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THE HUMAN MICROBIOTA AND MICROBIOME

The human body is colonised by a diversity of microorganisms, including archaea, bacteria, 
bacteriophages, fungi, protozoa and viruses. This is collectively known as the human 
microbiota. The traditional estimate is that these 10-100 trillion microorganisms outnumbers 
the human cells by at least a factor of 10 (1). More recent estimates have lowered that ratio 
to 3:1 or even parity (2). Together, these microorganisms possess approximately 3 million 
unique genes; 150 times more genes than the human genome (3). The microorganisms and 
their collection of genes are called the human microbiome or our second genome, which 
serves as a functional expansion of the human genome. The genes that are added in this way 
to our own collection encode various types of enzymes that play a critical role in important 
physiological processes, such as metabolism and immunity. Furthermore, the microbiota 
prevents colonization and/or outgrowth of pathogens, also known as colonisation resistance, 
preventing infectious diseases. Bacteria are the best studied group of microorganisms in 
this context, as they overwhelmingly outnumber the other microorganisms present in the 
human microbiota by an orders of magnitude of 2-3 (4, 5). Based on their similarities and 
relationships, bacteria can be arranged into taxonomic groups or taxa (Figure 1). 

Figure 1. Bacterial taxonomy with bacterial species present in this thesis as examples. In the bacterial kingdom, 
bacteria are arranged in small but homogenous groups or taxa. Species is the basic taxonomic group. Groups of 
species are collected into genera. Groups of genera are collected into families, families into orders, orders into 
classes, and classes into phyla, the major lineages of the bacterial kingdom. The number of taxonomic groups are 
based on the List of Prokaryotic Names with Standing in Nomenclature (6).
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Acquisition of the human microbiota is believed to be initiated at birth. Recent reports 
of bacteria present in the placenta, fetal membranes, amniotic fluid, and umbilical cord 
blood of healthy term pregnancies have challenged this belief (7, 8). However, the ‘in utero 
colonization hypothesis’ remains the subject of debate. The critical issue concerns the low 
microbial biomass of these body sites and the potential bias from background, contaminant 
DNA, which increases the risk of false positive results (9). Regardless of intrauterine exposure, 
the microbiota of the neonate is influenced by mode of delivery with the microbiota sourced 
from the mother’s vagina during delivery (predominately Lactobacillus and Prevotella spp.) 
or from skin with caesarean section (predominantly Staphylococcus and Corynebacterium 
spp.) (10, 11). After birth, the microbiota undergoes significant reorganization driven 
by body site (12). Type of feeding is another important driver of microbiota maturation  
(8, 13). Approximately three years postpartum, the microbiota composition becomes more 
stable and roughly resembles that of adults, consisting predominantly of bacteria within the 
phyla Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria (14). At that time, each 
body site contains a ‘core’ as well as ‘variable’ set of bacteria. The microbiota composition of 
each body site is broadly similar among humans worldwide due to the shared physical and 
chemical features (15). Differences in microbiota composition of a specific body site between 
humans originate from environmental factors that may vary significantly among humans, 
such as hygiene, lifestyle, geographic location, medication and diet (16, 17). Accordingly, 
the microbiota of a specific body site is closely related to humans sharing a home (18, 19).

During the course of our life, the microbiota composition of each body site varies in 
terms of membership (what is present) and structure (quantity of a member compared 
to the total).  These changes are mainly caused by environmental factors, such as physical 
interaction between individuals, antibiotic exposure, changes in both hygiene and lifestyle, 
but also by age (20, 21). The degree of variation depends on the complexity of the microbiota  
as a diverse microbiota tends to be less stable compared to a less diverse microbiota (22, 23). 
Furthermore, the degree of variation is also a personal feature, meaning that the microbiota 
of a specific body site can vary more in one individual compared to another (24, 25).

THE HUMAN MICROBIOTA AND ASSOCIATIONS WITH DISEASE

In 2006, Gill and colleagues were the first to reveal that the microbiota of the human 
gastrointestinal tract encodes for more enzymes than the human genome itself (26). This 
finding highlighted the crucial role of the human gut microbiota in health and laid the 
groundwork for further research to investigate the association between the human gut 
microbiota and disease. The best evidence to highlight the importance of the human gut 
microbiota in health and disease was obtained from clinic studies treating patients with 
antibiotics for Clostridioides difficile infections (27). C. difficile is a spore-forming bacterium and 
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asymptomatic carriage in the normal population is estimated to be 3-15%. The healthy gut 
microbiota, comprising a wide range of bacteria predominantly within the phyla Firmicutes 
and Bacteroidetes, inhibits growth of C. difficile. This defence system includes competition 
for nutrients, production of antimicrobial compounds, and regulation of secondary bile acid 
metabolism, which in contrast with primary bile acids, inhibit C. difficile spore germination 
(28-30). Antibiotic treatment changes the composition of the gut microbiota, reducing its 
diversity and leading to a decreased inhibition of the growth of C. difficile. An overgrowth of 
C. difficile is the most important cause of hospital-acquired diarrhoea and is usually treated 
with another round of antibiotics (31). In approximately 80% of C. difficile infected patients, 
the infection is cleared after treatment. However, in almost 20% of the patients, antibiotic 
treatment leads to further disruption of the gut microbiota, reduced colonization resistance 
and subsequent recurrence of the C. difficile infection. After repeated use of broad-spectrum 
antibiotics to treat the recurrent infection, the microbiota is completely out of balance, 
which is called dysbiosis (Figure 2). In early 2011, a faecal microbiota transplant (FMT) 
obtained from a healthy donor restored the healthy gut microbiota and prevented recurrent 
episodes of diarrhoea in approximately 94% of the patients (32). This study demonstrated a 
strong association between the gut microbiota composition and C. difficile infection related 
disease. Furthermore, this finding remains the best proof-of-principle that the healthy gut 
microbiota can reproducibly correct severe and specific dysbiosis. To date, FMT remains the 
primary therapy for patients with recurrent C. difficile infections where appropriate antibiotic 
treatments failed (33-35).

