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Abstract—Clinical time series are known for irregular, highly-
sporadic and strongly-complex structures and are consequently
difficult to model by traditional state-space models. In this paper,
we investigate the potential of applying variational recurrent
neural networks (VRNNs) for forecasting clinical time series
extracted from electronic health records (EHRs) of patients. Vari-
ational recurrent neural networks (VRNNs) combine recurrent
neural networks (RNNs) and variational inference (VI) and are
state-of-the-art methods to model highly-variable sequential data
such as text, speech, time series and multimedia signals in a
generative fashion. We propose to incorporate multiple correlated
time series to improve the forecasting of VRNNs. The selection
of these correlated time series is based on the similarity of
the supplementary medical information e.g., disease diagnostics,
ethnicity and age etc. between the patients. We evaluate the
effectiveness of utilizing such supplementary information with
root mean square error (RMSE), on clinical benchmark data-set
“Medical Information Mart for Intensive Care (MIMIC III)” for
multi-step-ahead prediction. We further perform subjective anal-
ysis to highlight the effects of the similarity of the supplementary
medical information on individual temporal features e.g., Systolic
Blood Pressure (SBP), Heart Rate (HR) etc. of the patients from
the same data-set. Our results clearly show that incorporating
the correlated time series based on the supplementary medical
information can help improving the accuracy of the VRNNs for
clinical time series forecasting.

Keywords—time series forecasting, recurrent neural networks,
deep-latent variable models, MIMIC III, Clinical Applications

I. INTRODUCTION

Health care is one of the most exciting and challenging
areas of machine learning and data mining. The use of
electronic health records (EHRs) can significantly improve
the existing health care systems since it can help identify
early triage and risk evaluations [1]–[4] for certain group
of patients at very early stages of treatment. Most of the
existing electronic health records (EHRs) capture the temporal
features for patients during their Intensive Care Unit (ICU)
stay. Examples of such features include Heart Rate (HR),

Oxygen Saturation Level (OSL), Body Temperature (BT) and
Mean Blood Pressure (MBP) [5]. The set of these temporal
signals can be used for further useful analysis such as pheno-
type classification [6]–[8], length-of-stay prediction [9], [10],
risk-of-mortality prediction [10] and forecasting such signals
for future time-steps. Unfortunately, these multivariate time
series are characterized by highly-irregular∗∗, sporadic [11]
and complex structures [12] and are consequently difficult to
model by traditional methods.

Deep learning [13] has previously been applied to model
medical signals††extracted from ICUs [14], [15]. Earlier stud-
ies to model such clinical signals however focused on tasks
such as binary classification for length-of-stay (LOS) [9]
(i.e., to identify the patients expected to stay longer in the
ICU), phenotype classification [6]–[8], and survival analy-
sis [16], [17]. It is important to state that deep learning in
these earlier studies almost always focused on discriminative
(a.k.a. conditional) feed-forward neural networks (FFNNs)
and long short-term memory (LSTM) based recurrent neural
networks (RNNs) with no or limited stochasticity.

In this paper, we limit ourselves to clinical time series
forecasting. In the past, time series forecasting relied heavily
on state-space models which are typically linear and are suited
for univariate time series, although multivariate non-linear
extensions of such models exist [18]. These methods require

∗∗Irregular and sporadic multivariate time series in this context refers to a
time series where the time intervals are not uniform and only a small subset
of temporal features is observed at each time-step.
††The terms “temporal signals”, “temporal features”, “medical signals”

and “time series” have been used interchangeably throughout the paper to
refer to the same concept, i.e., time indexed variables of an individual patient
which are observed in the ICU. In addition, terms “supplementary domain
information”, “supplementary medical information”, “extra domain informa-
tion” and “extra medical information” have also been used interchangeably
throughout the paper to refer to the non-temporal subjective information about
the patients, which is observed when the patient is admitted to the hospital
or ICU.



specifications of trends, seasonality, cyclical effects and shocks
in time series forecasting. As a result, these methods have
higher interpretability. However, this interpretability (usually)
comes at the cost of the prediction accuracy since such models
lack the dynamic and complex nature of the multivariate
time series extracted from modern ubiquitous systems such as
economic transaction processing systems and electronic health
record systems.

