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The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is
notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid
ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here, we consider
such membranes supported by curved substrates that thereby control the membrane curvatures. We show
how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the
difference in Gaussian rigidity between the two phases. We provide a number of conditions for such
interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the
Gaussian rigidity, while remaining in the perturbative regime of our analysis.
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Bilayer fluid membranes containing mixtures of
phospholipid molecules are ubiquitous in cell biology
and are used to compartmentalize many of the cell’s
internal components [1]. Under certain conditions such
membranes can phase separate into cholesterol-rich liquid
ordered (LO) and cholesterol-poor liquid disordered (LD)
phases, both in vivo [2–5] and in vitro [6–8]. In vitro
such a transition is often controlled by decreasing the
temperature below some critical value. In the present work
we analyze two-phase membranes supported on preen-
gineered substrate surfaces, such as have recently been
developed [9,10].
In the sharp interface approximation, the free energy

of a multicomponent, demixed fluid membrane can be
described by a minimal set of parameters relative to each
phase. The in-plane isotropy of fluid membranes demands
the free energy to depend only on coordinate-invariant
geometric quantities, such as the mean curvature H and the
Gaussian curvature K [11–13].
For a symmetric bilayer and relatively small curvatures

this energy takes the simple form [14]

F ¼
X
α

Z
Dα

dAðγα þ 2kαH2 þ k̄αKÞ þ σ

I
Γ
ds; ð1Þ

here Dα (α ¼ LO;LD) indicates the different phase
domains and Γ ¼ ∂Dα is the set of closed lines separating
them; dA ¼ dx1dx2

ffiffiffi
g

p
is the area element, with fx1; x2g

local coordinates and g the determinant of the induced
metric gij ¼ ∂ir · ∂jr, and r ¼ rðx1; x2Þ the membrane
location; s is the arclength parameter of Γ and σ is its
associated line tension. The mechanical parameters are the
surface tensions of each phase γα, together with their
bending kα and Gaussian k̄α rigidities. The contribution
from a term involving spontaneous curvature, omitted from
Eq. (1), may safely be neglected without loss of generality
for the specific surfaces we consider, see Ref. [15].
While there are several techniques to measure the

bending rigidity and surface tension of membranes (see,
e.g., Refs. [16–18]), the Gaussian rigidity is much more
elusive and very few estimates exist, either from simula-
tions [19] or experiment [9,20–22]. The essential difficulty
is that the integral

R
KdA is a topological invariant for any

closed surface meaning that the Gaussian rigidity does not
affect the total free energy of a membrane unless it is
subject to topology-changing deformations, such as fission
and fusion. This topological protection is lost for surfaces
with boundaries, since the surface integral can be recast
as a line integral of the boundary’s geodesic curvature.
This case includes phase-separated multicomponent
membranes, where the domains Dα of Eq. (1) have a
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boundary Γ. The motivation of the present study is to
exploit the sensitivity of the linear interface to K in order to
measure the Gaussian rigidity difference between the two
phases.
While the energy equation (1) can describe the shape of

phase-separated freestanding membranes, such as multi-
component vesicles [20,23], it also applies to the case of
curved supported lipid bilayers, where the membrane lies
on a rigid substrate of nontrivial curvature, while preserv-
ing its liquid nature [24–26]. These experimental tech-
niques have been recently extended to a wide variety of
shapes with both open and closed surfaces in [9,10]. Thus,
supporting a membrane using a preengineered surface with
arbitrary shape is therefore now a realistic proposal [27].
Our goal here is to design substrates that might be used in
such a protocol to probe novel physics. We assume that
the surfaces are uniformly functionalized to be weakly
adhesive.
For phase-separated supported lipid bilayers the

only degree of freedom in Eq. (1) is the location of the
interface Γ. If Γ is parametrized by a curve r ¼ rðsÞ within
the surface, where s is the arclength, one can study the
response of the energy to small displacements r → rþ ϵN,
with N ¼ NðsÞ the so-called tangent-normal vector to Γ,
chosen to point toward DLO domains [see Fig. 1(a)], and
ϵ ¼ ϵðsÞ a small scalar function with dimensions of a
length. Since the substrate is assumed smooth and uniform
there is no surface discontinuity at the LO-LD interface. In
Ref. [28] it was shown how to perform a perturbative
expansion of the free energy in powers of ϵ as

