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ABSTRACT

Context. The direct detection and characterization of planetary and substellar companions at small angular separations is a rapidly
advancing field. Dedicated high-contrast imaging instruments deliver unprecedented sensitivity, enabling detailed insights into the at-
mospheres of young low-mass companions. In addition, improvements in data reduction and point spread function (PSF)-subtraction
algorithms are equally relevant for maximizing the scientific yield, both from new and archival data sets.
Aims. We aim at developing a generic and modular data-reduction pipeline for processing and analysis of high-contrast imaging data
obtained with pupil-stabilized observations. The package should be scalable and robust for future implementations and particularly
suitable for the 3–5 µm wavelength range where typically thousands of frames have to be processed and an accurate subtraction of the
thermal background emission is critical.
Methods. PynPoint is written in Python 2.7 and applies various image-processing techniques, as well as statistical tools for analyzing
the data, building on open-source Python packages. The current version of PynPoint has evolved from an earlier version that was
developed as a PSF-subtraction tool based on principal component analysis (PCA).
Results. The architecture of PynPoint has been redesigned with the core functionalities decoupled from the pipeline modules. Mod-
ules have been implemented for dedicated processing and analysis steps, including background subtraction, frame registration, PSF
subtraction, photometric and astrometric measurements, and estimation of detection limits. The pipeline package enables end-to-end
data reduction of pupil-stabilized data and supports classical dithering and coronagraphic data sets. As an example, we processed
archival VLT/NACO L′ and M′ data of β Pic b and reassessed the brightness and position of the planet with a Markov chain Monte
Carlo analysis; we also provide a derivation of the photometric error budget.

Key words. methods: data analysis – techniques: high angular resolution – techniques: image processing –
planets and satellites: detection

1. Introduction

High-contrast imaging is a powerful technique to study the
population of planetary and substellar companions at orbital
radii beyond ∼5–10 au (e.g., Oppenheimer & Hinkley 2009;
Bowler 2016). Although the occurrence rate of gas giant
exoplanets on long-period orbits is low, as reflected by the
numerous nondetections of large-scale surveys (e.g., Biller et al.
2013; Brandt et al. 2014; Galicher et al. 2016), directly imaged
planets are key targets for atmospheric characterization (e.g.,
Barman et al. 2015; Morzinski et al. 2015; Rajan et al. 2017).
The direct imaging technique is biased towards high-temperature
gas giant planets at an early age (.100 Myr) because contrac-
tion of their atmospheric envelope makes these objects bright
at near-infrared (NIR) wavelengths (e.g., Burrows et al. 1997;
Marley et al. 2007). The family of directly detected exoplan-
ets includes HR 8799 b, c, d, e (Marois et al. 2008, 2010b),

? Based on observations collected at the European Southern Ob-
servatory, Chile, ESO No. 60.A-9800(J), 084.C-0739(A), and 090.C-
0653(D).
?? PynPoint is available at https://github.com/PynPoint/
PynPoint under the GNU General Public License v3.
??? National Center of Competence in Research “PlanetS” (http://
nccr-planets.ch).

β Pic b (Lagrange et al. 2009, 2010), HD 95085 b (Rameau et al.
2013a,b), 51 Eri b (Macintosh et al. 2015), and HIP 65426 b
(Chauvin et al. 2017). These objects have masses below the deu-
terium burning limit, orbit at separations of several tens of astro-
nomical units, and are low in mass compared to their host star
(Mplanet/Mstar . 10−3), making them particularly interesting
regarding their formation and evolutionary pathway.

Understanding the physical and chemical characteristics of
long-period giant planets and constraining their orbital archi-
tectures are two of the main goals for direct imaging cam-
paigns. During recent years, high-precision spectrophotometric
characterization has become possible, especially with the advent
of extreme adaptive optics (XAO)-assisted, high-contrast imag-
ing instruments such as VLT/SPHERE (Beuzit et al. 2008) and
Gemini/GPI (Macintosh et al. 2008). Dedicated instrumentation
and differential observing techniques are key elements that drive
the field of direct imaging forward in parallel with improvements
in data-processing algorithms.

Angular differential imaging (ADI) is a particularly pow-
erful observing technique because it allows the data itself to
be used as reference for the PSF subtraction as the field is
rotating with respect to the telescope pupil (Marois et al. 2006).
Over the last decade, various post-processing and/or detection
algorithms have been introduced that exploit the parallactic
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Fig. 1. Schematic overview of the software design with the separation of the front-end and back-end functionalities. PynPoint offers a simple front
end which can be used to define a sequence of pipeline modules. Management of the data and the computational resources (i.e., multiprocessing
and memory usage) is handled by the back-end of PynPoint. Reading, processing, and writing modules are attached to the pipeline and sequentially
executed while results are stored in the central database. The architecture allows the user to easily rerun pipeline modules and evaluate the results
at various stages of the data reduction.

rotation of the data to subtract the stellar halo and quasi-
static speckles. For example, locally optimized combination of
images (LOCI; Lafrenière et al. 2007) is a method which is
based on a least-squares minimization of residual speckle noise.
Several derivatives of LOCI have been proposed such as d-LOCI
(Pueyo et al. 2012), TLOCI (Marois et al. 2014), and MLOCI
(Wahhaj et al. 2015). Other methods include principal com-
ponent analysis (PCA; Amara & Quanz 2012; Soummer et al.
2012), angular differential optimal exoplanet detection algorithm
(ANDROMEDA; Cantalloube et al. 2015), local decomposition
into low-rank, sparse, and Gaussian noise components (LLSG;
Gomez Gonzalez et al. 2017), and supervised machine learning
(Gomez Gonzalez et al. 2018).

Post-processing algorithms have been implemented in
instrument-specific pipelines such as the data cube extrac-
tion and speckle suppression pipelines for Project 1640
(Zimmerman et al. 2011; Crepp et al. 2011), the open-source
ACORNS-ADI pipeline of the Subaru/HiCIAO SEEDS survey
(Brandt et al. 2013), the automated data processing architecture
of the Gemini Planet Imager Exoplanet Survey (GPIES Data
Cruncher; Wang et al. 2018), and the SPHERE speckle calibra-
tion (SpeCal) tool of the SPHERE consortium (Galicher et al.
2018). These pipelines allow for end-to-end processing of
high-contrast data from specific instruments but are not pub-
licly available in most cases. There are also a few generic
pipelines, including SOSIE (Marois et al. 2010a) and GRAPHIC
(Hagelberg et al. 2016), which are suitable for multiple instru-
ments but are (currently) not publicly available. Most recently,
Gomez Gonzalez et al. (2017) presented the Vortex Image
Processing (VIP) package, an open-source library of Python
functions dedicated to high-contrast imaging data.

In this paper, we present the new architecture of Pyn-
Point: a generic, open-source pipeline for processing and analy-
sis of high-contrast imaging data obtained with ADI. PynPoint
was originally developed as a PSF-subtraction tool with PCA
(Amara et al. 2015) while the new Python package provides a
pipeline for end-to-end data reduction, including various anal-
ysis tools. The new architecture has a modular design which is
scalable and robust for future implementations. The pipeline is
not limited to a specific instrument although its suitability for
data sets obtained in the mid-infrared (MIR; 3–5 µm) was a main
requirement during its development. Background subtraction is

critical in this wavelength regime and typically thousands of
images have to be processed, making such data sets computa-
tionally more expensive to process compared to the optical and
NIR regimes. Descriptions and results presented in this paper are
based on PynPoint version 0.5.2.

The paper is structured as follows. In Sect. 2, we describe
the new pipeline architecture, including the abstract interfaces
and core functionalities. In Sect. 3, we outline some of the
functionalities of the pipeline modules that are currently imple-
mented to process and analyze data. In Sect. 4, we provide end-
to-end examples of VLT/NACO coronagraphic data in L′ and
VLT/NACO dithering data in M′ of the directly imaged planet
β Pictoris b; we include a photometric and astrometric analysis
and a quantification of detection limits. Finally, we summarize
our work in Sect. 5.

2. PynPoint architecture

The architecture of PynPoint has a modular design which sepa-
rates the common data-handling functionalities that are required
for all reduction steps from the actual data processing (see
Fig. 1). A simple pipeline interface is used to stack and run a
sequence of various data-reduction algorithms given their input
parameters. All data-reduction steps are capsuled with prede-
fined inputs and outputs which sequentially fit together. The
computational resources and the data sets themselves are man-
aged by the back end of the package which provides the core
functionalities related to storing and organizing data. It is pos-
sible to set the number of processes that run in parallel, as well
as the number of frames that are simultaneously read into the
memory. Therefore, PynPoint takes advantage of the available
computational resources independent of the machine on which it
is running (see Sect. 2.4).

