
 

Shift-symmetric orbital inflation: Single field or multifield?
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We present a new class of two-field inflationary attractor models, known as shift-symmetric orbital
inflation, whose behavior is strongly multifield but whose predictions are remarkably close to those of
single-field inflation. In these models, the field space metric and potential are such that the inflaton
trajectory is along an “angular” isometry direction whose “radius” is constant but arbitrary. As a result, the
radial (isocurvature) perturbations away from the trajectory are exactly massless and they freeze on
superhorizon scales. These models are the first exact realization of the “ultra-light isocurvature” scenario,
previously described in the literature, where a combined shift symmetry emerges between the curvature and
isocurvature perturbations and results in primordial perturbation spectra that are entirely consistent with
current observations. Due to the turning trajectory, the radial perturbation sources the tangential (curvature)
perturbation and makes it grow linearly in time. As a result, only one degree of freedom (i.e., the one from
isocurvature modes) is responsible for the primordial observables at the end of inflation, which yields the
same phenomenology as in single-field inflation. In particular, isocurvature perturbations and local non-
Gaussianity are highly suppressed here, even if the inflationary dynamics is truly multifield. We comment
on the generalization to models with more than two fields.
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I. INTRODUCTION

Single field slow roll inflation is the leading explanation
for the observations through the CMB [1] that primordial
perturbations are very close to Gaussian and adiabatic, yet
embedding it in an ultraviolet complete theory such as
string theory is notoriously difficult. Moduli fields arising
from string compactifications require stabilizing to realize
single field inflation [2], and large field excursions test the
validity of using four dimensional effective theories.1

In the usual understanding, light fields during inflation
may lead to isocurvature perturbations and local non-
Gaussianity tightly constrained by current observations.
However, it has been suggested recently that inflation with
nonstabilized light fields on an axion-dilaton system can be

compatible with the latest CMB data [6–12]. In particular, it
was pointed out in [11] that, when the perturbations
orthogonal to the trajectory are massless but efficiently
coupled to the inflaton, the isocurvature modes are dynami-
cally suppressed.2 This is the “ultralight isocurvature”
scenario.
In this paper we provide for the first time a family of

exact models of inflation in which the multifield effects are
significant, but the phenomenology remains similar to
single field inflation. The models combine two ingredients:
First, the inflaton trajectory proceeds along an isometry
direction of the field space, so it is orbital inflation in the
sense of [13,14]. This ensures time independence of the
coupling between the radial and tangential inflationary
perturbations. Second, the trajectory can have an arbitrary
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1The recent swampland debate highlights the importance of

finding viable scenarios for inflation that are not strictly single-
field. See, for instance, the discussion in [3] as compared to [4,5].

2Observational constraints on isocurvature perturbations do
not directly constrain the generation of primordial isocurvature
fluctuations during inflation. The existence of isocurvature
perturbations in the CMB depends on how inflationary isocur-
vature fluctuations decayed during reheating, hence, while infla-
tionary isocurvature perturbations are necessary for the existence
of isocurvature perturbations in the CMB, the absence of the latter
cannot be used to rule out multifield inflation.
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radius (within some range described below), and a constant
radius is proven to be a neutrally stable attractor (see
Appendix B in Supplementary Material [15]). Hence,
isocurvature perturbations become exactly massless. The
two ingredients, combined, guarantee that the sourcing of
the curvature perturbation is sustained over many e-folds of
inflationary expansion. The action for the perturbations
inherits a symmetry between background solutions that is
not manifest in the potential or in the Lagrangian. We show
that, at the end of inflation, only the isocurvature degree of
freedom is responsible for the generation of primordial
observables, but perturbations still remain adiabatic and
Gaussian. We call this scenario shift-symmetric orbital
inflation.
Crucially this scenario provides a newdirection to explore

inflation and a potential resolution to some of the problems
faced by the embedding of inflation in string theory. That is,
in the construction of inflationary models wherein every
modulus is stabilized except for the inflaton, one could be
missing less restrictive realizations of inflation compatible
with current observational constraints. We set ℏ ¼ c ¼ 1

and the reduced Planck mass Mp ≡ ð8πGÞ−1=2 ¼ 1, where
G is Newton’s contant.