F ¼ F0 þ δð1ÞF þ 1

2
δð2ÞF þOðϵ3Þ; ð2Þ

with

δð1ÞF ¼
Z
Γ
dsϵðσκg − 2ΔkH2 − Δk̄K − ΔγÞ; ð3Þ

and

δð2ÞF¼
Z
Γ
ds½σ_ϵ2−ϵ2ðσKþσκ2gþ2Δk∇NH2þΔk̄∇NKÞ�;

ð4Þ

where Δk ¼ kLO − kLD, Δk̄ ¼ k̄LO − k̄LD, Δγ ¼ γLO − γLD
and a dot indicates differentiation with respect to the
arclength: e.g., _ϵ ¼ dϵ=ds. κg is the geodesic curvature
of the interface with the convention that κg > 0 for a convex
DLD domain [28]. Note that Eq. (4) does not explicitly
depend on the tension differenceΔγ; in fact, for membranes
bound on a fixed support, the only effect of tension is to
enforce domains of fixed areas, in exactly the sameway that
the Laplace pressure enforces a finite volume to a three-
dimensional droplet.
We are interested in thermal fluctuations of Γ around a

stable equilibrium position, for which δð1ÞF ¼ 0. Then,
from Eq. (4) it is possible to derive the fluctuation spectrum
of the interface. For simplicity we assume a single,
simply connected domain DLD of liquid disordered phase
surrounded by a reservoir of LO phase.
We analyze an experimental configuration similar to the

one shown in Fig. 1: an axisymmetric surface and a ground-
state interface with circumference lΓ, so that N is along a
meridian direction. The rotational symmetry implies that
both principal curvatures and their normal derivatives are
independent of the arc length s. The normal displacement ϵ
along the surface tangent can be decomposed in Fourier
modes as

ϵðsÞ ¼
Xþ∞

m¼−∞
ϵmeiωms; ð5Þ

with ϵm the amplitude of the mode having discrete wave
number ωm ¼ 2πm=lΓ. Since we are considering the
case of fixed DLD area, the m ¼ 0 mode is suppressed
and ϵ0 ¼ 0 [15].
At lowest order the energy is quadratic in the fluctuation

amplitudes and we use the equipartition theorem to infer
the mean squared amplitude of each mode at temperature T:

hjϵmj2i ¼
kBT

σ 8π2

lΓ
m2 − 2lΓP

; ð6Þ

where P ¼ σðK þ κ2gÞ þ 2Δk∇NH2 þ Δk̄∇NK [28] and kB
is Boltzmann’s constant. This is one of the key results of the

FIG. 1. A surface with the geometry of a catenoid, closed
(arbitrarily) with a spherical cap, serving as a substrate for a
bound membrane. A domain of LD (red, labeled DLD) is shown
surrounded by LO (cyan). (a) The equilibrium LO-LD interface Γ
is a symmetric circle. (b) Thermal fluctuations displace the LD
domain (them ¼ 1mode shown), the mean squared magnitude of
which provides a probe of Gaussian rigidity. (c) The arclength
variable t, measured from the minimal catenoid radius r0 along a
line of constant ϕ, parametrizes a family of circles of radius rðtÞ
on the surface. (d) The interface displacement projected from
above ϵ⊥, as might be observed experimentally.
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present work, since it allows us to link thermally induced
displacements of Γ to the parameterΔk̄. Note that the larger
the value of m, the more suppressed the mode amplitudes,
so that only the lowest modes are experimentally acces-
sible. Equation (6) generalizes results for planar domains:
with a flat surface (H ¼ K ¼ 0), and DLD to be a circular
domain of radius r so that lΓ ¼ 2πr and P ¼ σ=r2 we
recover