The strict separation of data management and pipeline func-
tionalities has several advantages. Firstly, the implementation
overhead that is required to use the package for different data
sets is small since the data is handled by the back end of Pyn-
Point and the user can focus on the actual analysis. Secondly, the
design makes the pipeline scalable to different data formats and
new post-processing techniques while stability is ensured as new
implementations will not intervene with the core functionalities.
Finally, each pipeline module adds history information to the
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Fig. 2. Architecture of the core elements in PynPoint. The front end of the package contains the pipeline interface (Pypeline) which runs the
pipeline modules that can read, process, and write data. The back end (DataIO and Processing) handles the connection to the central database
(DataStorage) and provides the abstract interfaces for the ports and pipeline modules. There are interfaces for reading, writing, and processing
modules, which all inherit from PypelineModule. Access to and storage of data occurs with the confined functionalities of the input, output, and
configuration ports, which all inherit from the Port interface.

data sets that are processed by the pipeline. The complete history
is stored as header information when a data set is exported, for
example as a Flexible Image Transport System (FITS) file. This
approach guarantees reproducibility of the results even if differ-
ent pipeline modules and parameter values have been tested.

The front end of the software consists of the actual pipeline
while the back end contains the interfaces for data input and out-
put, and data processing. These functionalities are implemented
in the Pypeline, DataIO, and Processing Python modules,
respectively. A schematic overview of these core elements is
shown in Fig. 2 and is described in more detail below. Unit
tests and style checks run automatically in the Github repository
which ensures a robust implementation of new features while the
execution of the core functionalities and existing pipeline mod-
ules remains unchanged.

2.1. Pypeline – the pipeline interface

The main interface of PynPoint is the Pypeline class which
manages the data-reduction and analysis steps that have to be
executed by the pipeline modules. The process starts with creat-
ing an instance of Pypeline which requires paths pointing to a
working place, input place, and output place. The working place
contains the central database in which all intermediate and final
processing results are stored, as well as the configuration file
which contains the central settings used by the pipeline and the
relevant FITS header keywords that have to be read from the raw
data. Each data set has a unique tag name used by the pipeline
modules to select the requested data. The central database offers
the flexibility to rerun certain processing steps by simply select-
ing the relevant tags of the data sets. The input place is the default
location from where data are read into the central database and
the output place is the default location where data and analysis
results are written from the database (see Sects. 2.2 and 3.1).

A Pypeline contains an internal dictionary of the pipeline
modules with their unique name tags. Modules will be executed
sequentially in the order by which they are added to the pipeline.
It is possible to run all attached pipeline modules at once or a
single module as specified by its name tag. A central database is
created with the initialization of a Pypeline unless a database
already exists in the working place. The configuration file con-
tains a list of keywords and values which are read with the ini-
tialization of the pipeline and stored in a separate group in the
database. A configuration file with default values is created if
the file does not exist in the working place.

2.2. Data input and output

The DataIO module contains the classes that regulate (in the
back end of the pipeline) the access of the modules to the central
database. The DataStorage class is able to open and close the
connection to the database in which the results from all the pro-
cessing modules are written. The database is stored in the Hierar-
chical Data Format (HDF5) format which confers the advantage
that reading slices of data and appending new data is much faster
compared to the FITS format. In order to facilitate easy reruns of
individual reduction steps and to simplify reproducibility, Pyn-
Point stores the processing results from all pipeline modules.
Therefore, sufficient disk space is required in the working place,
in particular when the raw data contains thousands of images as
is typical in the 3–5 µm range. For example, an HDF5 or FITS
file with 104 images of 1024×1024 pixels would require ∼79 GB
of disk space.

Two types of data are stored in the database: data sets and
attributes. Data sets are the main type of data that are processed,
which typically contain a stack of images, but also analysis
results such as fitted parameter values, detection limits, and
samples from the Markov chain Monte Carlo (MCMC; see
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Sect. 3.5.2) are stored as data sets. Attributes are attached to a
data set and contain header information. Some attributes are ini-
tially imported from the raw FITS data while others are auto-
matically created with certain pipeline modules. Importing of
attributes from the raw data is achieved with the keyword val-
ues provided in the configuration file. This is particularly useful
if the user wants to work with data from different instruments,
which only requires modifications in the configuration file. For
example, setting the keyword PARANG_START to the value ESO
ADA POSANG implies that the values of ESO ADA POSANG in
the FITS header are stored in the database as the nonstatic
PARANG_START attribute together the images. Alternatively, the
attribute value of the pixel scale, PIXSCALE, can be set directly
within the configuration file.

A distinction is made between static and nonstatic attributes.
Static attributes are parameter values that are fixed for a data set
(e.g., pixel scale, exposure time, and observatory location), as
well as history information about the pipeline modules that were
executed. Static attributes are attached to the data set itself and
can change between data sets. For example, the pixel scale is
adjusted when a resampling is applied to the images. Nonstatic
attributes on the other hand are small data sets by themselves
and contain arrays of parameter values that change between the
imported data cubes (e.g., dither position, number of images in
a FITS file, and exposure number) or on a frame-to-frame basis
(e.g., parallactic angle, position of the star, and frame index).
These types of attributes are stored in a separate group of the
database and linked to an input port by the tag that is used for
the corresponding data set. In this way, pipeline modules will
automatically select the attributes belonging to the data set that
is chosen as input data. All attributes are copied and updated, if
needed, each time a pipeline module is executed.

Access to data in the central database is controlled by
instances of InputPort, OutputPort, and ConfigPort which
inherit the common port functionalities from an abstract inter-
face called Port. Each port has an internal tag which works
as a key to the central database and guarantees access to and
changes of only the specified data set. The three different types
of ports are implemented with specific and confined functionali-
ties, which we summarize below.

An InputPort gives read-only access to a data set (typically
a stack of images) in the central database. An input port also
has the permission to read attributes that are associated with the
data set. While an InputPort can only read data and attributes
from the central database, an OutputPort can only store data in
and delete data from the database. An output port sets up a con-
nection to the database and can create a new data set or append
data to an existing data set. Similarly, both static and nonstatic
attributes can be added or overwritten, and nonstatic attributes
can be appended to an existing list of values. Other functionali-
ties of the output ports include comparing the name and values
of static and nonstatic attributes, adding history information of
a pipeline module, and copying all attributes from an input port.
Finally, a ConfigPort reads the configuration values from the
central database, for example the PIXSCALE (i.e., pixel scale of
the image) or MEMORY (i.e., number of images that are simulta-
neously loaded into the memory).

2.3. Data processing

Reading, writing, and processing of data occurs with the dedi-
cated pipeline modules. As explained in Sect. 2.1, these mod-
ule are added to a Pypeline and executed sequentially. The

implementation of modules occurs with the use of abstract inter-
faces of which PypelineModule is the overarching interface
from which all types of modules inherit. This interface ensures
that each pipeline module has a unique name tag as identifier,
contains the obligatory functions to connect the ports of the
pipeline module to the central database, and embeds the obliga-
tory method to run the actual algorithm of the module.

There are three different types of pipeline modules: read-
ing modules, writing modules, and processing modules. Each
of them has its own abstract interface (ReadingModule,
WritingModule, and ProcessingModule) which sets its func-
tionalities, permitted ports to the central database, and obliga-
tory parameters and methods. A reading module is only allowed
to create output ports to the central database and is therefore
suitable to read data from the hard drive and store them in the
database. Data formats that are currently handled by the pipeline
are FITS, HDF5, and ASCII tables (only for 1D and 2D data).
Similarly, a writing module is only allowed to create input ports
to the central database and can therefore be used to select data by
their name tag and store them separately on the hard drive as a
FITS, HDF5, or ASCII file. For example, a stack of preprocessed
images can be stored as a FITS file or the parallactic angles as a
ASCII table.

Processing and analysis of the data occurs with the process-
ing modules of PynPoint. This type of module can setup one or
multiple input and output ports to the database which enables
them to access and store data sets. Each processing module
has a dedicated task such as a flat-field calibration, background
subtraction, bad-pixel correction, PSF subtraction, or flux and
position measurement. With the design of the abstract inter-
faces for the various pipeline modules, one can easily implement
new pipeline modules with the available functionalities to create
input and output ports from a module to the central database,
to execute the actual processing algorithm with the run method,
and to update attributes in the database.

2.4. Management of hardware resources

A central component of PynPoint’s back end is the management
of available hardware resources (i.e., memory and processors).
It is possible to read, process, and write the images in subsets
instead of loading all the images from a data set into the mem-
ory at once. The number of images per subset is provided in
the configuration file with the MEMORY keyword. This approach
enables the processing of thousands of images, as is typical in
the 3–5 µm range, without overloading the computer memory,
and confers the advantage that data can be decomposed and pro-
cessed in parallel.

Parallel processing of data sets in PynPoint follows the
master-worker pattern (Mattson et al. 2004) which is illustrated
in Fig. 3. This approach allows for a flexible number of paral-
lel processes while limited latency occurs due to read and write
operations. A so-called master process starts to read subsets of
the complete input data set from the hard drive and transfers
them into a fixed-size task queue in the memory. A pool of
worker processes waits for data to be present in the task queue
in order to execute the desired algorithm in parallel. Afterwards,
each process transfers the result back into a result queue and
waits for a following subset to be processed. Finally, a writer
process waits for results to appear in the result queue and writes
them back to the hard drive. The number of processes that will
run in parallel can be specified by the CPU keyword in the con-
figuration file.
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Fig. 3. Multiprocessing scheme of PynPoint. The workflow consists of
two processes for read and write operations and a pool of worker pro-
cesses to run the actual algorithm in parallel. In this manner, not only
is the computation time reduced but the time required for reading and
writing of data can also be hidden during the computations. See main
text for details on this so-called master-worker pattern.