With the advent of deep learning, many methodologies have
been proposed to employ recurrent neural networks (RNNs)
for time series forecasting since RNNs are a natural choice for
modelling sequential data-sets. Hybrid approaches to combine
state-space models and deep learning have also been pro-
posed [19]. Vanilla RNNs however have deterministic hidden
states and lack the intrinsic stochasticity found in the latent
variable models such as Hidden Markov Models (HMMs)
and Kalman Filters. Recently, it has been argued [20]–[22]
to incorporate some stochasticity in RNNs while modelling
complex sequences which can improve the generalization of
these models.

On the other hand, variational autoencoders (VAEs) [23],
[24] have been proposed to capture high-variability in complex
data-sets. VAEs are a class of deep-latent variable models
which learn the complex intractable posterior over the data
space by employing the variational inference (VI) and the
reparameterization trick. However, vanilla VAEs are suited for
non-sequential data-sets only. In [22], the authors extend the
variational autoencoders (VAEs) for highly-variable sequential
data which is named variational recurrent neural network
(VRNN).

A variational recurrent neural network (VRNN) contains a
variational autoencoder (VAE) at each time-step t which is
conditioned on the previous hidden state ht−1 of an RNN;
thus modelling the sequential structure in the data. In the same
paper, the significance of this model is demonstrated on var-
ious sequential data-sets. VRNNs however, have rarely been
adopted for time series forecasting tasks. Recently, in [25]
the authors evaluate VRNNs for time series forecasting on
various synthetic and one real benchmark data-sets against
several neural baselines including recurrent neural network
with extended Kalman filters (RNN-EKFs) [26], robust echo
state networks (RESNs) [27] and co-evolutionary multi-task
learning (CMTL) [28] and conclude that VRNNs outperform
all the baselines on most data-sets.

To the best of our understanding, VRNNs have not been ap-
plied for clinical time series forecasting previously. This is par-
ticularly interesting since electronic health records (EHRs) are
characterized by irregularity, sparsity and strong intricacy [12],
[29]–[34]. On the other hand, electronic health records (EHRs)
also provide additional domain information [5] e.g., disease
diagnostics, age and ethnicity etc. beyond the primary data
which can be leveraged for improved forecasting. Based on
these rationales, we propose to evaluate the incorporation of
multiple correlated time series in training VRNNs to achieve
improved forecasting. The set of these multiple correlated
time series is based on the similarity computation of the

supplementary domain information, e.g., disease diagnostics
and age etc. between the patients.

The rest of this paper is organized as follows. We present
the basic introduction to RNN, VAE and VRNN in section II.
Section III provides the blueprint to improve the VRNNs for
forecasting clinical time series based on the supplementary
medical information found in clinical data-sets. In section IV,
we present the experimental design to empirically evaluate the
effectiveness of this approach. This is followed by results in
section V. Finally, we discuss the logical conclusion of the
paper along-side the future research line in section VI.

II. BACKGROUND

A. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a family of neural
networks which are specialized to model the temporal corre-
lations in the data [13], [22]. In particular, a recurrent neural
network (RNN) receives a variable-length input sequence
x = (x1,x2,x3, ...,xT ); which it processes by computing the
so called hidden state ht as a function of the current input xt
at time t and the previous hidden state ht−1:

ht = f(xt,ht−1 ; θ), (1)

where f is a non-linear activation function and θ is the
associated set of parameters to be optimized. The gated imple-
mentations of f result in networks known as long short-term
memory (LSTM) [35] and gated recurrent unit (GRU) [36]
which regulate the flow of information and prevent issues
known as vanishing and exploding gradient problems [37].
RNNs model sequences by parameterizing a factorization of
the joint sequence probability distribution as a product of the
conditional probabilities such that:

p(x1,x2,x3, ...,xT ) =

T∏
t=1

p(xt | {xi}1≤i<t), (2)

and
p(xt | {xi}1≤i<t) = g(ht−1 ; τ), (3)

In Eqs. (2) and (3), T corresponds to the sequence length,
{xi}1≤i<t denotes the set of inputs preceding xt and g
is a function mapping the hidden state ht−1 to the output
conditional probability distribution parameterized by a set of
parameters τ . Note that due to the space limitation, {xi}1≤i<t
(i.e., the set of the inputs preceding xt) and similar notations
e.g., {xi}1≤i<T etc. are substituted with their compact repre-
sentations i.e., x<t in the remainder of the paper.