hjϵmj2i ¼
kBT
4πσ

r
m2 − 1

; ð7Þ

in agreement with Ref. [29]. This relationship has been
successfully employed in Refs. [30–33] to measure the line
tension σ by observing the “flickering” shape fluctuations
of quasicircular domains on large spherical vesicles. The
m ¼ 1 divergence is due to the fact that ϵ1 fluctuations are
infinitesimal translations, which, being an isometry of the
flat plane, cost zero energy. In experiments one removes
this mode by using coordinates relative to the domain
position. As we show below, this same mode becomes
nontrivial on surfaces which do not have translational
invariance.
As shown in Fig. 1, we propose a truncated catenoid as a

candidate for a substrate geometry that engineers sensitivity
to the Gaussian rigidity. This is primarily because catenoids
are minimal surfaces, i.e., with H ¼ 0, so that Eq. (1) is
insensitive to the bending moduli kα (and to spontaneous
curvature, see Ref. [15]). We assume that DLD is a single
circular domain centered at the catenoid origin and with the
axisymmetric interface lying in the lower branch of the
surface. We need a truncated geometry to ensure finiteness
of the domain, and we arbitrarily choose to cut away the
upper branch of the surface and replace it with a half
sphere. The spherical cap should pin DLD at its desired
position because the LD phase is (much) softer.
In arclength parametric form, the catenoid profile func-

tions can be written as

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ t2

q
;

zðtÞ ¼ z0 þ
r0
2
log

�
rðtÞ − t
rðtÞ þ t

�
; ð8Þ

with r0 the neck radius, z0 the neck height, and t the
interface distance from the catenoid’s neck. The geometry
is truncated and thus we restrict the possible interface
position to the range t > 0. The geodesic curvature of Γ is
constant, κg ¼ t=rðtÞ > 0, hence δð1ÞF ¼ 0 is satisfied for
adequate values of Δγ [28]. The Gaussian curvature and its
normal derivative are, respectively, K ¼ −r20=rðtÞ4 and
∇NK ¼ 4r20t=rðtÞ6. The interface length is lΓ ¼ 2πrðtÞ
and so P ¼ σðt2 − r20Þ=rðtÞ4 þ 4Δk̄r20t=rðtÞ6. Equation (6)
then becomes

hjϵmj2i ¼
kBT
4πσ

rðtÞ
m2 − 1þ 2

r2
0

rðtÞ2 þ 4Lk̄
r2
0
t

rðtÞ4
: ð9Þ

This differs from the planar case. It has two additional
terms in the denominator: the first is due to the nontrivial
intrinsic geometry of the substrate and the second to the
coupling with the Gaussian rigidity, expressed in terms of
the length scale Lk̄ ¼ −Δk̄=σ > 0 (typically of the order of
a few hundred nanometers [9,20,21]). Notice that the
temperature-dependent prefactor also has dimensions of
a length, which we write as Lσ ¼ kBT=4πσ.
The striking difference between Eqs. (7) and (9) is that in

the latter case the m ¼ 1 mode has a nonzero energy cost,
implying that hjϵ1j2i is a nondiverging quantity. This mode
does not correspond to pure translations anymore, but
rather involves a “tilt” in which the center of the domain
misaligns with the catenoid’s axis [see Figs. 1(b) and 1(d)].
In the following, we will focus our discussion only this
mode since it has the largest amplitude and should be the
most straightforward to extract from data.
In order to be able to measure Δk̄ experimentally, several