Asthma
Chronic obstructive pulmonary disease
Ventilator-associated pneumonia

Aerobic vaginitis

Clostridioides difficile infection1
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Inflammatory bowel disease
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Figure 2. Examples of the Human microbiota in health and disease. Each body site, such as the gastrointestinal 
tract, respiratory tract, skin and urogenital system, contain a unique composition of microorganisms, called the 
microbiota. The microbiota composition can change in time (lose or obtain microbial diversity), which might be 
associated with specific diseases. 1Microbiota of the gut after antibiotic treatment for Clostridioides difficile infection.
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In the meantime, a tremendous amount of circumstantial evidence has been collected 
to suggest a crucial role for the human microbiota in health and disease with a strong focus 
on the gastrointestinal tract (Table 1a-d). Only a few of these human studies have been 
complemented by mechanistic studies demonstrating causality. For the gut, a hypothesis 
has been proposed to explore whether dysbiosis is a cause or consequence of a disease (36). 
According to this hypothesis, (i) each healthy person is genetically susceptible to one or more 
polygenetic disorders, (ii) environmental factors trigger gut microbial dysbiosis, intestinal 
inflammation and/or increase gut permeability known as ‘leaky gut’, (iii) combination of 
genetic susceptibility and environmental exposure results in polygenetic disorder, and 
(iv) transplantation of the disease-associated gut microbiota to a genetic susceptible 
host reproduces the distinct disease phenotype. In the following sections, we will briefly 
discuss the role of the human microbiota in obesity, inflammatory bowel disease and neuro-
psychiatric diseases to show that microbial dysbiosis can have local and systemic effects. 
Finally, we will highlight the major clinical findings of the respiratory tract microbiota to 
show that microbiota development early in life might have incredible consequences for 
future health.
 

a. Microbiota of the respiratory tract

Disorder category Specific disorder Evidence

Infectious diseases

Acute respiratory 
infections

• �Early colonization with Haemophilus influenzae and  
Streptococcus pneumoniae associated with higher  
prevalence (13, 105)

Ventilator-associated 
pneumonia • Increase in the order Pseudomonadales (106, 107)

Immune-related/  
autoimmune diseases
 

Chronic obstructive 
pulmonary disease

• �Increased abundance of the phylum Proteobacteria or 
Firmicutes (108)

Recurrent wheezing  
and asthma

• �Increased abundance of Haemophilus influenzae,  
Moraxella catarrhalis or Streptococcus pneumoniae (109-116)

Chronic suppurative  
lung diseases

Cystic fibrosis • Increased abundance of potential pathogens (117-119)

Bronchiectasis • Increased abundance of potential pathogens (120)

Chronic inflammatory 
diseases

Chronic rhinitis • �Increased abundance of Staphylococcus and  
Propionibacteria spp. (121)

Chronic rhinosinusitis • Increased abundance of potential pathogens (122-124)

Otitis media • Increased abundance of potential pathogens (125, 126)

Table 1. Evidence of human studies suggesting a crucial role for microbiota of (a) the respiratory tract,  (b) the 
gastrointestinal tract, (c) the skin or (d) the urogenital system in health and disease
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b. Microbiota of the gastrointestinal tract

Disorder category Specific disorder Evidence

Infectious diseases Clostridioides difficile 
infections

• Decreased microbial diversity (27, 37-40)
• �Secondary bile acid metabolism regulated by microbiota 

inhibits spore germination (30)
• 94% of patients cured after faecal microbiota transplant (32)

Metabolic disorders
Obesity

• �Increased abundance of short-chain fatty acids producing 
Firmicutes and decreases abundance of phylum  
Bacteroidetes (41, 42)

• �Improved insulin sensitivity after faecal microbiota  
transplantation, but no effect on weight (43-45)

Type-2 diabetes • Decrease in short-chain fatty acids producing bacteria (46-50)

Immune-related/
autoimmune diseases

Celiac disease • Variable dysbiosis (51-54)
• Gluten-free diet restores partly microbiota (55-57)

Inflammatory bowel 
disease

• Disturbance of microbial balance (58-61)
• Varying response to faecal microbiota transplantation (62-69)

Irritable bowel 
syndrome

• Variable dysbiosis (70-72)
• �Significant decrease in severity score at three months post- 

faecal microbiota transplant in 65% of the patients (73, 74)

Multiple sclerosis • Increased microbiota diversity (75, 76)

Systemic lupus  
erythematosus • Decreased microbiota diversity (77)

Type-1 diabetes • �Disturbed ratios of the phyla Bacteroidetes and Firmicutes 
(78-83)

Rheumatoid arthritis • Increased Prevotella spp. (84, 85)

Neuro-psychiatric 
diseases

Autism spectrum 
disorder

• Increased microbial diversity (86-88)
• �Behavioural symptoms and microbiota improved  

significantly after faecal microbiota transplant (89)

Alzheimer’s disease

• �Possible connection between gut microbiota-synthesized 
amyloids, lipopolysaccharides, γ-aminobutric acid and the 
increased permeability of the gut barrier and blood brain 
barrier with age (90, 91)

Depression • Depletion of Faecalibacterium and Coprococcus spp. (92-95)

Parkinson’s disease
• �Increased abundance of short-chain fatty acids producing 

Blautia and Coprococcus spp. (96)
• Gut bacteria interfere with treatment (97)

Cancer Colorectal cancer
• Increased abundance of Bacteroidetes fragilis (98, 99)
• �Fusobacterium nucleatum promotes chemoresistance to 

colorectal cancer (100)

