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ABSTRACT
We gain insight into the effects of gravitational lensing on the estimated distribution of merging
binaries observed through gravitational waves. We quantify the efficiency of magnification
for gravitational wave events in the geometric optics limit, and we compare it to the
electromagnetic case by making minimal assumptions about the distribution of intrinsic
properties for the source population. We show that lensing effects leave a recognizable signature
on the observed rates, and that they can be prominent only in the presence of an extremely
steep mass function (or redshift evolution) and mainly at low inferred redshifts. We conclude
that gravitational magnification does not represent a significant systematic for gravitational
wave merger studies in the LIGO–Virgo era.
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1 IN T RO D U C T I O N

Even before the first detection of gravitational waves (GWs) due
to the merger of a compact binary by the Laser Interferometer
Gravitational-Wave Observatory (LIGO)–Virgo Collaboration (Ab-
bott et al. 2016a), the scientific community has long been invested
in studying the effects of cosmic structure on the observed signal
(see e.g. one of the first examples Wang, Stebbins & Turner 1996).
Here, we choose to focus on gravitational magnification, i.e. the
enlargement of a source in the image plane of an observer due to
the converging effect of one or more gravitational lenses along the
line of sight.

For point-like electromagnetic (EM) sources this corresponds
to an increase in brightness of a factor μ that has been shown to
greatly affect the bright end of the luminosity functions of high-
redshift quasars and submillimetre galaxies (e.g. Wyithe & Loeb
2002; Negrello et al. 2010). Similarly, in the case of standard
candles with known luminosity (e.g. Type Ia supernovae or SNIa;
Nomoto, Iwamoto & Kishimoto 1997), magnification can induce a
bias in the recovered distance–redshift relation. However, because
an average null magnification is expected for each redshift bin, this
bias is usually alleviated by flux-averaging multiple sources (Wang
2000).

For GW mergers, previous works (e.g. Dai, Venumadhav &
Sigurdson 2017; Oguri 2018; Smith et al. 2018) have already studied
the effects of lensing on a range of source population models and
confirmed that, in the presence of a sharp cut-off in the intrinsic
distribution, the observed one is smoothed out and transformed into
a long and highly suppressed tail. More specifically, Broadhurst,

� E-mail: contigiani@strw.leidenuniv.nl

Diego & Smoot (2018) claimed that a considerable fraction of
LIGO–Virgo events to date might belong to this tail and that another
sign of strong lensing, i.e. multiple images originating the same
source, might have already been detected (Broadhurst, Diego &
Smoot 2019).

While this idea offers an explanation for the present-day tension
with binary evolution models (see e.g. Dominik et al. 2012) that
predict lower masses than observed, it is not favoured by the
data itself (Hannuksela et al. 2019; Singer, Goldstein & Bloom
2019). Furthermore, the tension it tries to explain might also be
alleviated through tweaks to stellar evolution models (Abbott et al.
2016b).

The goal of this short paper is to offer some quantitative insights
into the effects of lensing on the expected rates of GW mergers
and to highlight its general low likelihood.1 This is done in light
of the aforementioned claims and the proposed use of gravitational
merger events as powerful standard sirens (Nissanke et al. 2013;
Abbott et al. 2017). In Section 2, we discuss magnification effects
on the measured GW signal and compare them to the EM case,
while in Section 3, we derive the impact on the observed rates. In
general relativity, light and GWs move along the same geodesics.
Because of this, the difference between the two can only be due
to the dependence of the inferred source properties on μ and how
efficiently this dependence is translated into the observed rates. In
Section 4, we discuss our results and, finally, in Section 5, we draw
our conclusions.

1In the interest of reproducibility, a Jupyter notebook offering a guided
version of this work is available at https://www.github.com/contigiani/lens
ingGW
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Figure 1. Probability density function (PDF) of the log-magnification
(log μ) for different source redshifts z used here. This figure is a rough
approximation of more precise results, see e.g. fig. 2 of Oguri (2018).
Although the weak lensing component of this distribution (dashed line)
can be well approximated by assuming a lognormal distribution of the
convergence, our power-law assumption for the strong lensing component
underestimates this probability for μ � 1 and μ ∼ 2.