B. Variational Autoencoder

A variational autoencoder (VAE) [23], [24] is a deep-latent
variable model to approximate the complex intractable poste-
rior over the data space. A VAE uses a set of latent variables z
designed to capture the high-variations in the data by encoding
and reconstructing the data; thereby learning the global prop-
erties of the data space. More specifically, a VAE consists of
two neural networks: an inference network (a.k.a. the encoder)
and a generative network (a.k.a. the decoder) respectively. The



encoder encodes the input x to the latent variable z, and
the decoder maps this latent variable z back to reproduce x.
The VAE treats the conditional probability distribution p(x|z)
as highly-flexible function approximation of x. However, the
mapping from z to x can’t be implemented because of the
intractable posterior p(z|x) on the latent variable. The VAE
thus introduces the variational approximation q(z|x) of the
intractable posterior p(z|x). The approximate posterior q(z|x)
has highly-flexible form and its parameters are generated by
the inference (i.e., encoder) network. Lastly, the variational
approximation q(z|x) of p(z|x) enables the use of Evidence
Lower Bound (ELBO) (a.k.a. variational lower bound) as:

log p(x) ≥ −KL(q(z|x)||p(z)) + Ez∼q(z|x)[log p(x|z)],
(4)

where KL(Q||P ) is the Kullback-Leibler divergence between
two probability distributions Q and P . In [23], the variational
posterior q(z|x) is modelled by a Gaussian N (µ,diag(σ2))
where the parameters µ and σ2 are the outputs of the
inference network and diag corresponds to the diagonal co-
variance structure of the Gaussian distribution. The prior p(z)
is assumed to be a standard Gaussian distribution. The training
process focuses on maximizing ELBO (4) which yields the
optimal parameters for the inference and generative networks.
A low variance estimator can be substituted with the help of
the reparameterization trick z = µ+σ�ε ; where ε ∼ N (0, I)
is a vector of standard Gaussian variables and � denotes the
element-wise product:

Ez∼q(z | x)[log p(x | z)] = Eε∼N (0,I)[log p(x|z = µ+σ�ε)].
(5)

C. Variational Recurrent Neural Network

A variational recurrent neural network (VRNN) [22] is the
extension of a standard VAE discussed above to the cases with
sequential data. It is a combination of an RNN and a VAE as
described in Eqs. (1) and (5) respectively. More specifically,
a VRNN employs a VAE at each time-step t. However, the
prior on the latent variable zt of this VAE is assumed to be
a multivariate Gaussian whose parameters are computed from
the previous hidden state ht−1 of the RNN such that:

zt ∼ N (µ0,t,diag(σ
2
0,t)), [µ0,t, σ0,t] = ϕprior

τ (ht−1), (6)

In Eq. (6), µ0,t and σ0,t are the parameters of the prior
p(zt) and ϕprior

τ refers to a non-linear function such as a
FFNN parameterized by a set of parameters τ . The generating
distribution in the decoder p(x|z) is conditioned on both zt
and ht−1 such that:

xt | zt ∼ N (µx,t,diag(σ
2
x,t)),

where [µx,t,σx,t] = ϕdec
τ (ϕz

τ (zt),ht−1),
(7)

In Eq. (7), µx,t and σx,t are the parameters of the generating
distribution. The hidden state ht of the RNN is updated as:

ht = f(ϕx
τ (xt), ϕ

z
τ (zt),ht−1 ; θ), (8)

where f is a non-linear activation function and ϕx
τ , ϕz

τ and
ϕdec
τ in Eqs. (6) and (7) are the FFNNs similar to ϕprior

τ . The

ht-1 ht

xt

zt 
(6)

(10)

(7)

(7)

(10)

(8)

(8)

(8)

Fig. 1. The schematic view of a VRNN is presented. The green line
connections correspond to the computations involving the (conditional) prior
and posterior on zt while the blue line connections show the computations
involving the generative network, i.e., decoder. In addition, the computations
for ht are shown with red line connections. These connections depict
the dependencies between the variables in Eqs. (6)-(10). Note that each
connection/line is labelled according to the numbering of the equation it
realizes.

hidden state ht is a function of both x≤t and z≤t. The joint
probability distribution of x and z thus becomes:

p(x≤T , z≤T ) =

T∏
t=1

p(xt|z≤t,x<t)p(zt|x<t, z<t). (9)

We now discuss the inference, i.e., encoder network. Here,
the approximate posterior q(zt|xt) is a function of both xt
and ht−1 such as:

zt | xt ∼ N (µz,t,diag(σ
2
z,t)),

where [µz,t,σz,t] = ϕenc
τ (ϕx

τ (xt),ht−1),
(10)

where µz,t and σz,t are the parameters of the approximate
posterior and ϕenc

τ is a FFNN same as ϕprior
τ , ϕx

τ , ϕz
τ and ϕdec

τ .
Conditioning on ht−1, the posterior follows the factorization:

q(z≤T |x≤T ) =
T∏
t=1

q(zt|x≤t, z<t). (11)

The objective function to train both, inference and generative
networks is to maximize ELBO based on the factorization in
Eqs. (9) and (11); giving rise to the accumulative ELBO as:

Ez≤T∼q(z≤T |x≤T )

[ T∑
t=1

(−KL(q(zt|x≤t, z<t)||

p(zt|x<t, z<t)) + log p(xt|z≤t,x<t))
]
.