criteria must be met, both when designing the geometry of
the substrate and when identifying a suitable domain size to
measure. We imagine that a future experiment would
involve imaging a number of domains pinned to catenoidal
substrate features and that these domains would exhibit a
broad variation in their area. This means that identifying a
domain that is in any appropriate size range should not be a
fundamental problem, provided the preferred size is not too
restrictively specified.
We identify the following three constraints that our

system should satisfy: (I) the fluctuations must be exper-
imentally observable, i.e., the amplitude must be larger than
a minimal microscope resolution Lres; (II) fluctuations
should be small enough so that they can be treated
perturbatively—with no significant Oðϵ3Þ effects—and
avoid the unpinning of DLD; (III) the m ¼ 1 mode
amplitude should depend sufficiently strongly on Lk̄ so
that the value of Δk̄ can then be inferred.
Criterion I can be enforced by requiring that

the fluctuation amplitude has a lower bound hjϵ1j2i >
L2
resrðtÞ2=t2, where the extra rðtÞ=t factor takes into

account the aberration induced by the projection onto a
plane of the curved domain. Criterion II is enforced by
requiring that the tilt should be significantly smaller than
the total interface length lΓ ¼ 2πrðtÞ, which we enforce by
requiring hjϵ1j2i≲ rðtÞ2ηpert with ηpert an arbitrary small
parameter. Criterion III is enforced by requiring that the
fourth term in the denominator of Eq. (9), depending on Lk̄
must not be much smaller than the third one, which does
not, i.e., 2Lk̄t=rðtÞ2 ≳ ν, with ν ∼ 1.
To make progress, we nondimensionalize the quantities

involved in Eq. (9). A natural length scale of our problem is
the catenoid’s neck size r0, so that all other length scales
can be measured in terms of this quantity. We thus
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express the size of DLD in terms of t̂≡ t=r0 and
r̂≡ rðtÞ=r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t̂2

p
. Furthermore, we introduce the

dimensionless ratios ηk̄ ≡ Lk̄=r0, ησ ≡ Lσ=r0, and
ηres ≡ Lres=r0. With this notation, criteria I and II can be
written as

2η2res
ησ

1

t̂2
<

r̂3

r̂2 þ 2ηk̄t̂
≲ 2ηpert

ησ
; ð10Þ

while condition III is

2ηk̄t̂
r̂2

≳ ν: ð11Þ

If it is possible to satisfy the three inequalities, Eqs. (10)
and (11), simultaneously, for a given value of r0, t, and Lk̄,
then our approach is experimentally feasible and can be
used to measure Δk̄.
Experiments are assumed to be carried out near room

temperature (T ≈ 300 K) and the typical values for the line
tension span σ ∼ 0.1–3.0 pN [33]. This gives Lσ ∼ 1 nm.
By assuming that the microscope resolution Lres is about
0.1 μm and the catenoid neck r0 ∼ 0.2 μm, we obtain
ησ ∼ 0.005 and ηres ∼ 0.5. Furthermore, we allow the
fluctuation to be roughly 10% of the domain perimeter
(i.e., ηpert ¼ 0.01) and require a signal to noise ratio of
ν ∼ 1. The result of these assumptions is shown in Fig. 2:
the boundary of each constraint is shown as a line (blue,
red, black for I, II, and III, respectively) and their
intersection is highlighted in yellow.

Interestingly, we find that the minimum allowed value
for ηk̄ to be measurable is about 3, which, with an r0 of
200 nm, implies an Lk̄ of 600 nm, a value well within the
range of previous estimates [9]. Furthermore, by relaxing
the value of ν to 0.5, this limit is shifted to 200 nm, a value
below the lowest known estimate [20].
While the above discussion and Fig. 2 verify that our

proposed system could, in principle, probe the value of Δk̄,
it is also interesting to give an estimate of the geometric
features that our system should have in order to probe
known values of Lk̄. If we take Lk̄ ¼ 0.4 μm [9] we can
plot a similar diagram to Fig. 2 but now in terms of the
dimensional parameters r0, the catenoid size, and r, the
required domain size. The result is shown in Fig. 3. This
recasting again shows that our proposed method is feasible
and could be implemented with recent submicrometer 3D
printing methods [34,35]. It may also be possible to create
an approximation to a catenoid by draping a lipid bilayer
over a short pillar with radius r0; the geometry would be
approximately catenoidal and our results would be valid up
to leading order in the shape.
Ultimately we aim to extract information on the