2 LENSING

The value of the magnification μ for cosmological sources at various
redshifts z is modelled by a probability function P(μ, z) that can be
obtained numerically by performing ray-tracing simulations (e.g.
Hilbert et al. 2007; Takahashi et al. 2011). To simplify the notation,
here we call P(μ) what is sometimes called dP

dμ
in the literature.

This quantity measures the distribution of magnification for all
possible images of a given source and due to conservation of
photons/gravitons on average we have null magnification,

〈μ〉 =
∫

dμ μP (μ, z) = 1. (1)

More details about how this distribution should be interpreted are
available in appendix A of Oguri (2018).

For this paper, we will use a simplified model of P(μ, z),
calculated as the sum of two components: weak and strong lensing.
For the first, we assume a lognormal distribution for the convergence
κ (as in e.g. Taruya et al. 2002; Hada & Futamase 2018) and derive
the corresponding magnification probability density function (PDF)
using the relation

μ � 1

(1 − κ)2
. (2)

Although this relation for μ and κ is valid only in the limit of null
shear |γ | = 0, it has been shown to accurately reproduce the weak
lensing component of the magnification distribution (Takahashi
et al. 2011), where κ � 1. For the strong lensing component, we
do not assume any relation between μ, κ , |γ | and instead impose
a power law P(μ, z) ∝ μ−3 for μ > 1, calibrated empirically
using the lensing depths of Oguri (2018). Finally, to simulate the
demagnification tail, we assume a constant value for μ < 1. The
complete result is presented and discussed in Fig. 1. In this work,
we do not consider sources with z > 10.

For EM sources, in the presence of magnification, the source flux
is amplified by a factor μ. If the redshift to the source is known
and a cosmology is assumed, the result is a mismatch between the
inferred luminosity (L) and the intrinsic one (L∗):

L
L∗

= μ, (3)

while if only the luminosity is known (i.e. for standard candles), then
the result is a mismatch between the inferred and true luminosity
distance to the source:

D(z) = D(z∗)√
μ

, (4)

where we call z and z∗ the inferred redshift and the true one,
respectively. We also refer to the corresponding luminosity distances
as D and D∗. The Jacobians of the transformations in equations (3)
and (4) are

∂L∗
∂L = 1

μ
(5)

and

∂z∗
∂z

= D′(z)

D′(z∗)
√

μ. (6)

In the case of GWs, we limit ourselves to the inspiral phase of
compact binary mergers. In this phase, the GW strain amplitude as
a function of time, h(t), carries information about both the distance
of the source and the associated masses. The frequency evolution
of the signal can be used to extract the redshifted chirp mass (an
effective combination of the masses involved in the merger):

ḟ ∝ M(1 + z), (7)

while the amplitude is connected to the inverse of the luminosity
distance:

h(t) ∝ A (M(1 + z))

D(z)
, (8)

where A(· · · ) is a function of the redshifted chirp mass alone. From
here, it should be clear that both M and D(z) can be extracted from
the signal.

In the presence of magnification, the observed strain is multiplied
by a factor

√
μ, and the mismatch between the intrinsic properties

(z∗,M∗) and the inferred ones (z,M) is such that

D(z) = D(z∗)√
μ

(9)

and

M = M∗
1 + z∗
1 + z

. (10)

For μ > 1, this implies that distant events are assumed to be
closer and more massive than they actually are, just like magnified
EM sources are assumed brighter. An essential difference between
the two, however, is that the dependence on magnification is
significantly weaker for the GW merger parameter M compared
to the luminosity L,

M
M∗

= 1 + z∗
1 + z

∝ μs(z), (11)

with s(z) < 0.5 for any z < z∗ and s(z) → 0.5 for increasing z. This
can be easily shown by combining equations (9) and (10), together
with the fact that the luminosity distance can be expressed, in a
flat background, as the product of (1 + z) and a strictly increasing
function of z (comoving distance).