II. A TOY MODEL

To illustrate the idea, we first consider the following
Lagrangian in flat field space with polar coordinates
(illustrated in Fig. 1)

L ¼ 1

2
½ρ2ð∂θÞ2 þ ð∂ρÞ2� − 1

2
m2

�
θ2 −

2

3ρ2

�
: ð1Þ

The potential has a monodromy in the angular coordinate,
and although it is unbounded at ρ → 0, inflation only
takes place in the physically consistent regime where
Vðρ; θÞ > 0. Moreover, as shown in the perturbation
analysis below, our study is restricted to radii that cannot

be too small. Therefore, we only care about the local form
of the potential close to the inflationary trajectory, which
we assume is captured well by (1). In general, it is difficult
to solve the background equations analytically in such a
system. However, this model has the following exact
neutrally stable solutions at any radius (see Fig. 1)

ρ ¼ ρ0; _θ ¼ �
ffiffiffi
2

3

r
m
ρ20

: ð2Þ

The Friedmann equation becomes H2 ¼ m2θ2=6 on the
attractor, where H is the Hubble parameter, and the first
slow-roll parameter is ϵ≡ − _H=H2 ¼ 2

ρ2
0
θ2
. This trajectory is

nongeodesic in field space, with turning effects that depend
on the radius κ of the trajectory. Note that here κ ¼ ρ0 but,
if the field space geometry is curved, κ will be a more
general function of ρ0.
The situation is reminiscent of circular orbits in a

spherically symmetric gravitational field, where the cen-
tripetal force stabilizes the radial direction, and the inflaton
can circle at any radius with the corresponding angular
velocity. For the field system on the cosmological back-
ground, only the isometric circular orbits appear, and we
need to break the shift symmetry of θ in the potential to
overcome the Hubble friction. We can label each solution
by a continuous parameter c with the corresponding map

ρc ¼ ρ0 þ c; ðθ2cÞ0 ¼
ðθ20Þ0

ð1þ c=κÞ2 ; ð3Þ

where the prime 0 denotes a derivative with respect to efolds
d=dN ¼ d=ðHdtÞ. This transformation identifies all the
trajectories in (2) and hints at the existence of a shift
symmetry for the perturbations. In flat gauge, the isocur-
vature perturbation σ is associated with δρ and the
curvature perturbation R with ρffiffiffiffi

2ϵ
p δθ, which equals

1
4
ρ2δðθ2Þ in this toy model. To find the effect of the

transformation on the perturbations, we split ρ ¼ ρ0 þ σ
and ðθ2Þ0 ¼ ðθ20Þ0ð1 −R0Þ. This allows us to determine how
a small c changes σ and R0. In the long wavelength limit
every transformed set of perturbations ðσc;R0

cÞ provide a
new solution to the equations of motion. This is because
homogeneous perturbations map background solutions
onto each other. Therefore, we expect the following
symmetry for linearized perturbations

σ → σ þ c; R0 → R0 þ 2

κ
c: ð4Þ

Given the shift symmetry of σ, the isocurvature perturba-
tion is expected to be massless and freeze after horizon-exit.
Meanwhile, the symmetry also indicates that R has a
growing solution that is dictated by the constant σ on
superhorizon scales.

FIG. 1. The toy model potential Vðρ; θÞ given in (1) together
with a typical inflationary trajectory indicated with the solid
black line.
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To get an intuitive notion of the perturbations behavior,
we employ the δN formalism [16–20]. From the Friedmann
equation and the exact solution (2), the number of efolds
until the end of inflation is N ¼ ρ2θ2=4 − 1=2. The
curvature perturbation at the end of inflation is

Rðk�Þ ¼ δN ≃
1ffiffiffiffiffiffiffi
2ϵ�

p ðρδθÞ� þ
2N�
κ

δρ�; ð5Þ

where ðρδθÞ� and δρ� are field fluctuations with typical
amplitude H�

2π at horizon-exit of the k� mode. This yields the
following power spectrum of curvature perturbations

PRðk�Þ ≃
H2�
4π2

�
1

2ϵ�
þ 4N2�

κ2

�
: ð6Þ

Here the first contribution has an adiabatic origin, just like
in the single-field models, and the second term corresponds
to the conversion from isocurvature to curvature modes on
superhorizon scales. When the radius of the trajectory is
small enough, namely 8ϵ� ≪ κ2≪ 8ϵ�N2�≈4N�, the second
term in (6) dominates. Then the final power spectrum
becomes PRðk�Þ ≃H2�N2�=ðπ2κ2Þ, which is generated by
one single degree of freedom—the isocurvature mode.