(12)

The graphical representation of a standard VRNN is presented
in figure 1.



III. MODELLING DOMAIN INFORMATION IN CLINICAL
TIME SERIES FORECASTING

Clinical data-sets are characterized by loads of supple-
mentary information accompanying the primary data [38]–
[40]. Such supplementary information may contain details
about the patients, the laboratory tests, and the working
condition of the hospitals and ICUs [10], [41]. Some of this
information may be useful for the clinical analysis, early
triage, risk assessment, and a better understanding about the
ongoing treatment [42]. Thus, it is critical to incorporate such
supplementary information for tasks such as temporal signal
forecasting, risk assessment, mortality classification for critical
patients, phenotype classification [6]–[8] and length-of-stay
prediction [9]. However, there is a lack of common algorithmic
approaches to exploit such domain information to improve the
outcome of the learning tasks.

To conduct time series forecasting for a particular patient;
we propose to take a set of similar patients which is determined
by some similarity criteria. Temporal signals extracted from
these similar patients can be combined with the signals from
the patient of interest to increase the robustness [43]–[45] of
the forecasting. This can improve the generalization ability of
VRNNs for two reasons. Firstly, if the input time series varies
slightly; the model would be less prone to fail in reconstructing
the time series by including the correlated temporal signals
of the similar patients. Secondly, the model utilizing the
correlated temporal signals in the learning phase would be
less likely to over-fit the data. For the similarity criterion, we
choose the K-Nearest Neighbours (KNNs) with respect to the
cosine similarity metric on disease diagnostics.

We denote the set of correlated temporal signals for a patient
at time t with xrel

t . The probability distributions for generative
and inference networks are updated as:

p(x≤T , z≤T ) =

T∏
t=1

p(xt|z≤t,x<t,xrel
<t)

· p(zt|x<t, z<t,xrel
<t) (13)

q(z≤T |x≤T ) =
T∏
t=1

q(zt|x≤t, z<t,xrel
≤t). (14)

Similarly, all the expressions in section II-C needs to be
updated by additionally conditioning on multiple correlated
temporal signals xrel

t . We now move on to discuss the exper-
imental setup‡‡ for evaluating the effectiveness of xrel

t in the
VRNN model.

IV. EXPERIMENTAL SETUP

A. Data preprocessing

We use “Medical Information Mart for Intensive Care
(MIMIC III)” [38] which is publicly available and widely
accepted benchmark data-set for clinical trials. MIMIC III
is a relational database containing information of approxi-
mately 60,000 ICU admissions. It contains information [10],

‡‡The source code is available at: https:
//github.com/SibghatUllah13/VRNNs-for-Clinical-Time-Series-Forecasting
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Fig. 2. Average (i.e., train and test both) missing rate % for all 17 temporal
features is presented in this figure. Capillary refill rate and Height are the
channels with maximum missing rate (99.6) %, while Heart Rate has lowest
missing ratio (8.3) %.
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Fig. 3. The histogram of disease counts for patients in the training and test
data-sets is presented in this figure. The minimum and maximum number of
disease(s) for an individual patient are 1 and 39 respectively; for both train
and test data-set.

[46] about the demographics of the patients, the laboratory
tests, keynote events during the ICU stay, medications and
the temporal signals in the ICU e.g., Mean Blood Pressure
(MBP) and Body Temperature (BT) etc. Since MIMIC III
is a highly-complicated data-set involving millions of events;
it is important to follow a standard approach to preprocess
the data which can be used for the learning tasks. To this
end, we follow the procedure of [10] which provides the
benchmark preprocessing for MIMIC III. After following [10]
for preprocessing; we are left with five different data-sets
extracted from MIMIC III where each data-set corresponds

https://github.com/SibghatUllah13/VRNNs-for-Clinical-Time-Series-Forecasting
https://github.com/SibghatUllah13/VRNNs-for-Clinical-Time-Series-Forecasting


to a specific learning task in [10] such as in-hospital-mortality
prediction, decompensation prediction, length-of-stay predic-
tion, phenotype classification and multitask learning. In the
following, we proceed with the in-hospital-mortality data-set
extracted from MIMIC III since it filters most of the issues
such as the missing ids and the length of stay. Some of the
important attributes of the preprocessed in-hospital-mortality
data-set are presented in Table I, in which the first four
columns report the description of the data, the number of
patients, the number of ICU stays and the number of observed
temporal features respectively. The last two columns report
the number of continuous and categorical temporal variables
(i.e., features) respectively. The train and test data-sets are split
in the preprocessing step with a ratio of 85% - 15%.