Liver diseases Hepatic  
encephalopathy

• �Increased abundance of the families Alcaligenaceae and 
Pyrphyromonadaceae (101)

• �Faecal microbiota transplant may be potentially effective in 
preventing long-term recurrence of hepatic encephalopathy 
(102-104)
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c. Microbiota of the skin

Disorder category Specific disorder Evidence

Immune-related /  
autoimmune diseases

Atopic dermatitis

• Increased abundance of Staphylococcus aureus (127)
• Reduced microbial diversity (128, 129)
• �Autologous bacterial transplant of coagulase-negative 

Staphylococcus strains reduced S. aureus colonization (130)
• �Allogeneic bacterial transplant of Roseomonas mucosa 

reduced symptoms and S. aureus colonization (131)

Acne vulgaris
• Increased diversity within follicles (132)
• �Specific Propionibacteria acnes strains associated with acne 

(133)

Chronic wounds • Increased abundance of polymicrobial biofilms (134, 135)

Psoriasis • Decreased microbial diversity (136-140)

Rosacea • Disturbance of microbial balance (141)

Seborrheic dermatitis • �Imbalance between bacteria and fungi on the scalp surface 
(142)

Vitiligo • Decreased microbial diversity (143)

d. Microbiota of the urogenital system

Disorder category Specific disorder Evidence

Polymicrobial  
syndromes

Bacterial vaginosis

• �Shift from Lactobacillus spp. dominated vaginal microbiota 
to a more diverse microbiota dominated by anaerobes 
(144-147)

• �Long-lasting improvements in four of five patients with 
recurrent bacterial vaginosis after 1-3 vaginal microbiota 
transplant sessions (148)

Aerobic vaginitis/ 
desquamative inflam-
matory vaginitis

• �Shift from Lactobacillus spp. dominated vaginal microbiota 
to a more diverse microbiota dominated by aerobes (149)

Obesity
Obesity is a global health hazard affecting more than 650 million people worldwide and is 
associated with a higher risk of developing cardiovascular disease, type II diabetes, and liver 
abnormalities. An imbalance in the energy intake and energy expenditure is considered as 
the major cause of this condition. Although lifestyle and genetic factors are also considered 
as the influential determinants of obesity, recent research suggested microbiota to be a 
key environmental factor that influences obesity. In obese patients, a significant increase 
in Firmicutes that produce short-chain fatty acids (SCFA) and a decrease in the relative 
abundance of Bacteroidetes was observed (150). Such altered microbiota composition is 
believed to result in the upregulation of energy and calories production from the undigested 
materials, altering the energetic homeostasis. A causal role for the gut microbiota in obesity 
is strongly supported by mouse models, suggesting that FMT might improve metabolism 
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(151). Nevertheless, no effect on weight was observed when FMT from lean donors was 
transferred into obese patients although their insulin sensitivity improved significantly  
(43-45). So, to date there is no significant proof that FMT is sufficient to induce weight loss, 
but these studies indicate that the microbiota may be a potential target for therapy.

Inflammatory bowel disease
Other disorders that are rising at an alarming rate worldwide include Crohn’s disease and 
ulcerative colitis. Both are inflammatory bowel diseases affecting parts of the gastrointestinal 
tract. The chronic inflammation is driven by both genetic susceptibility and environmental 
factors, such as diet and antibiotic use. Furthermore, dysbiosis of the gut microbiota in 
patients with Crohn’s disease or ulcerative colitis exist as demonstrated by a reduced 
microbiota diversity and expansion of potentially pathogens (152-154).  The decrease in gut 
microbial diversity is characterised by the depletion of SCFA-producing bacteria, which drive 
the expansion of regulatory T-cell populations that suppress the inflammatory response 
in the gut (155). Decreased production of SCFA might result in an increased inflammatory 
response, leading to chronic inflammation of the gut. Randomised clinical trials with FMT 
showed promising results for a small subset of patients with ulcerative colitis (62-65, 156). 
For Crohn’s disease, only small, uncontrolled cohort studies have been performed with 
mixed results (66-69). Since the observed effects have been very modest, FMT should 
still considered an experimental approach in inflammatory bowel diseases. Currently, 85 
clinical trials focussing on FMT and inflammatory bowel diseases have been registered in 
the ClinicalTrials.gov database.

Neuro-psychiatric diseases via the gut-brain axis
Previous examples showed a relatively strong and local association between microbiota 
and disease. However, it has been suggested that the gut microbiota can communicate 
via the neural, endocrine and immune system with the central nervous system. This 
bidirectional communication system is more commonly referred to as the gut-brain axis 
(157). Emotional factors, such as stress or depression, influence indirectly the composition 
of the gut microbiota and neuro-psychiatric disorders frequently coexist with common 
gastrointestinal diseases associated with gut dysbiosis. Accordingly, it is not surprising that 
several neuro-psychiatric diseases have been associated with gut dysbiosis, such as autism 
spectrum disease, Alzheimer’s disease, depression, and Parkinson’s disease. The strongest 
results showing that a person’s gut microbiota can influence their mental health comes from 
a recent publication (92), which  reported that specific bacteria were reduced in the gut 
microbiota of patients with depression. Furthermore, they observed a positive correlation 
between quality of life and the potential ability of the gut microbiota to synthesize a 
breakdown product of the neurotransmitter dopamine, called 3,4-dihydroxyphenylacetic 
acid.
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Respiratory tract microbiota
Altered microbiota composition has been directly linked to disease, but microbiota 
development in early life might also have consequences for future health. Microbiota 
composition of the upper respiratory tract at six weeks of life is strongly associated with 
both microbial (in)stability as well as with the prevalence of respiratory tract infections in 
the first two years of life (105). Furthermore, specific microbiota profiles are associated with 
an increased risk of recurrent wheeze and asthma in later childhood, suggesting long-term 
effects on host response to environmental triggers (158). The major drivers of microbiota 
development are type of feeding, crowding, exposure to antibiotic, and last but not least 
mode of delivery (11, 159). Applying vaginal microbiota transplants to the skin of Caesarean-
born children restored their microbiota, resulting one month postpartum in similar skin 
and oral microbiota as babies born vaginally. However, long-term effects remain to be 
determined.

