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Dynamical Signatures of Ground-State Degeneracy to
Discriminate against Andreev Levels in a Majorana Fusion
Experiment

A. Grabsch, Y. Cheipesh, and C. W. J. Beenakker

Detection of the fusion rule of Majora na zero-modes is a near-term milestone
on the road to topological quantum computation. An obstacle is that the
non-deterministic fusion outcome of topological zero-modes can be mimicked
by the merging of non-topological Andreev levels. To distinguish these two
scenarios, the dynamical signatures of the ground-state degeneracy that is the
defining property of non-Abelian anyons is searched for. By adiabatically
traversing parameter space along two different pathways, one can identify
ground-state degeneracies from the breakdown of adiabaticity. It is shown
that the approach can discriminate against accidental degeneracies of
Andreev levels.

1. Introduction

Non-Abelian anyons hold much potential for a quantum infor-
mation processing that is robust to decoherence.[1,2] The qubit
degree of freedom is protected from local sources of decoherence
since it is encoded nonlocally in a ground-state manifold of expo-
nentially large degeneracy (of order dM forM anyons with quan-
tum dimension d > 1). The degeneracy is called topological to
distinguish it from accidental degeneracies that require fine tun-
ing of parameters. The non-Abelian statistics follows from the
ground-state degeneracy because exchange operations (braiding)
correspond to non-commuting unitary operations in the ground-
state manifold.[3]

Majorana zero-modes, midgap states in a superconductor, are
non-Abelian anyons with quantum dimension d =

√
2[4–6]: Two

zero-modes may or may not share an unpaired fermion, so that
the ground state of M zero-modes has degeneracy 2M∕2. As ar-
gued by Aasen et al.,[7] to demonstrate the topological degeneracy
of Majorana zero-modes is a near-term milestone on the road to-
ward a quantum computer based on Majorana qubits.
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The general strategy for such a demonstra-
tion goes as follows:[7–9] A set of four Ma-
jorana zero-modes 𝛾1, 𝛾2, 𝛾3, 𝛾4 is pairwise
coupled (fused) in two different ways: either
𝛾2 with 𝛾3 or 𝛾1 with 𝛾2. The zero-modes
are then decoupled and the fermion par-
ity P12 of 𝛾1 and 𝛾2 is measured (P12 = +1
for even fermion number and P12 = −1 for
odd fermion number). The E = 0 ground-
state degeneracy manifests itself in a non-
deterministic outcome in the first case, with
expectation value P̄12 = 0. The second case
serves as a control experiment with a deter-
ministic outcome of+1 or−1 depending on
the sign of the coupling.

How to distinguish Majorana zero-modes from non-
topological Andreev levels is a major challenge, even in the
absence of any disorder.[10–12] A challenge for the approach in a
disordered system is formed by the tendency for non-topological
Andreev levels to accumulate at E = 0, resulting in a mid-gap
peak in the density of states and a proliferation of accidental
ground-state degeneracies.[13] The ground-state wave function
of a few Andreev levels has local fermion-parity fluctuations
that may mimic the non-deterministic fusion of Majorana
zero-modes.[14,15]

Here, we present a dynamical description of the fusion strat-
egy of Aasen et al. to search for signatures that make it possible
to exclude spurious effects from Andreev levels in a disordered
system, which we model by a class-D random-matrix ensemble.
We traverse the parameter space of coupling constants along two
pathways A and B such that the fermion parity measurement
is non-deterministic along both pathways, but with identical ex-
pectation value P̄12(A) = P̄12(B) when the evolution is adiabatic.
Ground-state degeneracies are identified from the breakdown of
adiabaticity, which causes P̄12(A) ≠ P̄12(B) in a way that is statis-
tically distinct for Andreev levels and Majorana zero-modes.

2. Adiabatic Evolution to Test for Ground-State
Degeneracy

We consider a Majorana qubit consisting of four Majorana zero-
modes with three adjustable couplings, in either a linear geom-
etry or a tri-junction geometry (see Figure 1). The linear circuit
contains two superconducting islands with adjustable Coulomb
couplings in each island and a tunnel coupling between the is-
lands. In the tri-junction, there are three strongly coupled islands
and only the Coulomb coupling within each island is adjustable.

Adv. Quantum Technol. 2020, 3, 1900110 1900110 (1 of 5) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advquantumtech.com

Figure 1. Two pathways A and B for the evolution of a Majorana qubit, encoded in four Majorana zero-modes (red dots) in a linear or tri-junction
geometry. The blue contours represent superconducting islands and the black solid lines indicate which zero-modes are coupled. At the end of the
evolution the Hamiltonian is the same for both pathways, but the final states |𝜓A⟩ or |𝜓B⟩ may depend on the pathway if adiabaticity breaks down
because of a degenerate ground state.