To conclude this section, it is useful to point out that the Jacobian
of the transformation (M, z) ↔ (M∗, z∗) can be written as

∂M∗
∂M

∂z∗
∂z

= D′(z)

D′(z∗)

1 + z

1 + z∗

√
μ. (12)
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3 R ATES

We write the observed rate of merger events per unit redshift and
unit chirp mass as

r (GW)(M, z) = R(M, z)

1 + z
E (GW)

L (M, z), (13)

where R is the intrinsic rate in the source frame, and EL the lensing
boost. Here, we separate the rate in two components:

R(M, z) = R(M)R(z), (14)

and, for the redshift-dependent part, we assume a rate that is
proportional to the product of the comoving volume boosted by
a factor (1 + z)β :

R(z) ∝ dVc

dz
(1 + z)β ∝ d2

L(z)

E(z)
(1 + z)β−2, (15)

where we use a standard � cold dark matter (�CDM) cosmology
with E(z) =

√
0.3(1 + z)3 + 0.7. This power-law behaviour is

expected if the merger rate of compact binary objects traces the
star formation history (Madau, Pozzetti & Dickinson 1998) at low
redshift (Dominik et al. 2013). In this toy model, we also invert the
sign of the power-law index β = 2.3 at z = 2, in order to simulate
a peak in the star formation rate.

Similar expressions can also be written for the rates of SNIa and
the number counts of quasars:

r (SN)(z) = R(z)

1 + z
E (SN)

L (z), (16)

n(Q)(L, z) = N (L)E (Q)
L (L, z). (17)

Even though we assume that the intrinsic luminosity function of
quasars N (L) is not redshift dependent, lensing effects introduce
this dependence in the observed n(L, z). The lensing boost factors
can then be written as

E (GW)
L =

∫
d (M∗/M)

R(M∗)

R(M)
W (GW)(M∗/M, z), (18)

E (SN)
L =

∫
dD∗

R(z∗)

R(z)
W (SN)(D∗/D, z), (19)

E (Q)
L =

∫
d log10 (L∗/L)

N (L∗)

N (L)
W (Q)(L∗/L, z), (20)

where we have introduced the weight functions WX, quantifying
the contribution to the observed rates at z,M,L from lensed
events. These weight functions can be written as the product of
the following terms.

(i) A lensing term. For each z∗, M∗, andL∗ there is an associated
lensing probability. For the GW and supernova (SN) cases this
is P(μ, z∗) because the measured redshift z, inferred from the
luminosity distance, is different from the source redshift z∗. For
the quasar (Q) case this probability is simply P(μ, z) because it
is measured directly. For μ > 3 we have P(μ, z∗) > P(μ, z),
meaning that we expect strong lensing to be particularly efficient
for standard candles/sirens. Furthermore, because the expressions
above are not written as integrals in μ, this term also contains a
probability volume, e.g. dμ/dz∗ for the SN case.

(ii) A comoving volume term for the GW and SN cases. This is
due to our assumption that R(z) ∝ dVc. Because lensing introduces
contributions from a redshift range different from the observed z, a
term dVc(z∗)/dVc(z) is present.

(iii) A redshift evolution term for SN and GW. Similar to the
previous case, except due to the assumed power-law dependence of

R(z). This term also accounts for the different redshifted rates and
is equal to

(
1+z∗
1+z

)β−1
.

(iv) A Jacobian term. As introduced in the previous section,
the lensing transformation from intrinsic to observed quantities
introduces an additional Jacobian factor.

In the next section, we study in detail the impact of lensing
magnification on the inferred chirp mass and redshift values and
compare these results to the EM cases. We will work with the
arguments of the integrals written above and, for ease of readability,
we will also normalize these functions with respect to their value
at null magnification (μ = 1). In particular, we chose not to
focus extensively on the results of the integral E (GW)

L , since it
strongly depends on the assumed mass function R(M). For accurate
rates, we refer the reader to previous works (e.g. Dai et al. 2017;
Broadhurst et al. 2018; Ng et al. 2018; Oguri 2018).

4 R ESULTS

4.1 Weight function

On the right-hand side of Fig. 2, we plot the contribution of different
intrinsic chirp masses to the integral in equation (18), while on the
left-hand side we plot the equivalent result for light. These functions
correspond to W(GW) and W(Q).