MICROBIOTA RESEARCH

Historically, the first microbiota studies started with Sergei Winogradsky in 1885, who 
investigated the microorganisms in connection with each other and discovered the nitrogen 
cycle. By mimicking natural soil conditions, he discovered the interconnectedness of 
microorganisms, that occupy the niches created by their neighbours’ activities and use the 
products of one metabolic pathway as substrates for another. Modern microbiota research 
started with Venter and colleagues in 2004, who were the first to apply DNA sequencing-based 
methods on a large scale to study microorganisms within environmental samples (160). Their 
research revealed the presence of at least 1,800 different species in water samples obtained 
from the Saragasso Sea, while only a small number of species was expected due to the low 
nutrient levels of the sea. This pioneering research illustrated that DNA sequencing-based 
methods, which were not limited to microorganisms that could be cultivated effectively, 
generate more comprehensive characterisation of microbial communities. In 2008, the 
Human Microbiome Project was introduced by the National Institutes of Health (15). The 
project allowed researchers to explore how the human microbiota interacts with the human 
body in much greater detail than ever before. At that time, high-throughput sequencing 
platforms were available for comprehensive characterisation of microbial communities, 
enabling easier detection of a theoretically unlimited number of microorganisms using 
a culture independent approach. The development of the high-throughput sequencing 
platforms also led to boosted microbiota research.

Currently, multiple high-throughput sequencing platforms are available including the 
Illumina, the Pacific Biosciences (PacBio) and the Oxford Nanopore platforms (Table 2). 
The Illumina platforms are presently dominating the market due to its’ cost-effectiveness, 



17

General introduction, aim and outline of the thesis

1  Sequencing  
technology

Platform Maximum  
read length 

Throughput Runtime Limits

Pyrosequencing
Roche 454 GS Junior series 1000 bp 70 Mb 18 h

High error rate
Roche 454 GS FLX series 1000 bp 700 Mb 23 h

Sequencing by 
synthesis

Illumina iSeq 100 system 2x 150 bp 1.2 Gb 18 h

High DNA 
concentrations 
are required

Illumina MiniSeq system 2x 150 bp 7.5 Gb 24 h

Illumina MiSeq series 2x 300 bp 15 Gb 55 h

Illumina NextSeq series 2x 150 bp 120 Gb 30 h

Illumina HiSeq 4000 system 2x 150 bp 1500 Gb 3.5 days

Illumina HiSeq X series 2x 150 bp 1800 Gb < 3 days

Illumina NovaSeq 6000 
system 2x 250 bp 6000 Gb 38 h

Sequencing by 
ligation

Thermo Fisher Scientific 
SOLiD 5500 series 2x 50 bp 320 GB 10 days

Reported  
problems in  
sequencing 
and relatively 
slow compared 
to other 
methods

MGI MGISEQ-200 system 2x 100 bp 60 GB 48 h

MGI BGISEQ-50 system 50 bp 225 GB < 15 h

MGI BGISEQ-500 system 2x 100 bp 520 GB < 9 days

MGI MGISEQ-2000 system 400 bp 1440 GB 38 h

MGI MGISEQ T7 system 2x 150 bp 6 TB < 24 h

Semiconductor 
sequencing

Ion Torrent PGM series 400 bp 1-2 Gb 7.3 h

High error rateIon Torrent Proton system 200 bp 15 Gb 2.5 h

Ion Torrent GeneStudio S5 
series 600 bp 1.5-4.5 Gb 7 h

Single-molecule, 
real-time

Pacific BioSciences PacBio 
RSII ~ 20 Kb 0.5-1 Gb 4 h

Very expensive 
equipment 
and/or high 
error rate

Pacific BioSciences PacBio 
Sequel 10-60 Kb 3-8 Gb 6 h

Oxford Nanopore Flongle ~ 2 Mb 2 Gb <16 h

Oxford Nanopore MinIon ~ 2 Mb 50 Gb < 48 h

Oxford Nanopore GridIon ~ 2 Mb 250 Gb < 48 h

Oxford Nanopore  
PromethIon ~ 2 Mb 5.2 Tb < 72 h

Table 2. Technology, platforms and features of the available high-throughput sequencing methods (164, 166-172)

high-quality data, and relative long read length (161). Illumina follows the principle of  
sequencing by synthesis technology, which includes a DNA polymerase and reversible 
chain terminator nucleotides for all four bases represented by a different fluorescent dye 
(162). Sequencing involves the ligation of specific adaptors to both ends of short DNA 
fragments, which will subsequently hybridize with specific oligonucleotides on a microfluid 
flow cell. The labelled nucleotides are then introduced and incorporated into the growing 
complementary strand by the DNA polymerase. Sequential images are captured and 
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analysed to identify the nucleotide that is incorporated in each synthesis cycle, leading 
eventually to the complete sequence of the DNA fragment or read. The PacBio platforms are 
also based on the sequencing by this principle. However, instead of making an image after 
each synthesis cycle, the signals emitted upon corporation of the nucleotides are detected 
in real-time (163). This allows generation of longer reads but also results in much higher error 
rates, which can be addressed by increasing the sequencing depth (i.e. generating more 
sequences per specimen) (164). Another advantage of the PacBio platforms is that a single 
DNA fragment is sequenced instead of amplifying the DNA fragment before sequencing, 
reducing amplification bias. Like the PacBio platforms, the Oxford Nanopore platform is a 
single-molecule real-time sequencing platform, but the technology is completely different. 
Instead of binding DNA fragment onto a solid surface for sequencing, Oxford Nanopore 
sequencing technology is based on protein pores within a conductive electrolytic solution 
which creates a small potential gradient across these nanopores (165). The ionic current is 
modulated when a DNA fragment traverses through a nanopore and each of the four bases 
results in a different signal that can be detected in real-time, making it a very fast technology.

