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Abstract
Within the random matrix theory approach to quantum scattering, we derive 
the distribution of the Wigner–Smith time delay matrix Q for a chaotic cavity 
with uniform absorption, coupled via N perfect channels. In the unitary class 
β = 2 we obtain a compact expression for the distribution of the full matrix 
in terms of a matrix integral. In the other symmetry classes we derive the 
joint distribution of the eigenvalues. We show how the large N properties of 
this distribution can be analysed in terms of two interacting Coulomb gases 
living on two different supports. As an application of our results, we study the 
statistical properties of the Wigner time delay τW = tr[Q]/N  in the presence 
of absorption.
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1.  Introduction

The scattering of waves (quantum or classical) in complex systems has been a very active field 
of research, both from the theoretical and experimental sides. This interest is motivated by 
applications in diverse fields, such as nuclear physics [1, 2], coherent quantum transport [3], 
chaotic billiards [4] and propagation of electromagnetic waves in random media [5]. In this 
context, the central object is the scattering matrix S(ε) which relates the amplitudes of incom-
ing and outgoing waves in the different scattering channels at a given energy ε. The number N 
of open channels is fixed by the energy ε (for example, it is given by transverse quantisation in 
a wave guide connected to a cavity). In an ideal system without losses or gains, the conserva-
tion of the particle number imposes that the scattering matrix is unitary. This matrix can also 
satisfy other constraints, depending on the symmetries of the system. The different symmetry 
classes are labelled by the Dyson index β [6, 7] (see also the review [3]). In the absence of 
time-reversal symmetry (β = 2), the only constraint is the unitarity. If time-reversal symmetry 
is preserved (β = 1), S  must additionally be symmetric. The last index β = 4 corresponds to 
the breaking of spin-rotation symmetry (in the presence of strong spin–orbit coupling). In this 
case, S  can be represented by a quaternionic self-dual unitary matrix.

Another important matrix, which has attracted a lot of attention, is the Wigner–Smith time 
delay matrix Q = −i�S†∂εS  [8, 9] (in the following we set � = 1). This Hermitian matrix 
contains information about the temporal aspect of the scattering process. The diagonal ele-
ments Qii are called injectances and correspond to the contribution of the ith scattering mode 
to the density of states [10]. The eigenvalues of Q, which we denote {τ1, . . . , τN}, are called 
proper time delays. Finally, the Wigner time delay, defined as the trace of the Wigner–Smith 
matrix,

τW =
1
N

trQ =
1
N

N∑
i=1

Qii =
1
N

N∑
i=1

τi,� (1)

plays an important role in many applications, as it is related to the density of states of the open 
system (see the review [10]).

For complex systems which exhibit chaotic dynamics, random matrix theory (RMT) pro-
vides a powerful framework to characterise the statistical properties of the matrices afore-
mentioned [3, 11, 12]. The distribution of the scattering matrix S(ε) at a given energy ε has 
been obtained in the three symmetry classes β = 1, 2 and 4 using two different methods: 
either from a maximal entropy principle (this is called the stochastic approach [13, 14]), or 
by assuming that the Hamiltonian of the closed system can be described by a random matrix 
(Hamiltonian approach [15, 16]). In the universal regime where RMT is expected to apply, the 
two approaches are equivalent [17]. The resulting distribution, known as the Poisson kernel, 
is a cornerstone of the application of RMT to quantum transport (see the review [3] and refer-
ences therein).

2.3.1.  Continuous formulation� 14
3.  Moments of the Wigner time delay� 15

3.1.  Weak absorption� 18
3.2.  Strong absorption� 19

4.  Conclusion� 20
Acknowledgments� 21
Appendix.  Tricomi’s theorem� 21
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The Wigner–Smith matrix Q is obtained from the energy derivative of S . Therefore it is not 
sufficient to know the distribution of S  at a given energy: one should also get information about 
the energy dependence. Different methods have been introduced to tackle this more complex 
question [18–23]. The joint distribution of the proper time delays {τn}, for perfectly coupled 
chaotic cavities, has been shown to be related to the Laguerre ensemble of RMT [22, 23],

P ({γi = τH/τi}) ∝
∏
i<j

|γi − γj|β
N∏

n=1

γ
βN

2
n e−

β
2 γn ,� (2)

where τH = 2π/∆ is the Heisenberg time, and ∆ the mean level spacing of the closed system. 
This joint distribution has been used as a starting point to study many quantities involving the 
proper time delays, such as the Wigner time delay τW [24–26].

However in real experiments, absorption is always present to some level. This leads to 
losses, which are one source of decoherence in quantum systems. In particular, the absorp-
tion needs to be accounted for to properly describe the results of some experiments [27]. The 
strength of the absorption is characterised by the absorption time τa, which measures the mean 
time a wave can spend in the system before being absorbed. It is convenient to introduce the 
dimensionless absorption rate1 γ = τd/τa, where τd = τH/N  is the dwell time inside the sys-
tem. In the following, all the times will be expressed in units of the Heisenberg time τH (i.e. 
we set τH = 1).

In the presence of absorption, the scattering matrix becomes sub-unitary. It is thus often 
referred to as a reflection matrix, since it encodes the reflection of the fraction of the wave that 
is not absorbed by the system. In the following, we will denote this matrix rγ . The Wigner–
Smith matrix Q in the presence of absorption measures the deficit of unitarity of the reflection 
matrix: r†γrγ = 1N − γNQ [29]. These two matrices are thus related, and one can study either 
one or the other.

Many results have been obtained on the matrices rγ  and Q in the presence of absorption. 
The joint distribution of the eigenvalues of r†γrγ  has been found for N  =  1 [30] or N  =  2 
channels [28]. For higher number of channels, this distribution is known only in the limits of 
strong [32] and weak absorption [30]. Exact expressions for the mean density of eigenvalues 
of r†γrγ  have been derived for any number of channels [29], and reduce to simpler expressions 
in the large N limit [31]. Concerning the matrix rγ  itself, its distribution has been obtained for 
N  =  1 in the presence of tunnel coupling [33] or direct processes [34]. We can also mention 
that another important matrix, the Wigner reaction matrix K = i(rγ − 1)/(rγ + 1) has been 
extensively studied2. The distribution of its diagonal entries [37–39], and recently the one of 
its off-diagonal elements [40], has been found. For reviews of the different results and their 
applications, see for instance [41, 42].

Despite all these efforts, the distribution of the matrix Q (or the joint distribution of its 
eigenvalues) for any absorption rate γ  is still unknown. The aim of this paper is to provide 
this distribution.

1.1.  Summary of the main results

Our main results are about the distribution of the Wigner–Smith matrix Q in a chaotic absorb-
ing cavity (with absorption rate γ), perfectly coupled to N channels. The distribution is more 

1 In the literature, the dimensionless absorption rate is either defined as τH/τa [28, 29] or τd/τa [30, 31]. Here we 
prefer the latter as it will be more convenient to study the limit N → ∞.
2 In the context of electromagnetic cavities, K is related to the impedance matrix of the system [35, 36].
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conveniently expressed in terms of the inverse matrix Γ = (NQ)−1 (we rescale by a factor N 
as the eigenvalues of Q behave as O(N−1) for large N).

