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We study phase transitions of the Potts model on the centered-triangular lattice with two types of couplings,
namely, K between neighboring triangular sites, and J between the centered and the triangular sites. Results
are obtained by means of a finite-size analysis based on numerical transfer-matrix calculations and Monte Carlo
simulations. Our investigation covers the whole (K, J ) phase diagram, but we find that most of the interesting
physics applies to the antiferromagnetic case K < 0, where the model is geometrically frustrated. In particular,
we find that there are, for all finite J , two transitions when K is varied. Their critical properties are explored. In
the limits J → ±∞ we find algebraic phases with infinite-order transitions to the ferromagnetic phase.
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I. INTRODUCTION

The Potts model [1] is defined in terms of q-state lattice
variables, also called spins, σi = 1, 2, . . . , q, where i stands
for the lattice site of the variable. Neighboring spins interact
only if they are equal. Since its introduction, the model has
played a significant role in statistical physics [2,3] and in
applications to various condensed-matter systems [4].

Originally, most studies of the Potts model focused on
ferromagnetic interactions, and for that case the critical prop-
erties and phase diagram are well known. However, more
recently the antiferromagnetic(AF) Potts model also has re-
ceived considerable attention, because of its rich and lattice-
dependent behavior. For instance, the behavior of the AF
q = 3 Potts model on several lattices appears to be quite
different. The model displays a weak first-order transition at a
nonzero temperature on the triangular lattice [5], an ordinary
finite-temperature critical point on the diced lattice [6], and
on the honeycomb lattice it is disordered at all non-negative
temperatures [7]. On the square lattice, it is critical at zero
temperature and disordered at positive temperatures [8–11].
On a set of planar lattices called quadrangulations the model
either has a zero-temperature critical point, or it has three
ordered coexisting phases, dependent on whether or not the
quadrangulation is self-dual [12]. In view of this lattice-
dependent behavior, AF Potts models have to be investigated
case by case.

From another point of view, AF Potts models on many
regular lattices have an interesting feature: there exists a
lattice-dependent critical value qc of q beyond which there
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is no transition. The generalization of the Potts model to
the random-cluster model [13], in which q is a continuous
variable, enables the determination of qc even if it is not
an integer. For example, qc = 1

2 (3 + √
5) for the honeycomb

lattice was determined [14] by examining the known critical
frontiers in the light of AF interactions. However, Huang
et al [15] have discovered a set of lattices on which the AF
Potts model does not have such a qc. Furthermore, some AF
Potts models on irregular lattices, in which the number of sites
is different for different sublattices, display entropy-driven
transitions at a finite temperature to partially ordered phases
at a value of q larger than the qc that one would naively expect
[6,15–18].

The present work considers the case of the q = 3 model
on the centered triangular lattice, also known as the Asanoha
or hemp-leaf lattice [19], which is sketched in Fig. 1. The
interactions are specified by the reduced Hamiltonian

H/kBT = −K
∑

〈i, j〉
δσiσ j − J

∑

[k,l]

δσkσl , (1)

where the sum on 〈i, j〉 runs over all bonds connecting
nearest-neighbor spins on the triangular sites, and the sum
on [k, l] runs over all bonds between the centered spins and
their three triangular neighbor spins. The corresponding Potts
couplings are denoted by K and J . In the case J = 0 the model
reduces to the q = 3 Potts model on the triangular lattice. For
K = 0 the model reduces to the q = 3 Potts model on the
diced lattice.

II. ALGORITHMS AND TESTS

A transfer-matrix algorithm using the q = 3 spin represen-
tation was employed for the calculation of the free energy
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FIG. 1. The centered triangular lattice. The triangular vertices
(•) as well as the centered vertices (◦) are occupied by three-state
Potts spins. Neighboring spins on the triangular sites are coupled
with strength K , and the centered sites are coupled with strength J
to their triangular neighbors.

densities and magnetic correlation lengths for finite sizes up
to L = 18. The spin systems studied were wrapped on L × ∞
cylinders, with periodic boundary conditions in the finite
direction, using a length unit equal to the triangular edges. The
transfer-matrix algorithm is applicable for all J and K . It does,
in most cases, allow rather accurate determinations of phase
transitions and some universal parameters. In those cases
where we did not require very precise results, for instance, for
the global determination of phase boundaries, we also applied
a Metropolis-type Monte Carlo algorithm.