To prevent simultaneous read and write access to the central
database, a mutual exclusion (mutex) variable is used by the pro-
cesses. Specifically, the master process is blocked if the writer
process is storing the result in the database and the writer pro-
cess is blocked if the master process is reading from the database.
After the complete data set has been read by the master process,
it places so-called poison pills into the task queue which will shut
down the workers. The worker processes operate independently
of the read and write operations, therefore the latency caused by
the input and output processes can be hidden. Latency hiding
means that the time required to read and write data from and to
the hard drive does not have a significant impact on the overall
run time as these operations are executed in parallel to the pro-
cessing of the data. Overhead only occurs at the start and end as
there will be some time during which only read and write pro-
cesses are active.

Processing modules often apply a specific procedure on all
images of a data set. In order to enable future implementations
to benefit from the memory management and parallel implemen-
tations, a generic method is available to process all images of a
data set with a specified function, which can be called from any
pipeline module. Similarly, there are methods available to per-
form, for instance, multiple PCA fits at the same time and for
processing multiple pixels in the time domain as is used by the
wavelet-based speckle suppression (Bonse et al. 2018).

3. Pipeline modules

A range of processing modules are currently implemented for
various data-reduction steps. Some of the modules were specif-
ically developed for data obtained in the 3–5 µm range but most

modules are also suitable for data sets obtained at optical or
NIR wavelengths. In this section we briefly summarize some of
the main features of the processing modules but we refer to the
online documentation1 for a more complete overview of the pro-
cessing functionalities and a description of the input parameters.
As PynPoint is under continuous development, alternative algo-
rithms for the various data-reduction steps could be considered.

3.1. Importing and exporting data

Several reading and writing modules are available to import data
in and export data from the central database. The supported data
formats are FITS, HDF5, and ASCII tables but the abstract inter-
faces allow for an easy implementation of input and output mod-
ules that support other data formats. Since the central database is
stored in the HDF5 format, it is possible to export one or multiple
tags from the database to a separate HDF5 file with an automatic
inclusion of the associated attributes. This is in particular useful
if the end product of a processed data set is used as input product
for a different pipeline (e.g., PSF template for the computation
of detection limits). Similarly, one or multiple data tags from an
external HDF5 file can be imported, together with the attributes,
into the central database.

Images from FITS files are read together with the relevant
header keywords that are required for processing of the data.
The central configuration file is used to link keywords in the
FITS header to the associated attributes as used by PynPoint.
For example, the nonstatic attribute that contains the exposure
number is EXP_NO, used for the background subtraction of data
obtained with nodding (e.g., VLT/NACO annular groove phase
mask (AGPM) data; see Sect. 4.1), which in the FITS header of
data obtained with VLT/NACO is given by ESO DET EXP NO. In
this way, both the images and required header keywords are read
from the FITS files and stored as data sets and attributes in the
central database. Reading of FITS header keywords is optional
as whether or not certain keyword values are required for the
data reduction depends on the data. Similarly, data sets from the
database can also be exported to FITS files such as a stack of pro-
cessed images that is required for further processing with other
tools.

There are also reading and writing modules available for
ASCII tables which is currently only supported for 1D and 2D
data. For example, a list of parallactic angles can be read and
attached as the PARANG attribute to a data set or detection limits
can be exported from the database to a separate ASCII file.

3.2. Preprocessing and cosmetics

Basic calibration modules are available for dark-current subtrac-
tion and flat-field correction. For a first-order distortion correc-
tion it is possible to scale images in both image dimensions while
conserving the total flux. In the 3–5 µm range, subtraction of the
thermal background emission from the sky, telescope, and instru-
ment is important, so several modules are dedicated to this pro-
cedure. For data obtained with dithering, the background emis-
sion can be subtracted with a mean background frame that is cre-
ated from the previous and/or subsequent data cube in which the
star has shifted to a different position. The background frames of
the adjacent data cubes are selected with the NFRAMES attribute
which contains the number of frames in each imported FITS file.
The NFRAMES attribute is updated whenever frames are removed
from a data set.

1 http://pynpoint.readthedocs.io

A59, page 5 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834136&pdf_id=3
http://pynpoint.readthedocs.io


A&A 621, A59 (2019)

Alternatively, a background subtraction algorithm based on
PCA can be applied as introduced by Hunziker et al. (2018).
This method may provide particularly good results with vary-
ing observing conditions and/or infrequent sampling of the sky
background. In case of dithering data, the dither positions can
be selected and sorted as star and background frames with the
DITHER_X and DITHER_Y attributes. A mean background sub-
traction (based on the adjacent data cubes) is temporarily applied
to locate the star more easily such that the PSF can be masked.
Next, the background frames are decomposed into an orthogo-
nal basis and the frames containing the star are fitted both in the
masked and nonmasked region. Optionally, the average frame
of the entire stack with background frames is subtracted from
both the star and background frames before the PCA basis is cre-
ated and fitted. More details and examples about the PCA-based
background subtraction scheme are provided in Hunziker et al.
(2018).

A separate background subtraction module is implemented
for data obtained with nodding (e.g., VLT/NACO AGPM data).
For such data sets, the sky background is sampled by alternating
the pointing of the telescope between the science target and an
empty region on the sky. Each cube of sky frames is averaged
and subsequently subtracted from the science frames based on
the EXP_NO attribute. This pipeline attribute can be assigned to
a keyword in the FITS header that identifies the order in which
the data cubes were written. Background subtraction occurs by
selecting the subsequent, previous, or average of both sky frames
that are nearest in time to the science frames. Alternatively, it is
also possible to apply the PCA-based background subtraction by
creating the PCA basis from the sky frames and fitting each sci-
ence frame with a linear combination of the basis components.

Bad pixels can be corrected with two different methods. The
fast approach is by sigma clipping of pixel values deviating more
than a specified number of standard deviations within a given
filter size and replacing them by the mean of the neighboring
pixel values. This approach may work well for single outliers
but will not correct clusters of bad pixels.

In order to correct both single outliers and clusters of bad
pixels we have adopted a spectral deconvolution algorithm,
which was first presented by Franke (1987). The algorithm
replaces bad pixels in an iterative manner with the dominant
frequencies from the Fourier representation of the individual
frames. Spectral deconvolution takes advantage of the fact that a
point-wise multiplication in image space is equal to a convolu-
tion in frequency space. Local defects in image space are spread
in frequency space and have a smaller impact on the individ-
ual frequency values. Hence, the individual frequencies are only
slightly affected by bad pixels and can be used for interpolation.
The module requires a bad-pixel map as input, which can, for
instance, be constructed (with a separate module) from the dark-
and flat-field frames. Alternatively, the module for sigma clip-
ping produces a bad-pixel map which may also capture nonstatic
bad pixels.

The spectral deconvolution algorithm starts by selecting
dominant frequencies in the Fourier representation of an image
and transforms them back to the image space. The result is a first
approximation of the interpolated pixel values that will replace
the flagged pixels in the bad-pixel map. After an update of the
Fourier representation the defects in frequency space will be less
dominant. The iteration continues with the updated representa-
tion and creates an updated approximation of the pixel values
by selecting additional dominant frequencies, thereby increasing
the interpolation accuracy of the defect pixel regions. To speed
up the computation and to improve the numerical stability, we

Original

9x9 sigma filter threshold 5

Spectral deconvolution after 1000 iterations

9x9 sigma filter threshold 5

Spectral deconvolution after 1000 iterations

9x9 sigma filter threshold 5

Spectral deconvolution after 1000 iterations

Sigma filter, 9x9 pixels, 5! threshold

Spectral deconvolution, 1000 iterations

Original

Fig. 4. Top row: raw image of a 0.2 s exposure of β Pictoris obtained
with VLT/NACO in the L′ filter. The close-up of the blue region shows
a cluster of bad pixels and the close-up of the red region shows the
PSF of the star with several surrounding bad pixels. Middle row: sigma
clipping applied to the raw image with a filter of 9 × 9 pixels and a
threshold of 5σ. Bottom row: interpolation of the preselected bad pixels
with 1000 iterations by the spectral deconvolution.

have adopted, from Aach & Metzler (2001), a slight variation of
the original algorithm.

A comparison of the two methods for bad-pixel corrections is
displayed in Fig. 4, showing a raw frame of archival VLT/NACO
data in the L′ filter (ESO program ID: 084.C-0739(A)). While
single pixel outliers are well corrected with the sigma filter, small
clusters of bad pixels are not. By first constructing a bad pixel
map from the dark- and flat-field images and subsequently apply-
ing the spectral deconvolution algorithm with 1000 iterations, we
are able to correct both single outliers and clusters of bad pixels.
The corrected image shows a continuous detector pattern with
no obvious artifacts introduced by the interpolation of the bad
pixels.