The advancements in high-throughput sequencing technologies provides the 
opportunity to choose the most appropriate sequencing platform to address a specific 
scientific question. For example, the Illumina Miseq platform is commonly used for 16S 
ribosomal RNA (rRNA) gene profiling, whereas the Illumina HiSeq platform, providing higher 
throughput, is more suitable for whole metagenome shotgun sequencing (164). The third-
generation sequencing platforms of PacBio and Oxford Nanopore are more appropriate 
for addressing scientific question requiring longer reads, such as whole genome shotgun 
sequencing (164). The different methods based on high-throughput sequencing technology 
are outlined in the next sections.

16S rRNA gene profiling
The most widely used method for microbiota analysis is 16S rRNA gene profiling or, more 
specific, amplicon sequencing of the 16S rRNA gene. This method consists of five steps, 
starting with DNA extraction (Figure 3). In order to achieve effective DNA extraction, several 
procedures have been developed, including the chemical or mechanical disruption of cells, 
lysis using detergents, or a combination of these approaches. The choice of the most optimal 
DNA extraction method is greatly dependent on the specimen type and target bacteria 
to be investigated, since some cell types may resist common mechanical or chemical lysis 
methods (173, 174). 

The second step is the amplification of a DNA fragment that is present in all bacterial 
genomes, is copied from generation to generation with a high degree of precision, 
mutates very slowly, and demonstrates considerable sequence diversity among different 
bacteria. The three rRNA genes encoding for the 16S, 5S and the 23S RNA components of 
the ribosome and the internal transcribed spacer sequences separating these genes fulfil 
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these requirements. Of these genes, the 16S rRNA gene is the most widely used genetic 
marker ever since Carl Woese selected it for studying microbial similarity (phylogenetic 
relationships) (175-177). The 16S rRNA gene has a length of approximately 1540 nucleotides 
and contains nine hypervariable regions: V1 to V9. These hypervariable regions exhibit 
variable degrees of sequence diversity among different bacterial genera. The V1-V2, V3-V4 
or V4 is most often targeted in microbiota studies. None of the regions allows differentiation 
of all bacteria at species level.

Figure 3. Flowchart of 16S rRNA gene profiling for microbiota analysis. DNA is extracted from all cells in a clinical 
specimen and subjected to a PCR targeting one or two regions of the 16S rRNA gene. All obtained amplicons are 
sequenced using a high-throughput sequencing platform. Subsequently, the generated reads are classified using 
a bioinformatics pipeline combined with a reference database. Data analysis of the classified sequences results not 
only in identification of all members of the bacterial community but also reveals its compositional structure.

The third step consists of library preparation and the sequence reaction itself. As 
mentioned before, most often the Illumina technology is used because of its’ cost-
effectiveness and high-quality data. Some researchers use third generation sequencing 
platforms to be able to sequence the whole 16S rRNA gene (178). However, it is important to 
note that even sequencing of the whole 16S rRNA gene may lack the discriminatory power 
to classify bacteria down to species level (179). For example, the sequence similarity of the 
whole 16S rRNA gene of the Streptococcus species within the Streptococcus mitis group is 
so high (≥97%) that these species cannot be differentiated based on the 16S rRNA gene.

The fourth step is classification of the generated reads using a bioinformatics pipeline 
combined with a reference database. Most pipelines are based on the assignment of reads 
to operational taxonomic unit (OTU), meaning that reads are clustered based on their 
degree of similarity. Some pipelines, such as QIIME, compute the similarity between a pair 
of reads as the percentage of nucleotides that agree in a pairwise sequence alignment. 
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Typically, a similarity threshold of 97% is used, which was derived from an empirical study 
that showed most strains had 97% 16S rRNA sequence similarity (180). Other pipelines, 
such as MOTHUR, the Ribosomal Database Project II (RDP-II) Classifier and the Illumina 
Miseq software, use shorter DNA fragments (k-mers) instead of the whole sequence to 
assign reads to OTUs (181).  Both types of pipeline select a single read from each OTU as 
a representative sequence after assigning reads to OTUs. The representative sequence is 
taxonomically annotated, and all reads within the OTU inherit that same annotation. More 
recent developed pipelines, such as QIIME 2 (182) and NG-TAX 2.0 (183, 184), use amplicon 
sequence variants (ASVs) instead of OTUs. ASVs are exact match sequence clusters, 
which can be separated from error-reads that are assumed to be present at a relatively 
low abundance. Filtering out sequencing errors improves taxonomic identification. 
Accurate taxonomic identification of the generated reads also depends on the content 
of the employed reference database, such as the SILVA, Greengenes or RDP-II reference 
database (185). These reference databases differ in quality of the reference sequences, 
the completeness and reliability of the corresponding annotations, and the taxonomic 
diversity covered by the reference databases due to differences in sources, quality criteria 
and taxonomy curation methods (Table 3). Furthermore, the update status of the reference 
databases influences their contents since names of organisms as well as taxonomic paths 
change quickly these days, and the speed by which novel bacterial species, genera and 
even families are discovered has vastly increased, requiring continuous updating of the 
reference databases. Both the use of different pipelines and reference databases can 
result in significant differences between taxonomic classifications (186). Currently, the 
most commonly used pipeline is QIIME, because of its user-friendliness and the analysis 
possibilities. The GreenGenes database is still the gold standard for taxonomic classification, 
but the preference is shifting towards the SILVA database, which has the richest taxonomy 
of the available databases and is continuously updated.