If time-reversal symmetry is broken (unitary class β = 2), we show that the distribution of 
the matrix Γ has the compact form

P(Γ) ∝ e−NtrΓ
∫ γ1N

0
dT det(1N ⊗ Γ− T ⊗ 1N) e−NtrT , Γ > γ1N ,� (3)

where the notation indicates that the integral runs over complex Hermitian matrices T with 
eigenvalues in [0, γ], and ⊗ denotes the Kroenecker product of two matrices. The eigenvalues 
of Γ are constrained to be larger than the absorption rate γ . This restriction indicates that the 
presence of absorption forbids the appearance of large time delays (small eigenvalues of Γ) 
since waves that remain in the system for too long will be absorbed. In a different context, the 
distribution of Q for arbitrary tunnel coupling (but no absorption), was also expressed in terms 
of an integral over a N × N  Hermitian matrix [43].

The distribution (3) will be derived in section 2.1, by first obtaining the distribution of 
the reflection matrix rγ . The method used to obtain this distribution is difficult to extend to 
the other symmetry classes due to the additional constraints satisfied by the matrix rγ  when 
β = 1 or 4. We will thus present in section 2.2 a different derivation, which focuses on the 
eigenvalues of Q and is valid in the three symmetry classes (β = 1, 2 or 4). We obtain the joint 
distribution of eigenvalues {Γn} of Γ = (NQ)−1 as

P({Γn}) ∝
∏
i<j

|Γi − Γj|β
N∏

n=1

e−
βN

2 Γn

×
∫ γ

0
dt1 · · · dtNt

∏
i<j

|ti − tj|
4
β

Nt∏
n=1

(
[tn(γ − tn)]

2
β−1e−Ntn

N∏
m=1

(Γm − tn)

)
,

�

(4)

where Nt = βN/2 and Γn > γ. These two results can be shown to be equivalent for β = 2 by 
diagonalising the matrices Γ and T in equation (3). Nevertheless, we still give the distribution 
in terms of the full matrix Γ for β = 2 as the expression is more compact.

We further show how our results (3) and (4) can be used to study the distribution of the 
Wigner time delay (1). We develop a modified Coulomb gas technique to compute the cumu-
lants of τW in the limit of large number N of channels. In the two regimes of weak and strong 
absorption, we obtain respectively

〈τW〉 � 1
N
(1 − γ), Var(τW) � 4

βN4 (1 − 6γ), for γ � 1,� (5)

〈τW〉 � 1
γN

(
1 − 1

γ

)
, Var(τW) � 2

β(Nγ)4 , for γ � 1.� (6)

The expansions of the first cumulant in these two limits is consistent with the known expres-
sion 〈τW〉 = 1/(N(γ + 1)) valid for any absorption and large number of channels [31]. 
Furthermore, we show that in the regime of weak absorption, the higher order cumulants can 
be obtained from the cumulants at γ = 0 (see equation (85)).

1.2.  Outline of the paper

The paper is organised as follows. Section 2 is mainly devoted to the derivation of the dis-
tribution of the Wigner–Smith matrix Q. We first show how to obtain the distribution of the 
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full matrix in the unitary case (β = 2), equation (3), in section 2.1. In section 2.2 we obtain 
the joint distribution of eigenvalues (4), valid in the three symmetry classes, starting from the 
results of [44, 45]. We show in section 2.3 how the Coulomb gas method can be adapted to 
handle the distribution (4) in the limit of many open channels. These results on the distribution 
of Q are used in section 3 to study the cumulants of the Wigner time delay (1) in the presence 
of absorption.

2.  Distribution of the Wigner–Smith matrix

Let us consider a chaotic cavity perfectly coupled to N scattering channels. In the presence of 
absorption, with rate γ , the N × N  Wigner–Smith matrix Q is related to the reflection matrix 
rγ  as [29]

r†γrγ = 1N − γNQ.� (7)

This relation shows that Q measures the deficit of unitarity of the reflection matrix. In par
ticular, when there is no absorption (γ = 0) the reflection matrix becomes unitary. In the 
limit of weak absorption, relation (7) has been used to obtain the distribution of the reflection 
eigenvalues from the distribution of Q (without absorption) [30]. In this paper, we will fol-
low the opposite route: we will first obtain the distribution of the reflection matrix for chaotic 
absorbing cavities, and then deduce the distribution of Q from (7).

The absorption is modelled by introducing Nφ fictitious channels, coupled with tunnel 
probability T  [46, 47]. In the limit of many fictitious channels Nφ → ∞ and weak coupling 
T → 0 with fixed product

NφT = γN,� (8)

this model describes a cavity with uniform absorption rate γ3 [28]. This is illustrated in fig-
ure 1. In practice, we will take this double scaling limit by defining T  in terms of Nφ using 
(8) for Nφ → ∞ (ensuring that T < 1). The full system (real and fictitious channels) can be 
described by a (N + Nφ)× (N + Nφ) unitary scattering matrix S .

Figure 1.  The model for chaotic cavities with absorption. The cavity is connected to N 
real channels via a perfect contact, and to Nφ fictitious channels with tunnel probability 
T . In the limit Nφ → ∞ and T → 0 with NφT = γN , this model describes a cavity 
with uniform absorption, with rate γ .

3 Alternatively one could shift the energy in a model without absorption along the imaginary axis Eγ = E + iγN/2 
to introduce absorption. The two procedures are equivalent [28].
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Assuming that the dynamics inside the cavity is chaotic, we can follow the approach of 
random matrix theory [3, 12]. The scattering matrix S  is thus taken as random, with distribu-
tion known as the Poisson kernel [13, 14, 17],

P(S) ∝
∣∣det(1− S̄�S)

∣∣−2−β(N+Nφ−1)
,� (9)

where S̄  is the mean scattering matrix. If we label the first N lines and columns of S  to cor-
respond to the real channels, and the remaining ones to the Nφ fictitious channels, S̄  takes the 
form

S̄ =

(
0 0
0

√
1 − T 1Nφ

)
,� (10)

where T  is the tunnel coupling to the fictitious channels. The zero in the top-left block is a 
N × N  matrix, which corresponds to the fact that the real channels are perfectly coupled to the 
cavity. We can also decompose the scattering matrix into reflection and transmission blocks:

S =

(
r t′

t r′

)
.� (11)

The N × N  top-left block is the reflection matrix r from the real channels. In the limit of infi-
nite number of (weakly coupled) fictitious channels Nφ → ∞, this block becomes the reflec-
tion matrix of the absorbing cavity:

r −→
Nφ→∞

rγ .� (12)

It can then be related to the Wigner–Smith matrix by equation (7). Our aim is to obtain the 
distribution of this matrix.

In the situation studied in this paper, the N real channels are equivalent. This means that 
there is no preferred basis: the matrix Q is invariant under unitary transformations Q → U†QU  
(this is clear on the distribution (3), derived below in section 2.1). The consequence is that 
the eigenvalues and eigenvectors of Q are statistically uncorrelated, and we can focus on the 
eigenvalues {τn} of Q only. Equivalently, thanks to the relation (7), we can consider the eigen-
values {Rn} of r†γrγ . The joint distribution of the eigenvalues of r†r  for finite N, Nφ and any 
tunnel coupling T  is known [44, 45]. We can thus use this result to obtain the joint distribution 
of the reflection eigenvalues {Rn} in the absorbing situation. This will be done in section 2.2. 
However, we will first present in section 2.1 a derivation of the distribution of the full reflec-
tion matrix r in the unitary case β = 2. Besides providing an alternative derivation to the one 
given in [44, 45], the procedure described in section 2.1 has the advantage to consider the full 
reflection matrix r (eigenvalues and eigenvectors), and could in principle be extended to a situ-
ation where the N real channels are not equivalent.