III. SHIFT-SYMMETRIC ORBITAL INFLATION

To construct generic models with the above properties,
we begin with an axion-dilaton system in a non-
trivial field manifold ðθ; ρÞ with kinetic term K ¼
− 1

2
ðfðρÞ∂μθ∂μθ þ ∂μρ∂μρÞ. This field space, of curvature

R ¼ f2ρ=2f2 − fρρ=f, arises generically from UV comple-
tions of inflation in quantum gravity or from an effective
field theory (EFT) viewpoint. To realize shift-symmetric
orbital inflation, we assume the inflationary trajectory to be
isometric, i.e., along the θ direction at any (constant) radius
in field space. The potential can be derived by generalizing
the Hamilton-Jacobi formalism [17,21–23] to a two-field
system (See Appendix A in Supplementary Material [15]).
It has the general form

V ¼ 3H2 − 2
H2

θ

fðρÞ ; ð7Þ

where H is a function of θ only, Hθ ≡ dH=dθ and
fðρÞ > 0. The model (1) is recovered for H ∝ θ and
fðρÞ ¼ ρ2, corresponding to a flat field space parametrized
by polar coordinates. This nonlinear system admits exact
solutions

_θ ¼ −2
Hθ

f
; ρ ¼ ρ0: ð8Þ

Thus the inflaton moves in an orbit of constant radius, as
ensured by the Hamilton-Jacobi formalism. As in the toy

model, this trajectory is not along a geodesic. Here the
tangent and normal vectors to the trajectory are T a ¼
1=

ffiffiffi
f

p ð1; 0Þ and N a ¼ ð0; 1Þ, and the radius of the turning
trajectory is a constant given by κ ¼ 2f=fρ. It follows that
all these trajectories are neutrally stable: a small perturba-
tion orthogonal to a given orbital trajectory will bring us to
one of the neighboring trajectories. The attractor behavior
is explicitly demonstrated in Appendix B in Supplementary
Material.

IV. ANALYSIS OF PERTURBATIONS

In flat gauge, the comoving curvature perturbation R is
defined as the projection of the field perturbation along the
inflationary trajectoryR ¼ 1ffiffiffiffi

2ϵ
p T aδϕ

a, and the isocurvature

perturbation σ corresponds to the orthogonal projection
σ ¼ N aδϕ

a. Then for generic multifield models, the quad-
ratic action of perturbations takes the following form [11]

Sð2Þ ¼ 1

2

Z
d4xa3

�
2ϵ

�
_R−

2H
κ
σ

�
2

þ _σ2−μ2σ2þ…

�
; ð9Þ

where ellipses stand for the gradient terms −ð∂iσÞ2 −
2ϵð∂iRÞ2. The interaction between curvature and
isocurvature modes is given by the term a3ð8ϵH=κÞ _Rσ.
To guarantee perturbative analysis we require thatffiffiffiffiffi
8ϵ

p
=κ ≪ 1 [11,24]. The mass of entropy perturbations

is defined as μ2 ≡ VNN þ ϵH2ðRþ 6=κ2Þ, where the first
term is obtained from the standard Hessian of the potential
VNN ≡N aN bðVab − Γc

abVcÞ, the second and third terms
correspond to the field space curvature and turning con-
tributions respectively.
For shift-symmetric orbital inflation, we expect the

isocurvature perturbations to be exactly massless, as in
the toy model, and this is confirmed by using (8) to show
μ2 ¼ 0. This implies that the quadratic action (9) has the
combined shift symmetry (4), as in the toy model. The
power spectra of perturbations in the massless limit can be
directly estimated from the coupled evolution of perturba-
tions [11]. When μ ¼ 0, the linearized system simplifies in
the superhorizon limit, yielding

R0
k ¼

2

κ
σk; σk ¼

H�
2π

; ð10Þ

where � denotes evaluation at the time of horizon crossing.
That is, on superhorizon scales the isocurvature perturba-
tion quickly becomes a constant, and it sources the growth
of R. At the end of inflation, the primordial curvature
perturbation can be expressed as Rk ¼ R� þ 2N�σk=κ,
where the first term is the curvature perturbation amplitude
at horizon-exit, and the second term comes from the
isocurvature source. Thus these two contributions are
uncorrelated with each other, and the dimensionless power
spectrum for R is given by
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PR ¼ H2�
8π2ϵ�

ð1þ CÞ; ð11Þ

where C ¼ 8ϵ�N2�=κ2 represents the contribution from
isocurvature modes. This result agrees with the δN calcu-
lation for the toy model given in (6). The full calculation via
the in-in formalism gives the same answer up to subleading
corrections [11]. Note that the power spectrum is com-
pletely determined by the isocurvature perturbations if
C ≫ 1, which corresponds to trajectories with a small
radius κ or, equivalently, significant turning effects with
8ϵ� ≪ κ2 ≪ 8ϵ�N2�. Thus at the end of inflation, curvature
perturbations are highly enhanced compared to the ones at
horizon-exit. Meanwhile, the isocurvature power spectrum

for S≡σ=
ffiffiffiffiffi
2ϵ

p
remains unchanged as PS¼ H2�

8π2ϵ�
. Therefore,

the amplitude of the isocurvature perturbation is dynami-
cally suppressed, i.e., PS=PR ≃ 1=C ≪ 1. The details of
how PS ≠ 0 can generate isocurvature components in the
CMB are rather model-dependent, and one cannot auto-
matically claim that a suppressed ratio PS=PR is compat-
ible with observations. However, if R and S contributed
similarly to the curvature and isocurvature components in
the CMB, the result is compatible with current constraints.

V. PHENOMENOLOGY

We now turn to the observational predictions of
shift-symmetric orbital inflation. For any positive C,
from (11), the tensor-to-scalar ratio can be expressed
as r ¼ 16ϵ�=ð1þ CÞ, and the scalar spectral index is
ns − 1≡ d lnPR

d ln k ¼ −2ϵ� − η� þ ðdC=dNÞ=ð1þ CÞ, where

we used d ln k ¼ dN. Note that ∂N�∂N ¼ −1, since N� counts
the number of efolds backwards. These predictions depend
on the function HðθÞ. As in single field inflation, this
function determines how slow-roll parameters ϵ and
η≡ ϵ0=ϵ scale with N�.
For concreteness, we consider models with H ∼ θp.

Solving (8) for θðNÞ yields3 ϵ�≃p=ð2N�Þ and η� ≃ 1=N�.
The predictions for ns and r are therefore well approxi-
mated by

ns−1≃−
pþ1

N�
−

4p
κ2þ4pN�

; r≃
8pκ2

N�κ2þ4pN2�
: ð12Þ

We plot these results against the Planck 1σ and 2σ contours
[1] in Fig. 2. N� is taken to be between 50 and 60, and the
radius κ2 varies between 1 and 105. The purple region is for
p ¼ 1, corresponding to the toymodel (1), andwe also show

the predictions for p ¼ 0.5 (red region), p ¼ 0.2 (yellow
region) and p ¼ 0.1 (green region).
Notice that ns and r only depend on the value of κ and are

therefore insensitive to the details of the field metric. When
κ → ∞ one recovers the predictions of chaotic inflation
with V ∝ ϕ2p. Meanwhile as κ decreases, predictions are
pushed downwards and to the left in this ns − r diagram.
Therefore, in the case of power-law potentials only for
small p do the predictions remain within the Planck
contours. The interesting regime here is still the case with
significant turning (small κ or C ≫ 1), where the final

power spectrum PR ≃ H2�N2�
π2κ2

mainly has an isocurvature
origin. Then the tensor-to-scalar ratio is given by
r ¼ 2κ2=N2� ¼ 16ϵ�=C, which is suppressed. The spectral
index reduces to ns − 1 ¼ −ðpþ 2Þ=N� which, for small
p, lies in the sweet spot ns ¼ 0.9649� 0.0042.
Another important observable is primordial non-

Gaussianity, which is currently bounded by Planck through
flocNL ¼ 0.8� 5 [25]. There are examples in the literature of
how Oð1Þ local non-Gaussianity can arise in multifield
models, especially when the coupling between isocurvature
and curvature modes is large [26–29]—see [30] for a
review. There are also examples of how small levels of
non-Gaussianity can arise in multifield models [31–33].
However, in most cases a detailed analytic understanding of
the size of the non-Gaussianity is lacking because the
associated dynamics is nonlinear and complicated. This is
not the case in shift-symmetric orbital inflation, where
we find that we can both easily satisfy the Planck
constraint and crucially understand its origin analytically.
The amplitude of local non-Gaussianity can be determined
using the δN formalism. In a generic multifield inflation
model with curved field manifold, we have flocNL ¼
5
6
GabGcdNaNcNbd=ðGabNaNbÞ2 [26,34], where Gab ¼

diagffðρÞ; 1g is the field space metric, Na and Nab are

FIG. 2. The analytical predictions (12) for ðns; rÞ compared to
the Planck 1σ and 2σ contours [1]. We show the predictions for
wave numbers which cross the horizon 50–60 efolds before the
end of inflation. The predictions for ns − r depend on the value of
κ ∈ ½1; 1000�, where the values (1,2,4,8,16,32,64,128,256) are
depicted with thick lines (from bottom to top).

