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The ability to synthesize systems made of active or driven com-
ponents has opened new perspectives for materials design1–7. 
Concurrently, significant efforts have been made to expand 

continuum mechanics to accommodate systems featuring broken 
spatiotemporal symmetries8–12, as well as violations of reciprocity 
relations13–15 and conservation laws16–18. Formulating a continuum 
theory of active elasticity presents a challenge, because in equilib-
rium such theories are based on the notion of an elastic potential 
energy, which is absent in many active systems. In this Article, we 
examine linear elasticity without making the assumption that an 
elastic potential energy exists and study the emergent phenomena 
in two-dimensional (2D) and 3D active solids.

Odd-elastic moduli and quasistatic energy cycles
One of the central assumptions of classical elasticity is that the work 
needed to quasistatically deform a solid depends only on its initial 
and final states19,20. However, if the microscopic constituents of the 
solid are active, then the work can be path-dependent. Consider, for 
example, the network of masses connected by active bonds depicted 
in Fig. 1a. When the bond elongates or contracts, a gear system 
rotates the battery-powered propellers to produce transverse forces 
(Supplementary Video 1). For small strains, the force law is linear in 
the displacements and is given by

FðrÞ ¼ ð�kr̂þ kaϕ̂Þ δr ð1Þ

where δr = r − r0 is the radial displacement from the equilibrium 
length r0, and r̂

I

 and ϕ̂
I
 are the unit vectors parallel and perpen-

dicular to the bond, respectively (Fig. 1b,c). Equation (1) describes 
a Hookean spring of spring constant k with an additional chiral, 
transverse force proportional to ka. When the bond vector is brought 
through a strain-controlled quasistatic cycle, as shown in Fig. 1d,e, 
the bond does work given by W = ∮F ⋅ dr. Because ∇ × F = ka for 
small displacements, the work done is equal, by Green’s theorem, 
to ka times the area enclosed by the path. The ability to extract 
work implies that equation (1) does not follow from a potential 

energy and is necessarily active regardless of the physical realiza-
tion. Nonetheless, the interaction conserves linear momentum and 
depends only on the relative positions of the particles.

We now ask ‘What is the continuum description of a material 
built out of many such active components?’ Because the energetic 
state of each microscopic unit has quasistatic path dependence, an 
elastic potential energy is not well defined. Nonetheless, a stress–
strain relation exists and can be linearized for small deformations. 
This approximation, known as Hooke’s law, is captured by the con-
tinuum equation σij(x) = Cijmnumn(x), where umn(x) are the gradi-
ents ∂mun(x) of the displacement vector un(x) and Cijmn is the elastic 
modulus tensor. In the absence of an elastic potential energy, the 
most general linear relationship between stress and displacement 
gradient for a 2D isotropic solid reads:

irrespective of the details of the microscopic realization (see 
Methods). In equation (2), we assumed that no stresses arise from 
solid body rotations of the material.

The notation in equation (2) is a geometric representation of 
Hooke’s law, σij = Cijmnumn. The displacement gradients on the right-
hand side are decomposed into a vector with four independent 
components: dilation (top entry), rotation (second entry) and the 
two shear deformations S1 and S2 (third and fourth entries, respec-
tively), which are irreducible representations of SO(2). Similarly, the 
stress vector on the left-hand side of equation (2) is decomposed 
into pressure (top entry), torque (second entry) and the two shear 
stresses (third and fourth entries, respectively). We express equation 
(2) in standard tensor notation in equation (27) of the Methods, and 
provide an analogous expression for the well-known odd viscosity 
tensor in the Supplementary Information. Although only two elas-
tic moduli, the bulk modulus B and shear modulus μ, are sufficient 
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to describe passive isotropic media, equation (2) features two 
additional moduli: A and Ko

I
. The modulus A couples compression 

(and dilation) to an internal torque density (Fig. 2a). By contrast, Ko

I
 

does not entail a net torque density, but instead implies an antisym-
metric shear coupling, which corresponds to a 45° rotation clock-
wise between the applied shear strain and the resulting shear stress 
(Fig. 2b). When the microscopic bond in Fig. 1a is placed on a tri-
angular lattice, an analytical coarse-graining reveals B ¼ 2μ ¼

ffiffi
3

p

2 k
I

 
and A ¼ 2Ko ¼

ffiffi
3

p

2 ka

I
 (see Supplementary Information for details).

The asymmetry of the elastic modulus matrix in equation (2) 
captures a non-reciprocal, linear response in the continuum, which 
echoes the non-reciprocal linear response of a single microscopic 
bond in Fig. 1. Equivalently, moduli A and Ko

I
 violate the symmetry 

of the elastic modulus tensor Cijmn = Cmnij, which applies whenever 
the stresses arise from gradients of a free energy f ¼ 1

2Cijmnuijumn

I
 

(see Methods). Microscopic units with quasistatic path-dependent 
work, for example those in Fig. 1, can give rise to an additional 
contribution to the elastic modulus tensor: Cijmn ¼ Ce

ijmn þ Co
ijmn

I
 

with Co
ijmn ¼ �Co

mnij

I
, which we refer to as odd elasticity as it is anti-

symmetric (or odd) under exchange of the first and second pair 
of indices. The moduli present in Co

ijmn

I
 are forbidden by energy 

conservation, but allowed in active media and metamaterials with 
non-conservative interactions. For example, the modulus Ko

I
 is 

compatible with broken microscopic time-reversal symmetry in 
active biological surfaces8.