The state |±⟩ of the Majorana qubit is encoded in the fermion
parity of one of the islands, say the island containing Majorana
zero-modes 1 and 2. The fermion parity operator P12 = −2i𝛾1𝛾2
is the product of the two Majorana operators. Its eigenvalues are
+1 or −1 depending on whether the fermion parity in that island
is even or odd. For definiteness, we will assume that the fermion
parity of the entire system is even, and then P34 = P12.
As illustrated in Figure 1, in each geometry, the system is ini-

tialized in the ground state with two of the three couplings on
and the third coupling off. The final state with all couplings off is
reached via one of the two pathways, A or B, depending on which
coupling is turned off first.
Notice that at each instant in time the system contains at least

two uncoupled zero-modes: 𝛾4 and an E = 0 superposition 𝛾0 of
𝛾1, 𝛾2, 𝛾3 (which must exist because of the ±E symmetry of the
spectrum[16]). Pathway A is the fusion process discussed by Aasen
et al.,[7] while pathway B is an element in the braiding process of
ref. [17].
If the ground state remains nondegenerate during this dynam-

ical process, separated from excited states by a gap Egap larger
than the decoupling rate, then the adiabatic theorem ensures that
the final state |𝜓⟩A = |𝜓⟩B does not depend on the pathway. By
measuring the expectation values

P̄A = ⟨𝜓A|P12|𝜓A⟩, P̄B = ⟨𝜓B|P12|𝜓B⟩ (1)

one can detect a breakdown from adiabaticity. This might
be due to an accidental gap closing during the evolution, or
due to the topological ground-state degeneracy of Majorana
zero-modes.

We will consider the effect of an accidental degeneracy in Sec-
tion 4; in the next section, we first address the topological degen-
eracy.

3. Topologically Degenerate Ground State

We summarize some basic facts aboutMajorana zero-modes (see
refs. [2, 18] for more extensive discussions).
An even numberM = 2N of uncoupled Majorana zero-modes

has a 2N−1-fold degenerate ground-state manifold for a given
global fermion parity. The degeneracy is removed by coupling,
as described by the Hamiltonian

H = 1
2

2N∑
n,m=1

Anmi𝛾n𝛾m (2)

The 2N × 2N matrix A is real antisymmetric, Anm = −Amn = A∗
nm

and theMajorana operators 𝛾n = 𝛾†n are Hermitian operators with
anticommutator

𝛾n𝛾m + 𝛾m𝛾n = 𝛿nm, 𝛾2n = 1∕2 (3)

The fermion creation and annihilation operators a†, a are re-
lated to the 𝛾 ’s by

(
𝛾2n−1
𝛾2n

)
= U

(
an
a†n

)
, U = 1√

2

(
1 1
−i i

)
(4)
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Figure 2. Solid curves: Expectation value P̄12(t) = ⟨𝜓(t)|P12|𝜓(t)⟩ calcu-
lated numerically from the solution of the differential equation (7), for
the Hamiltonian (5) with time-dependent coupling constants Γ(t) = 1 −
tanh[(t − t0)∕𝛿t] and Γ′(t) = 1 − tanh[(t − t′0)∕𝛿t] for 𝛿t = 2. The decou-
pling times are chosen at t0 = 4, t′0 = 8 for pathway A and t0 = 8, t′0 = 4
for pathway B. The dashed curves show the corresponding evolution of
the expectation value in the ground state of H(t), calculated from Equa-
tion (6). The close agreement of solid and dashed curves indicates that
the dynamics is nearly adiabatic.

The fermion operators define a basis of occupation numbers,|s1, s2,… sN⟩, such that a†nan|s1, s2,… sN⟩ = sn|s1, s2,… sN⟩, sn ∈
{0, 1}.
For N = 2 and assuming even global fermion parity, the

Hamiltonian (2) in the basis of occupation numbers |00⟩ ≡ |+⟩
and |11⟩ ≡ |−⟩ reads
H = 1

2

(
−Γ Γ′∗

Γ′ Γ

)
, Γ = A12 + A34

Γ′ = −A14 − A23 − iA24 + iA13

(5)

The fermion parity operator P12 equals 𝜎z in this basis. Its expec-
tation value in the ground state |GS⟩ follows from
|GS⟩ ∝ (Γ +

√
Γ2 + |Γ′|2)|+⟩ + Γ′|−⟩

⇒ ⟨GS|P12|GS⟩ = Γ√
Γ2 + |Γ′|2

(6)