Finally, the sequencing data can be analysed. The collection of obtained sequences is 
representative of the bacterial community as a whole in terms of membership (i.e. what 
is present), and relative abundances, (how many 16S rRNA genes of a member is present 
compared to the total). Absolute quantification is impossible because a variable number of 
copies of the rRNA genes are present in each genome depending on the bacterial species 
(191, 192). Furthermore, the microbiota composition can also be described in terms of 
alpha and beta diversity (181). Alpha diversity is a measure of taxonomic diversity within 
a specimen and is expressed with the Shannon index. A high Shannon diversity refers to a 
specimen with a diverse spectrum of bacteria. In contrast to alpha diversity, beta diversity 
is a measure of taxonomic diversity between specimens. Similarity between specimens is 
represented by the distance between specimens across the 3-principal coordinates (PC1, 
PC2 and PC3). A larger distance between two specimens indicates a large difference in 
microbiota composition between the two specimens.
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It is important to note that incorporating technical controls is necessary to derive reliable 
conclusions (193). Positive controls ensure that all procedures are correctly performed and 
that none of the steps have introduced false negative results. Negative controls allow 
the control of background-contaminating DNA derived from the environment, reagents 
and/or consumables used during sample processing. Incorporation of negative controls 
is particularly relevant for studies with low microbial biomass specimens, since even low 
amounts of background-contamination could have an impact (9). Especially in these studies 
the connection between the specimens and the corresponding negative controls needs to 
be carefully evaluated to avoid heated discussions (194).

Reference database SILVA Ref NR99  
(187)

GreenGenes  
(188)

NCBI  
(189)

RDP-II  
(190)

Sequence source EMBL-Bank
Multiple  
sources, but 
mainly GenBank

GenBank INSDC  
databases

Quality criteria

• ≥1,200 bases
• �<2% ambiguous  

nucleotides
• <2% homopolymers
• �<2% vector  

contamination
• �Confirmed rRNA 

sequences
• �No 99% identical 

sequences

• >1,250 bases
• �Confirmed rRNA 

sequences
• �No 99%  

identical 
sequences

• �Validation and 
QA evaluation 
check for data 
conflicts and data 
completeness

• �Details are not 
published

• �Confirmed 
rRNA  
sequences

• �Details are not 
published

Taxonomy curation
Phylogenetic 
tree-guided manual 
curation approach

Phylogenetic 
tree-guided 
manual curation 
approach

Manual review RDP Classifier

Lowest taxonomic group Genus Species Species Genus

Last released version
• Version number
• Release date
• Total nr of sequences
• �Nr of bacterial sequences

SSU 138 Ref NR99
December 2019
510,984
431,785

gg_13_5_99
May 2013
203,452
203,452

Release 95
July 2019
27,212,750
22,769

Version 16
February 2016
3,356,809
3,356,809

Update status Regularly updated Not expected Unknown Unknown

Remarks

The latest version is 
free for commercial 
and other non- 
academic users

The current gold 
standard

Not applicable Not applicable

EMBL: European molecular biology laboratory; INSDC: international nucleotide sequence database collaboration; 
NCBI: national center for biotechnology information; RDP: ribosomal database project.

Table 3. Features of the available 16S rRNA gene reference databases



22

Chapter 1

Whole metagenome shotgun sequencing
16S rRNA gene profiling results only in a comprehensive overview of the bacterial genera 
present in a specimen. To obtain more information, whole metagenome shotgun (WMS) 
sequencing can be performed which includes sequencing of all the DNA present in a 
specimen instead of only a specific DNA fragment (195). To achieve this, the extracted DNA 
of a specimen is not amplified by PCR, but randomly cut into smaller fragments before 
sequencing. The generated reads are assembled using specialised software. Based on the 
obtained consensus sequences, the different bacteria as well as other microorganisms, 
such as fungi, protozoa and DNA viruses, can be identified down to species level. Another 
advantage of WMS sequencing is that it produces relative abundance information 
for all genes present in a specimen, which gives insight in the function of the present 
microorganisms (195). In general, the determination of functional gene composition 
involves two steps with various bioinformatics pipelines. The first step is gene prediction, 
which includes identification of sequences that may (partially) encode proteins. The second 
step is gene annotation, which includes comparison of the identified protein encoding 
sequences with a database of protein sequences annotated with their matching function. 
These data can be used to obtain insight into the antibiotic resistance and virulence profile 
of the microbiota, but also into the metabolic diversity of the microbiota. Furthermore, 
this analysis of genomic DNA (genomics) together with the analysis of gene expression 
(transcriptomics), protein composition, structure, and activity (proteomics) and chemical 
processes involving metabolites (metabolomics) are important tools to understand the 
relation between the human microbiota and disease (196).

Important to note is that during WMS sequencing also human DNA present in a 
specimen is sequenced. The proportion of human DNA differs significantly by body site 
and specimen collection method. For example, stool specimens comprise less than 10% 
of human DNA, while other specimens such as saliva, throat and vaginal swabs comprise 
more than 90% of human DNA (15, 197). A high proportion of human DNA means that only 
a limited fraction of the generated reads represents the microbial community. Recently, 
Pereira-Marques and colleagues showed that high proportions of human DNA reduce 
the sensitivity of WMS sequencing for characterisation of the microbiome, in particular 
to detect low abundant bacterial species (198). This study highlights the importance of 
careful design of WMS sequencing experiments to maximize microbiome analysis. The high 
number of human sequences are also subject of an ethical discussion. Although human 
DNA is filtered from the dataset, the discussion remains how to protect patient privacy. It 
may be plausible that the human DNA sequences obtained with WMS sequencing could 
be used to screen against a panel of known disease-causing genetic variants for example 
breast cancer. Providing patients with information regarding a potential genetic disease 
via such an assay is an ethical concern (199).
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Both the technical challenge and the ethical issue of WMS sequencing associated with 
human DNA, but also the higher costs and more complex data analysis are reasons why 
WMS sequencing has been implemented less than 16S rRNA gene profiling.