In addition to correcting bad pixels, a frame selection of the
data might be required in case part of the data was obtained under
variable conditions during which the AO performance plum-
meted or the AO loop opened. This is implemented by measuring
the total flux in a circular or annular aperture (or the ratio of the
two, that is, the halo-to-core flux ratio of the PSF) either at a
fixed position or by first locating the position of the star. Subse-
quently, frames are removed that are more than a given number
of standard deviations away from the maximum or median pho-
tometry value.

3.3. Image registration

After basic calibration and cosmetic corrections, images have
to be registered by placing the stellar PSF in the center of
the image. For noncoronagraphic observations, the star can be
located by selecting the highest pixel value (in a subsection of
the image if needed), after smoothing the image with a Gaussian
filter similar in size to the stellar PSF to lower the contribution
of possibly remaining hot pixels. This step also crops the images
to a specified size which will speed up the computation time for
the remaining processing steps. Alignment of the images is done
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by cross-correlating each image with a specified number of ran-
dom images from the same stack or a different data set in the
database. Optionally, an upsampling can be applied before shift-
ing the images to the average offset value with a default fifth-
order spline interpolation.

Alternatively, images can be centered by fitting a 2D Gaus-
sian profile in cases where the core of the PSF is unsaturated.
A circular region can be specified around the approximate PSF
center which is used for the nonlinear least-squares fit with a
Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt
1963). After the fit, the image is shifted and the procedure is
repeated for all other images in the stack. When images have
already been aligned in a previous step with a cross-correlation,
a fit to the mean of the image stack can be applied and all
images are shifted by a constant offset in order to have them
centered with subpixel precision. A coronagraph is commonly
used for pupil-stabilized observations in which case a different
centering approach has to be applied. For example, the PSF of
data obtained with an AGPM coronagraph (Mawet et al. 2005)
is annular in its morphology as a result of the vortex mask. The
central hole of the annulus can be fitted with a 2D Gaussian by
changing the sign of the pixel values and shifting all values by
a constant offset to positive values. Images are then shifted with
subpixel precision by assuming that the star is located at the cen-
ter of the annular residuals.

3.4. Point spread function and speckle suppression

PynPoint was originally developed as a PSF-subtraction tool
with PCA (Amara & Quanz 2012; Amara et al. 2015). Full-
frame PCA remains the main and currently only implementa-
tion for PSF subtraction but the modular and scalable architec-
ture allows for easy implementation of different PSF-subtraction
modules which may provide higher sensitivity compared to
PCA. As advances are made to improve post-processing algo-
rithms for pupil-stabilized data (e.g., Gomez Gonzalez et al.
2017), we designed the pipeline such that the architecture is suit-
able for additional PSF subtraction techniques. A separate mod-
ule is available to prepare the PSF subtraction by masking the
inner and/or outer regions of an image and optionally normaliz-
ing each image by its Frobenius norm. Furthermore, it is possi-
ble to stack and/or randomly sample the images prior to the PSF
subtraction with a dedicated pipeline module.

The PSF subtraction module requires that the PARANG (par-
allactic angle) attribute is attached to the data set, which can be
achieved in different ways. For example, the parallactic angles
can be imported from an ASCII table (see Sect. 3.1), estimated
with a linear interpolation between the start and end value of
each data cube, or calculated more precisely from the relevant
header information. The latter two approaches require input in
the configuration file; for example, the interpolation uses the val-
ues from the PARANG_START and PARANG_END attributes which
should be linked to the relevant FITS header keyword before the
raw data are imported (see Sect. 2.2).

The PSF subtraction with PCA is implemented with the func-
tionalities of scikit-learn (Buitinck et al. 2013), a Python
package for machine learning, from which we have chosen the
ARPACK library for the singular value decomposition (SVD).
A range of principal components (PCs) can be specified and
the orthogonal basis is constructed by decomposing the stack
of images onto the lower dimensional space of the maximum
number of specified PCs. The best-fit linear combination of the
PCs is then calculated for each image and the PSF model is sub-
tracted from the data. Images are then derotated to a common

field orientation with the PARANG attribute, mean and/or median
combined, and written to the specified database tag.

Creating, derotating, and stacking can be computationally
expensive if the stack contains thousands of images and the
residuals have to be obtained for a range of PCs. Therefore,
this processing step can be executed in parallel with the multi-
processing implementation (see Sect. 2.4). This is only possible
using a machine with sufficient memory because each process
requires enough memory to store a copy of the PCA basis.

A new speckle-suppression technique was recently intro-
duced by Bonse et al. (2018) which is based on wavelet trans-
formations. This technique uses the frequencies and time depen-
dence of the speckle variations to filter out the speckle noise.
Wavelet denoising is not a replacement for the PSF-subtraction
module but can be applied as an additional preprocessing step
earlier on in the data-reduction sequence. Improvements in sen-
sitivity are in particular expected if the temporal sampling is
large (i.e., short exposure times) and the data cover a large varia-
tion in parallactic angle. Bonse et al. (2018) demonstrated that in
such cases improvements of the signal-to-noise ratio (S/N) can
be as large as 40–60%.

3.5. Analysis tools

In addition to pipeline modules for pre- and post-processing,
there are several modules implemented for analyzing reduced
data, including modules for injection of artificial point sources
(referred to as planets from here on), estimation of detection lim-
its, and photometric and astrometric analysis of a point source.

3.5.1. Artificial planets and detection limits

Artificial planets are injected by providing a database tag that
points to the centered science data and a PSF template. The tag of
the science data and PSF template can be identical, for example
when the data were obtained without coronagraph and remained
unsaturated throughout the sequence. In that case an exact copy
of each science image can be used, which will yield the most
precise realization of an artificial planet. However, this is often
not possible for a given observing strategy such that unsaturated
images are separately obtained, for example before and after a
coronagraphic sequence. In that case an identical PSF template is
injected in each science image, which therefore reduces the pho-
tometric accuracy since changes in observing conditions cannot
be accounted for.

The PSF template is shifted with a fifth-order spline interpo-
lation in horizontal and vertical directions to the specified sep-
aration and position angle while taking into account the paral-
lactic rotation. The flux is scaled by the specified contrast with
the star and an additional scaling can be applied, for example to
correct for a difference in detector integration time (DIT) or the
transmission of a neutral density (ND) filter. Both positive and
negative planet signals can be injected which are required for
estimating detection limits and photometric measurements of a
real planet signal, respectively.

A contrast curve provides detection limits at a fixedσ thresh-
old as a function of separation from the star. This means that
the false positive fraction (FPF) decreases (and the related con-
fidence level increases) with increasing separation as the num-
ber of independent reference apertures (with a diameter of
≥λ/D) increases towards larger separations, following the small
sample statistics of the Student’s t-distribution (Mawet et al.
2014). Therefore, σ is only associated with a ∼68% confi-
dence level at large separations where the sampled distribution
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approaches Gaussian statistics. We note that the contrast curve
is not a robust metric for presenting and comparing detection
limits, so alternative implementations could be considered such
as the recently proposed performance map (Jensen-Clem et al.
2018) or a derivation of upper limits in a Bayesian frame-
work (Ruffio et al. 2018). We leave this for future work and for
now adopt the traditional approach of the contrast curve which
applies a correction for small sample statistics but fixes the σ
level with separation.

The detection limits are estimated through an iterative pro-
cess of injecting an artificial planet, subtracting the stellar PSF
with PCA, calculating the FPF, and comparing the value with
the FPF associated with the specified σ threshold (at that sepa-
ration). Multiple iterations of the PSF subtraction are required at
each position until the FPF has converged to a specified accuracy.
The process is repeated at a range of separations and position
angles which are specified by a minimum and maximum value,
and a step size. Although the iterative process makes it computa-
tionally expensive, we chose this approach because the algorithm
throughput may depend on the brightness of the artificial planet.
Calculating the throughput for a single brightness and scaling
the value to the limiting contrast may therefore bias the result.
The number of PCs is fixed with separation, which means that
self-subtraction effects become more severe at smaller separa-
tions because the artificial planet rotates along a shorter path and
the required brightness increases due to enhanced speckle noise
at smaller separations. Such effects can be investigated by cal-
culation of detection limits for a range of PCs. The results that
are stored in the central database include the azimuthally aver-
aged detection limits, the azimuthal variance of the limits, and
the FPF.

3.5.2. Photometry and astrometry of companions

Photometric and astrometric measurements of directly imaged
companions are challenging due to self-subtraction effects that
are inherent to the current approaches to analyze ADI data
sets. Negative artificial planets are commonly used to deter-
mine the planet’s position and brightness relative to its star (e.g.,
Marois et al. 2010b; Lagrange et al. 2010). In PynPoint, this is
achieved by subtracting a scaled replica of the stellar PSF at the
location of the planet and iteratively minimizing the residuals
with a downhill simplex method (Nelder & Mead 1965). Two
different merit functions are currently implemented for the sim-
plex minimization.