A. Miscellaneous results of the transfer-matrix algorithm

In the case J = 0 the model reduces to the q = 3 Potts
model on the triangular lattice. We first consider the ferromag-
netic case K > 0 and required that the magnetic correlation
lengths ξ (K, L) satisfies Cardy’s asymptotic relation [20]
L/ξ (K, L) � 2πXh, where Xh = 2/15 is the exactly known
[21] magnetic dimension. We solved K for each value of
2 < L � 18, and we thus obtained a series of estimates of
the critical point. Extrapolation by finite-size scaling [22],
using correction exponents yirr − yt = −2 [21] and −4, led
to a best estimate Kc,triangular = 0.630944725(5). This value is
close to the exactly known critical point ln[2 cos(π/9)] [4,23],
thus providing a consistency check. For K = 0 the model
reduces to the q = 3 Potts model on the diced lattice. A sim-
ilar analysis yielded finite-size estimates of its ferromagnetic
critical point Jc,diced in the range 2 < L � 18. Extrapolation
led to a best estimate Jc,diced = 0.955032665(5). This value
is close to an unpublished transfer-matrix result Jc,diced =
0.9550325(23) as quoted by Wu and Guo [14]. Our result for
the diced lattice also yields, by duality, the critical coupling
of the q = 3 Potts model on the kagome lattice as Kc,kagome =
1.056560222(5). This is in agreement with 1.05656027(7) as
obtained by Jacobsen and Scullard [24], and 1.0565602231(1)
as obtained by Jacobsen [25]. Furthermore we performed a
similar analysis for the antiferromagnetic q = 3 Potts model
on the diced lattice, from which we estimate Jc,diced AF =
−1.9703946(5).

III. PHASE DIAGRAM IN THE (K, J) PLANE

One can distinguish three different regions, according to
the relative magnitudes of the weights W111 of a triangle with
three equal spins, W112 for only two equal spins, and W123 for

three different spins. Since each K coupling is shared between
two triangles, only one half of it is included in these weights.
Furthermore the centered spins are summed out, so that the
weights depend only on the triangular spins, while they still
include the effect of J:

W111 = exp(3K/2 + 3J ) + 2 exp(3K/2),

W112 = exp(K/2 + 2J ) + exp(K/2 + J ) + exp(K/2),

W123 = 3 exp(J ) .

For J 	 0 we have ln W111 � 3K/2 + 3J . For J 
 0 the cen-
tered spins will assume a state different from their triangular
neighbors, so that ln W111 � 3K/2. For K sufficiently large
negative, the weight W123 will dominate, and frustration of the
centered spins will lead to ln W123 � J . One also expects an
intermediate region dominated by triangles having two equal
spins, with ln W112 � K/2 + 2J for J 	 0 and K/2 for J 
 0.

The phase boundaries are approximately located where the
weights of two neighboring phases become equal. Thus we
expect the following phases, shown in Fig. 2(a):

(1) The ferromagnetic region, dominated by the weight
W111. For J > 0 it is located at K ∼> − J , and for J < 0 at
K ∼> 0.

(2) The intermediate region, dominated by the weight
W112. For J > 0 it is located at −2J ∼< K ∼< − J , and for J < 0
at 2J ∼< K ∼< 0.

(3) The antiferromagnetic region, dominated by the
weight W123. For both signs of J it is located at K ∼< − 2|J|.

Monte Carlo, exact, and transfer-matrix results, shown
in Fig. 2(b), confirm this expectation. It appears that the
intermediate phase is disordered, at least as long as |J| is not
too large. Partial order appears for large |J|, whose nature will
be explored in the following subsections.

Ferromagnetic q = 3 universality applies naturally to the
transition line between regions 1 and 2. As for the anti-
ferromagnetic transition line, the triangular model at J = 0
was found to undergo a weak first-order transition; see, for
instance, Adler et al. [5] and references therein. This transition
is located near K = −1.594482(8) [26].

A. Mapping on the honeycomb O(2) loop model

In the special case of the limits

|J| → ∞ , K 	 −2|J|, (2)

the spin model becomes equivalent with the nonintersecting
O(2) loop model on the honeycomb lattice. That model dis-
plays a range where the magnetic correlation function decays
algebraically [27]. This proves that the spin model must reach
a critical state at the corresponding parameters.