The in-hospital-mortality data contains the timeline of the
first 48 hours of each patient’s stay in the ICU. It is clear
from Table I, that some patients have been admitted to the
ICU more than once. We remove such duplicates from the
records and make sure that each patient has exactly one ICU
record. Furthermore, to handle the sporadic nature of the data;
we re-sample the temporal features to have exactly one entry
in one hour resulting in a total of 48 entries for each patient
same as [10]. In the case there are more than one entries in an
hour, we take the mean and substitute it as the only entry of the
hour to make the data consistent. This results in each patient
represented by a matrix of size 48 × 17. At this point, 83%
of the entries in a patient’s time series matrix are missing on
average. The overall missing rate for all 17 temporal features
is presented in figure 2 to further highlight the issue.

It can be observed from figure 2 that some features have
extremely high missing rate and are consequently not fit for
further analysis. As such, we remove them from the data
and are left with only 6 temporal features, all of which are
continuous with a missing rate of around 10%. After this, we
also remove those patients who have more than 10% missing
entries. Finally, we are left with 13400 patients in the training
data-set and 2312 in the test data-set and the missing rate
is reduced to 10%. The missing entries are then substituted
by the column mean and thereupon we assume the complete
information of each patient’s time series which is a matrix
of size 48 × 6 where the six temporal features are Diastolic
Blood Pressure (DBP), Heart Rate (HR), Mean Blood Pressure
(MBP), Oxygen Saturation Level (OSL), Respiratory Rate
(RR) and Systolic Blood Pressure (SBP) respectively. Apart
from the temporal features, we also observe the disease
diagnostics of each patient. This information is later used
to compute xrel

t as discussed in the previous section. The
histogram of the disease counts of all patients in the training
and test data-sets is presented in figure 3.

B. Similarity Computation

MIMIC III contains a variety of supplementary information
e.g., ethnicity, language, age and disease information etc.
beyond the temporal features of the patients. However, most
of such information is missing for the majority of the patients.
Disease diagnostics is the only supplementary information

TABLE I
THIS TABLE REPORTS SOME OF THE MOST IMPORTANT ATTRIBUTES OF
THE IN-HOSPITAL-MORTALITY DATA EXTRACTED FROM MIMIC III BY

FOLLOWING THE PREPROCESSING IN [10].

Type Patients ICU stays Variables Cont Var Cat Var
train 15331 17903 17 13 4
test 2763 3236 17 13 4

present for each patient. As such, we only use the disease
diagnostics as extra domain information to compute the simi-
larity between the patients. We convert each patient’s disease
information into a binary vector of size 6961 where 6961 is
the size of the set of all unique diseases in the entire data-set.
After this, we find the set of k most similar patients for each
patient based on the cosine similarity of the disease vectors.
We test the values of k for 2, 3, 4, and 5 and find out that
k = 3 provides the best results. Thus, all the results mentioned
in the next section are achieved using k = 3 and xrel

t ∈ Rd
where d = 18. Once we have xrel

t available, we implement
and evaluate the model.

C. Model Implementation and Evaluation

Here we consider the following variants of VRNN in our
experiment:
• Vanilla VRNN,
• VRNN-I (without the conditional prior in Eq. (6)),
• The proposed approaches: VRNN-S and VRNN-I-S (“S”

stands for similarity), which implement the similar data
xrel
t into VRNN and VRNN-I respectively.