The first merit function considers the curvature of the image
surface, which can be quantified by the determinant of the
second-order derivatives, and is defined as

f =

N∑
i, j

∣∣∣∣det
(
Hi j

)∣∣∣∣ , (1)

where i and j are the pixel indices, N is the total number of pixels
encircled by a circular aperture at the fixed, approximate position
of the planet, and Hi j is the Hessian (2 × 2) matrix which gives
the second-order partial derivatives at each pixel position. The
determinant of the Hessian matrix is referred to as the Hessian
and is used to analyze critical points in a matrix, and is there-
fore a measure for the curvature of the image surface. Taking the
absolute value of the Hessian ensures that both local minima and
maxima give a positive value of the Hessian whereas a flat sur-
face (i.e., in case of a perfect subtraction) reduces the Hessian
towards zero. Optionally, the residuals of the PSF subtraction

can be convolved with a Gaussian kernel prior to the computa-
tion of the Hessian in order to reduce pixel-to-pixel variations.
The impact of the width of the Gaussian on the photometric and
astrometric precision is investigated in Sect. 4.3.4.

The second merit function considers the flux values of the
image residuals and is defined by a χ2 function (Wertz et al.
2017; Gomez Gonzalez et al. 2017),

f =

N∑
i, j

∣∣∣Ii j

∣∣∣ , (2)

where i and j are the pixel indices, N is the total number of
pixels encircled by the aperture, and Ii j is the pixel value with
the exact fractional overlap of pixels taken into account. Here
it is assumed that the image residuals after PSF subtraction are
equal to zero and that the uncertainties on the pixel counts follow
a Poisson distribution such thatσi j =

√
Ii j. Equation (2) assumes

uncorrelated measurement uncertainties which is not strictly
true for neighboring pixel values because quasi-static speckle
noise evolves on various timescales (e.g., Macintosh et al. 2005;
Hinkley et al. 2007).

The minimization scheme adjusts the position and brightness
of the negative artificial planet (after an initial guess) and each
step runs the PSF subtraction and computes the merit function
within a circular aperture. This procedure is continued until the
absolute error is smaller than the specified acceptance thresh-
old. The image residuals of each iteration are stored in the cen-
tral database to make them available for visual inspection. In
Sect. 4.3.4, we provide an example analysis of the photometric
and astrometric precision that is achieved with minimization of
the determinants of the Hessian.

The simplex minimization provides a fast way for deter-
mining the relative brightness and position of a detected point
source. To explore the parameter correlations and estimate
uncertainties on the separation, position angle, and contrast,
a pipeline module is available for an MCMC analysis with
the affine-invariant ensemble sampler implementation of the
emcee package (Foreman-Mackey et al. 2013), as proposed by
Goodman & Weare (2010). The results from the simplex min-
imization can be used as a starting point for the walkers. The
position of each walker in the (ρ, θ, δ) space is initialized by a
random value from a Gaussian distribution. For each step the
walkers sample a new value of the angular separation, ρ, the
position angle measured counterclockwise with respect to the
upward direction, θ, and the planet-to-star flux contrast, δ.

The posterior probability function is proportional to the
product of the prior probability function and the likelihood func-
tion. Here we impose uniform priors on the three parameters and
transform Eq. (2) into a log likelihood function, lnL = − 1

2χ
2,

following Wertz et al. (2017). Convergence of the chains is
tested with the integrated autocorrelation time, τint, which mea-
sures the correlation of the chains at different steps of the walk-
ers. Therefore, a low autocorrelation indicates that the parameter
space is efficiently sampled such that the posterior distribution is
close to the ground truth. The pipeline module runs the MCMC
simulation in parallel through the specification of the number of
processes in the configuration file. The gain in computation time
depends on the expense of the log likelihood function and the
size of the stack of images specifically.

4. Application to archival data of β Pictoris

In this section we describe two end-to-end examples and present
the analysis results of the processed data. The examples are
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based on archival data of β Pictoris, an A6V type star which
is orbited by the gas giant planet β Pic b (Lagrange et al. 2009,
2010). The data were obtained with VLT/NACO in the L′ and
M′ filters, therefore requiring special attention to be paid to
the background subtraction. All the processing steps that are
described in Sects. 4.1 and 4.2, as well as the analysis presented
in Sects. 4.3 and 4.4, are carried out with pipeline modules that
are implemented in PynPoint.

4.1. VLT/NACO L′ coronagraphic data

The first data set was obtained with VLT/NACO in the L′ fil-
ter (λ0 = 3.80 µm) on UT 2013 February 01 (ESO program
ID: 60.A-9800(J)) and presented by Absil et al. (2013). The
data were taken during science verification after the installation
of the AGPM coronagraph. Observations were executed under
mediocre conditions with frequent opening of the AO loop. The
background was sampled by nodding the telescope to a nearby
sky region during the science sequence.

The DIT was 0.2 s with 200 and 50 exposures per cube of
science and sky data, respectively. Sequences of 10 or 20 cubes
of science data were taken with three cubes of sky frames in
between, resulting in a sampling of the sky background every
∼10 min. The combination of the DIT and the window size
of 768 × 770 pixels caused a ∼10% frame loss2 for each data
cube that was written. Unsaturated exposures of the stellar PSF
were obtained with a DIT of ∼0.02 s before and after the coro-
nagraphic sequence by shifting the star away from the coron-
agraph. Fitting of a 2D Gaussian function to the stellar PSF
yielded a mean full width at half maximum (FWHM) of 114 mas
(λ/D = 96 mas). Data were obtained in pupil-stabilized mode to
take advantage of ADI, with a total parallactic rotation of 83.◦1.
We refer the reader to Absil et al. (2013) for further details on
the observations.

The data reduction started by importing the raw science
(34277 images), sky (1989 images), flat-field (15 images), dark-
current (3 images), and unsaturated exposures (4859 images) to
separate tags in the central database. The unsaturated images
were reduced separately but the processing steps, including a
frame selection which removed 21% of the images, were sim-
ilar to the ones described both here and in the following section.
The last frame from each imported science and sky data cube
was removed because it contained the average of the individual
exposures that were stored with the cube mode of NACO. The
field orientation of the individual images was calculated with a
linear interpolation between the start and end values of the posi-
tion angle on sky for each data cube. A precise calculation of
the parallactic angles was not possible because of the frame loss
when the data were written from the detector.

The top two pixel rows of the detector do not contain use-
ful data so they were removed such that images are square. The
science and sky background data were then divided by the mas-
ter flat-field which was created from the sky flats with a sub-
traction of the dark-current and a normalization of the averaged
images. The first five frames in each cube of science and sky
data were removed (based on the NFRAMES attribute) because the
background emission had a systematic offset at the start of all
data cubes and decreased exponentially to a constant level dur-
ing the sequence. Images were cropped to 5′′ × 5′′ and the mean
sky background was subtracted. This was achieved by first aver-
aging the sky images of each sky data cube and then computing

2 See Sect. 5.7 in the VLT/NACO User Manual, Issue: 101.

the mean of the previous and subsequent sky frame closest in
time to each science image.

In addition, we also processed the images with a PCA-based
background subtraction in order to compare the detection lim-
its with both background subtraction schemes in Sect. 4.4. The
stack with the sky images was decomposed into a basis set of
60 PCs (cf. Hunziker et al. 2018) which was then used to fit a
linear combination of the PCs to the background of each science
image. The inner 4 FWHM radius around the star was excluded
for the construction of the PCA basis but included in the fit and
background subtraction.

In the next step, we corrected bad pixels by three times iter-
ating with a sigma filter of 9 × 9 pixels and a threshold of 5σ.
This procedure selected and corrected on average 11.4 pixels per
image with a size of 185 × 185 pixels. Low-quality frames were
removed by measuring the ratio of the integrated flux in an annu-
lar aperture, with an inner and outer radius of 1 and 4 FWHM,
and a circular aperture with a radius of 1 FWHM, both centered
on the star. Frames with flux ratios deviating by more than 1.5σ
from the median flux ratio were removed, corresponding to 11%
of the frames. The threshold was iteratively chosen by visual
inspection of the removed frames.

The star had been recentered behind the coronagraph mask
each time the sequence changed from sky to science exposures
which is routinely achieved with a precision of 0.1λ/D ' 10 mas
(VLT/NACO User Manual, Issue: 101). Therefore, we assumed
that the science and sky frames (which include thermal emis-
sion from the coronagraph) were well aligned. Instead, only an
absolute centering was done by averaging the stack of images,
upsampling the averaged image by a factor of five, fitting a neg-
ative 2D Gaussian to the central region (1 FWHM in radius),
and finally shifting all images by the computed offset in both
image dimensions. The stack of images appeared well centered
on visual inspection of the central annulus.

To speed up the MCMC sampling procedure and the calcu-
lation of the detection limits later on, we mean-combined every
50 images and their parallactic angles, resulting in a final stack
of 594 preprocessed images. Pixel values within a radius of
1.5 FWHM and beyond 1.′′0 were masked before the stellar PSF
and quasi-static speckles were modeled and subtracted with the
PCA implementation of the PSF subtraction. Image residuals
were then derotated to a common field orientation, and mean-
and median-combined. The median image residuals obtained
with 20 PCs are shown in the top row in Fig. 5 (second image
from left). The S/N was computed from the median-combined
residuals for 1–50 PCs with an aperture of 1 FWHM in diame-
ter centered on the approximate position of the planet, account-
ing for small sample statistics Mawet et al. (2014). This proce-
dure yielded maximum S/Ns of ∼20 (26 PCs) and ∼23 (27 PCs)
when either a mean or PCA-based background subtraction was
applied, respectively.