Equation (6) is a known result,[14] which shows that for |Γ|≪|Γ′| the ground state of the Majorana qubit is in an even–odd su-
perposition of nearly equal weight. Applied to Figure 1, the same
equation (6) shows that the two pathways A and B correspond
to an exchange of limits: Γ → 0 before Γ′ → 0 for pathway A, re-
sulting in P̄12 → 0, or the other way around for pathway B with|P̄12| → 1.
In Figure 2, we show how this works out dynamically, by inte-

grating the evolution equation

iℏ 𝜕
𝜕t
|𝜓(t)⟩ = H

(
Γ(t),Γ′(t)

)|𝜓(t)⟩ (7)

with initial condition that |𝜓(0)⟩ is the ground state ofH at t = 0.

Figure 3. Two quantum dots on a superconducting substrate (blue), con-
taining NL and NR Andreev levels coupled via a tunnel barrier. The cou-
pling strength is adjustable via a pair of gate electrodes (black). The
fermion parity PL, PR in each quantum dot is regulated by the ratio EJ∕EC of
Josephson and charging energies, which is adjustable via themagnetic flux
through a Josephson junction. In this way, we can drive the system away
from the ground state via the two pathways of Figure 1, either by switching
off first the fermion-parity coupling and then the tunnel coupling (pathway
A) or the other way around (pathway B). At the end of each process, the
fermion parity PL is measured.

4. Accidentally Degenerate Andreev Levels

To assess the breakdown of the adiabatic evolution as a result of
(nearly) degenerate Andreev levels, we consider the double quan-
tum dot geometry of Figure 3. There areNL Andreev levels in the
left dot andNR Andreev levels in the right dot. The quantum dots
are coupled to each other by an adjustable tunnel barrier and each
has an adjustable coupling to a bulk superconductor by a Joseph-
son junction.
For strong Josephson coupling, the Coulomb charging energy

may be neglected and the Hamiltonian of the double-quantum
dot is bilinear in the creation and annihilation operators.

0 =
1
2

N∑
n,m=1

Ψ†
n ⋅ nm ⋅Ψm (8a)

Ψn =
(
an
a†n

)
, nm =

(
Vnm −Δ∗

nm
Δnm −V∗

nm

)
(8b)

The indices n,m label spin and orbital degrees of freedom of the
N = NL + NR Andreev levels. TheN × NHermitianmatrixV rep-
resents the kinetic and potential energy. The N × N antisymmet-
ric matrix Δ is the pair potential.
As the ratio EJ∕EC of Josephson and charging energy is re-

duced, the Coulomb interaction in a quantum dot becomes effec-
tive. In the regime EJ∕EC ≳ 1, the interaction term only depends
on the fermion parity[17]

C = −𝜅LPL − 𝜅RPR

PL = (−1)
∑

n∈L a
†
nan , PR = (−1)

∑
n∈R a

†
nan

(9)

The two coupling constants 𝜅L and 𝜅R depend exponentially ∝

e−
√

8EJ∕EC on the Josephson energy,[19] which can be varied by
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Figure 4. Scatter plot that illustrates how the expectation value P̄L of the fermion parity in the left quantum dot depends on the pathway A or B that
is followed in parameter space. Each blue dot results from one realization of the class-D ensemble of random Hamiltonians 0. In units such that
the mean Andreev level spacing 𝛿0 ≡ 1, the parameters in Equations (10) and (12) are 𝛿t = 𝛿t′ = 2, 𝜅0 = 1∕4 for both pathways, and t0 = 4, t′0 = 8 for
pathway A, t0 = 8, t′0 = 4 for pathway B. The fermion parity is evaluated at time t = 15. The red circle indicates the expected outcome for a Majorana
qubit, which is well separated from the scatter plot of Andreev levels.

adjusting the magnetic flux through the Josephson junction con-
nected to the left or right quantumdot.We set 𝜅R ≡ 0 for all times,
while 𝜅L(t) drops from 𝜅0 to 0 in an interval 𝛿t around t = t0. We
choose a tanh profile

𝜅L(t) =
1
2
𝜅0 −

1
2
𝜅0 tanh[(t − t0)∕𝛿t] (10)

For each of the two dynamical pathways A and B, we start at
t = 0 with a strong tunnel coupling between the quantum dots.
Wemodel this statistically bymeans of the Gaussian ensemble of
random-matrix theory in symmetry class D (broken time-reversal
and broken spin-rotation symmetry).[13,20]

The ensemble is constructed as follows: A unitary transforma-
tion to the Majorana basis