We do not include the other neural baselines such as re-
current neural network with extended Kalman filters (RNN-
EKFs) [26], robust echo state networks (RESNs) [27] and
co-evolutionary multi-task learning (CMTL) [28] since we’re
fundamentally interested in robust and improved forecasting
of VRNNs by attempting to learn the local variations in the
data. Table II reports the implementation details of all four
models. In Table II, the first three columns show the model,
the dimensions of xt and zt respectively. The fourth and
fifth column describe the number of hidden layers and the
size of each hidden layer accordingly. The last two columns
report the batch size and the number of epochs respectively.
The implementations of all four models are with GRUs and
all temporal features are re-scaled between −1 and 1. The
choice of the batch size is based on [23]. For the choice of
the number of hidden layers and their size, we try a variety
of combinations including the previous settings in [10], [22],
[23]. Our final choice of the hidden size, number of layers
and number of epochs are now based on the quality of results
on the test data-set as all four models performed best at the
current settings reported in Table II, which is different from
any of the settings in [10], [22], [23].

We are interested in evaluating our models for multi-step-
ahead forecasting. We evaluate the models on one to ten-step-
ahead forecasting. For one-step-ahead forecasting, we train all
the models on 47 time-steps and predict the last time-step. For



TABLE II
THE IMPLEMENTATION DETAILS OF ALL FOUR MODELS ARE PRESENTED

IN THIS TABLE. NOTE THAT THE IMPLEMENTATION DETAILS FOR ALL
FOUR MODELS ARE THE SAME AS INDICATED BY THE NOTATION “∼=” IN

THE TABLE.

Model X Z No. Layers Hidden Batch EPOCH
VRNN 6 2 2 50 100 5

VRNN-I ∼= ∼= ∼= ∼= ∼= ∼=
VRNN-S ∼= ∼= ∼= ∼= ∼= ∼=

VRNN-I-S ∼= ∼= ∼= ∼= ∼= ∼=

S-
P1

S-
P2

S-
P3

S-
P4

S-
P5

S-
P6

S-
P7

S-
P8

S-
P9
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P1

0

P1
P2

P3

0.24

0.28

0.32

0.36
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0.44

Fig. 4. This heat map visualizes the cosine similarity values between our
patients of interest (P1, P2, and P3) and their corresponding ten most similar
patients (S-P*) based on disease diagnostics.

two to five-step-ahead forecasting, we train all the models on
43 time-steps and predict the next two, three, four and five
steps respectively. For six to ten-step-ahead forecasting, we
train all the models on 38 time-steps and predict the next six,
seven, eight, nine and ten steps. We evaluate all the models
on Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

M

M∑
i=1

(yi − ŷi)2 (15)

Where yi and ŷi in Eq. (15) are the vectors representing the
true and predicted values of all six temporal features for the
ith patient and M denotes the size of the test data-set. We
now discuss the results obtained from the above experimental
setup.

V. RESULTS

In this section, we first report the Average (i.e., for all the
temporal variables) Root Mean Square Error (RMSE) (15) on
the test data-set for multi-step-ahead forecasting in Table III.
In this table, the first column displays the step size for forecast-
ing. The next four columns present the RMSE with rounded
standard deviations using VRNN, VRNN-I (i.e., without the
conditional prior in Eq. (6)), VRNN-S (i.e., VRNN employing
xrel
t ), and VRNN-I-S (i.e., without the conditional prior and

employing xrel
t ). The last two columns share the p values

resulting from the Mann-Whitney U test. These tests have the
alternative hypotheses RMSE (VRNN-S) < RMSE (VRNN)
and RMSE (VRNN-I-S) < RMSE (VRNN-I) respectively.

These tests find if VRNNs utilizing xrel
t (also labelled M3 and

M4 in the table) are significantly better than the respective
baselines (which are labelled M1 and M2 respectively in the
table). From Table III, it can be observed that VRNN-I-S
achieves the lowest values of RMSE in all the ten cases.
Furthermore, VRNN-S achieves the second lowest error in
all the ten cases. Lastly, the rounded standard deviations in
Table III are analogous for all four models. From the last two
columns in Table III, we find out that in 6/10 cases; at-least
one of VRNN-S and VRNN-I-S performs significantly better
than the respective baseline as indicated by the p values.

We further perform a simple qualitative analysis to highlight
the importance of xrel

t in robust and improved forecasting of
VRNNs. We select three patients in the test data-set where
VRNN-S and VRNN-I-S both achieve the lowest RMSE (15).
For each of these patients, we select the ten most similar pa-
tients based on disease diagnostics and plot the corresponding
cosine similarity values in the form of a heat map in figure 4.
This heat map verifies that our choice of k = 3 in previous
section is plausible since in all three cases, high similarity
values are observed for the first few (i.e., two, three) related
patients only. Moving forward with k = 3; we report the
information about the set of common diseases between our
selected patients and their corresponding most similar patients
in Table IV. In this table, the first column shows the identity of
each of the three selected patients. The second column reports
the number of common diseases between that patient and its k
most similar patients. The third column shares the International
Classification of Diseases, Ninth Revision (ICD9) codes for
the corresponding diseases. The last column categorizes the
respective ICD9 codes to the most appropriate disease family
(i.e, Heart, Blood Pressure, Kidney, Respiratory) for better
interpretation and analysis.