Whole genome shotgun sequencing
Another method that is based on high-throughput sequencing is whole genome shotgun 
(WGS) sequencing, which is the analysis of the complete DNA sequence of a single 
microorganism. Bacterial species consist of multiple comparable strains, each containing 
their own unique DNA sequences which might result in different characteristics. The 
characteristics of each strain can be determined using WGS sequencing (200). The 
methodology resembles that of WMS sequencing, except that total DNA of a cultured 
microorganism is used as input material instead of total DNA extracted from a specimen. 
After sequencing and subsequent assembly of the generated reads, the genome of the 
microorganism can be analysed. Multiple approaches can be used to identify the bacterial 
strain, such as core genome and whole-genome multilocus sequence typing (MLST) (200). 
Core genome MLST uses the sequence difference in the housekeeping genes (the core 
genome) to identify effectively bacterial strains. Whole-genome MLST is often used as an 
extension of core genome MLST. It uses the core genome and all accessory genes for the 
analysis. These genomic analyses can also be used to determine the virulence and antibiotic 
resistance profile of the bacterial strain. However, the biggest advantage of WGS sequencing 
is that the genetic relationships between isolates can be investigated (201-204).

CLINICAL MICROBIOLOGY

As described previously, microbiota research explores how the human microbiota interacts 
with the human body. The clinical microbiology on the other hand is focussed on the 
prevention, diagnosis and treatment of infectious diseases. Currently, culture-based 
methods dominate the routine clinical microbiology, but are gradually replaced by PCR-
based methods. Culture-based methods are optimized for the efficient cultivation of known 
pathogens, meaning that microorganisms that rarely cause disease are missed. Furthermore, 
culture is hindered due to competition during selective culture and the existence of 
non- or poorly-cultivable pathogens, such as atypical bacteria causing pneumonia (e.g. 
Mycoplasma pneumonia, Chlamydia pneumoniae and Legionella pneumophila), Bordetella 
species causing pertussis, Coxiella burnetii causing Q fever, Mycobacterium tuberculosis, and 
viruses. Accordingly, culture-based methods provide limited insight into the polymicrobial 
community potentially present in a clinical specimen. However, culture-based methods are 
still preferred for the diagnosis of infectious diseases since information regarding antibiotic 
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susceptibility of a pathogen can directly be obtained. Hence, fast, sensitive and specific 
PCR-based assays are only performed for the detection of microorganisms that are very 
difficult to culture. Several multiplex panels are commercially available for respiratory tract 
infections (205-207), urogenital infections (208-211), and gastrointestinal tract Infections 
(212, 213). It is important to note that many multiplex PCRs are required to obtain a complete 
overview of a microbial community in a clinical specimen, which is practically impossible. 
Furthermore, PCRs can only be developed for known microorganisms.

Most recently, WGS sequencing has been introduced into a very limited number of 
clinical microbiological laboratories for outbreak detection of multi-drug resistant bacteria  
(214, 215). The fast identification of an outbreak enables a hospital or other health 
organisation to take preventive measures at the beginning of the outbreak to prevent the 
bacteria from further spreading. For example, in October 2019, the RIVM (National Institute 
for Public Health and the Environment) found an identical strain in several patients diagnosed 
with Listeria (216). A meat-slicing factory was identified as the source after comparison 
of the strain with strains from food and factory sampling. The concerned products were 
immediately recalled from the stores.

Apart from this, WGS sequencing may be useful for the identification of bacteria and 
to reveal the presence of antimicrobial resistance and virulence genes. The routine clinical 
microbiology would benefit most from this application as a case-by-case approach since 
there is a clear need for fast results for individual cases. Currently, WGS sequencing is most 
cost-effective when batches of specimens are analysed at the same time. Fast sequencing 
platforms that may be used in a ‘per demand’ may be entering the market in the near future 
(217). Furthermore, the correlation between genotype and phenotype remains a subject of 
discussion. In particular, revealing the presence or absence of antibiotic resistance genes 
does not always guarantee a respective phenotypic resistance or susceptibility to a specific 
antimicrobial drug. Another common argument for WGS sequencing never completely 
replacing culture-based methods is the need of an isolated pathogen for genomic input 
material.

16S rRNA GENE PROFILING IN THE CLINICAL MICROBIOLOGY

Compared to WGS sequencing, 16S rRNA gene profiling is not dependent on culture since 
it uses amplicons of total extracted DNA as input material. As a result, 16S rRNA gene 
profiling does not only give information regarding pathogens that are known and can be 
effectively cultivated but leads to a comprehensive overview of the microbial community 
present in a clinical specimen. This overview might be very valuable for the routine clinical 
microbiology for treatment decisions (218). In addition, our improved understanding of 
the human microbiota and its association with disease have led to the considerable need 
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in improved diagnostics and therapies. For adaptation of high-throughput sequencing 
methods in the clinical microbiology, further development of the sequencing methodology 
and analysis software is required (217). In particular, to shorten the turnaround time for the 
library preparation and the runs on the sequencing platforms, and, at the same time, further 
reduction of the costs. Automated pipelines for data analysis and easy-to-use software for 
analysis should be developed. Another key factor for adaptation of 16S rRNA gene profiling 
in the clinical diagnostic microbiology includes defining the clinical application for which 
16S rRNA gene profiling should be considered and the evidence concerning the added value 
of this method. Additionally, cut-off values for interpretation of the sequencing data must be 
determined (218). Until now, 16S rRNA gene profiling has mainly been used as a research tool 
to study microbial associations with human health and disease. The limited number of studies 
exploring whether 16S rRNA gene profiling can be used in clinical microbiology to focus 
on the identification of clinically-relevant microorganisms in specimens that are normally 
depleted from bacteria (219, 220). These studies undervalue 16S rRNA gene profiling, since 
its added value for the clinical microbiology lies in the possibility to characterise complex 
microbial communities. 
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AIM AND OUTLINE OF THE THESIS