Given that Co
ijmn

I
 cannot be obtained from a free energy, an odd-

elastic solid may be taken through a closed cycle of quasistatic 
deformations with non-zero total work Δw ¼

H
Co
ijmnumnduij

I
 done 

by (or on) the material, as anticipated by the microscopic cycles 
shown in Fig. 1. (See the Methods for a proof.) In Fig. 2c, we apply 
this general formula to a 2D isotropic solid and illustrate such a 
cycle using rotations and dilations. The initial and final configura-
tions are identical; hence, zero work is done by the conservative part 
Ce
ijmn

I
. By contrast, the total work done due to the odd contribution 

Co
ijmn

I
 is equal to the modulus A times the area enclosed by the cycle 

in the space of rotations and dilations. Figure 2d shows an analo-
gous cycle that involves only shear stress and shear strain. During 
an odd-elastic cycle, the energy generated or lost depends only on 
the geometry of the path through strain space and not on the strain 
rate _umn

I
, in contrast to friction or dissipation, which always lead to 

energy loss. Other active solids like muscles do work by a differ-
ent mechanism21: as they elongate and contract along the same path 
in strain space, their active stresses change according to chemical 
signals instead of strain. By contrast, stresses due to odd elasticity 
depend on strain alone, and the work extracted depends on the area 
enclosed in strain space.

Active forces, symmetries and conservation laws
To illustrate how odd elasticity compares to other manifestations of 
activity in solids1,3,11,16,22,23, we write the linear active forces Fa

j

I
 in the 

following more general form (see Methods):

Fa
j ¼ gjðu; _u;∇u; ¼ Þ þ ∂iðCijmnumn þ ηijmn _umnÞ ð3Þ

The first term gj summarizes non-viscoelastic active forces. These 
forces can be constant or explicitly proportional to displacement ui, 
velocity _ui

I
, strain uij (refs. 14,24,25), strain rate _uij

I
, or to fields other 

than ui, such as temperature and electromagnetic fields2,13, or addi-
tional order parameters18. This term includes active body forces 
such as those exhibited by solids formed by self-propelled particles 
that manifestly violate conservation of linear momentum26,27. The 
second term on the right-hand side of equation (3) captures the 
forces that result from the divergence of the viscoelastic stress ten-
sor, that is, from two spatial derivatives of displacement and veloc-
ity. It is well known that energy sources can renormalize the values 
of the passive elastic moduli or viscous coefficients that enter the 
symmetric part of Cijmn or ηijmn, for example negative compressibil-
ity17,28 and viscosity29. Activity can also result in odd (or Hall) viscos-
ity, which is the antisymmetric part of the viscosity tensor denoted 
by ηoijmn ¼ �ηomnij

I
 (refs. 9,10,30–32). However, all the aforementioned 

effects are physically distinct from odd elasticity, which pertains 
to the antisymmetric part of Cijmn and is a crucial, but previously 
absent, piece in the phenomenology of linear active solids.

The distinction between odd and classical elasticity can be 
understood from the point of view of conservation laws. In clas-
sical elasticity, energy conservation is assumed by demanding that 
an elastic potential exists. Linear and angular momentum conser-
vation, by contrast, is derived from Noether’s theorem under the 
assumption that solid body translations and rotations do not cost 
elastic potential energy. In lieu of an elastic potential, odd elasticity 
directly assumes that the elastic stresses must be due to gradients of 
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Fig. 1 | Quasistatic energy cycles with non-conservative active bonds. 
a, A mechanical realization of equation (1). Two propellers, mounted on 
platforms connected by a Hookean spring, are powered by batteries and 
blow air at a constant rate. As the platforms slide together (or apart),  
a gear system rotates the propellers, giving rise to transverse forces.  
An elongated configuration is shown. A triangular lattice built out of such 
active bonds exhibits odd elasticity. b,c, The concrete schematic (b) and 
conceptual diagram (c) illustrate the linearized force law, given by equation 
(1). The key feature is an active transverse force (red arrows) proportional to 
strain (black arrows). (The Hookean spring provides a radial restoring force, 
not shown.) This interaction is non-reciprocal: extension and compression 
induce torque, while rotation does not induce or relieve tension. 
Nonetheless, the interaction conserves linear momentum because the 
forces on each end of the bond are equal and opposite. d,e, When the bond 
is brought on a strain-controlled quasistatic cycle, the work done by the 
radial forces Fr during legs 2–3 and 4–1 sums to zero. However, the transverse 
force Fϕ does work during leg 3–4 that is not compensated elsewhere during 
the cycle. For small angles δϕ and strains δr/r0, the work done by the bond 
on a quasistatic cycle is equal to ka times the area enclosed.
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displacement, which is sufficient to ensure linear momentum con-
servation, but not angular momentum conservation (see Methods). 
As a consequence, an odd-elastic solid can experience an internal 
torque density even when solid body rotations do not induce stress. 
For example, in the microscopic model shown in Fig. 1, compres-
sion and elongation result in microscopic torques, which then leads 
to the elastic modulus A in the continuum limit.

Given the appearance of additional elastic moduli, for example 
A and Ko

I
 in equation (2), a natural question is how to control their 

relative values by microscopic design. For example, are there micro-
scopic building blocks for odd elasticity that, in contrast to Fig. 1, 
conserve angular momentum? In the Supplementary Information, 
we show that such a unit must involve non-pairwise interactions. 
Extended Data Fig. 1a shows an example built from motorized 
hinges that exert angular tensions to widen or contract each angle of 
a honeycomb plaquette. Crucially, each motor is designed to exert 
an angular tension proportional to the angular strain of its counter-
clockwise neighbour only. This is captured by the equation

Ti ¼ �κδθi � κaδθi�1 ð4Þ

where Ti and δθi are, respectively, the angular tension and displace-
ment of the ith vertex, κ provides passive bond bending stiffness and 
κa provides the crucial non-conservative, non-reciprocal response. 
Like the model in Fig. 1, equation (4) does not follow from a poten-
tial because the active plaquette may be brought through a quasi-
static cycle that extracts energy, as shown in Extended Data Fig. 
1b. Moreover, linear momentum is conserved and the forces only 
depend on the relative positions of the particles. However, given 

that each angular motor, by definition, exerts equal and opposite 
torques on its two constituent edges, the total angular momentum is 
conserved, in contrast to the active bonds in Fig. 1. As a result, the 
modulus A, and any entry in the second row of the matrix in equa-
tion (2), must be zero for a material built out of these plaquettes. We 
note that the microscopic models in both Fig. 1 and Extended Data 
Fig. 1 will also give contributions to the antisymmetric parts of the 
viscosity tensor ηoijmn ¼ �ηomnij

I
 in a viscoelastic solid when δr and 

δθi in equations (1) and (4) are replaced by δ_r
I

 and δ _θi
I

, respectively 
(see Supplementary Information). Furthermore, both the micro-
scopic models are chiral. In the Supplementary Information, we 
show that 2D odd-elastic solids must be chiral provided that they 
are isotropic, but anisotropic ones need not be.