The first obvious conclusion is that magnification affects more
efficiently the inferred rates of GW mergers compared to EM
sources at both high and low redshift. This is mainly because
GW lensing gives access to a wider volume at higher redshift,
corresponding to a higher Jacobian factor and significantly stronger
lensing probabilities. These effects are the main discriminant
between the two cases and are dominant at low redshift.

We note, however, that the GW weights are still low. If we focus
on a LIGO-like source (z ∼ 0.15), we see that, in order to have rates
at mass M dominated by events at M∗ ∼ M/3, the mass function
R(M) should span roughly seven orders of magnitude betweenM∗
and M. Although this has been shown to be possible, we point out
that this roughly corresponds to a doubly exponential tail, with

R(M) ∝ e−eM/M0 (21)

and M0 = M∗. This conclusion is mostly independent of our
assumed mild redshift evolution.

Despite the lower lensing weights for the EM case, we also
show that a typical Schechter function N (L) ∝ exp(−L/L∗)/L
(Schechter 1976) is able to introduce a significant contribution from
highly magnified sources at high z.

4.2 Lensing tail

In Fig. 3, we show the expected lensing tail of a truncated power-
law distribution R(M) ∝ M−n for a few choices of n. Events
measured with a chirp mass larger than the cut-off value Mco must
be magnified mergers with intrinsic redshift z∗ > z and intrinsic
chirp mass M∗ < M.

The prominence of this tail for a steep mass function (large
n) and low redshift z explains why a source distribution can be
designed to produce a large number of lensed events (Broadhurst
et al. 2018). It is useful to stress here that the main reason behind
this is not the larger volume available to be lensed, but the fact that
higher redshift events contributing to the low redshift rates are both
more likely to be lensed and are also necessarily located on a more
abundant portion of the mass function. This is because the mapping
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Figure 2. Relative contribution to the observed counts of transient GW events with chip mass M or permanent EM sources with luminosity L by events with
different intrinsic properties (M∗ or L∗). The observed redshift z is equal to the intrinsic one for the EM case. The filled lines assume a flat mass/luminosity
function (μ > 3 for the thick lines), while the dashed line corresponds to the weights for an observed luminosity located well past the knee of a Schechter
luminosity function (L/L0 = 10). For non-flat distributions, the relative contribution is the mass (or luminosity) function multiplied by these weights (see
equations 18 and 20).

Figure 3. The shape of the lensing tail for truncated power-law distri-
butions. The figure shows the observed rate r(M) for an intrinsic chirp
mass function R(M) ∝ M−n truncated at Mco. The observed rate for
M > Mco must therefore be due to lensed events. The dependence on n
is more striking for low inferred redshifts z due to how the intrinsic chip
masses are distributed in the volume at z∗ > z. See Section 4.2 for more
details.

(M, z) ↔ (M∗, z∗) depends only on μ. Despite the main advantage
of amplifying the lensing tail compared to the naive expectation,
this mechanism has the drawback of being efficient only for events
with low z. For example, the shape of the z = 5 lensing tail is less
sensitive to the details of the mass function.

Here we do not assume a lower limit for the values M∗ and
the integrals are truncated only because we impose z∗ < 10. While
this choice is unrealistic, it is possible to verify that imposing a
lower limit M∗ > 5 M (i) does not affect the quantitative results
of Fig. 3 for n < 10 and M > 20 M, and (ii) has no impact on the
qualitative results discussed in this section for all values of n.

4.3 Luminosity distance

Another consequence of the dependence of the observed mass M
on the magnification μ is the broadness of the peak in Fig. 2.
The standard deviation of this distribution can be interpreted as an
uncertainty in the measuredM, and, for an individual event it can be

Figure 4. Relative contribution to the observed counts of transient GW
events with redshift z by events with a different intrinsic redshift z∗. This is
plotted as a function of the direct observable, the luminosity distance D(z).
The filled lines correspond to a flat mass function (μ > 3 for the thick lines).
The dashed lines represent the same result for the SN case, i.e. the case of
transient EM sources of known luminosity for which lensing can also bias
the result.

quite substantial: its value grows from 1 to about 7 per cent between
z = 1 and 5. The main source of this scatter is the convergence
distribution discussed in Section 2 and it is not particularly affected
by our chosen source redshift dependence R(z). For a flat mass
function, no significant bias is observed in this redshift range,
meaning that the contributors to an event of observed chirp mass M
and redshift z are expected to have, on average, the same intrinsic
properties.

