cos2θ cosφ1 sinφ1

−sin2θ − sin2θ cos(2φ2)√
2

√
2 sin2θ cosφ2 sinφ2

cot(φ1 − φ2) sin(2θ)
2

cos(φ1 + φ2) sin(2θ)

2
√

2 sin(φ1 − φ2)
− sin(φ1 + φ2) sin(2θ)

2
√

2 sin(φ1 − φ2)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(B.10)
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The same situation occurs for the noises v2 and v3, which each give rise to three new indepen-
dent noises. Similarly, we obtain a matrix b̃2 for σ1 = σ3 = 0 and b̃3 for σ1 = σ2 = 0. Finally,
we can write the full matrix c̃ = b̃b̃T, where b̃ is the following 3 × 9 matrix, with block structure

b̃ =
(
b̃1 b̃2 b̃3

)
. (B.11)

We can then rewrite the Fokker–Planck equation (B.9) in the form

∂P
∂x

(φ̃1, φ̃2, θ) =
1
2

3∑
i, j=1

9∑
p=1

∂

∂Xi

(
b̃ip

∂

∂X j
b̃ jp

)
P, (B.12)

where the drift terms have cancelled out with the terms coming from the derivative of the
matrix b̃. We can write the corresponding SDE by introducing three new independent matrices
of white noises, which we denote Ṽi, i = 1, 2, 3. Rewriting the result in terms of

S̃ = OT Diag(e2iφ̃1 , e2iφ̃2 ) O = e−2ikx S (B.13)

gives

∂xS̃ =
1

2ik

{
V1 + S̃V1S̃ − i

(
V2 − S̃V2S̃

)
+ V3S̃ + S̃V3

}
, (Stratonovich) (B.14)

where

V1
(law)
= V2

(law)
=

1√
2

V , V3
(law)
= V , Vi and V j independent. (B.15)

ORCID iDs
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