2.1.  Unitary class

Let us first consider the case of broken time-reversal symmetry, which corresponds to the 
Dyson index β = 2. We start from the distribution of the unitary matrix S  (9). In terms of the 
block decomposition (11), it becomes only a function of the Nφ × Nφ bottom-right block r′,

P(S) ∝
∣∣∣det(1Nφ

−
√

1 − T r′)
∣∣∣
−2(N+Nφ) def

= P0(r′).� (13)

A Grabsch﻿J. Phys. A: Math. Theor. 53 (2020) 025202



7

Our goal is to obtain the distribution of the N × N  reflection block r. It can formally be writ-
ten as

P(r) ∝
∫

dr′dtdt′ P0(r′) δ(r†r + t†t − 1N) δ(r′†r + t′†t − 1Nφ
) δ(r†t′ + t†r′),

� (14)
where the δ-functions impose the unitarity of S , and the integration measures dr′, dt and dt′ 
are the Lebesgue measures over the spaces of Nφ × Nφ, Nφ × N  and N × Nφ complex matri-
ces respectively. For example

dr′ =
Nφ∏
i=1

Nφ∏
j=1

d Re(r′ij) d Im(r′ij).� (15)

The idea is to perform all the integrals in (14) in order to obtain a form which is convenient to 
take the limit Nφ → ∞.

Getting rid of the Dirac delta-functions
The first step to evaluate the integrals in equation (14) is to perform the integral over the 

N × Nφ matrix t′. Let us make the change of variables

t′ = −(r†)−1X,� (16)

where X is the new matrix variable of size N × Nφ. The Jacobian of this transformation is [48]

dt′ = det(r†r)−NφdX.� (17)

The integral (14) thus becomes

P(r) ∝ (det r†r)−Nφ

∫
dr′dtdX P0(r′) δ(r†r + t†t − 1N)

× δ(r′†r′ + X†(r†r)−1X − 1Nφ
) δ(t†r′ − X).

� (18)
The last δ-function straightforwardly cancels the integral over X, so we obtain

P(r) ∝ (det r†r)−Nφ

∫
dr′dt P0(r′) δ(r†r + t†t − 1N) δ(r′†(1Nφ

+ t(r†r)−1t†)r′ − 1Nφ
).� (19)

In the second δ-function appears the matrix 1Nφ
+ t(r†r)−1t†, which is Hermitian and positive 

(all its eigenvalues are positive). Therefore, we can make the change of variables

r′ = (1Nφ
+ t(r†r)−1t†)−1/2Y .� (20)

The corresponding Jacobian is [48]

dr′ = det(1Nφ
+ t(r†r)−1t†)−NφdY = det(1N + (r†r)−1t†t)−NφdY ,� (21)

where we have used Sylvester’s identity. Using also that

(1Nφ
+ t(r†r)−1t†)−1 = 1Nφ

− t(r†r + t†t)−1t†,� (22)

we deduce

P(r) ∝
∫

dYdt det(r†r + t†t)−NφP0((1Nφ
− t(r†r + t†t)−1t†)1/2Y)

× δ(r†r + t†t − 1N) δ(Y†Y − 1Nφ
).

�
(23)
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The combination r†r + t†t which appear both in the determinant and in the argument of P0 
can be replaced by the identity thanks to the first δ-function. The second δ-function imposes 
that Y is unitary, therefore

P(r) ∝
∫

U(Nφ)

dµ(Y)
∫

dt P0((1Nφ
− tt†)1/2Y) δ(r†r + t†t − 1N),� (24)

where dµ(Y) denotes the Haar measure on the unitary group. This expression involves both 
the combination t†t  and tt†. The first matrix is of size N × N , while the second has dimension 
Nφ × Nφ. Since we want eventually to take the limit Nφ → ∞, we can assume that Nφ > N . 
The matrix tt† thus has the same eigenvalues as t†t , plus a series of Nφ − N  eigenvalues equal 
to zero. Therefore, there exists a unitary matrix U such that

tt† = U
(

t†t 0
0 0

)
U†.� (25)

Since dµ(U†YU) = dµ(Y), the integrals (24) become

P(r) ∝
∫

U(Nφ)

dµ(Y)
∫

dt P0

((
(1N − t†t)1/2 0

0 1Nφ−N

)
Y
)

δ(r†r + t†t − 1N).

� (26)
We can now make the last change of variables

T = t†t.� (27)

This change of variables is not one-to-one, as T defines t up to a unitary matrix. Nevertheless, 
the Lebesgue measure dt can be expressed in terms of T and a unitary matrix V , uniformly 
distributed over U(Nφ) [48]:

dt = 2−N det(T)Nφ−NdT dµ(V).� (28)

Integration over V  yields a constant (the volume of the unitary group), and we can straightfor-
wardly integrate over the Hermitian matrix T to obtain

P(r) ∝ det(1N − r†r)Nφ−N
∫

U(Nφ)

dµ(Y) P0

((
(r†r)1/2 0

0 1Nφ−N

)
Y
)

.

� (29)
Replacing P0 by its expression (13) gives

P(r) ∝ det(1N − r†r)Nφ−N
∫

U(Nφ)

dµ(Y)∣∣det(1Nφ
− A(r)Y)

∣∣2(N+Nφ)
,� (30)

where we have introduced the Hermitian matrix

A(r) =
√

1 − T
(
(r†r)1/2 0

0 1Nφ−N

)
.� (31)

We have reduced the original integral over the (N + Nφ)× (N + Nφ) unitary matrix S  to an 
integral over the Nφ × Nφ unitary matrix Y. However, this expression (30) is not convenient 
to take the limit Nφ → ∞, as the integration domain depends explicitly on Nφ. We will now 
evaluate this last integral.

A Grabsch﻿J. Phys. A: Math. Theor. 53 (2020) 025202
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Evaluation of the integral over the unitary group
Integrals of the type

∫

U(Nφ)

dµ(Y)∣∣det(1Nφ
− AY)

∣∣2n� (32)

have been studied in [49], using the theory of Schur functions [50]. However, they have been 
computed for 0 � n � Nφ, while in equation (30) we have n = Nφ + N > Nφ. The idea to 
evaluate this integral in this domain is given in the appendix of [28]: we make the change of 
variables4

Y = A −
√
1− A2 U(1 − AU)−1

√
1− A2,� (33)

where A is Hermitian and U is unitary. The Jacobian of the change of variables (33) is [28, 48]

dµ(Y) ∝ det(1Nφ
− A2)−Nφ

∣∣det(1Nφ
− AY)

∣∣2Nφdµ(U),� (34)

which cancels out the power 2Nφ in the denominator of (30). Furthermore, since

det(1Nφ
− AY) = det(1Nφ

− A2) det(1Nφ
− AU)−1,� (35)

the remaining power of the determinant changes sign. Therefore, the integral in (30) can be 
expressed as