4.2. VLT/NACO M′ dithering data

The second data set of β Pictoris that was reprocessed and
analyzed had been taken with VLT/NACO in the M′ filter
(λ0 = 4.78 µm) on UT 2012 November 26 (ESO program ID:
090.C-0653(D)) and was presented by Bonnefoy et al. (2013). A
four-point dither pattern was applied during the observations to
sample the sky background such that a different approach for
the background subtraction is required compared to the corona-
graphic L′ data.

We started by importing the raw science (55384 images),
flat-field (5 images), dark-current (3 images), and unsaturated
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Fig. 5. Analysis of archival VLT/NACO data of β Pictoris in the L′ (top row) and M′ (bottom row) filters. Images show from left to right the
median unsaturated PSF of β Pic, the median residuals of the PSF subtraction, the residuals with the best-fit negative artificial planet injected, and
the residuals with an artificial planet injected at 0.′′5 and a brightness scaled to a 5σ detection level (i.e., a false positive fraction of 3.97 × 10−5

at that separation). All residuals were obtained by fitting the images with 20 PCs. The dashed circles in the second column are there to guide the
eye, the dashed circles in third column denote the aperture size that was used for the minimization, and the dotted circles in the fourth column
show the position and size of the detection and reference apertures. The reference apertures are used to estimate the noise at the separation of the
artificial planet. The unsaturated images and the PSF subtraction residuals are displayed on a logarithmic and linear color scale, respectively. The
unsaturated flux is shifted by a few counts such that the minimum value is unity. The dynamical range of the minimization and detection limits
residuals is enhanced by the factor in the top right corner of each image, compared to the color bars on the right. North is up and east is to the left
in all post-processed images.

exposures (1960 images) to separate tags in the central database.
The selected science data consisted of 184 data cubes with each
cube containing 300 exposures of 65 ms. The unsaturated images
of the stellar PSF were obtained with a similar dither pattern and
processed separately from the science data. The mean FWHM of
the unsaturated stellar PSF is 134 mas (λ/D = 121 mas) as deter-
mined with a 2D Gaussian fit. The observations were executed
in pupil-stabilized mode with a total field rotation of 51.◦6.

Similar to the L′ data, every NDIT+1 frame was removed
from each imported data cube because it contained the average
of the cube. The parallactic angle, πi, at observing time ti, was
calculated as

πi = arctan
(

sin hi

cos δ tan φ − sin δ cos hi

)
, (3)

where i is the index of the image, hi is the hour angle, δ is the
declination of the target, and φ the geographical latitude of the
observatory. The target coordinates, location of the observatory,
DIT, and UT time at the start of a data cube were read from
the FITS headers based on the specification in the configuration
file. There are no additional overheads that have to be considered
with NACO’s cube mode. The calculated angles were corrected
for the position angle of the telescope pupil and the constant
rotator offset of 89.◦443. In the derotated images, north and east
will be pointing in upward and leftward direction, respectively.
Again, the top two pixel lines were removed, a flat-field correc-
tion was applied, and the first five frames were removed because
of the systematically higher background.

3 See Sect. 5.8 in the VLT/NACO User Manual, Issue: 101.

The four dither positions, which typically correspond to the
four detector quadrants, are then cropped from the full detector
array to 3.′′5 × 3.′′5 and sorted as star or background frame. We
then applied the PCA-based background subtraction by placing
a mask (4 FWHM in radius) at the approximate position of the
star and decomposing the stack of background images onto the
first 60 PCs, for each dither position separately. The best-fit lin-
ear combination of the basis components was computed and sub-
tracted for each image separately. Additionally, we processed the
data with a mean background subtraction based on the adjacent
data cube, as described in Sect. 3.2.

Remaining bad pixels were removed with sigma clipping
of outliers, similar to the L′ data. A frame selection was then
applied to remove low-quality images by measuring the flux
with a circular aperture (1 FWHM in radius) centered on the star.
Frames for which the photometry deviated by more than 2σ from
the median photometry were removed, corresponding to 4% of
the frames. Images were then centered with pixel precision by
cropping around the brightest pixel. Next, a cross-correlation
was used to align the images by shifting them to the mean offset
of ten randomly drawn reference images. Finally, the stellar PSF
was placed in the center of the frame with subpixel precision by
fitting a 2D Gaussian to the mean of all images.

In preparation of the PSF subtraction, a pre-stacking by
100 images was applied and the central (≤1 FWHM) and outer
(≥1.′′0) regions were masked. The stack of 522 images was
decomposed into an orthogonal basis with the SVD, after which
the model PSF was constructed by projecting each image onto
the PCs in the range of 1–50. The derotated and median com-
bined residuals obtained with 20 PCs are displayed in the bottom
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Table 1. Photometric and astrometric analysis of β Pic b with PynPoint.

Method Contrast (mag) Separation (mas) Position angle (deg)

VLT/NACO L′ filter
Hessian minimization, 10 PC 7.88 449.46 210.20
Hessian minimization, 20 PC 7.90 449.52 210.27
Hessian minimization, 30 PC 7.88 450.12 210.25
Hessian minimization, 40 PC 7.91 449.88 210.27
Flux minimization, 10 PC 7.86 450.33 210.18
Flux minimization, 20 PC 7.84 449.41 210.26
Flux minimization, 30 PC 7.84 449.01 210.21
Flux minimization, 40 PC 7.86 450.24 210.33
MCMC sampling, 20 PC 7.85+0.02

−0.02 449.74+1.30
−1.34 210.26+0.11

−0.11
Absil et al. (2013), PCA 8.01 ± 0.16 452 ± 10 211.2 ± 1.3
Cantalloube et al. (2015), ANDROMEDA 8.09 ± 0.21 455 ± 8.7 210.7 ± 0.8

VLT/NACO M′ filter
Hessian minimization, 10 PC 7.76 458.65 211.71
Hessian minimization, 20 PC 7.74 458.31 211.44
Hessian minimization, 30 PC 7.78 459.73 211.42
Hessian minimization, 40 PC 7.65 459.51 211.21
Flux minimization, 10 PC 7.63 456.95 211.61
Flux minimization, 20 PC 7.64 457.58 211.40
Flux minimization, 30 PC 7.65 459.31 211.40
Flux minimization, 40 PC 7.59 459.53 211.25
MCMC sampling, 20 PC 7.64+0.05

−0.05 458.42+3.53
−3.51 211.39+0.23

−0.24
Bonnefoy et al. (2013), CADI 7.5 ± 0.3
Bonnefoy et al. (2013), KLIP 7.8 ± 0.3

row of Fig. 5 (second image from left). The computation of
the S/N yielded a maximum of ∼23 with 30 PCs used for the
PSF subtraction, approximately independent of the background-
subtraction method.

4.3. Photometry and astrometry of β Pic b

The relative photometry and astrometry of β Pic b is determined
with the two methods described in Sect. 3.5.2. For this pur-
pose we used the pre-stacked images (594 images in L′ and 522
images in M′) and cropped both the science data and the unsat-
urated PSF templates (see first column in Fig. 5) to 2′′ × 2′′.

The simplex minimization and MCMC analysis rely on the
injection of negative artificial planets. With these methods, the
PSF template of β Pic was scaled by the relative brightness
that was tested, the difference in DIT between the science data
and the unsaturated exposures, and the ND filter that was used
for the unsaturated images with the M′ filter. We adopted a fil-
ter transmission of (2.33 ± 0.10)% from Bonnefoy et al. (2013),
which was measured on-sky for the combination of the ND_long
and M′ filter. Pixels at separations larger than 1.′′0 and smaller
than 1.5 FWHM in L′ and 1.0 FWHM in M′ were masked after
the artificial planet was injected and the stellar PSF was sub-
sequently subtracted. This procedure was iterated for each step
(i.e., different brightness and position) of the minimization and
MCMC analysis.

4.3.1. Simplex minimization of the residuals

The first analysis involved the minimization of the curvature or
flux of the PSF subtraction residuals. From the initial guess,
we let the simplex minimization iterate towards a best-fit solu-
tion with an absolute precision of 0.01 mag and 0.01 pixels. We

smoothed the image residuals of the L′ and M′ data with a Gaus-
sian filter of σ = 30 mas and σ = 40 mas (∼1–1.5 pixels),
respectively, in order to reduce pixel-to-pixel variations before
the merit function of the Hessian was calculated (see Eq. (1)).
The standard deviation that was chosen for the kernel provided
the highest accuracy, which has been quantified for both filters
by measuring the position and brightness of artificial planets.
The impact of the Gaussian filter on the photometric and astro-
metric precision is described and quantified in more detail in
Sect. 4.3.4. The second merit function (see Eq. (2)) was calcu-
lated directly from the image residuals with no further smoothing
applied. Both merit functions were evaluated within a circular
aperture with a radius of 2 FWHM which was centered on the
approximate and fixed position of β Pic b.