Gaussian rigidities from the fluctuation amplitude.
Equation (9) can in fact be rearranged to provide an explicit
expression for the Gaussian rigidities in terms of them ¼ 1
fluctuation amplitude as follows:

Δk̄ ¼ σ
rðtÞ2
2t

−
kBT
4π

rðtÞ5
4r20thjϵ1j2i

: ð12Þ

FIG. 2. Values of the nondimensionalized coupling ηk̄ ¼
−Δk̄=ðσr0Þ that can be probed with our method as a function
of the rescaled domain size t̂ ¼ t=r0, provided all three feasibility
constraints are satisfied. In this figure, we take relatively stringent
limits on the constraint parameters, as explained in the main text.
The blue, red, and black line correspond, respectively, to
constraints I, II, and III. The yellow region is the intersection
of these, and thus shows the values of ηk̄ that could be measured
for a suitable domain size.

FIG. 3. The yellow region indicates the space of experimental
systems that could allow for accurate measurement of the
Gaussian rigidity contrast between two membrane phases by
measuring the m ¼ 1 displacement mode sketched in Fig. 1,
under the assumption Lk̄ ¼ 400 nm and Lσ ¼ 1 nm. The cat-
enoidal surface feature(s) have a neck radius r0 and the
equilibrium location of the interface is at (projected) distance
r from the symmetry axis. The solid lines correspond to criteria I
with Lres ¼ 100 nm (blue), II with ηpert ¼ 1=40 (red), and III
with ν ¼ 0.5 (black). Dashed lines show variations of these
values of, respectively, �10%, �20%, and �50%. We disregard
r < r0 as the interface would lie on the spherical cap.
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Our method suggests a possible precision of �10% on the
value of the Gaussian rigidity difference, essentially limited
by precision on line tension σ. As our method relies only on
the “translational/tilt” mode and not shorter wavelength
fluctuations it may be possible for the accuracy of this
method to be further improved by the use of superresolu-
tion microscopy techniques [36,37], significantly pushing
the yellow region of Fig. 3 toward higher values of r0.
In summary, we have presented a method to estimate the

Gaussian rigidity difference between two membrane
phases, a quantity that is otherwise notoriously difficult
to measure. We have shown that, subject to realistic
constraints on the resolvability of the fluctuations, it is
possible to design a surface that can be used to infer Δk̄
while still remaining in the perturbative regime of our
equations. Our method has an inherent advantage over
current approaches to measuring the Gaussian rigidity
because it is independent of other parameters, such as
bending rigidity and spontaneous curvature. The access to
Gaussian rigidity that this assay provides could advance the
study of its role in complex domain formation processes
in vivo.

The work of L. G. and P. F. was supported by the VIDI
grant scheme of the Netherlands Organisation for Scientific
Research (NWO/OCW). P. F. would like to thank the
IAS and the University of Warwick for their support and
hospitality during the completion of this project. S. C. A. I.
acknowledges funding from the U.K. EPSRC under Grant
No. EP/L015374/1 (Centre for Doctoral Training in
Mathematics for Real-World Systems) and support from
the Labex CelTisPhyBio (ANR-11-LABX-0038, ANR-10-
IDEX-0001-02). M. S. T. acknowledges the generous
support of the JSPS, via a long term fellowship, and the
peerless hospitality of Professor Yamamoto at Kyoto
University where this work was completed. Finally, all
authors would like to extend their sincere thanks to Daniela
Kraft and Melissa Rinaldin for discussions and access to
unpublished data.