The concept of odd elasticity extends naturally to three dimen-
sions. In analogy to equation (2), a full classification of odd elasticity 
in 3D is obtained by decomposing the strain tensor using irreduc-
ible representations of SO(3) (see Supplementary Information). The 
elastic modulus tensor displays up to 36 moduli that are not present 
in standard elasticity because they cannot be derived from an elastic 
potential, and these moduli yield up to four independent elastic energy 
cycles. A 3D odd-elastic solid must necessarily be anisotropic33,34,  
and the elastic modulus tensor in 3D is always achiral, irrespective 
of odd elasticity. We note that odd elasticity cannot exist in solids 
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Fig. 2 | Odd-elastic engine cycle. a, The odd modulus A couples 
compression to an internal torque density, while rotations induce no 
stresses. The applied strains are represented by black arrows, the 
undeformed shape by dashed lines and the internal stresses by blue icons. 
b, The odd modulus Ko

I
 couples the two independent shear deformations. 

Unlike shear coupling in anisotropic passive solids, the induced stress is 
always rotated 45° counterclockwise relative to the applied strain. c, An 
odd-elastic material is subjected to a closed cycle in deformation space. 
First, a counterclockwise rotation is followed by a volumetric strain ϵV, 
inducing a torque density AϵV. Next, the object does work AϵVϵθ on its 
surrounding as it is rotated clockwise through an angle ϵθ, before being 
compressed to its original size. The total work done is A times the area 
enclosed in deformation space: ϵVϵθ. d, An analogous cycle involving only 
shear stress and shear strain.
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Fig. 3 | Static response in an odd-elastic solid. a, A honeycomb lattice 
with nearest-neighbour and next-nearest-neighbour odd springs can have 
Ko>0
I

 and A = 0 (and B, μ > 0). When subject to uniaxial compression, 
such a solid responds by both net contraction (proportional to ν (blue)) 
and horizontal deflection (proportional to νo (red)). b, Force balance in the 
uniaxial compression, shown schematically. Net strain can be decomposed 
into compression and shear in two directions. The resulting boundary 
stresses (arrows) cancel pressure on the top and bottom surfaces and 
maintain no stress on the sides. Black arrows show the response in the 
absence of odd elasticity and red arrows show the stresses due to Ko

I
.  

c, Analytical calculations for the odd and Poisson’s ratios with numerical 
validation. Simulations are performed using the honeycomb lattice  
(see Supplementary Information).
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embedded in one dimension because the elastic modulus tensor is a 
scalar and hence cannot be antisymmetric.

Odd elastostatics
In the presence of odd elasticity, even the most familiar elastic phe-
nomena appear in a new guise. Consider, as an example, Poisson’s 
ratio ν � � uxx

uyy

I

, which is the ratio between horizontal strain uxx 
and vertical strain uyy under uniaxial compression along ŷ

I

. In the 
absence of odd elasticity, Poisson’s ratio can be made negative by 
altering the bulk and shear moduli B and μ, for example via the 
geometry of the microscopic structures35–38 or energy flux28. Here, 
we focus on the effect of odd elasticity, which does not alter B and μ, 
but instead introduces additional elastic moduli.

Figure 3a shows the uniaxial compression of an odd-elastic 
material having Ko

I
, B, μ > 0 and A = 0. In the Supplementary 

Information, we show that as 2Ko

B

�� ��
I

 increases, the Poisson’s ratio of a 
stable odd-elastic solid approaches ν = −1, the auxetic limit of stable 
passive solids. Moreover, an additional response, not observed in 
passive elasticity, emerges, where the odd solid exhibits a horizon-
tal deflection of the top surface with respect to the bottom surface, 

which we quantify via the odd ratio, ν0 � � uyx
2uyy

I

. Whereas in pas-
sive isotropic solids the odd ratio is zero due to left–right symmetry, 
the odd shear coupling Ko

I
 manifestly breaks chiral symmetry and 

thus allows for deflection. In Fig. 3c, we plot analytical predictions 
for ν and νo as solid black lines. To validate our analytical results, 
we simulate a honeycomb lattice with nearest-neighbour and next-
nearest-neighbour active bonds for which A = 0. Using an analytic 
coarse-graining procedure (see Supplementary Information), we 
obtain the values of Ko

I
, μ, B and A from the microscopic spring 

constants. The measured Poisson’s ratio, plotted in Fig. 3c, agrees 
well with the prediction of the continuum theory without any fitting 
parameters.

Odd elastodynamics
Now we turn to odd elastodynamics. In passive materials, elas-
tic waves cannot propagate when either (1) the bulk and shear 
moduli are vanishingly small, B = μ = 0, or (2) the solid is over-
damped. By contrast, odd-elastic solids exhibit waves that propa-
gate without any attenuation when both of these conditions are 
met because activity provides the energy to overcome dissipation 
in each wave cycle. Figure 4a shows a snapshot of a plane wave 

x q

y

x
y

z

Stress

Strain

Shear 1

Work =
2K o × area

Work =
2K o

2 × area

Shear 2

2Da c

db

3D

Tim
e

Shear 4

Shear 5

Stress

Strain

Tim
e

q

Fig. 4 | Odd-elastic waves. a, Real-space profile of an overdamped odd-elastic wave travelling in the positive x̂