∫

U(Nφ)

dµ(Y)∣∣det(1Nφ
− AY)

∣∣2(N+Nφ)
∝ det(1Nφ

− A2)−Nφ−2N

×
∫

U(Nφ)

dµ(U)
∣∣det(1Nφ

− AU)
∣∣2N

.
�

(36)

The integral on the r.h.s has been computed in [49], with no restriction on the values of N and 
Nφ:
∫

U(Nφ)

dµ(U)
∣∣det(1Nφ

− AU)
∣∣2N ∝

∫
dZ det(1N + Z†Z)−Nφ−2N det(1+ Z†Z ⊗ A2),� (37)

where the integral runs over the N × N  matrix Z with N2 independent complex entries, and ⊗ 
denotes the Kroenecker product of two matrices. In order to simplify this expression, we first 
introduce the matrix X = Z†Z . We can perform this change of variables in the integral (37) 
similarly as we did with the matrix t5 (27) and (28). We obtain
∫

U(Nφ)

dµ(U)
∣∣det(1Nφ

− AU)
∣∣2N ∝

∫
dX det(1N + X)−Nφ−2N det(1+ X ⊗ A2),� (38)

where the integral now runs over the Hermitian and positive matrix X. Combining equa-
tions (36) and (38), we can express the distribution of the reflection matrix (30) as

P(r) ∝ det(1N − r†r)Nφ−N det(1Nφ
− A(r)2)−Nφ−2N

×
∫

dX det(1N + X)−Nφ−2N det(1+ X ⊗ A(r)2).

�

(39)

4 This is a well known change of variables in the context of quantum scattering, as it is the one that relates the scat-
tering matrix of a cavity with perfect couplings (which would be here U) to the one with arbitrary coupling (here Y). 
The couplings are described by the matrix A [17].
5 In (28), t was a Nφ × N  matrix, while Z is now N × N . Therefore we must set Nφ = N  in the Jacobian (28).
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Substituting the expression of the matrix A(r) (31), this becomes

P(r) ∝ det(1N − r†r)−3N det

(
1N + T r†r

1N − r†r

)−Nφ−2N

×
∫

dX
det(1N + X)3N det(1+ (1 − T )X ⊗ r†r) det

(
1− T X

1N + X

)Nφ−N

.

�

(40)

From this distribution of the reflection matrix r, one can deduce the joint distribution of the 
eigenvalues of r†r . By also diagonalising X = X† > 0, one can recover from the distribution 
(40) the joint distribution of reflection eigenvalues derived in [45]. The main difference with 
our derivation is that we are dealing with the full reflection matrix, and not only the eigenval-
ues of r†r . Besides providing a more compact expression for the distribution, our approach is 
also more natural to analyse the situation where the N channels are not equivalent (and thus 
the eigenvalues and eigenvectors no longer decouple).

The distribution (40) is well suited to derive the distribution of the reflection matrix rγ  in 
the presence of absorption. Indeed, the dimension of the integration domain depends only 
on the number N of real channels, and not on the number Nφ of fictitious channels which 
we introduced to model the absorption. The parameter Nφ only appears in the power of 
some determinants, and in the tunnel coupling T  (8). Therefore, we can now take the limit 
Nφ → ∞. Using the famous identity log det = tr log, we deduce

det

(
1N +

γN
Nφ

r†r
1N − r†r

)−Nφ−2N

−→
Nφ→∞

e
−γNtr

[
r†γ rγ

1N−r†γ rγ

]

= eγN2
e−γNtr[(1N−r†γ rγ)−1],� (41)

and similarly for the determinant involving X. Finally, we obtain the distribution of the reflec-
tion matrix rγ  (i.e. the scattering matrix of the absorbing cavity):

P(r) ∝ det(1N − r†γrγ)−3Ne−γNtr[(1N−r†γ rγ)−1]
∫

dX
det(1+ X ⊗ r†γrγ)
det(1N + X)3N e−γNtr

[
X

1N+X

]
.� (42)

We can further simplify this expression by introducing the variable

T =
X

1N + X
,� (43)

which is associated to the following Jacobian [48]:

dX =
dT

det(1N − T)2N .� (44)

This transformation yields our final result for the reflection matrix:

P(r) ∝ det(1N − r†γrγ)−3Ne−γNtr[(1N−r†γ rγ)−1]

×
∫ 1N

0
dT det(1− T ⊗ (1N − r†γrγ)) e−γNtrT ,

�

(45)

where the notation indicates that the integration is performed over Hermitian matrices T with 
eigenvalues in [0, 1]. This distribution is the extension of the uniform distribution of the scat-
tering matrix for γ = 0 to the absorbing situation γ > 0.

Before using our result (45) to derive the distribution of the Wigner–Smith matrix Q, let us 
check that this distribution properly reproduces the different limits which are known. In the 
limit of strong absorption γ → +∞, the exponentials in (45) strongly suppress the distribution 
for r†γrγ  away from zero. Therefore, we can drop the contribution of the integral, and expand 
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(1N − r†γrγ)−1 � 1N + r†γrγ . The distribution of rγ  thus reduces to P(rγ) ∝ e−γN tr(r†γ rγ), 
which coincides with the result of [32]. In the converse limit of weak absorption γ → 0, the 
matrix rγ  is weakly sub-unitary, therefore r†γrγ  is close to the identity. We can thus drop the 
integral in the distribution (45), and we recover the result of [30]. Finally, for N  =  1 and any 
absorption rate γ , our result reduces to the distribution given in [30].

Distribution of the Wigner–Smith matrix
The Wigner–Smith matrix Q is directly related to the reflection matrix rγ  via (7). As in the 

well studied case without absorption (γ = 0), the distribution is more conveniently expressed 
in terms of the inverse matrix6

Γ = (NQ)−1 = γ(1N − r†γrγ)−1.� (46)

Since rγ  is sub-unitary (the absorption causes losses) the eigenvalues of r†γrγ  are in [0, 1], 
therefore those of Γ are larger than the absorption rate γ . This implies that the eigenvalues of 
Q, the proper time delays {τn}, are smaller than 1/(Nγ). The effect of the absorption is thus to 
introduce an upper cutoff, which forbids the existence of arbitrarily large time delays.

From the distribution of the reflection matrix rγ  (45), we can deduce7

P(Γ) ∝ e−NtrΓ
∫ γ1N

0
dT det(1N ⊗ Γ− T ⊗ 1N) e−NtrT , Γ > γ1N ,

�

(47)

where we have rescaled the matrix T in the integral by a factor γ , in order to obtain a more 
symmetric expression. This distribution is the first central result of this paper.

First, let us notice that in the limit of no absorption γ → 0, the distribution becomes

P(Γ) ∝ det(Γ⊗ 1N) e−NtrΓ = (det Γ)N e−NtrΓ,� (48)

which is the celebrated Wishart–Laguerre distribution of the inverse Wigner–Smith matrix at 
zero absorption [22, 23].

The distribution (47) is invariant under unitary transformations Γ → UΓU†, with 
U ∈ U(N). This is expected since the N real channels are equivalent, therefore there is no 
preferred basis. The consequence is that the eigenvalues and eigenvectors of Γ become statisti-
cally independent, and the eigenvectors are uniformly distributed. We can therefore integrate 
over the eigenvectors, and deduce the joint distribution of eigenvalues {Γn}8,

P({Γn}) ∝
∏
i<j

(Γi − Γj)
2

N∏
i=1

e−NΓi

∫ γ1N

0
dT

N∏
i=1

det(Γi1N − T) e−NtrT .