The results of the simplex minimization of the two merit
functions are presented in Table 1 with 10, 20, 30, and
40 PCs used to model the PSF. The separations were calcu-
lated by assuming a pixel scale of 27.1 mas for both filters (cf.
Chauvin et al. 2012). Literature values from Absil et al. (2013),
Cantalloube et al. (2015), Bonnefoy et al. (2013) are listed for
reference. Bonnefoy et al. (2013) minimized the standard devia-
tion of the residuals and applied four different PSF-subtraction
methods. In Table 1, we only list their minimum and maxi-
mum contrast values. Several additional contrast values for the
NACO L′ and M′ filters are available in the literature, which
are derived from different data sets. These include 7.7 ± 0.3 mag
(Lagrange et al. 2009), 7.8 ± 0.3 mag (Lagrange et al. 2010),
7.71 ± 0.06 mag (Currie et al. 2011), and 7.79 ± 0.08 mag
(Currie et al. 2013) in L′, and 7.50 ± 0.13 mag (Currie et al.
2013) in M′. We note that a precise, quantitative comparison
of the photometric and astrometric values with the literature is
challenging since small deviations are to be expected, for exam-
ple due to the choice of the PSF template, centering method,
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Fig. 6. Posterior probability distributions of the separation, ρ, position angle, θ, and planet-to-star flux contrast, δ, of β Pic b in L′ (left panel) and
M′ (right panel). The marginalized 1D distributions of the parameters are shown in the diagonal panels and the marginalized 2D distributions are
shown for all parameter pairs in the off-axis panels. The parameter values and uncertainties above the diagonal panels correspond to the median,
and 16th and 84th percentiles of the samples (also indicated by the vertically dashed lines). Contours overlaid on the 2D distributions correspond to
1σ, 2σ, and 3σ confidence levels. The best-fit results from the Hessian minimization are shown with red symbols. See Sect. 4.3.3 for a derivation
of the photometric error budget.

and merit function. The photometric error budget is investigated
in more detail in Sect. 4.3.3, but no astrometric calibration has
been applied.

The dependence on the number of PCs that were tested
appears small for the L′ data while there is some dispersion in
the measured contrast values in the M′ data, in particular with
the minimization of the Hessian. For the M′ data, the contrast
was smallest with the largest number of PCs, both with the min-
imization of the Hessian and the flux. The values of the sepa-
ration and position angle show differences of .1 mas and . 0.◦1
between the two minimization functions (both in the L′ and M′
filter) when the same number of PCs is compared. The con-
trast on the other hand is systematically smaller for both filters
with the minimization of the flux, with the largest differences
(∼0.1 mag) being seen in M′. This might be caused by a different
impact of the residual speckle noise on the evaluation of the two
merit functions. The best-fit residuals of the Hessian minimiza-
tion (see third column in Fig. 5) show a relatively bright feature
in the L′ and M′ data at the position of β Pic b. These noise
features became more strongly suppressed by the flux minimiza-
tion which resulted in a smaller contrast value. A quantification
of the residual speckle noise and the impact on the photometric
error budget are provided in Sect. 4.3.3.

4.3.2. Markov chain Monte Carlo analysis

The correlations between the separation, position angle, and con-
trast of β Pic b, as well as the statistical uncertainties related
to the Poisson noise were estimated with MCMC sampling (see
Sect. 3.5.2). The same stack of images, mask, and aperture were
used such that a robust comparison can be made with the results
from the simplex minimization. The probability landscape was

explored by 200 walkers, each one of them creating a chain of
500 steps. The mean acceptance fraction of the samples was
0.64 in L′ and 0.66 in M′. The integrated autocorrelation time
of the samples was estimated to be τint = 38.1, 1.3, 23.3 in
L′ and τint = 32.7, 38.0, 30.1 in M′ with the listed values for
the time series of the separation, position angle, and contrast.
The chains can be considered converged if we assume that their
length should exceed 10τint for all parameters. The first 50 sam-
ples of the chains were identified upon visual inspection as the
burn-in so they were excluded from the analysis. The marginal-
ized posterior distributions and the derived uncertainties on the
parameters are presented in Fig. 6, and listed in Table 1 in com-
parison with the results from the simplex minimization.

The best-fit values from the minimization of the flux residu-
als with 20 PCs are very similar to the median values of the pos-
terior distributions estimated with the MCMC analysis. The sep-
arations and position angles that are retrieved with the Hessian
minimization are within the 1σ uncertainties that are derived
from the posterior distributions. The contrast on the other hand
obtained with the Hessian minimization and the same number
of PCs is systematically slightly higher compared to the results
from the MCMC analysis. The values deviate by 2.5σ (L′) and
2σ (M′) from the MCMC results, with a difference of 0.05 mag
in L′ and 0.1 mag in M′ (see Fig. 6 and Table 1). As mentioned
in Sect. 4.3.1, this discrepancy is likely related to the residual
speckle noise which biases the two merit functions differently.

4.3.3. Photometric error budget

The uncertainties presented in Fig. 6 are derived from the poste-
rior distributions alone, therefore they only reflect the statistical
error and not the total error budget. Here we provide more
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Table 2. Photometry and error budget of β Pic b.

Filter MCMC MCMC Speckle Calibration ND filter Final Apparent Apparent flux
contrast error error error error contrast magnitude
(mag) (mag) (mag) (mag) (mag) (mag) (mag) (W m−2 µm−1)

VLT/NACO L′ 7.85 0.02 0.03 0.05 – 7.85 ± 0.06 11.30 ± 0.06 1.53 ± 0.08 × 10−15

VLT/NACO M′ 7.64 0.05 0.04 0.09 0.05 7.64 ± 0.12 11.10 ± 0.12 7.63 ± 0.84 × 10−16

Fig. 7. Photometric and astrometric precision obtained with the mini-
mization of the Hessian for the L′ (top panel) and M′ (bottom panel)
data. The circular points show the azimuthally averaged position and
contrast offset between the injected and retrieved values. The symbol
sizes increase in steps of 4 PCs in the range of 20–40 PCs. The preci-
sion is tested for different widths (increasing in steps of 10 mas) of the
Gaussian filter that is used to lower pixel-to-pixel variations before the
Hessian is calculated. The bars show the variance of the six azimuthal
positions, averaged over the six values of the PCs that were tested. The
color coding is the same for the bars and the data points.

realistic error bars on the photometry of β Pic b in L′ and M′
by considering four additional terms in the error budget. Firstly,
we estimated the residual speckle noise which biases the calcula-
tion of the likelihood function as described in more detail below.
Secondly, there is a calibration error related to the brightness of
the star which varied during the observations due to changes in
Strehl ratio and sky conditions while the same PSF template is
injected in all images. This error was calculated as the standard
deviation of the stellar flux in the unsaturated images, measured
with a circular aperture of 1.5 FWHM in radius. Thirdly, we
included the error on the transmission of the ND filter for which
we adopted an absolute error of 0.10% from Bonnefoy et al.
(2013). Finally, we considered the uncertainty on the apparent
magnitude of β Pic in the L′ and M′ filters.

The uncertainty caused by the residual speckle noise was
estimated with the procedure described in Wertz et al. (2017).

We briefly summarize that an artificial planet was injected at the
separation and with the brightness of β Pic b (which was first
removed with the best-fit solution), after which its position and
brightness were retrieved by minimizing the flux residuals (see
Eq. (2)). This procedure was then repeated at 360 equally spaced
position angles. The distributions of the offsets between the
injected and retrieved values of the separation, position angle,
and flux contrast were fitted with a Gaussian function and eval-
uated with a maximum-likelihood estimation. The best-fit mean
and standard deviation (in parentheses) of the three parameter
offsets are 3.6×10−2 (9.4×10−1) mas, 1.◦5×10−3 (1.◦2×10−1), and
9.1× 10−4 (3.3× 10−2) mag in L′, and 7.2× 10−2 (1.6× 100) mas,
3.◦8 × 10−5 (1.◦8 × 10−1), and 1.0 × 10−3 (4.0 × 10−2) mag in M′.
There appears no systematic uncertainty as the mean values are
all consistent with zero so we only consider the width of the
distributions.

The error components of the photometry are independent
and combined as the square root of the sum of the squares.
Table 2 lists the individual errors for both filters, as well as
the final contrast with uncertainty. The apparent magnitude of
β Pic is 3.454 ± 0.003 mag in L′ and 3.458 ± 0.009 mag in M′
(Bouchet et al. 1991). The uncertainty on the stellar magnitude
is included in the error budget of β Pic b but it is negligible for
the uncertainty on the planet’s apparent magnitude. Therefore,
this term is not listed in Table 2. The flux loss related to the off-
axis throughput of the AGPM coronagraph (Mawet et al. 2013)
is negligible at the location of β Pic b. The zero-point flux for
the two filters is computed by folding a flux-calibrated spectrum
of Vega (Bohlin 2007) with the filter transmission4. The appar-
ent fluxes of β Pic b (see last column in Table 2) are derived by
setting the magnitude of Vega to zero for each filter.