I

 direction (for Ko

I
 ≫ A, B, μ). The light grey 

background shows the undeformed material; the wave deforms the background grid into the thick black mesh. The ellipses illustrate the shear strain in 
a material patch and the disk-confined arrows represent the local shear stress. b, If a single material patch is tracked in time, the strain in the material 
traces out a circle in shear space. This circular trajectory encloses an area in strain space such that internal energy balances dissipative losses. The other 
essential ingredient for wave propagation is that stress and strain inside each patch are 90° out of phase (colour represents time) (Supplementary Video 
2). c, A 3D odd-elastic wave travelling in a viscoelastic medium. The background grey represents the undeformed solid, and the coloured interior and thin 
black frame represent a snapshot of the wave. Black arrows represent the displacement field and trace out a helix in the ẑ

I

 direction. d, The cycle traced out 
by a single patch of material in strain space. The wave is powered by an odd-elastic engine cycle in the space of shear 4 and shear 5, which are unique to 
three dimensions (see Supplementary Information).
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travelling to the right in an overdamped solid in which Ko

I
 ≫ A, B,  

μ (Supplementary Videos 2 and 3). The overdamped equation of 
motion is Γ _uj ¼ ∂iσij

I
, where Γ is a friction coefficient with a sub-

strate. (The momentum-conserving case of viscous damping, in 
which the dissipation is due to the relative velocity of solid particles, 
is treated in the Supplementary Information.) The coloured ellipses 
in Fig. 4a (cf. Fig. 2d) represent the strain in regions bounded 
by the thick, black lines, with the corresponding shear stresses 
shown in the row underneath. In Fig. 4b, we plot the stress and 
strain of a single deformed square as a function of time (indicated 
by colour) in the space of shear S1 and S2. Figure 4c,d shows the 
analogous plots for a wave travelling in a 3D odd-elastic medium  
(see Supplementary Information for a detailed treatment).

Figure 4b illustrates two crucial features of waves in an over-
damped odd-elastic solid. First, stress and strain are 90° out of 
phase due to the antisymmetric shear coupling Ko

I
. Thus, stress 

and strain in an overdamped odd-elastic wave mimic the phase 
delay between strain and velocity that enables wave propagation in 
underdamped passive solids. Second, the trajectory of the wave in 
strain space traces out a circle. This circle indicates the emergence 
of an autonomous, self-sustaining elastic engine cycle, in which the 
system converts internal energy into mechanical work to offset dis-
sipative losses (Fig. 2c). The speed of the wave, calculated in the 
Supplementary Information, can be intuited using a simple argu-
ment based on the balance of activity and dissipation. For a wave of 
amplitude R and wave number q, an infinitesimal piece of material 
traces out a circle in strain space of radius qR, and so the energy 
injected due to activity is 2Ko ´ area ¼ 2πKoðqRÞ2

I
. The energy loss 

due to dissipation in a single cycle is Γ × velocity × distance trav-
elled = 2πΓωR2. Balancing the energy injected with the energy dis-
sipated, one obtains the dispersion ω ¼ Koq2=Γ

I
, and therefore the 

group velocity dω=dq ¼ 2Koq=Γ
I

.
More generally, when B, μ, A and Ko

I
 are all non-zero, the equa-

tion of motion reads

�iωΓ
uk
u?

� �
¼ �q2

Bþ μ Ko

�Ko � A μ

� �
uk
u?

� �
ð5Þ

where u∥ is the longitudinal displacement and u⊥ is the transverse 
displacement. To obtain the spectrum, we solve the secular equation 
corresponding to equation (5) (see Supplementary Information for 
the full expression). The active moduli enter the spectrum through 
the quantity J ¼ KoðKo þ AÞ

I
. The qualitative behaviour of the solid 

changes depending on whether J is above or below the threshold 
value (B/2)2. For large J, waves propagate but attenuate exponen-
tially with a rate proportional to B/2 + μ. When J is smaller than the 
threshold, there is a sharp cutoff below which the real part of the 
spectrum vanishes, and no waves propagate. The phase diagram in 
Fig. 5a summarizes the dynamic behaviour of isotropic odd-elastic 
solids, with the transition highlighted in red.

The matrix on the right-hand side of equation (5) times −q2 is 
known as the dynamical matrix. Because odd elasticity arises from 
linear, non-reciprocal interactions, the dynamical matrix is non-
Hermitian. As illustrated in Fig. 5b and Supplementary Video 4, 
the onset of odd-elastic waves displays characteristic features of 
non-Hermitian systems. In the absence of activity (circle symbol), 
the two eigenmodes are longitudinal and transverse. As activity 
increases, the eigenvectors are no longer orthogonal, and at the 
threshold ka=kj j ¼ 1ffiffi

3
p

I

, the eigenvectors become co-linear (star sym-
bol). The singularity caused by the degeneracy of the eigenvectors is 
a hallmark feature of non-Hermitian dynamics and is known as an 
exceptional point39,40. Above the exceptional point (square symbol), 
odd-elastic waves propagate with circular polarization, tracing out a 
spiral in shear space due to attenuation. In the limit ka=kj j  1

I
, the 

waves become self-sustaining and the spiral expands into an ellipse.

To understand the spectrum at shorter wavelengths, a micro-
scopic structure must be specified. In Fig. 5c, we consider an 
unbounded triangular lattice of springs with conservative spring 
constant k and odd spring constant ka. Analytic coarse-graining 
shows that this microscopic realization corresponds to a position 
(set by ka/k) on the dashed line in Fig. 5a. Elasticity describes the 
dynamics in the neighbourhood of Γ, and the ΓMKΓ cut in Fig. 5c 
shows how the wave propagation threshold varies depending on the 
wavevector within the Brillouin zone. At zero activity, the spectrum 
of the triangular lattice is pierced by Dirac points at K and Γ. The 
exceptional points at K split into exceptional rings that flow out-
ward. When ka=kj j ¼ 1ffiffi

3
p

I

 the exceptional rings merge along the line 
ΓK and the bands open. The middle inset of Fig. 5c highlights the 
regions in the Brillouin zone (light grey) for which waves can propa-
gate when, as an example, ka

k

�� ��
I

 is given by the horizontal dashed line. 
The surprising feature is the existence of waves at short length scales 
well below the critical value in the continuum theory of Fig. 5a.