� (49)
The integral over the matrix T is also invariant under unitary transformations T → UTU†, 
therefore we can also reduce it to an integral over the eigenvalues {tn} only:

6 We also rescale by a factor N for convenience, since the eigenvalues of Q scale with N as O(N−1).
7 For this, we need the Jacobian of (46). First, we introduce R = r†γrγ, which is associated to the Jacobian 
drγ = 2−NdRdµ(U), where U is a Haar distributed unitary matrix of size N which can be integrated over (see the 
discussion between equations (27) and (28)). Then we have Γ = γ(1 − R)−1, thus dR ∝ (det Γ)−2NdΓ [48].
8 The Jabobian of the eigendecomposition involves the Vandermonde determinant 

∏
i<j |Γi − Γj|β [48], which is 

well known in RMT [51, 52].
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P({Γn}) ∝
∏
i<j

(Γi − Γj)
2

N∏
i=1

e−NΓi

∫ γ

0
dt1 · · · dtN

∏
i<j

(
(ti − tj)2(Γi − tj)

) N∏
i=1

e−NtrT .� (50)

In this form, the integral over the eigenvalues {tn} can be performed using Andréief’s identity 
[53, 54], which gives

P({Γn}) ∝
∏
i<j

(Γi − Γj)
2

N∏
i=1

e−NΓi det

[∫ γ

0
dt tn+m−2 e−Nt

N∏
i=1

(Γi − t)

]

1�n,m�N

.� (51)

This expression is useful to obtain exact expressions for the joint distribution of eigenvalues 
{Γn} for small number N of channels. For example, for N  =  1, this yields

P(Γ) ∝ e−Γ

∫ γ

0
dt (Γ− t) e−t = e−Γ

(
Γ(1 − e−γ) + e−γ(γ + 1)− 1

)
,

� (52)
which coincides with the known result [29]. However, equation (51) is not well suited to anal-
yse the limit of large number N of channels. We will present in section 2.3 a method, based on 
the Coulomb gas technique, which is more convenient in this case. But before that, we now 
extend the result (50) to the other symmetry classes β = 1 or 4.

2.2.  General case

In section 2.1 we have obtained the distribution of the Wigner–Smith matrix Q in the unitary 
case. The derivation that we have presented is difficult to extend to the other symmetry classes 
due to the presence of additional constraints on the scattering matrix (11). For instance, if 
β = 1 the scattering matrix is symmetric: ST = S . This constraint needs to be taken into 
account and leads to additional complications. Instead, we will follow a different approach, 
by focusing on the joint distribution of the eigenvalues of Q. This alternative approach is 
valid in all three symmetry classes. As we have seen in the case β = 2 discussed above, since 
the N channels are equivalent, the eigenvectors of Q are statistically independent from the 
eigenvalues and are uniformly distributed. Therefore, determining the joint distribution of the 
eigenvalues is sufficient to fully characterise the matrix Q.

Our starting point is the joint distribution of the reflection eigenvalues {Rn}n=1,...,N for a 
chaotic cavity perfectly coupled to N channels and Nφ > N  other channels via a tunnel barrier 
T  [45]:

P({Rn}) ∝
∏
i<j

|Ri − Rj|β
N∏

n=1

(1 − Rn)
β
2 −1+ β

2 (Nφ−N)(1 − (1 − T )Rn)
−1− β

2 (2N+Nφ−1)

×
∫ 1

0
dt1 · · · dtNt

∏
i<j

|ti − tj|
4
β

Nt∏
n=1


[tn(1 − tn)]

2
β−1

Nφ∏
m=1

(1 − tn(1 − (1 − T )Rm))


 ,

�

(53)

where Nt = βN/2 and Rn  =  1 for n  >  N. There is a duality between the cases β = 1 and 
β = 4: the distribution of the reflection eigenvalues for β = 1 is given in terms of an integral 
for β = 4, and vice versa. This type of duality has also been found for integrals over the 
Ginibre ensembles [55]. Additionally, for β = 1 the dimension Nt = N/2 of the integral in 
(53) restricts the number of channels to even numbers. The problem of finding a similar rep-
resentation valid for odd number of channels is still open.
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We can obtain the distribution of the reflection eigenvalues in the presence of absorption 
from (53) as we did in the previous section: we set the tunnel coupling T = γN/Nφ, equa-
tion (8), an let Nφ → ∞. This gives

P({Rn}) ∝
∏
i<j

|Ri − Rj|β
N∏

n=1

(1 − Rn)
β−2−3βN/2 e−

βN
2 γ Rn

1−Rn

×
∫ 1

0
dt1 · · · dtNt

∏
i<j

|ti − tj|
4
β

Nt∏
n=1

(
[tn(1 − tn)]

2
β−1e−γNtn

N∏
m=1

(1 − tn(1 − Rm))

)
.

�

(54)

This is the analogous of equation  (45), valid in the three symmetry classes, but this time 
expressed in terms of the eigenvalues of r†γrγ .

From the joint distribution of the reflection eigenvalues in the presence of absorption (54), 
we now deduce the distribution of the eigenvalues of Q, the proper time delays {τn}. Similarly 
to the case β = 2 discussed in section 2.1, it is more convenient to work with the rescaled 
inverse time delays

Γn =
1

Nτn
=

γ

1 − Rn
.� (55)

This relation is the analogous of (46), but expressed in terms of the eigenvalues. Performing 
this change of variables in the distribution (54), and rescaling the integration variables by a 
factor γ , we obtain

P({Γn}) ∝
∏
i<j

|Γi − Γj|β
N∏

n=1

e−
βN

2 Γn

×
∫ γ

0
dt1 · · · dtNt

∏
i<j

|ti − tj|
4
β

Nt∏
n=1

(
[tn(γ − tn)]

2
β−1e−Ntn

N∏
m=1

(Γm − tn)

)
.

� (56)
This joint distribution is the second central result of this paper. It is the extension to β = 1 
and β = 4 of the distribution (50) which we derived above for β = 2. In the limit of weak 
absorption γ → 0, equation (56) reduces to the well-known Wishart–Laguerre distribution of 
the inverse proper time delays [22, 23], equation (2), as it should.

2.3.  Coulomb gas description

The representation (56) can be used to obtain exact expressions for the distribution of the time 
delays in the case of a few open channels N = 1, 2, . . .. In the converse situation of many chan-
nels N → ∞, the Coulomb gas method has proved to be a powerful tool to study different 
quantities involving the eigenvalues of random matrices, such as the mean density or linear 
statistics (quantities of the form 

∑
n f (λn), where the λn’s are the eigenvalues of a matrix and f  is 

any given function, not necessarily linear9). We first recall the main ideas of this technique, and 
show how to adapt it in the case where the joint distribution of eigenvalues involves an integral 
over a domain whose dimension scale as O(N), as in (56). This formalism will be useful to study 
the statistical properties of the Wigner time-delay (1) (which is a linear statistics) in section 3.