The construction of an O(2) loop configuration from an al-
lowed q = 3 Potts spin configuration is formulated as follows.
We first note that elementary triangles with three different
spins on the triangular vertices would cost an energy ∝ |J|
and are therefore excluded. Each allowed triangle contains
precisely one or three edges connecting equal spins. This is
illustrated in Fig. 3 by erasing all triangular edges connecting
unequal spins, leading to a graph with one or three edges
remaining about each elementary triangular face. Next, con-
struct a dual graph from edges connecting each pair of dual
sites if not separated by a remaining triangular edge. Thus,
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FIG. 2. Phase diagram of the centered triangular q = 3 Potts
model. (a) The division of the (K, J) diagram according to the
dominance of the leading terms in the weights W111, W112, and
W123 described in the text. (b) The numerical results for the phase
boundaries, obtained by Monte Carlo simulations, except those
shown as black squares (�), which are accurate results obtained by
other methods, as mentioned in the text, and by application of the
star-triangle transformation to the two J = 0 points. For all finite J ,
one observes three different phases: an antiferromagnetic (AF) one,
an intermediate (disordered) one, and a ferromagnetic (F) one.

each dual site connects to zero or two edges on the dual
honeycomb lattice. In this way one obtains a configuration of
closed loops on the honeycomb lattice. Thus the triangular
neighbor spins are equal if and only if they are not separated
by such a loop. The introduction of a new loop in a region
of triangular Potts spins equal to σold will thus change the
inside spin configuration. The spin degrees of freedom allow
the centered spins on the loop to take two values

τ = σold ± 1 mod 3 (3)

(with the convention 1 � k mod 3 � 3), while σold remains
the value of the triangular spins directly outside the loop. Then
each triangular spin along the inside perimeter of the loop
must change its old value σold in

σnew = σold ∓ 1 mod 3, (4)

FIG. 3. Equivalence of the centered triangular model with the
O(n) loop model on the honeycomb lattice, under the condition that
triangles with three different Potts spins are excluded. This condition
applies in the limits J → ±∞ when K 	 −2|J|. Triangular edges
between equal Potts spins are shown in red. The honeycomb loops
separate unequal triangular spins. Centered spins connected by a
black loop segment are equal.

so that these inside spins are unequal to the spins on the loop,
and unequal to the outside spins. Application of this rule (4)
to all spins inside the new loop guarantees that the energy
changes are restricted to the bonds crossing that loop, even
if the region inside the loop contains further loops. The spin
degeneracy expressed in Eqs. (3) and (4) translates into a
weight factor 2 for each loop on the honeycomb lattice.

To complete the mapping onto the O(n) model, we still
have to obtain the weight x of each loop segment. This is
done by comparing the weight of a loop to the weight ratio
of spin configurations with and without a loop. In the O(n)
model, the weight of a loop consisting of ns loop segments
is wloop = nxns , while the vacuum has weight wvac = 1. The
loop intersects ns triangles with weight W112. Removal of this
loop changes their weight into W111. Thus the weight of the
loop is 2[W112/W111]ns in the spin language. The expression
for the weight ratio depends on the sign of J .

(1) In the case J → −∞ the terms in W111 and W112 that
contain J vanish, and W112/W111 = exp(−K )/2.

(2) For J → +∞ the terms in W111 and W112 with
the largest prefactors of J survive, and W112/W111 =
exp(−K − J ).

A comparison of the weights of the configurations with and
without a loop in both representations directly determines the
O(n) loop weight n and the relation between x and the Potts
couplings:

wloop/wno loop = nxns = 2[exp(−K )/2]ns for J → −∞, (5)

wloop/wno loop = nxns = 2[exp(−K − J )]ns for J → +∞.

(6)
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The partition sum of the loop model is defined as

Zloop(x, n) =
∑

G
xnb nnl , (7)

where the sum is on all loop configurations G, nb is the number
of honeycomb edges covered by G, and nl is the number of
loops. The prefactor in its relation with the partition sum Zctri

of the spin model can, for instance, be found from a compari-
son between the Boltzmann factors of the loop vacuum in the
two representations. The resulting relation between the two
models is summarized as

Zctri(K, J ) = 22N e3NK Zloop(x, n),

n = 2, x = e−K/2 for J → −∞, (8)

Zctri(K, J ) = e3N (K+2J )Zloop(x, n),

n = 2, x = e−K−J for J → +∞, (9)

where N is the number of triangular sites. The free energies,
per the triangular and honeycomb site, respectively, are thus
related as fctri(K ) = 2 ln 2 + 3K + 2 floop(x, n) for J → −∞
and as fctri(K ) = 3K + 6J + 2 floop(x, n) for J → +∞.