Future work will explore applications of our findings to biome-
chanical systems8,41–43, kinematics of systems with transverse inter-
actions such as gyroscopes or vortex lattices44, viscoelastic quantum 
Hall states45 and active metamaterials14,46 functioning as emergent 
soft robots that harvest energy, transmit it using odd mechanical 
waves and perform work at designated sites. In addition, odd elas-
ticity provides an alternative approach to design energy-absorbing 
materials that exploit quasistatic cycles instead of rate-dependent 
deformations.
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diagram for waves in an overdamped odd-elastic solid. The red curves 
represent the boundary outside of which active waves can be sustained. 
c, A cut (ΓMKΓ) through the space of wavevectors (first Brillioun zone) 
of a triangular lattice with generalized Hookean springs. The microscopic 
activity in the springs is characterized by the ratio ka

k

�� ��
I

 between odd spring 
constant ka and conservative spring constant k. The threshold for active 
waves varies across the Brillioun zone, with the elastic limit describing 
the region near Γ. The middle inset shows the regions of the Brillouin 
zone (light grey) in which waves propagate (for ka

k

�� ��
I

 corresponding to the 
horizontal dashed line). b, The eigenmodes for three relative values of the 
elastic moduli, showing trajectories in shear space (S1 and S2, Fig. 4). At 
zero activity (circle symbol), the modes correspond to longitudinal and 
transverse waves, whose eigenvectors are orthogonal in S1–S2 space. At 
the exceptional point (star symbol), the eigenmodes become co-linear. 
Above the exceptional point (square symbol), the eigenmodes acquire a 
circular polarization, performing a spiral through simultaneous rotation and 
attenuation in strain space. See Supplementary Video 4.
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Methods
Elastic energy and symmetries of the elastic modulus tensor. The standard theory 
of elasticity begins with the postulation of an elastic free energy density f (for 
example, ref. 19). The free energy density is a function of the displacement field ui,  
which is the order parameter arising from the translational degrees of freedom 
of the microscopic constituents. The requirement that the elastic free energy be 
invariant under translations of the solid implies ∂f∂ui ¼ 0

I
, so the free energy is only 

a function of gradients of uj. In the limit of long-wavelength deformations, the 
lowest-order gradient uij = ∂iuj dominates. Mechanical stability implies ∂f∂uij

juij¼0
¼ 0

I

,  
so the lowest-order term in strain must be quadratic. To linear order, the distances 
between points change only due to changes in the symmetrized displacement 
gradients usij  1

2 ð∂iuj þ ∂juiÞ
I

. Therefore, usij
I

 defines the linear strain tensor, and the 
elastic free energy may be written as

f ¼ 1
2
Kijmnu

s
iju

s
mn ð6Þ

where Kijmn is a constant rank-4 tensor.
The stress tensor is given by

σeqij ¼ ∂f
∂usij

¼ 1
2
ðKijmn þ KmnijÞusmn ð7Þ

Thus, we obtain the constitutive relation σeqij ¼ Cijmnusmn

I
, where Cijmn is known as 

the elastic modulus tensor. From equation (7) we see that

Cijmn ¼ 1
2
ðKijmn þ KmnijÞ ¼ Cmnij ð8Þ

Therefore, if a solid medium obeys a linear constitutive relation that follows from 
a free energy, then the elastic modulus tensor must obey the major symmetry 
Cijmn = Cmnij. Note that the definition σeqij � ∂f =∂usij

I
 implies that the stress is 

symmetric, σeqij ¼ σeqji
I

 (because usij
I

 is symmetric). In turn, this means that the non-
active solid has no internal torques (evaluated as σeqij ϵij ¼ 0

I
, where ϵij is the 2D 

Levi-Civita symbol).
To consider an odd-elastic component Co

ijmn ¼ �Co
mnij

I
, we cannot start in 

the usual way from an elastic free energy. Instead, we begin from the constitutive 
relations directly: σij ¼ Cijmnusmn

I
. If, unlike equation (7), the constitutive relations 

are not derived from an elastic free energy density, then an odd-elastic component 
can exist. Materials with non-zero Co

ijmn

I
 violate Maxwell–Betti reciprocity, that is, 

mechanical reciprocity in their static response. Unlike ref. 15, the non-reciprocity 
is present already in the linear response and relies on activity rather than 
nonlinearities in the microscopic structure. Furthermore, the non-reciprocity due 
to Co

ijmn

I
 is distinct from that observed in piezoelectrics2,13, which concerns the 

electromagnetic degrees of freedom, and from viscous effects, which depend on 
strain rate20. See Supplementary Section I for more details.

Classification of 2D elastic moduli. We now examine the basic features of linear 
elasticity in the absence of an elastic potential energy. To begin, we suppose a solid 
body undergoes a deformation such that a point originally located at position x 
(having components xi) ends up at location Xi(x). We define the displacement 
vector field for the solid to be ui(x) ≡ Xi(x) − xi, and define the displacement 
gradient tensor to be uij(x) ≡ ∂iuj(x) (that is, uij is related to the deformation 
gradient tensor Λij ≡ ∂Xi(x)/∂xj via uij = Λij − δij, where δij is the Kronecker-δ). Note 
that, to linear order, uij plays the role of an unsymmetrized elastic strain tensor, 
which under the assumption of deformation dependence (see below) can be 
symmetrized in the usual way. The continuum version of Hooke’s law postulates 
that if the displacement gradients are sufficiently small, the stress field σij(x) 
induced in a solid due to the displacement gradients is given by

σijðxÞ ¼ CijmnumnðxÞ ð9Þ
where Cijmn is known as the elastic modulus tensor. In what follows, we assume that 
the material is homogeneous, which implies that Cijmn is constant in space. The 
components of Cijmn are known as elastic moduli, and they are the coefficients of 
proportionality between stress and strain that characterize the elastic behaviour of 
a solid.