The Coulomb gas method has been developed for invariant ensembles of random matrices, 
with a joint distribution of eigenvalues {λn} of the form

9 The name linear comes from the fact that there are no products of different eigenvalues.
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P(λ1, . . . ,λN) ∝
∏
i<j

|λi − λj|β
N∏

i=1

e−NV(λi),� (57)

where V  is a function, called the potential, that diverges sufficiently fast at infinity to ensure 
that the distribution can be normalised (the factor N in the exponent ensures that the eigenval-
ues are of order 1 when N → ∞). This function depends on the ensemble of random matrices 
under consideration (for example V(x) = x2 for the Gaussian ensembles). The idea of the 
Coulomb gas technique is to write the distribution (57) as a Gibbs weight [56]

P(λ1, . . . ,λN) ∝ e−
βN2

2 E0({λn}),� (58)

where we introduced

E0({λn}) = − 1
N2

∑
i�=j

ln |λi − λj|+
1
N

N∑
i=1

V(λi).� (59)

This function can be interpreted as the energy of a gas of particles located at positions λi, 
placed in a potential V(λ), with logarithmic repulsion (hence the name Coulomb gas). For 
large N, the distribution (58) becomes peaked near the minimum of the energy (59). This 
observation leads to important simplifications which allow to solve many problems analyti-
cally in this limit. For a recent overview, we refer to the introduction of [57] and the PhD 
theses [58–60].

In our situation, we cannot apply directly the Coulomb gas method as described above, 
since the distribution of eigenvalues Γn = 1/(Nτn) (56) involves a multiple integral over of 
domain of dimension O(N). Therefore, we need to adapt this method by writing the joint 
distribution (56) in the form

P({Γn}) ∝
∫ γ

0
dt1 · · · dt βN

2
e−

βN2

2 E({Γn},{tn}),� (60)

where we introduced the energy

E({Γn}, {tn}) =
1
N

N∑
i=1

Γi −
1

N2

∑
i�=j

ln |Γi − Γj|

+
2
βN

βN/2∑
n=1

tn −
4

β2N2

∑
n�=m

ln |ti − tj| −
2

βN2

(
2
β
− 1

) βN/2∑
n=1

ln[tn(γ − tn)]

− 2
βN2

N∑
i=1

βN/2∑
n=1

ln(Γi − tn).

�

(61)

This expression can be interpreted as the energy of two Coulomb gases:

	 –	�A first gas of N particles, located at positions Γi > γ . These are the particles of interest, 
as they are related to the eigenvalues of the Wigner–Smith matrix Q. This gas is placed in 
a linear potential V(x) = x and exhibits logarithmic repulsion between the particles (first 
line of equation (61)); 

	 –	�A second gas composed of βN/2 particles, at positions ti ∈ [0, γ]. The particles in this gas 

also repel logarithmically, and are placed in the potential ̃V(t) = t − 1
N

(
2
β − 1

)
ln[t(γ − t)], 

which becomes linear for N → ∞ (second line of equation (61)).
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These two gases interact with each other logarithmically, but the strength of this repulsion is 
half of the one within each gas (see the discussion in section 3). This interpretation is illus-
trated in figure 2.

2.3.1.  Continuous formulation.  Instead of working with the sets of eigenvalues, it is more 
convenient to introduce the two empirical densities

ρΓ(x) =
1
N

N∑
n=1

δ(x − Γn) and ρt(x) =
2
βN

βN/2∑
n=1

δ(x − tn),� (62)

both normalised to unity. In the limit N → ∞, these densities can be replaced by continuous 
ones. Since tn ∈ [0, γ], the support of ρt  is contained in [0, γ]. Similarly, the support of ρΓ is 
contained in [γ,+∞). For N � 1, the distribution of eigenvalues (60) can be replaced by a 
weight over the set densities:

P({Γn})dΓ1 · · · dΓN −→ DρΓ δ

(∫
ρΓ − 1

)∫
Dρt e−

βN2

2 E [ρΓ,ρt] δ

(∫
ρt − 1

)
,� (63)

where the δ-functions ensure that both densities are normalised, and the energy functional E  
is the continuous version of (61):

E [ρΓ, ρt] =

∫
dx ρΓ(x) x −

∫
dxdx′ ρΓ(x)ρΓ(x′) ln |x − x′|

+

∫
dt ρt(t) t −

∫
dtdt′ ρt(t)ρt(t′) ln |t − t′|

−
∫

dxdt ρΓ(x)ρt(t) ln(x − t).

�

(64)

We have neglected the subleading 1
N  corrections, and in particular the entropy which arises 

when replacing the discrete sets of eigenvalues by the continuous densities [56, 61, 62]. We 
will now use this formulation to study the Wigner time delay.

Figure 2.  The Coulomb gases associated to the energy (61), or equivalently to the 
continuous version (64). Two log-gases are placed in a linear confining potential. The 
first gas is confined on [0, γ], while the other one is restricted to [γ,+∞). The particles 
of different gases repel logarithmically, with an interaction weaker (dashed arrow) by a 
factor 2 compared to the repulsion within each gas (solid arrows). For large N, the two 
gases can be described by the continuous densities ρt  and ρΓ.
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3.  Moments of the Wigner time delay

As an application of our results (47) and (56) for the distribution of the Wigner–Smith matrix 
Q, we study the statistical properties of the Wigner time delay

τW =
1
N

trQ =
1
N

N∑
n=1

τn =
1

N2

N∑
n=1

1
Γn

� (65)

in the presence of absorption. (We have used (55) to express τW in terms of the eigenvalues 
{Γn}.) Since the eigenvalues Γn are of order 1, the Wigner time delay scales as N−1 for large N. 
In order to work with quantities which do not scale with N, we introduce the rescaled variable

s = NτW =
1
N

N∑
n=1

1
Γn

.� (66)

We follow an approach similar to [26], where the distribution of τW was derived for γ = 0 
in the large-N limit. However, instead of the distribution we focus on the moment generating 
function of the random variable (66), at fixed absorption rate γ ,

Gγ(µ) =

〈
e−

βN2

2 µs
〉

=

∫
dΓ1 · · · dΓN P({Γn}) e−

βN2

2
µ
N

∑
n 1/Γn ,� (67)

where 〈· · ·〉 denotes the average with respect to the joint distribution (56) and we multiplied 
the argument µ by a factor βN2/2 to coincide with the scaling of the energy. We can replace 
the integration over the eigenvalues {Γn} by a functional integral over the density ρΓ, as pre-
scribed by equation (63):

Gγ(µ) =

∫
DρΓ δ

(∫
ρΓ − 1

)∫
Dρt e−

βN2

2 (E [ρΓ,ρt]+µ
∫

dx ρΓ(x)/x) δ

(∫
ρt − 1

)

∫
DρΓ δ

(∫
ρΓ − 1

)∫
Dρt e−

βN2

2 E [ρΓ,ρt] δ

(∫
ρt − 1

) ,� (68)

where the denominator ensures that Gγ(0) = 1, which follows from the normalisation of the 
distribution. For N � 1, we can estimate these integrals by a saddle point method. They are 
dominated by the densities ρΓ, ρt  which minimise the energy E  under the constraints imposed 

by the δ-functions. We can find this minimum by introducing Lagrange multipliers µ(Γ)
0  and 

µ
(t)
0 . For the numerator, we thus need to find the minimum of

F [ρΓ, ρt;µ]
def
= E [ρΓ, ρt] + µ

(t)
0

(∫
ρt(t)dt − 1

)
+ µ

(Γ)
0

(∫
ρΓ(x)dx − 1

)
+ µ

∫
ρΓ(x)

x
dx.