After reporting the information about the common diseases,
we plot the predictions of all four models on our patients
of interest in figure 5. This figure shares the one-step-ahead
predicted values (re-scaled) for all six temporal variables for
these patients. Considering the first patient (P1) in figure 5; we
observe that VRNN-S and VRNN-I-S outperform the baselines
on Heart Rate (HR) which is related to the category of the
most common diseases for that Patient in Table IV. Similarly
analyzing the second patient (P2); we observe that VRNN-
S and VRNN-I-S outperform the baselines on Systolic Blood
Pressure (SBP) which is strongly related to high blood pressure
related diseases. Finally, the same analysis is performed for
third patient (P3) where VRNN-S and VRNN-I-S achieve
superior predictions on Respiratory Rate (RR) and Systolic
Blood Pressure (SBP). From figure 5, we verify that xrel

t indeed
helps improving the forecasting accuracy of the VRNNs for
clinical signals. This is especially true for the temporal features
which are related to the set of the common diseases between
the patients. We now move on to discuss the conclusion of the
paper along-side the future research line.



TABLE III
RMSE WITH ROUNDED STANDARD DEVIATIONS ON ALL TEN STEPS AHEAD FORECASTING TASKS ON TEST DATA ARE PRESENTED IN THIS TABLE. THE

FIRST COLUMN SHOWS THE STEP SIZE, THE NEXT FOUR COLUMNS SHARE THE RMSE FOR ALL FOUR MODELS. GIVEN THE ALTERNATIVE HYPOTHESES
Ha: M3 < M1 AND Ha: M4 < M2 WHERE M1, M2, M3 AND M4 CORRESPOND TO THE MODELS IN COLUMNS 2-5 RESPECTIVELY; TWO

MANN-WHITNEY U TESTS ARE PERFORMED TO FIND IF THE ERROR DIFFERENCES ARE SIGNIFICANT USING STANDARD α = 0.05 IN BOTH TESTS. THE
RESULTING p-VALUES FOR BOTH STATISTICAL TESTS ARE PRESENTED IN THE LAST TWO COLUMNS.

Step Size VRNN (M1) VRNN-I (M2) VRNN-S (M3) VRNN-I-S (M4) Ha:M3 < M1 Ha:M4 < M2
1 0.01152± 0.0034 0.01209± 0.0035 0.01040± 0.0031 0.01034± 0.0030 0 0
2 0.01047± 0.0022 0.01047± 0.0022 0.01042± 0.0022 0.01039± 0.0022 0.26 0.078
3 0.01058± 0.0018 0.01059± 0.0018 0.01053± 0.0018 0.01050± 0.0018 0.23 0.045
4 0.01062± 0.0017 0.01062± 0.0016 0.01057± 0.0016 0.01054± 0.0016 0.21 0.036
5 0.01062± 0.0015 0.01063± 0.0014 0.01058± 0.0015 0.01055± 0.0015 0.22 0.021
6 0.01071± 0.0014 0.01064± 0.0013 0.01062± 0.0013 0.01060± 0.0013 0.074 0.14
7 0.01071± 0.0013 0.01064± 0.0012 0.01063± 0.0012 0.01060± 0.0012 0.056 0.12
8 0.01073± 0.0012 0.01066± 0.0011 0.01064± 0.0011 0.01062± 0.0012 0.046 0.10
9 0.01074± 0.0012 0.01066± 0.0011 0.01065± 0.0011 0.01062± 0.0011 0.042 0.09

10 0.01073± 0.0011 0.01066± 0.0010 0.01065± 0.0010 0.01062± 0.0011 0.051 0.074
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P1 - Prediction
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1.00
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0.96
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0.92

DBP HR MBP OSL RR SBP
P2 - Prediction

1.04

1.02

1.00

0.98

0.96

0.94

0.92

DBP HR MBP OSL RR SBP
P3 - Prediction

1.04

1.02

1.00

0.98

0.96

0.94

0.92

Ground Truth VRNN VRNN-S VRNN-I VRNN-I-S

Fig. 5. One step ahead predictions on all six temporal features of the selected patients are presented in this figure. The six temporal features are Diastolic
Blood Pressure (DBP), Heart Rate (HR), Mean Blood Pressure (MBP), Oxygen Saturation Level (OSL), Respiratory Rate (RR) and Systolic Blood Pressure
(SBP) respectively.