As we now show, basic assumptions about the interactions within the solid, 
such as conservation of angular momentum and conservation of energy, guarantee 
symmetries of the elastic modulus tensor. For convenience, we work in two 
dimensions (see Supplementary Information for the 3D case) and we introduce the 
following basis for 2 × 2 matrices:

τ0 ¼ 1 0

0 1

� �
ð10Þ

τ1 ¼ 0 �1

1 0

� �
ð11Þ

τ2 ¼ 1 0

0 �1

� �
ð12Þ

τ3 ¼ 0 1

1 0

� �
ð13Þ

In this basis, we define

u0ðxÞ ¼ τ0ijuijðxÞ Dilation ð14Þ

u1ðxÞ ¼ τ1ijuijðxÞ Rotation ð15Þ

u2ðxÞ ¼ τ2ijuijðxÞ Shear strain 1 ð16Þ

u3ðxÞ ¼ τ3ijuijðxÞ Shear strain 2 ð17Þ

These four independent components define the full displacement gradient tensor 
and can be interpreted as follows. The quantity u0 measures the local, isotropic 
dilation of the solid. A dilation corresponds to change in area without change in 
shape or orientation. By contrast, u1 measures the local rotation, which corresponds 
to change in orientation without change in shape or area. Under transformations 
of 2D space, u0 has the symmetry of a scalar and u1 has the symmetry of a pseudo-
scalar. The two components u2 and u3 define the shear strain, which corresponds 
to change in shape without change in area or orientation. Under rotations of 2D 
space, u2 and u3 both behave as bivectors, that is, double-headed arrows. The space 
spanned by τ2 and τ3 is precisely that of symmetric traceless tensors. Specifically, 
u2 measures shear strain with extension along the x axis and contraction along the 
y axis (or vice versa), which we dub shear 1 for convenience. On the other hand, 
u3 measures shear 2, which has the axis of extension rotated 45° counterclockwise 
with respect to shear 1. Note that two independent shear vectors (in addition 
to compression and rotation) are needed to form a complete basis for arbitrary 
deformations.

We choose the same basis for the stress tensor:

σ0ðxÞ ¼ τ0ijσijðxÞ Pressure ð18Þ

σ1ðxÞ ¼ τ1ijσijðxÞ Torque density ð19Þ

σ2ðxÞ ¼ τ2ijσijðxÞ Shear stress 1 ð20Þ

σ3ðxÞ ¼ τ3ijσijðxÞ Shear stress 2 ð21Þ

The physical interpretations of these stresses are analogous to those for the strains. 
The quantity σ0 is the (negative) of the isotropic pressure. The component σ1 
captures the antisymmetric part of the stress, that is, the torque density. The two 
remaining components, σ2 and σ3, correspond to shear stresses.

In this notation, we express the elastic modulus tensor as a 4 × 4 matrix 
Cαβ ¼ 1

2 τ
β
ijCijmnταmn

I
. Then equation (9) becomes

σ0ðxÞ
σ1ðxÞ
σ2ðxÞ
σ3ðxÞ

0
BBB@

1
CCCA ¼ 2

C00 C01 C02 C03

C10 C11 C12 C13

C20 C21 C22 C23

C30 C31 C32 C33

0
BBB@

1
CCCA

u0ðxÞ
u1ðxÞ
u2ðxÞ
u3ðxÞ

0
BBB@

1
CCCA ð22Þ

Here, we review certain physical symmetries and conservation laws that 
constrain the form of Cαβ. The assumptions are stated independently and may be 
read in any order.

Deformation dependence. A solid body rotation of a material does not change 
the distance between points within that material (that is, the metric). Therefore, 
one generally assumes that solid body rotations do not induce stress, because 
stresses should only emerge if the object is deformed, not merely reoriented. 
This assumption is equivalent to the minor symmetry Cijmn = Cijnm or, in the 
notation of equation (22), Cα1 = 0 for all α. Note that, in our derivation, we use the 
displacement gradient tensor uij ≡ ∂iuj instead of the linear symmetrized strain 
usij  1

2 ð∂iuj þ ∂juiÞ
I

 or the full nonlinear strain tensor unlij  1
2 ðΛikΛkj � δijÞ

I
. The 

full tensor unlij
I

 is rotationally invariant at all orders, and at linear order reduces to 
usij
I

. If Cijmn has the minor symmetry Cijmn = Cijnm, then the product Cijmnumn is the 
same whether or not umn is symmetrized. We choose to work with the displacement 
gradient tensor umn (that is, unsymmetrized strain) to be explicit about the 
assumption of non-coupling to rotation. Under deformation dependence alone, the 
elastic modulus tensor contains 12 independent moduli.

Isotropy. Isotropy implies that the elastic modulus tensor remains unchanged 
through a rotation of the coordinate system. A passive rotation of the coordinate 
system through an angle θ maps Cαβ ↦ Rαγ(θ)CγσRβσ(θ), where
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RγσðθÞ ¼

1 0 0 0

0 1 0 0

0 0 cosð2θÞ sinð2θÞ
0 0 � sinð2θÞ cosð2θÞ

0
BBB@

1
CCCA ð23Þ

The requirement of isotropy can be restated as Cαβ = Rαγ(θ)CγσRβσ(θ) for all θ. 
Hence, under the assumption of isotropy alone, the most general form of the elastic 
modulus tensor is

Cαβ ¼ 2

C00 C01 0 0

C10 C11 0 0

0 0 C22 C23

0 0 �C23 C22

0
BBB@

1
CCCA ð24Þ

Therefore, under isotropy alone, the elastic modulus tensor has six independent 
moduli.

Conservation of energy. Energy is fundamentally a conserved quantity. However, 
the constituents of a solid may have internal or external sources of energy that 
can be integrated out, resulting in phenomena that ostensibly violate energy 
conservation. In section ‘Elastic engine cycle’, we show that an elastic modulus 
tensor is compatible with an elastic potential if and only if Cijmn = Cmnij. In the 
notation of equation (22), the condition for energy conservation is Cαβ = Cβα.  
Under conservation of energy alone, the elastic modulus tensor contains 10 
independent moduli.