3We note that for 0 < p < 1 this toy model is not well defined
as θ → 0, as can be seen in (7). This is not a problem as the
inflationary period we are interested in occurs before that point is
reached. The true underlying potential would have to be com-
pleted in some way. This is similar to the case with say axion
monodromy.
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derivatives of N with respect to the fields ðθ; ρÞ. To gain
some analytical understanding, here we still focus on
models with H ∼ θp, where N can be expressed as
N ¼ fðρÞθ2=4p − p=2. The amplitude of local non-
Gaussianity then follows

flocNL ¼ 5

12
η�

�
1 −

C2

ð1þ CÞ2
κ2R
2

�
; ð13Þ

where we used the relation C ¼ 2p2=ðϵ�κ2Þ. When κ → ∞,
we have C → 0 and C2κ2 → 0. Thus the second term in (13)
vanishes, which leads to the single field result flocNL ¼
5η�=12 as expected. The enhancement of non-Gaussianity
is possible in the intermediate regime C ∼Oð1Þ, where the
transfer from isocurvature to adiabatic modes is inefficient.
In that case, flocNL ∼ −5pR=12 can be large if the field space
is highly curved.
For the interesting regime with C ≫ 1, the δN expansion

is dominated byNρ andNρρ. This then leads to what, at first
sight, appears as the counterintuitive result that flocNL is
negligible and slow-roll suppressed

flocNL ≃
5

6

Nρρ

N2
ρ
¼ 5

12
η�

�
1 −

κ2R
2

�
: ð14Þ

This is the same as happened in the calculation of the power
spectrum: the contribution to the curvature perturbation
sourced by the isocurvature modes dominates the final
result. The bispectrum is found to be slow-roll suppressed,
just like in single field inflation, but there are small
corrections from the field space curvature, which violates
Maldacena’s consistency relation [35,36]. We have recently
confirmed this result via a scaling symmetry approach
in [37].

VI. DISCUSSIONS

Wehave proposed a class ofmultifield inflationarymodels
that demonstrate a new type of attractor trajectory along the
isometry direction in field space. Here the isocurvature
modes become massless and freeze on superhorizon scales.
Moreover, when the turning effects become significant, the
curvature perturbations keep growing after horizon-exit and
thus isocurvature modes are dynamically suppressed. As a
consequence, these multifield models yield the single-field-
like phenomenology favored by observations.
Additional isocurvature perturbations will either decay if

they are massive or freeze if they are light. Therefore,
although our computations were done in a simple two-field
setting, we expect the conclusions will continue to hold in
multifield extensions with more than two fields, provided
that the number of additional light isocurvature fields is not
too large.

We have shown and explained how in shift-symmetric
orbital inflation, a negligible amount of local non-
Gaussianity is produced. Here the isocurvature degree of
freedom can be the dominant contribution to the bispectrum,
but in such cases fNL is slow-roll suppressed. This result
teaches us a generic lesson: that in multifield models, even if
the isocurvature-to-adiabatic conversion is very efficient, the
resulting non-Gaussianity can still be suppressed. A large
coupling between curvature and isocurvature modes enhan-
ces the transfer of non-Gaussianity, but for this transfer to
generate large non-Gaussianity, one needs sizable self-
interactions affecting the isocurvature field during horizon
crossing [24,29]. In this class of scenarios, however, the shift
symmetry along the radial direction (4) has a role in
suppressing the self-interactions of the isocurvature field
(see [37]). Therefore, it is perfectly fine to study multifield
models with significant and sustained turning trajectories,
without worrying about generating large non-Gaussianity.
Our model has important implications on the realization

of inflation in UV-complete theories. Contrary to what is
usually assumed, and as emphasized in [11], it is not always
necessary to stabilize all compactification moduli, or to
have a large mass hierarchy between the inflaton and other
fields. The suppression of isocurvature perturbations and
non-Gaussianity has the common origin in shift-symmetric
orbital inflation. From an EFT point of view this can be
traced back to the effect of derivative interactions among
the curvature and isocurvature perturbations that are absent
in single-field inflation. These are unavoidable on curved
trajectories and curved field spaces and, therefore, ubiqui-
tous in string compactifications.
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