� (69)
This can be done by taking the functional derivatives of this expression with respect to ρΓ(x) 
and ρt(t). This gives two coupled equations for these densities. As usual in random matrix 
theory, it is more convenient to work with the derivatives of these equations  (with respect 
to x for the equation δF/δρΓ(x) = 0 and to t for δF/δρt(t) = 0). This gives the set of two 
coupled equations:

∫
− dx′

ρΓ(x′)
x − x′

+
1
2

∫
dt
ρt(t)
x − t

=
1
2
− µ

2x2 for x ∈ Supp(ρΓ),� (70)

∫
− dt′

ρt(t′)
t − t′

+
1
2

∫
dx

ρΓ(x)
t − x

=
1
2

for t ∈ Supp(ρt),� (71)
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where 
∫
−  denotes a principal value integral. These two equations can be interpreted as the force 

balance for the two Coulomb gases. Let us look for example at equation (70). On the right-
hand-side, the first term is the force coming from the linear confining potential (this is why it is 
also present in the second equation (71)). The second term, proportional to the argument µ of 
the generating function, acts as an additional force. Since we probe the statistics of a quantity 
(66) that only involves the eigenvalues Γn, this term is not present in (71). On the left-hand-
side of (70), the first term is the force felt by the particle at point x from the repulsion of all the 
other particles in the same gas. The second term is the force felt by the same particle from the 
repulsion of the other gas. The factor 12 shows explicitly that the inter-gas interaction is weaker 
than the intra-gas one. This makes a crucial difference with the situation previously studied in 
the literature where the interaction between the gases is the same as within each gas, see for 
instance [57, 63–65] (in these papers the interaction is the same since the two gases come from 
one global Coulomb gas cut in two parts).

To illustrate the impact of this factor 12, let us look at the situation µ = 0. The solution ρΓ of 
(70) and (71) is the typical density of eigenvalues {Γn} (which is also the density that domi-
nates the denominator in (68)). This density was derived in [31]10, and is expressed in terms 
of a cubic root. On the other hand, equations similar to (70) and (71), but with the same factor 
in front of the two integrals were studied in [65] (there the number of eigenvalues of Wishart 
matrices larger than γ  is studied). In this case, the density is expressed in terms of a square 
root, as it is often the case in random matrix theory [51, 52].

Let us denote ρ�Γ(x;µ) and ρ�t (x;µ) the solutions of the saddle point equations (70) and 
(71). We can then estimate the generating function (68) as11

Gγ(µ) ∼
N→∞

e−
βN2

2 Φγ(µ),� (72)

where

Φγ(µ) = E [ρ�Γ(x;µ), ρ�t (x;µ)] + µ

∫
dx
x
ρ�Γ(x;µ)− E [ρ�Γ(x; 0), ρ�t (x; 0)].

� (73)
In this expression, the last term comes from the denominator of (68). Equation (72) shows that 
the cumulants generating function Gγ(µ) takes a large deviations form, with a large deviations 
function Φγ(µ). In order to compute this function, one should in principle compute the double 
integrals in the energy functional (64). However, it is simpler to use the thermodynamic iden-
tity [60, 66]

dΦγ

dµ
=

∫
dx
x
ρ�Γ(x;µ),� (74)

which is the analogous for the generating function of another thermodynamic identity intro-
duced in the computation of the distribution of linear statistics [67, 68]. This identity allows us 
to easily study the cumulants of s. Indeed, the cumulant generating function is

lnGγ(µ) =

∞∑
k=1

1
k!

(
−βN2µ

2

)k 〈
sk〉

c � −βN2

2
Φγ(µ),� (75)

10 The result for any finite number of channels N is given in [29].
11 The notation X ∼

N→∞
e−

βN2

2 Y  means that limN→∞
−2
βN2 lnX = Y .
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where we have denoted 
〈
sk
〉

c the kth cumulant of s. The cumulants can thus be obtained by 
differentiating Φγ with respect to µ. For example, the first two cumulants are

〈s〉c = 〈s〉 � dΦγ

dµ

∣∣∣∣
µ=0

,� (76)

〈
s2〉

c = Var(s) � − 2
βN2

d2Φγ

dµ2

∣∣∣∣
µ=0

.� (77)

These derivatives can be conveniently computed from the thermodynamic identity (74).
We have reduced the problem of finding the cumulants of the Wigner time delay to finding 

the solutions of the saddle point equations (70) and (71). This is however a complex problem, 
in particular due to the difference of prefactors in front of the integrals (as discussed above). 
Henceforth, we will study the two limiting cases of weak and strong absorption, in which the 
problem simplifies.

3.1.  Weak absorption

Let us first focus on the regime of weak absorption γ � 1. In this limit the left gas, described 
by the density ρt , is confined in a small interval [0, γ], as illustrated in figure 3 (left). Therefore, 
the force balance for this gas (71) is dominated by the repulsion within the density ρt . Both the 
effect of the other gas and of the confining potential can thus be neglected. This will allow us 
to find the solution ρ�t  of (71), which can then be used to solve (70).

Let us formalise this discussion by expanding the force balance equations (70) and (71) in 
powers of γ . First, we introduce the rescaled density (also normalised to unity)

ρ̃t(u) = γ ρt(γu), u ∈ [0, 1],� (78)

in terms of which equation (71) becomes

1
γ

∫
−

1

0
du′ ρ̃t(u′)

u − u′ =
1
2
+

1
2

∫
dx

ρΓ(x)
x − γu

=
γ

2
+

γ

2

∞∑
n=0

(γu)n
∫

dx
ρΓ(x)
xn+1 .� (79)

We can solve this equation in terms of the constants 
∫

dx ρΓ(x)/xn+1, which should be deter-
mined self-consistently later (however as we shall see, these terms will not contribute at the 
leading order in γ). The first of these terms is 

∫
dx ρΓ(x)/x , which is the rescaled Wigner time 

delay s. At leading order in γ , equation (79) becomes

Figure 3.  Sketch of the densities of the two Coulomb gases, solutions of (70) and (71) 
in the two limiting cases. Left: regime of weak absorption (γ � 1). Right: regime of 
strong absorption (γ � 1).
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∫
−

1

0
du′ ρ̃t(u′)

u − u′ =
γ

2
(1 + s) +O(γ2), u ∈ [0, 1].� (80)

This integral equation can be solved explicitly by using an inversion formula due to Tricomi 
[69] (see appendix). This procedure yields

ρ̃t(u) =
1

π
√

u(1 − u)

[
1 +

γ

2
(1 + s)

(
1
2
− u

)
+O(γ2)

]
.� (81)

We can now use this result in the equation for the density ρΓ (70), which becomes

∫
− dx′

ρΓ(x′)
x − x′

=
1
2

(
1 − µ

x2 −
∫ 1

0
du

ρ̃t(u)
x − γu

)

=
1
2

[
1 − 1

x
− µ+ γ/2

x2 +O(γ2)

]
.