Conservation of angular momentum. A material conserves angular momentum 
if it has no internal sources of torque. In this case, one requires that σij = σji or, 
equivalently, σ1(x) = 0. To impose this constraint, one has to impose the left minor 
symmetry for the elastic modulus tensor Cijmn = Cjimn or, in the notation of equation 
(22), C1α = 0 for all α. A medium with internal torques (generated, for example, 
by interactions with a substrate or internal spinning parts, see Supplementary 
Information) may violate the symmetry of the stress tensor and therefore violate 
the left minor symmetry of the elastic modulus tensor. As with energy, angular 
momentum is a fundamentally conserved quantitiy, so any gain or loss of angular 
momentum must come from an internal or external angular momentum sink that 
has been integrated out of the analysis. Under conservation of angular momentum 
alone, the elastic modulus tensor has 12 independent moduli.

If deformation dependence is the only assumption present, then Cαβ has 12 
independent components. In the standard theory of linear elasticity with energy 
conservation, the number of independent components is reduced to 6. Note 
that, when deformation dependence and energy conservation are both assumed, 
conservation of angular momentum is automatically implied because the left minor 
symmetry required for conservation of angular momentum is guaranteed by the 
right minor symmetry of deformation dependence in combination with the major 
symmetry associated with energy conservation. If one further assumes isotropy, 
the form of the elastic modulus tensor is restricted to have two independent 
components B and μ:

Cαβ ¼ 2

B 0 0 0

0 0 0 0

0 0 μ 0

0 0 0 μ

0
BBB@

1
CCCA ð25Þ

Here, B is the familiar bulk modulus, which is the proportionality constant between 
compression and pressure. The quantity μ is the shear modulus, which is the 
proportionality constant between shear stress and shear strain.

For equation (2), we retain only deformation dependence and isotropy. We 
assume deformation dependence because stress only arises in the solids we 
consider as a result of relative displacements (that is, changes in the material’s 
metric). Note that isotropy is not a strict requirement, and many crystalline solids 
have anisotropic elastic modulus tensors. However, we consider only the isotropic 
case for simplicity. In this work we study odd elasticity, which arises when we lift 
the assumption of an elastic potential energy (that is, conservation of energy). 
Assuming only isotropy and deformation dependence, the most general form of 
the elastic modulus tensor is

Cαβ ¼ 2

B 0 0 0

A 0 0 0

0 0 μ Ko

0 0 �Ko μ

0
BBB@

1
CCCA ð26Þ

In this case, there are two new moduli: A and Ko

I
. As described in the main text, 

A couples compression to internal torque density. The modulus Ko

I
, like the shear 

modulus μ, is a proportionality constant between shear stress and shear strain. 
However, Ko

I
 mixes the two independent shears in an antisymmetric way.

Note that energy conservation is independent of angular momentum 
conservation. We consider both cases: case (i), in which angular momentum is 
conserved and the solid has no internal torque density (that is, A = 0), and case (ii), 
in which internal torques are present (that is, A ≠ 0). Even if A = 0, the modulus 
Ko

I
 can be non-zero. Hence, the existence of odd elasticity is not contingent on the 

presence of antisymmetric stress (or, equivalently, local torques).
In index notation, the most general form of the elastic modulus tensor from 

equation (26) is

Cijmn ¼ Bδijδmn þ μðδinδjm þ δimδjn � δijδmnÞ
þ KoEijmn � Aϵijδmn

ð27Þ

where

Eijmn  1
2
ðϵimδjn þ ϵinδjm þ ϵjmδin þ ϵjnδimÞ ð28Þ

Odd elasticity in a general continuum framework for active solids. Odd 
elasticity is not a generic term for activity in solids, but rather a well-defined 
physical mechanism that generates active forces in solids or in other systems in 
which a generalized elasticity can be defined without using an elastic potential. In 
Supplementary Section I, we provide a detailed comparison between odd elasticity 
and other phenomena in solid mechanics. This section provides a justification 
for equation (3) and illustrates how odd elasticity fits into a larger continuum 
framework of active solids. A continuum theory of a solid describes the dynamics 
of the displacement field ui along with a set of fields χα that represent additional 
degrees of freedom such as temperature, chemical concentration, electromagnetic 
fields, a nematic director, a microrotation field and so on (explicit examples are 
provided in Supplementary Section I). We take the fields χα to be independent in 
that there is no constitutive relation allowing one field to be statically determined 
by the others.

The dynamics of the displacement field will be governed by the force density 
Fi, which we assume can be expanded in powers of χα and ui (and their gradients) 
about a steady state or equilibrium value. We split the forces into two contributions:

Fi ¼ Fχ
i þ Fd

i ð29Þ

Fχ
i
I

 are the forces that are proportional to χα or their derivatives. For example, in 
a piezoelectric solid with electric field Ek and piezoelectric tensor eijk, there is a 
contribution to the stress of the form σij = eijkEk, yielding a force term fj = eijk∂iEk 
(refs. 2,13). In the case of active gels, the stress acquires a contribution of the form 
σij = αQij, where Qij is the nematic order parameter and α is a constant18. See 
Supplementary Section I for more details and references.

Fd
i
I

 captures all forces that are proportional to ui or its derivatives. We assume 
the ui and their gradients are small, so we retain only linear terms up to two 
derivatives in space and one derivative in time. The Fd

j

I
 may then be written as

Fd
i ¼ ðAij þ Bij∂tÞuj þ ðDijk þ Hijk∂tÞ∂juk

þðCijmn þ ηijmn∂tÞ∂jumn
ð30Þ

The first two terms, proportional to Aij and Bij, physically represent, for example, 
pinning and substrate drag. The term proportional to Dijk represents linear 
momentum exchange with a substrate and has been considered in refs. 14,24,25 
(see Supplementary Information) and is distinct from elasticity because the 
force is proportional to strain instead of gradients of strain. The final two terms 
represent linear viscoelasticity. The tensor ηijmn is known as the viscosity tensor 
and relates stress to strain rate. The tensor Cijmn is the elastic modulus tensor and 
relates stress directly to strain. All the tensor coefficients in equation (30) could in 
principle be functions of the χα. For example, in mechanocaloric solids and shape 
memory alloys, the elastic moduli are temperature-dependent (see Supplementary 
Information). Furthermore, it has been shown that ηijmn can acquire a non-zero 
antisymmetric part ηoijmn ¼ �ηomnij

I
, which is known as odd (or Hall) viscosity.  