TABLE IV
THIS TABLE SHARES THE INFORMATION OF THE COMMON DISEASES

FOUND BETWEEN OUR SELECTED PATIENTS AND THEIR k MOST SIMILAR
PATIENTS.

ID Dis.. ICD9 Category
P1 4 414(.01, .9), 427.31, 428.0 Heart, Blood Pres..
P2 3 785.52, 995.92, 584.9 High Blood Pres.., Kidney
P3 2 507.0, 518.81 Respiratory, Blood Pres..

VI. CONCLUSIONS AND OUTLOOK

In this paper, we evaluate the effectiveness of utilizing mul-
tiple correlated time series in clinical time series forecasting
tasks. Such correlated time series can be extracted from a set
of similar patients; where the similarity can be computed on
the basis of the supplementary domain information such as
disease diagnostics, age and ethnicity etc. As our baselines, we
choose VRNN and its variant which are state-of-the-art deep-
generative models for sequential data-sets. From the findings

in section V, we believe that the performance of VRNNs
can be improved by including the correlated temporal signals.
This is since in 6/10 cases considered in Table III; at-least
one of VRNN-S and VRNN-I-S performs significantly better
than the baselines as indicated by the p values resulting from
the statistical tests. Additionally, it can be observed from
figure 5 that the incorporation of multiple correlated time
series helps recovering the temporal features related to the
common diseases between the patients.

It it nonetheless important to state that the simple similarity
criteria used in the experiments needs to be further enhanced
to capture more complex relationships between the patients
such as learning vector representations of graphs [47] in an
unsupervised fashion. These vector representations can then
be included in the training to learn more robust relationships
between the patients. We aim to focus on such enhanced
similarity computations and other information-rich application
areas e.g., financial and economic time series forecasting etc.



in future. On the basis of the points discussed above, we
believe that discarding such supplementary domain informa-
tion while analyzing clinical data-sets may not be an optimal
strategy since such information may be used to improve the
generalization. Lastly, we believe there is a dire need of
additional clinical benchmark data-sets to improve upon the
state-of-the-art in this area.
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[36] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[37] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning, pp. 1310–1318, 2013.

[38] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a
freely accessible critical care database,” Scientific data, vol. 3, p. 160035,
2016.

[39] S. Shah, D. Ledbetter, M. Aczon, A. Flynn, and S. Rubin, “2: Early
prediction of patient deterioration using machine learning techniques
with time series data,” Critical Care Medicine, vol. 44, no. 12, p. 87,
2016.

[40] C. S. Carlin, L. V. Ho, D. R. Ledbetter, M. D. Aczon, and R. C. Wetzel,
“Predicting individual physiologically acceptable states at discharge
from a pediatric intensive care unit,” Journal of the American Medical
Informatics Association, vol. 25, no. 12, pp. 1600–1607, 2018.



[41] M. Aczon, D. Ledbetter, L. Ho, A. Gunny, A. Flynn, J. Williams,
and R. Wetzel, “Dynamic mortality risk predictions in pediatric critical
care using recurrent neural networks,” arXiv preprint arXiv:1701.06675,
2017.

[42] Y. Liu, B. Logan, N. Liu, Z. Xu, J. Tang, and Y. Wang, “Deep rein-
forcement learning for dynamic treatment regimes on medical registry
data,” in 2017 IEEE International Conference on Healthcare Informatics
(ICHI), pp. 380–385, IEEE, 2017.

[43] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization,
vol. 28. Princeton University Press, 2009.

[44] H.-G. Beyer and B. Sendhoff, “Robust optimization–a comprehensive
survey,” Computer methods in applied mechanics and engineering,
vol. 196, no. 33-34, pp. 3190–3218, 2007.

[45] S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Back, “An empirical
comparison of meta-modeling techniques for robust design optimiza-
tion,” in 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 819–828, IEEE, 2019.

[46] T. Gentimis, A. Ala’J, A. Durante, K. Cook, and R. Steele, “Predicting
hospital length of stay using neural networks on mimic iii data,” in 2017
IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing,
15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 1194–1201,
IEEE, 2017.

[47] A. G. Duran and M. Niepert, “Learning graph representations with
embedding propagation,” in Advances in neural information processing
systems, pp. 5119–5130, 2017.