In Fig. 4, we plot the equivalent of Fig. 2 for the luminosity
distance D(z). This is of particular interest because in the literature
magnification effects are usually reported in terms of a smearing of
the inferred distance instead of the inferred mass. For a flat mass
function, we find a scatter of 2.5 per cent at z = 0.15 and 10 per cent
at redshift z = 5, which is consistent with results from previous
works (e.g. Holz & Linder 2005; Kocsis et al. 2006; Sathyaprakash,
Schutz & Van Den Broeck 2010; Oguri 2016). This value should
be, however, compared to the present-day observational uncertainty
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in D(z) of about 25 per cent, dominated by the poorly constrained
detector efficiency.

Although not shown, one can also find that in the presence of a
steep mass function, the inferred D(z) is substantially more biased
compared to the inferred M. This is because D∗ and M∗ scale
differently with μ (equations 9 and 11).

5 C O N C L U S I O N S

After studying the effects of gravitational lensing on the observed
rates of GW mergers at low and high redshift, we conclude that
magnification is not expected to significantly affect them. To show
this, we have calculated the relative contribution of magnified
events to the observed rates without assuming a specific chirp mass
distribution.

We have worked in the geometric optics limit to compare the
effects of magnification on the observed chirp mass function of GW
mergers, and luminosity function for EM sources. Because of the
larger wavelengths λ of GWs, this approximation can break down
if an object with a Schwarzschild radius comparable to λ lies along
the line of sight between source and observer (see e.g. Takahashi &
Nakamura 2003). The strength and rates of the resulting wave effects
depend on the redshift and frequency considered (see e.g. for both
ground- and space-based detectors; Sereno et al. 2010; Dai et al.
2018). In all cases, however, these do not cause a direct bias in
the parameters considered here due to the frequency-dependent
signature they leave in the measured waveforms.

The LIGO–Virgo detector is currently on its third observing run,
and in a few years it is expected to reach its design sensitivity.
The expected statistical sample of mergers, made of hundreds or
thousands of events, will allow a full reconstruction of the chirp
mass distribution of the underlying populations. If the intrinsic
distribution is extremely peaked, the observed one might be con-
taminated by highly lensed events with biased luminosity distances
and chirp masses. However, not only this scenario is in conflict
with the expectation from current stellar evolution models (see e.g.
Belczynski et al. 2016, 2017), but we have shown here that this
would leave an easily recognizable signature in the LIGO rates due
to (i) the wide range of probed masses at low redshift (Martynov
2016) and (ii) the flatness and low values of the lensing efficiency
as a function of chirp mass (see Fig. 2).

As an example, the contribution to mergers with an observed
M ∼ 30 M and z ∼ 0.15–1 (D ∼ 700–1000 Mpc) from events
with lower M is suppressed by a factor ∼106–104. No matter
how these lensed events are distributed in intrinsic chirp mass, the
non-lensed events with similar properties should be both abundant
and isolated from the highly suppressed lensing tail. These values
roughly correspond to the 12 mergers detected during the first and
second observing run of LIGO–Virgo (Abbott et al. 2019). In light
of what is presented here, the absence of a larger number of events at
M < 10 M (to which the detector has been shown to be sensitive)
suggests that these events are not lensed.

These results offer guidance when interpreting magnification
effects on the soon to be measured merger rates and are inten-
tionally agnostic regarding detector or source population. The main
conclusions hinge only on the weak dependence of the inferred
binary properties on the factor μ and provide a general explanation
for the established result that lensing contamination for luminosity-
limited GW events is low for a wide range of detectors and source
populations (e.g. Sereno et al. 2010; Ding, Biesiada & Zhu 2015;
Ng et al. 2018; Oguri 2018).
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