All these effects are distinct from odd elasticity because odd elasticity refers 
to a non-zero antisymmetric part of Cijmn, not merely a renormalization of the 
symmetric part of Cijmn.

The quantity Fa
i
I

 in equation (3) in the main text illustrates many of the ways in 
which activity can manifest in continuum theories of solids. The term gj includes 
the forces Fχ

i
I

 and the first four terms of equation (30). The second term in equation 
(3) highlights explicitly the role of viscoelasticity. Our contribution in this work 
is to highlight that activity can introduce an antisymmetric part of the elastic 
modulus tensor and to explore its phenomenology and microscopic origins.

Elastic engine cycle. In this section, we show that an elastic modulus tensor 
follows from an elastic potential if and only if Cijmn = Cmnij. Furthermore, we justify 
the formulae in Fig. 2c,d, which relate the work done by an odd-elastic solid when 
taken on a (quasistatic) deformation cycle to the area enclosed in strain space.

To begin, we represent Cijmn as a 4 × 4 matrix Cαβ (see section ‘Classification 
of 2D elastic moduli’) and write Cαβ ¼ Ce

αβ þ Co
αβ

I
, where Ce

αβ ¼ Ce
βα

I
 is even 

(symmetric) and Co
αβ ¼ �Co

βα

I
 is odd (antisymmetric). Using this notation, the 
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work per unit area done on a solid in a quasistatic, infinitesimal deformation is 
given by

dw ¼ σijduij ð31Þ

¼ 1
2
σαduα ð32Þ

¼ 1
2
Cαβu

αduβ ð33Þ

If we take a piece of material through a path of strains that returns to the initial 
configuration, then the total work per unit area done on the material is

w ¼ 1
2

I
Cαβu

αduβ ð34Þ

¼ 1
2

I
Ce
αβu

αduβ þ 1
2

I
Co
αβu

αduβ ð35Þ

Integration by parts yields
I

Ce
αβu

αduβ ¼ �
I

Ce
αβu

βduα Integration by parts ð36Þ

¼ �
I

Ce
βαu

αduβ Relabel indices ð37Þ

¼ �
I

Ce
αβu

αduβ Ce
αβ ¼ Ce

βα ð38Þ

Consequently, 12
H
Ce
αβu

αduβ ¼ 0
I

. This can also be seen directly because Ce
αβ

I
 arises 

from a potential energy (section ‘Elastic energy and symmetries of the elastic modulus 
tensor’): because the potential energy depends only on the configuration and not on 
the deformation path, the energy has to be the same at the beginning and end of the 
closed cycle. Therefore, the contribution to net work must be zero. We now evaluate 
1
2

H
Co
αβu

αduβ

I
. For an isotropic solid, the antisymmetric part Co

αβ

I
 takes the form

Co
αβ ¼

0 �A 0 0

A 0 0 0

0 0 0 2Ko

0 0 �2Ko 0

0
BBB@

1
CCCA ð39Þ

In the case of a more general solid, such as one that violates isotropy or deformation 
dependence (see section ‘Classification of 2D elastic moduli’), we can still choose 
an orthonormal basis in shear space such that Co

αβ

I
 takes the form

Co
αβ ¼

0 G 0 0

�G 0 0 0

0 0 0 H

0 0 �H 0

0
BBB@

1
CCCA ð40Þ

Let {g0, g1, h0, h1} be the basis vectors in this basis. For an isotropic solid, the basis 
vectors are simply

g0 ¼

1

0

0

0

0
BBB@

1
CCCA g1 ¼

0

1

0

0

0
BBB@

1
CCCA ð41Þ

h0 ¼

0

0

1

0

0
BBB@

1
CCCA h1 ¼

0

0

0

1

0
BBB@

1
CCCA ð42Þ

The total work per unit area done on the solid can be computed by projecting the 
path through 4D strain space onto paths in the 2D subspaces of gi and hi:

w ¼ G
2

I
ϵijgjdgi þ

H
2

I
ϵijhjdhi ð43Þ

where in this case the i and j indices run over 0 and 1. Examples of these paths for 
a 2D isotropic odd-elastic solid are illustrated in Fig. 2c,d. Let Ag be the region 
enclosed by the gi path and Ah be the region enclosed by the hi path. Application of 
Stokes’ theorem then gives

w ¼ G
Z

Ag

d2g þ H
Z

Ah

d2h ð44Þ

¼ G areaðAgÞ þ H areaðAhÞ ð45Þ

To conclude, if Co
αβ

I
 is non-zero, then a closed deformation cycle with w ≠ 0 can 

always be found by choosing a path in strain space that encloses a non-zero area 
in the gi or hi planes. Importantly, if there exists a cycle such that w ≠ 0, then Cijmn 
does not follow from an elastic potential energy. However, if the major symmetry 
Cijmn = Cmnij holds, then the odd-elastic component is zero (Co

αβ ¼ 0
I

), so w = 0 and 
no work is done on or by the material during a closed cycle due to elastic stresses. 
Here, we have presented the proof in two dimensions, but the same approach holds 
in three dimensions, as explained in Supplementary Section G.
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Extended Data Fig. 1 | Active hinge model. a. A honeycomb plaquette with active hinges at each vertex. Each hinge exerts an angular tension Ti based on 
the angular strain δθi−1 of its counterclockwise neighbor. b. A quasistatic, strain-controlled cycle in which the plaquette does work on its surroundings.
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