UnmU
† = inm, U = 1√

2

(
1 1
−i i

)
(11)

(see Equation (4)), expresses the Hamiltonian (8) in terms of
a real antisymmetric 2N × 2N matrix . We take independent
Gaussian distributions for each upper-diagonal matrix element
of, with zeromean and variance 2N𝛿20∕𝜋

2, where 𝛿0 is themean
spacing of the Andreev levels.
For strongly coupled quantum dots, we do not distinguish sta-

tistically between matrix elements nm that refer to levels n and
m in the same dot or in different dots. To decouple the quantum
dots by the tunnel barrier, we suppress the inter-dot matrix ele-
ments

nm(t) = nm(0) ×

{
1 if n,m in the same dot
𝜅LR(t) if n,m in different dots

(12a)

𝜅LR(t) =
1
2
− 1

2
tanh[(t − t′0)∕𝛿t

′] (12b)

We solve the Schrödinger equation

iℏ 𝜕
𝜕t
|𝜓⟩ = (0 +C)|𝜓⟩ (13)

by first calculating the Hamiltonian in the 2NL+NR−1 dimensional
basis of occupation numbers in the left and right dot, for even
global fermion parity PLPR = +1. (We used the sneg package to
take over this tedious calculation.[21]) Starting from the ground
state at t = 0, we switch off 𝜅L and 𝜅LR along pathways A or B
(first switching off 𝜅L or first switching off 𝜅LR, respectively). At
the end of the process, we calculate the expectation value of the
fermion parity P̄L in the left dot.
The calculation is repeated for a large number of realizations

of the Hamiltonian0 in the class-D ensemble. A scatter plot of
P̄L(A) versus P̄L(B) is shown in Figure 4 for a few values ofNL, NR.
Significant deviations are observed from the line P̄L(A) = P̄L(B)
of adiabatic evolution, but the scatter plot stays clear of the point
P̄L(A) = 0, P̄L(B) = 1 that characterizes a Majorana qubit.
Two ingredients in the fusion protocol are essential for this to

work: First, the fermion-parity coupling should be smaller than
or comparable to the tunnel coupling, in order for pathway B to
have a nondeterministic fusion outcome. Second, the tunnel cou-
pling should be cut slowly on the scale of the inverse mean level
spacing, to promote adiabatic evolution in pathwayA. InFigure 5,
we show the scatter plot when both these conditions are violated:
There is now no clear separation from the Majorana qubit.

5. Conclusion

A successful demonstration of the non-deterministic fusion of
two Majorana zero-modes would be a milestone in the devel-
opment of a topological quantum computer.[7] Its significance
would be both conceptual (because it implies non-Abelian braid-
ing statistics[3]) and practical (because fusion can substitute for
braiding in a quantum computation[18,22]).
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Figure 5. Same as Figure 4, but for a stronger fermion-parity coupling
(𝜅0 = 2) and abrupt removal of the tunnel coupling (𝛿t′ = 1∕4, all other
parameters unchanged). The outcome for a Majorana qubit is now no
longer well separated from the scatter plot of the outcome from Andreev
levels.

In this work, we have investigated the dynamics of the fusion
process in a disordered system, to see how spurious effects from
the merging of Andreev levels can be eliminated. We compare
the time-dependent evolution in the parameter space of coupling
constants (tunnel coupling and Coulomb coupling) via two
alternative pathways. The topological ground-state degeneracy of
Majorana zero-modes causes a breakdown of adiabaticity that can
be measured as a pathway-dependent fermion parity. Andreev
levels can produce accidental degeneracies and a non-
deterministic fermion parity outcome, but the correlation
between the two pathways is distinct from what would follow
from the Majorana fusion rule (see Figure 4).
Initial experimental steps toward the detection of theMajorana

fusion rule have been reported.[23] Typical spacings 𝛿0 of sub-gap
Andreev levels in these nanowire geometries can be as small as
1𝜇eV ≃ 10 mK, two orders of magnitude below the induced su-
perconducting gap of 100𝜇eV. Thermal excitation of the Andreev
levels prevents resolution of smaller spacings.
For this lower bound on 𝛿0, the adiabatic decoupling time scale

𝛿t = 2ℏ∕𝛿0 in Figure 4 would be on the order of 1 ns, and the total
duration of the fusion process t0 ≳ 10ℏ∕𝛿0 ≳ 10 ns. These opera-
tion times are at the lower end of those considered in the context
of braiding experiments.[24] They are still well below quasiparticle
poisoning times, which in ideal circumstances can be as large as
1𝜇s.[25]
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