B. The fully packed loop model

For K → −∞, but still subject to Eq. (2), the weight of
the honeycomb edges not covered by a loop vanishes, and
we obtain the fully packed O(2) model. This model displays
a rather special behavior [28,29]; for instance, its conformal
anomaly was found to be equal to 2. This value can be
interpreted in terms of two SOS-like degrees of freedom, one
of which comes from the O(2) model, and the other from the
equivalence [28] of the fully packed loop model with the tri-
angular SOS model [30]. Using the O(2) loop representation,
we have extended the transfer-matrix calculations of the free
energy up to finite size L = 21. The conformal anomaly can
be estimated for each single system size that is a multiple of
3, using the free energy per honeycomb site for the infinite
system, which is known from an exact result by Baxter [31]
as

lim
x→∞ floop(x) − x = 1

2
ln

∞∏

i=1

(3i − 1)2

3i(3i − 2)
, (10)

which can be approximated as limx→∞ floop − x =
0.189560048316 . . . . Taking into account the geometric
factor ζ = 2/

√
3, which is needed to obtain the free energy

density of the honeycomb lattice instead of the free energy
per site, the finite-size estimates are [32,33]

cest (x, L) = 4
√

3L2[ floop(x, L) − floop(x,∞)]/π. (11)

The usual extrapolation of these estimates by power-law fits,
assuming power-law corrections as L−2, yields iterated esti-
mates of c(∞) close to 2, with differences of a few times
10−2, suggesting the presence of a logarithmic correction.
Including an extrapolation step as cest (x → ∞, L) � c(x →
∞)[1 + a

L2(b+ln L) ] led to a better apparent convergence, with

the last two iteration steps within 10−4 from c = 2.

FIG. 4. Finite-size estimates of the conformal anomaly c as a
function of u = eK − 1 of the J → −∞ centered triangular q = 3
antiferromagnetic Potts model. Estimates for system sizes L that are
multiples of 3 are obtained by solving for c in Eq. (11), from the free
energies for systems with sizes L and L − 3. Results are shown for
L = 6, 9, 12, 15, and 18. Larger system sizes correspond with steeper
curves. This behavior applies as well in the limit J → +∞ after
redefining u = eK+J − 1. These results still depend on the absence
of type (1,2,3) triangles, implying K/|J| > −2.

C. Phase changes induced by K

For finite values of |K|, but still subject to condition
(2), the model is still exactly equivalent with the O(2) loop
model but no longer fully packed. The fugacity of empty
honeycomb vertices is relevant [28], and crossover takes place
to the universal behavior of the dense phase of the O(2)
model which has c = 1. This crossover is illustrated by the
finite-size estimates of the conformal anomaly in Fig. 4. This
figure uses the parametrization u = eK − 1 so that the whole
antiferromagnetic range K < 0 can be included.

When |K| is sufficiently lowered, the spin model under-
goes an infinite-order Berezinskii-Kosterlitz-Thouless transi-
tion [34] to a state with ferromagnetic order on the triangular
sites, and disordered spins on the honeycomb sites. The tran-
sition to the c = 0 phase (loops diluted, and ferromagnetic in
the language of the spins on the triangular lattice) is visible
in the right-hand side of Fig. 4 and was numerically located
from the requirement

Xh(K, L) ≡ L/[2πξ (K, L)] = 2/9, (12)

where 2/9 is the expected value of the magnetic dimension
of the transition; see, for instance, the similar analysis in
Ref. [35]. We thus estimate KBKT = −0.3465(1), in good
agreement with the exact value − ln(2)/2, which follows from
Eq. (8) and xc = 1/

√
2 [27].