As we are mostly interested in measuring MIR photometry
with related error bars, no astrometric calibration is performed
on the data and the error budget of the planet’s position is not
investigated. The M′ filter in particular is not well suited to high-
precision astrometry. The position angles listed in Table 2 have
therefore not been corrected for true north. Details on the instru-
mental uncertainties of NACO can for instance be found in the
work by Rameau et al. (2013c) and Chauvin et al. (2012, 2015).
For example, Chauvin et al. (2012) measured a pixel scale of
27.11 ± 0.04 mas and a true north offset of −0.◦36 ± 0.◦11 with
NACO in the L′ filter.

4.3.4. Effects of smoothing and spatial variations

As described in Sect. 4.3.1, singular residuals are smoothed with a
Gaussian filter to lower the impact of pixel-to-pixel variations on
the Hessian. Here we investigate the dependence of the smooth-
ing on the photometric and astrometric precision. We started again
with a data cube from which β Pic b had been removed and
injected an artificial planet with a similar brightness and sep-
aration as β Pic b. We then applied the Hessian minimization
4 http://www.eso.org/sci/facilities/paranal/
instruments/naco/inst/filters.html
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Fig. 8. Locality of the photometric and astrometric precision tested with the Hessian minimization. Artificial planets are injected in the M′ filter
data at a range of separations and position angles. The absolute offsets between the injected and retrieved value of the position (left panel) and
the contrast (right panel) are shown on a logarithmic color scale for each tested position. The white solid line is the mean offset (top axis) as a
function of separation (left axis). The standard deviation of the offset across the position angles is indicated by the white shaded area. The white
cross denotes the position of β Pic b, which was removed beforehand.

(see Eq. (1)) and compared the retrieved position and brightness
with the injected values. The calculation was repeated for differ-
ent numbers of PCs ranging from 20 to 40, six equally spaced
position angles, and different widths of the Gaussian filter.

The results are presented in Fig. 7 for both data sets. For the
L′ data, the azimuthally averaged offset between the measured
and injected position values shows a minimum around 30 mas
while the photometric precision is largest if no smoothing is
applied. Also, the variance of the six azimuthal positions, aver-
aged over the different PCs that were tested, shows a minimum
around a similar width of the Gaussian filter. Therefore, smooth-
ing provides a small improvement to the astrometric accuracy
(.1.1 mas) with the Hessian minimization if instrumental cali-
bration errors are neglected. However, we note that the impact
of smoothing on the precision will likely depend on the amount
of residual noise at a given separation. The same analysis for the
M′ data shows a minimum in both the spatial and contrast offset
when a Gaussian standard deviation of approximately 40 mas is
used. For the separation and brightness of β Pic b, the derived
astrometric and photometric precision in M′ is .2.5 mas and
.0.01 mag, respectively.

The variance that is shown in Fig. 7 indicates that the mea-
surement precision is not circular symmetric but affected by
local variations in noise residuals. In Sect. 4.3.3, we estimated
the uncertainty on the photometry of β Pic b caused by residual
speckle noise. Here we extend that analysis with a quantification
of localized variations both in radial and azimuthal directions
with the Hessian minimization. The precision is tested across a
grid of 34 equally spaced separations in the range of 0.′′23–1.′′19
and 36 equally spaced position angles while fixing the number
of PCs to 20 and the Gaussian filter width to 40 mas. The result
is visualized in Fig. 8, which shows the absolute spatial and con-
trast offset between the injected and retrieved values. Overall,
both the photometric and astrometric precision increases towards
larger separations as the amount of noise residuals decreases. In
addition, asymmetric variations appear on various spatial scales,
indicating that photometric and astrometric measurements are a
localized problem.

4.4. Detection limits

Detection limits were calculated by injecting a copy of the unsat-
urated stellar PSF at a range of separations and position angles,
as described in Sect. 3.5.1. The brightness of the artificial planet
was iteratively adjusted until the FPF converged to a fixed 5σ
level. This implies that the FPF increases towards smaller separa-
tions, following the small sample statistics (Mawet et al. 2014).
A fractional tolerance on the FPF of 0.1 was chosen to end the
iteration process. The FPF was calculated by placing a circu-
lar aperture at the position of the artificial planet and filling
the remaining azimuthal space with nonoverlapping reference
apertures to estimate the noise level. The apertures next to the
planet were neglected because they encircled the self-subtraction
lobes of the planet, otherwise biasing the noise measurement
(see fourth column in Fig. 5 for an example). We chose a con-
servative aperture diameter equal to the FWHM of the stellar
PSF which is sufficiently large for the noise samples to be inde-
pendent. Detection limits were calculated for PCs in the range
of 10–50 with steps of 5 PCs. No correction was applied for the
off-axis throughput of the coronagraph since the flux loss beyond
300 mas is less than 0.1% (Mawet et al. 2013).

Figure 9 shows the 5σ detection limits with radial step sizes
of 50 mas for both NACO filters, averaged over six equally
spaced azimuthal positions. The FPF associated with the σ level
and number of reference apertures is also shown for reference.
The Gaia DR2 distance of 19.75 ± 0.13 pc (Gaia Collaboration
2016, 2018) is adopted to determine the projected distance from
the star. The background-limited regime starts approximately at
a separation of 1.′′5 in L′ and 1.′′2 in M′, as estimated by eye
from the flattening of the contrast curves. The limiting apparent
magnitude in this regime is approximately 16.1 mag in L′ and
14.7 mag in M′ which is calculated by averaging the contrast
limits over the background-limited separations for the most sen-
sitive number of PCs. We note that the total amount of data that
was used (after frame selection) corresponds to an integration
time of 99 min in the L′ filter and 56 min in the M′ filter.

As described in Sects. 4.1 and 4.2, both data sets were pro-
cessed with a mean- and PCA-based background subtraction
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Fig. 9. Detection limits in the NACO L′ (top panel) and M′ (bottom
panel) filters. Solid lines are the azimuthally averaged limits and the
shaded areas are the variance of the six azimuthal positions. The lim-
its are calculated with a mean and PCA-based background subtraction
for both filters. A range of PCs was tested but only the limits with
the highest sensitivity are presented. The black dashed lines show the
false positive fraction (right axis) associated with the detection limits
and the horizontally dotted lines indicate the apparent magnitude in the
background-limited regime. The black crosses show the separation and
contrast of β Pic b as determined with the MCMC analysis (the uncer-
tainties are smaller than the symbol size).

separately while all other pipeline modules were executed in
the same way. To investigate the impact of both approaches on
the sensitivity, we calculated the detection limits for both cases
with the same PSF template. Furthermore, the dependence of the
detection limits on the number of PCs was determined by visu-
ally inspecting the contrast curves and selecting those with the
best limits.

In the L′ filter, there is a difference between the detec-
tion limits for the two background subtraction methods. With
the mean background subtraction, the highest sensitivity was
reached with 20 PCs in the speckle-limited regime and 50 PCs
in the background-limited regime. A smaller number of PCs is
sufficient at smaller separations as the limiting contrast decreases
and the effect of self-subtraction increases. Interestingly, with the
PCA-based background subtraction the best limits were obtained
with 50 PCs both at small and large separations. In the M′ filter
on the other hand, the dependence of the detection limits on the
number of PCs is small (up to the maximum separation that was
probed by the observations) with the best limits overall being
obtained with 40 PCs, independent of the background subtrac-
tion method.

5. Summary

We have presented the new pipeline architecture of PynPoint:
an open-source Python package for processing and analysis of
high-contrast imaging data. The package provides a generic,
end-to-end data-reduction pipeline, including analysis tools. The

architecture of the pipeline has a modular design with the
core functionalities and the pipeline modules separately imple-
mented, which ensures scalability to new data formats and
pipeline modules while the robustness of the pipeline remains
secured. Dedicated pipeline modules have been implemented to
import and export data, and to process and analyze data sets,
including modules for background subtraction, frame registra-
tion, bad-pixel cleaning (including the corrections of bad-pixel
clusters using spectral deconvolution), PSF subtraction with full-
frame PCA, estimation of detection limits, and photometric and
astrometric measurements of companions.

Reprocessing and analysis of archival VLT/NACO data of
β Pictoris demonstrates the applicability of the pipeline to MIR
data with dedicated background subtraction modules for data
obtained with dithering or nodding without having to pre-stack
images. We determined the photometry and astrometry of β Pic b
by injecting artificial planets and using a minimization algo-
rithm and MCMC analysis. Minimization of the curvature of the
PSF-subtraction residuals yielded contrast values that were up
to ∼0.1 mag larger compared to the minimization of the flux of
the residuals. This inconsistency is probably caused by a differ-
ent impact of the residual speckle noise on the evaluation of the
two merit functions. The final contrast values and uncertainties
of β Pic b in the NACO L′ and M′ filters are 7.85±0.06 mag and
7.64±0.12 mag, respectively. The photometric error includes the
statistical uncertainty, the residual speckle noise, the calibration
error, and the transmission uncertainty of the ND filter.

PynPoint is under continuous development and we wel-
come contributions from the high-contrast imaging community
to help extend and improve the pipeline. The architecture with
its abstract interface and pipeline functionalities allows for easy
implementation of new pipeline modules or improvements of
existing ones (more details are provided in the online documen-
tation). PynPoint is maintained on Github5 and is also available
in the PyPI repository6.
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