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell, 4th ed. (Garland
Science, New York, 2002).

[2] M. Edidin, Annu. Rev. Biophys. Biomol. Struct. 32, 257
(2003).

[3] D. A. Brown and E. London, J. Biol. Chem. 275, 17221
(2000).

[4] K. Simons and D. Toomre, Nat. Rev. Mol. Cell Biol. 1, 31
(2000).

[5] K. Simons and R. Ehehalt, J. Clin. Invest. 110, 597 (2002).
[6] C. Gebhardt, H. Gruler, and E. Sackmann, Z. Naturforsch. C

32, 581 (1977).
[7] N. Shimokawa, R. Mukai, M. Nagata, and M. Takagi,

Phys. Chem. Chem. Phys. 19, 13252 (2017).
[8] K. Simons and W. L. Vaz, Annu. Rev. Biophys. Biomol.

Struct. 33, 269 (2004).

[9] M. Rinaldin, P. Fonda, L. Giomi, and D. J. Kraft,
Nat. Commun. 11, 4314 (2020).

[10] M. Rinaldin, R. W. Verweij, I. Chakraborty, and D. J. Kraft,
Soft Matter 15, 1345 (2019).

[11] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[12] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
[13] S. A. Safran, Statistical Thermodynamics of Surfaces,

Interfaces, and Membranes (CRC Press, Boca Raton, 2018).
[14] F. Jülicher and R. Lipowsky, Phys. Rev. Lett. 70, 2964

(1993).
[15] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.188002 for further
mathematical details on the equations used in the main text.

[16] R. Dimova, Adv. Colloid Interface Sci. 208, 225 (2014).
[17] J. D. Nickels, X. Cheng, B. Mostofian, C. Stanley, B.

Lindner, F. A. Heberle, S. Perticaroli, M. Feygenson, T.
Egami, R. F. Standaert, J. C. Smith, D. A. A. Myles, M. Ohl,
and J. Katsaras, J. Am. Chem. Soc. 137, 15772 (2015).

[18] J. F. Nagle, M. S. Jablin, S. Tristram-Nagle, and K. Akabori,
Chem. Phys. Lipids 185, 3 (2015).

[19] M. Hu, J. J. Briguglio, and M. Deserno, Biophys. J. 102,
1403 (2012).

[20] T. Baumgart, S. Das, W. Webb, and J. Jenkins, Biophys. J.
89, 1067 (2005).

[21] S. Semrau, T. Idema, L. Holtzer, T. Schmidt, and C. Storm,
Phys. Rev. Lett. 100, 088101 (2008).

[22] R. G. Morris, T. R. Dafforn, and M. S. Turner, arXiv:
1904.00710.

[23] S. T. Milner and S. A. Safran, Phys. Rev. A 36, 4371 (1987).
[24] R. Parthasarathy, C.-H. Yu, and J. T. Groves, Langmuir 22,

5095 (2006).
[25] A. B. Subramaniam, S. Lecuyer, K. S. Ramamurthi, R.

Losick, and H. A. Stone, Adv. Mater. 22, 2142 (2010).
[26] B. Różycki, T. R. Weikl, and R. Lipowsky, Phys. Rev. Lett.

100, 098103 (2008).
[27] X. Li, L. Matino, W. Zhang, L. Klausen, A. F. McGuire, C.

Lubrano, W. Zhao, F. Santoro, and B. Cui, Nat. Protoc. 14,
1772 (2019).

[28] P. Fonda, M. Rinaldin, D. J. Kraft, and L. Giomi, Phys.
Rev. E 98, 032801 (2018).

[29] R. E. Goldstein and D. P. Jackson, J. Phys. Chem. 98, 9626
(1994).

[30] C. Esposito, A. Tian, S. Melamed, C. Johnson, S.-Y. Tee,
and T. Baumgart, Biophys. J. 93, 3169 (2007).