�

(82)

Remarkably, the unknown parameter s =
∫

dx ρΓ(x)/x cancels at first order in γ . As we could 
expect, this last integral equation is similar to the one studied in the case without absorption 
(γ = 0) [26]. At leading order, the effect of the absorption is simply to shift the argument µ 
of the generating function by γ/2. Therefore, we can easily relate the cumulant generating 
function for γ > 0 to the one at γ = 0,

Φγ(µ) = Φ0(µ+ γ/2) +O(γ2),� (83)

which we can equivalently express as

Φγ(µ) = Φ0(µ) +
γ

2
dΦ0

dµ
(µ) +O(γ2).� (84)

From this identity between the two generating functions, we can straightforwardly deduce a 
relation between the cumulants of the Wigner time delay with and without absorption:

〈sn〉c = 〈sn〉(γ=0)
c − γβN2

4
〈
sn+1〉(γ=0)

c +O(γ2).� (85)

We recall that this relation holds for large N. Equation (85) expresses the nth order cumulant 
of the rescaled Wigner time delay at weak absorption γ > 0 in terms of the nth and (n + 1)th 

order cumulants at zero absorption. The cumulants 〈sn〉(γ=0)
c  at zero absorption being known 

[25], we can straightforwardly apply the relation (85) to deduce the ones in the presence 
of weak absorption. For the first two cumulants, this yields the expressions (5) given in the 
introduction.

3.2.  Strong absorption

We now analyse the regime of strong absorption γ � 1. In this case, the right gas is pushed 
towards the right by the wall at x = γ , as shown in figure 3 (right). The interaction between 
the two gases thus becomes weak compared to the one within each gas.

To formalise this, let us shift the density ρΓ:

ρ̃Γ(x) = ρΓ(x + γ).� (86)
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Making the substitution x = γ + y into the force balance equation (70), we obtain
∫
− dy′

ρ̃Γ(y′)
y − y′

=
1
2
− µ

2(y + γ)2 − 1
2

∫
dt

ρt(t)
y + γ − t

.� (87)

We see on this expression that if we expand in powers of 1/γ , the term proportional to µ will 
be of order O(γ−2), subleading compared to the last term. In order to compensate this fact, we 
rescale the parameter µ by a factor γ:

µ = γ µ̃.� (88)

In terms of this new parameter, equation (87) becomes
∫
− dy′

ρ̃Γ(y′)
y − y′

=
1
2
− µ̃

2γ
− 1

2γ
+O(γ−2),� (89)

where we have used that ρt  is normalised to unity. We can use Tricomi’s theorem (see appen-
dix) to solve this equation. Let us denote [a, b] the support of ρ̃Γ, we obtain

ρ̃Γ(y) =
1

π
√
(y − a)(b − y)

[
1 +

1
2

(
1 − µ̃+ 1

γ

)(
a + b

2
− y

)
+O(γ−2)

]
.

� (90)
Since there is no repulsion from y   =  0, we have a  =  0. The value of b can be determined by 
imposing that the density vanishes at y   =  b. This means that the bracket in (90) is zero for 
y   =  b. Hence

b = 4 +
4(1 + µ̃)

γ
+O(γ−2),� (91)

and the density (90) takes the form

ρ̃Γ(y) =
1

2π

√
b − y

y

(
1 − µ̃+ 1

γ
+O(γ−2)

)
.� (92)

From the thermodynamic identity (74), we deduce the expression of the cumulant generating 
function in terms of ρ̃Γ:

dΦγ

dµ
=

1
γ

dΦγ

dµ̃
=

∫ b

0

dy
y + γ

ρ̃Γ(y) =
∞∑

n=0

(−1)n

γn+1

∫
dy ρ̃Γ(y) yn.� (93)

Since ρ̃Γ is normalised to unity, the first term of this series is 1/γ . We thus have

1
γ

dΦγ

dµ̃
=

1
γ
− 1

γ2

∫
dy ρ̃Γ(y) y +

1
γ3

∫
dy ρ̃Γ(y) y2 +O(γ−4).� (94)

Using the expression of the density ρ̃Γ (90), we obtain

1
γ

dΦγ

dµ̃
=

1
γ
− 1

γ2 +
1 − µ̃

γ3 +O(γ−4).� (95)

From this expansion, we deduce the first two cumulants by taking derivatives of the generat-
ing function,

〈s〉 = dΦγ

dµ

∣∣∣∣
µ=0

=
1
γ

dΦγ

dµ̃

∣∣∣∣
µ̃=0

=
1
γ
− 1

γ2 +
1
γ3 +O(γ−4),� (96)
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Var(s) = − 2
βN2

d2Φγ

dµ2

∣∣∣∣
µ=0

= − 2
βN2γ2

d2Φγ

dµ̃2

∣∣∣∣
µ̃=0

=
2

βN2γ4 +O(γ−5),

� (97)
which correspond to the expression (6) given in the introduction.

4.  Conclusion

We have considered the scattering of waves by a chaotic absorbing cavity, perfectly coupled 
to N channels. Within the random matrix theory framework, we have derived the distribution 
of the Wigner–Smith time delay matrix Q for any absorption rate γ . This result thus extends 
the one of Brouwer et al [22, 23] obtained for zero absorption γ = 0, to any absorption γ > 0. 
Our distribution is expressed either in terms of an integral over a N × N  positive Hermitian 
matrix, or over its eigenvalues. Although providing the distribution of Q in the presence of 
absorption in most situations, our derivation should still be extended to yield the distribution 
for odd number of channels in the orthogonal class β = 1.

We have shown how our distribution can be interpreted, in the limit of many channels 
N → ∞, in terms of two interacting Coulomb gases. We have applied this formalism to analyse 
the cumulants of the Wigner time delay τW = trQ/N . In particular, we have obtained the first 
cumulants in the two limits of weak (γ → 0) and strong (γ → ∞) absorption. Furthermore, 
we have established a relation between the cumulants of τW at weak absorption and the ones 
at zero absorption.

It would be interesting to see if one could derive the expression of the cumulants of τW 
for any number N of channels from our new distribution, thus extending the results known 
at γ = 0 [25]. The double Coulomb gas method that we have introduced in this paper could 
probably be extended to find the full distribution of the Wigner time delay in the presence of 
absorption (for N � 1), as it was done for the case without absorption [26]. The situation is 
however more complex here as it requires a more detailed analysis of the saddle point equa-
tions (70) and (71). Our technique could also be used to study other linear statistics involving 
the Wigner–Smith matrix, such as trace of higher powers trQk and their correlators, which 
have been computed for γ = 0 [70].
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Appendix. Tricomi’s theorem

Tricomi’s theorem gives an explicit form for the solution of integral equations of the type
∫
− dx′

f (x′)
x − x′

= g(x), x ∈ Supp( f ),� (A.1)
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where 
∫
−  denotes a principal value integral. If we assume that the support of the solution f  has 

a compact support [a, b], it can be expressed as [69]

f (x) =
1

π
√
(x − a)(b − x)

[
A +

∫
− dt

π

√
(t − a)(b − t)

t − x
g(t)

]
,� (A.2)

where A =
∫ b

a f (x)dx is a constant. In the situation considered in this paper, the function f  is a 
density of eigenvalues, normalised to unity, thus A  =  1.
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