As it is outlined in this chapter, 16S rRNA gene profiling was of major importance for the 
current insights in microbial associations with human health and disease but might also be 
very valuable for the clinical microbiology. The added value of 16S rRNA gene profiling for 
the clinical microbiology remains undervalued. Accordingly, the studies described in this 
thesis aimed to define the clinical application for which 16S rRNA gene profiling should be 
considered. More specifically, the studies aimed to explore whether 16S rRNA gene profiling 
can be used as a direct diagnostic tool for identification of clinically relevant microorganisms 
or as an indirect tool for evaluation of diagnostic methods or therapies using specimens 
with complex microbial communities. In addition, we explored whether clinically relevant 
cut-off values for interpretation of the sequencing data could be defined. Furthermore,  
two studies were included that used 16S rRNA gene profiling as a research tool, exploring 
the human microbiota in health and disease.

In the first part of this thesis, we focused on using 16S rRNA gene profiling as a direct 
diagnostic tool. In routine clinical microbiology, standard identification of clinically-
relevant microorganisms involved in lower respiratory tract infections is based on culture 
of bacteria from sputum followed by species identification with matrix-assisted laser 
desorption ionization time of flight mass spectrometry (MALDI-TOF MS) technology and 
antibiotic susceptibility testing of the cultured putative causative microorganism. This 
approach is highly dependent on the efficient cultivation of known clinically relevant 
microorganisms. 16S rRNA gene profiling would result in a comprehensive overview of 
the microbial community present in a clinical specimen, meaning that the whole microbial 
community can be taken into account when making clinical decisions. However, the  
16S rRNA gene lacks resolution for classification down to the species level and does not give 
crucial information about antibiotic susceptibility of a pathogen. Therefore, in Chapter 2, 
we questioned whether a stepwise approach using 16S rRNA gene profiling followed by 
species-specific qPCRs and/or culture has the potential to be a more accurate and efficient 
diagnostic approach than culture alone.

In the second part of this thesis, we focussed on using 16S rRNA gene profiling as an 
indirect tool for the clinical microbiology. First, we focussed on using 16S rRNA gene 
profiling as an alternative reference test for the diagnosis of bacterial vaginosis (BV). BV 
is characterized by a shift from Lactobacillus spp. dominated vaginal microbiota to a more 
diverse microbiota dominated by anaerobes such as Gardnerella vaginalis. In Chapter 3, 
we used 16S rRNA gene profiling as an alternative reference test for independent analysis 
of the performance of the different diagnostic methods for BV, including the current gold 
standard. Furthermore, BV is the main cause of base abnormal vaginal discharge, but not 
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the only possible cause. For the clinician, it is recommended to base diagnosis on clinical 
symptoms and signs, and bedside tests, supported by laboratory test findings.  ln Chapter 4, 
we used again 16S rRNA gene profiling as an alternative reference test to determine the 
best and most cost-effective algorithm based on clinical symptoms and signs, bedside and/
or laboratory test findings for the diagnosis of abnormal vaginal discharge in a clinical 
setting. In retrospect, we determined whether implementation of the developed algorithm 
would have reduced the number of patients that returned to their physician with persistent 
symptoms due to incorrect diagnosis. In Chapter 5, 16S rRNA gene profiling was used to 
evaluate the effect of the antibiotic therapy for BV on the vaginal microbiota composition. 
This application was further exploited in Chapter 6. Here, weekly collected skin swabs of 
patients with mild to moderate atopic dermatitis (AD) were subjected to 16S rRNA gene 
profiling to analyse the inter-patient and intra-patient variability of lesional skin microbiota 
over time. Atopic dermatitis is associated with colonization of the skin by Staphylococcus 
aureus and a reduced microbial diversity of the skin microbiota. This analysis investigated 
the potential use of skin microbiota as a biomarker for clinical trials, determining the effect 
of an AD treatment on the skin microbiota.

In the third part of this thesis, we use 16S rRNA gene profiling as a research tool to study 
the link between microbiota and two different diseases: respiratory tract infections (RTIs) 
and male genital lichen sclerosus (MGLSc), which is chronic lichenoid inflammatory, 
scarring dermatosis associated with penile cancer. RTIs remain one of the leading causes 
of morbidity and mortality worldwide. The populations at risk are the very young (< 5 years) 
and the elderly (≥ 65 years). For the very young, specific upper airway microbiota profiles 
have been associated with increased rates of RTIs. In the elderly, the mechanisms of the 
heightened susceptibility to RTIs are still poorly understood. Accordingly, in Chapter 7,  
we explored whether nasal and/or oropharyngeal microbiota profiles are associated with 
age and RTIs in adults. In contrast to RTIs, the aetiology of MGLSc is unknown. In Chapter 8, 
we studied the microbiota of the balanopreputial sac and urine in patients with MGLSc 
since microbial dysbiosis may account for unresolved questions in MGLSc, about the exact 
nature of the relationship between urine and epithelial susceptibility, and the pathways 
from lichenoid inflammation to fibrosis and carcinogenesis. 

Finally, the results from these studies are summarized and discussed in Chapter 9.
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