[31] A. Tian, C. Johnson, W. Wang, and T. Baumgart, Phys. Rev.
Lett. 98, 208102 (2007).

[32] A. R. Honerkamp-Smith, P. Cicuta, M. D. Collins, S. L.
Veatch, M. den Nijs, M. Schick, and S. L. Keller, Biophys. J.
95, 236 (2008).

[33] R. D. Usery, T. A. Enoki, S. P. Wickramasinghe, M. D.
Weiner, W.-C. Tsai, M. B. Kim, S. Wang, T. L. Torng,
D. G. Ackerman, F. A. Heberle, J. Katsaras, and G.W.
Feigenson, Biophys. J. 112, 1431 (2017).

[34] G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari,
and C. David, Microelectron. Eng. 191, 25 (2018).

[35] H. Jia, T. Litschel, M. Heymann, H. Eto, H. G. Franquelim,
and P. Schwille, Small 16, 1906259 (2020).

[36] R. E. Thompson, D. R. Larson, and W.W. Webb, Biophys.
J. 82, 2775 (2002).

[37] A. Yildiz and P. R. Selvin, Acc. Chem. Res. 38, 574 (2005).

PHYSICAL REVIEW LETTERS 125, 188002 (2020)

188002-5

https://doi.org/10.1146/annurev.biophys.32.110601.142439
https://doi.org/10.1146/annurev.biophys.32.110601.142439
https://doi.org/10.1074/jbc.R000005200
https://doi.org/10.1074/jbc.R000005200
https://doi.org/10.1038/35036052
https://doi.org/10.1038/35036052
https://doi.org/10.1172/JCI0216390
https://doi.org/10.1515/znc-1977-7-817
https://doi.org/10.1515/znc-1977-7-817
https://doi.org/10.1039/C7CP01201B
https://doi.org/10.1146/annurev.biophys.32.110601.141803
https://doi.org/10.1146/annurev.biophys.32.110601.141803
https://doi.org/10.1038/s41467-020-17432-w
https://doi.org/10.1039/C8SM01661E
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1103/PhysRevLett.70.2964
https://doi.org/10.1103/PhysRevLett.70.2964
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.188002
https://doi.org/10.1016/j.cis.2014.03.003
https://doi.org/10.1021/jacs.5b08894
https://doi.org/10.1016/j.chemphyslip.2014.04.003
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1529/biophysj.104.049692
https://doi.org/10.1529/biophysj.104.049692
https://doi.org/10.1103/PhysRevLett.100.088101
https://arXiv.org/abs/1904.00710
https://arXiv.org/abs/1904.00710
https://doi.org/10.1103/PhysRevA.36.4371
https://doi.org/10.1021/la060390o
https://doi.org/10.1021/la060390o
https://doi.org/10.1002/adma.200903625
https://doi.org/10.1103/PhysRevLett.100.098103
https://doi.org/10.1103/PhysRevLett.100.098103
https://doi.org/10.1038/s41596-019-0161-7
https://doi.org/10.1038/s41596-019-0161-7
https://doi.org/10.1103/PhysRevE.98.032801
https://doi.org/10.1103/PhysRevE.98.032801
https://doi.org/10.1021/j100089a043
https://doi.org/10.1021/j100089a043
https://doi.org/10.1529/biophysj.107.111922
https://doi.org/10.1103/PhysRevLett.98.208102
https://doi.org/10.1103/PhysRevLett.98.208102
https://doi.org/10.1529/biophysj.107.128421
https://doi.org/10.1529/biophysj.107.128421
https://doi.org/10.1016/j.bpj.2017.02.033
https://doi.org/10.1016/j.mee.2018.01.018
https://doi.org/10.1002/smll.201906259
https://doi.org/10.1016/S0006-3495(02)75618-X
https://doi.org/10.1016/S0006-3495(02)75618-X
https://doi.org/10.1021/ar040136s