The mapping on the O(n) model relies on the condition (2).
Next, we drop the condition that limits K in Eq. (2), while
maintaining the limit |J| → ∞. Then type (1,2,3) triangles
are no longer excluded, and the mapping on the O(n) model
is no longer valid. One expects a transition near K ≈ 2J to
the antiferromagnetic phase. We investigated this point using
transfer-matrix calculations, based on finite-size scaling of the
magnetic correlation length. The behavior of the scaled gaps,
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FIG. 5. Finite-size results for the scaled magnetic gaps near the
transition to the (1,2,3) phase, versus the rescaled weight w123, in the
limit |J| → ∞. (a) The whole range of interest, for system sizes L =
3, 6, 9, and 12. Curves are shown connecting discrete data points.
Larger system sizes correspond with steeper curves. More detailed
pictures of the data on the left and right parts are shown in (b) and
(c) for finite system sizes L = 3, 6, 9, 12, and 15.

defined as Xh(L) ≡ L/[2πξ (K, L)], is displayed in Fig. 5 in
the vicinity of the transition, versus the rescaled weight w123.
The rescaled weights are obtained by dividing out W112,
i.e., w123 ≡ W123/W112, w112 = 1, and w111 = 0. The apparent
divergence of Xh(L) with L, shown in Fig. 5(a) indicates
the existence of an intermediate disordered phase for finite
2|J| + K . Thus the disordered phase extends all the way to
T = 0. The behavior on the left-hand side, highlighted in
Fig. 5(b), illustrates that the critical state is destroyed by a
nonzero w123. Figure 5(b) uses w2

123 on the horizontal scale,
because (1,2,3) triangles appear in pairs. One thus expects a
finite-size dependence according to

Xh[w123, L] = Xh +
∑

k

pkw
2k
123Lkyw + · · · , (13)

where yw is the renormalization exponent describing the
fugacity of a pair of (1,2,3) triangles. Numerical fits to the
transfer-matrix data lead to yw ≈ 1.4, with poor apparent
convergence. This result seems consistent with yw = 3/2, as
expected on the basis of the O(n) magnetic dimension X FPL

h =
1/2 reported in Ref. [28] (which is different from the present
Potts dimension Xh). The relation with the O(n) dimension
follows from the fact that a type (1,2,3) triangle corresponds,
along the lines of the mapping described in Sec. III A, with
the open end of an O(n) loop segment.

The right-hand side of Fig. 5(a), and the enlarged version
in Fig. 5(c), display intersections associated with the transition
to the antiferromagnetic phase. Numerical analysis of the in-
tersection points locates this transition near K − 2J = 0.631.

The data do not permit a clear answer about the type of
transition but are suggestive of a weak first-order transition.
The amplitude of the correlation length, as determined for
finite sizes up to L = 18, could not be reliably extrapolated
but might seem to correspond with a magnetic dimension of
about Xh = 0.14.

Thus far we have considered the antiferromagnetic limit
J → −∞, but similar phenomena are also be expected for
J → +∞. For K 	 −2J the (1,2,3) triangles are then ex-
cluded, and the mapping on the O(n) model applies. Follow-
ing the same line of reasoning as for the antiferromagnetic
case, one finds from Eq. (9) that an infinite-order transition to
the ferromagnetic phase occurs at K + J = ln(2)/2. Finally,
the transition to the antiferromagnetic phase takes place close
to K + 2J = 0.631, mirroring the transition for J → −∞.
The location is verified by Monte Carlo calculations.

IV. CONCLUSION

Our investigation of the phase diagram of the q = 3 Potts
model on the centered triangular lattice in the (K, J ) plane
shows the existence of three phases: a ferromagnetic phase
dominated by one of the three Potts states, an antiferromag-
netic phase where the three different Potts states condense on
different triangular sublattices, and an intermediate disordered
phase dominated by triangles containing two different Potts
states.

In the limits J → ±∞, the disordered phase evolves into
a state with partial order. There exist, in these limits, infinite
ranges of K where the model is critical, and where it is equiva-
lent with the fully packed O(2) loop model on the honeycomb
lattice. In addition there are ranges of K at the ferromagnetic
sides where the mapping on the O(2) loop model is still valid,
but where it is no longer fully packed. The ferromagnetic
transitions are of infinite order in these limits. The situation
reminds one of the triangular Ising model in a field, which
also undergoes a three-state Potts transition, changing into an
infinite-order transition when T → 0 [30,36].

On the antiferromagnetic side of the critical ranges, there
are ranges of K where the critical state is destroyed by the
nonzero weight of triangles with three different Potts spins.
While these disordered ranges are, strictly speaking, infinitely
wide on the scale of K , they are restricted to K/|J| = −2
when |J| → ∞. The transitions between the disordered phase
and the antiferromagnetic phase are probably discontinuous
for all J .
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