
Radiopharmaceutical tracers for cardiac imaging
Manabe, O.; Kikuchi, T.; Scholte, A.J.H.A.; Mahdiui, M. el; Nishii, R.; Zhang, M.R.; ... ;
Yoshinaga, K.

Citation
Manabe, O., Kikuchi, T., Scholte, A. J. H. A., Mahdiui, M. el, Nishii, R., Zhang, M. R., …
Yoshinaga, K. (2018). Radiopharmaceutical tracers for cardiac imaging. Journal Of Nuclear
Cardiology, 25(4), 1204-1236. doi:10.1007/s12350-017-1131-5
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/86910
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/86910


REVIEW ARTICLE

Radiopharmaceutical tracers for cardiac imaging

Osamu Manabe, MD, PhD,a Tatsuya Kikuchi, PhD,b Arthur J. H. A. Scholte, MD,

PhD,cMohammedElMahdiui,MD,c RyuichiNishii,MD, PhD,dMing-RongZhang,

PhD,b Eriko Suzuki, LT,a and Keiichiro Yoshinaga, MD, PhD, FACC, FASNCd

a Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo,

Japan
b Department of Radiopharmaceutical Development, National Institutes for Quantum and

Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
c Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
d Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiolog-

ical Science and Technology, National Institute of Radiological Sciences, Chiba, Japan

Received Nov 3, 2017; accepted Nov 5, 2017

doi:10.1007/s12350-017-1131-5

Cardiovascular disease (CVD) is the leading cause of death and disease burden worldwide.
Nuclear myocardial perfusion imaging with either single-photon emission computed tomog-
raphy or positron emission tomography has been used extensively to perform diagnosis,
monitor therapies, and predict cardiovascular events. Several radiopharmaceutical tracers
have recently been developed to evaluate CVD by targeting myocardial perfusion, metabolism,
innervation, and inflammation. This article reviews old and newer used in nuclear cardiac
imaging. (J Nucl Cardiol 2018;25:1204–36.)
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Abbreviations
11C-CGP12177 (S)-4-(3-((1,1-dimethylethyl)a-

mino)-2-hydroxypropoxy)-[car-

bonyl-11C]1,3-dihydro-2H-ben-

zimidazol-2-one
11C-CGP12388 (S)-4-(3-(2’-[methine-11C]iso-

propylamino)-2-hydrox-

ypropoxy)-2H-benzimidazol-2-

one
11C-HED [11C]hydroxyephedrine
11C-PK11195 1-(2-chlorophenyl)-N-

[11C]methyl-N-1(1-methyl-

propyl)-3-

isoquinolinecarboxamide
123I-BMIPP b-methyl-p-

[123I]iodophenylpentadecanoic

acid
123I-IPPA p-/o-[123I]iodophenylpentade-

canoic acid
123I-MIBG m-[123I]iodobenzylguanidine
13N-NH3 [13N]ammonia
15O-H2O [15O]water
18F-FDG 2-[18F]fluorodeoxyglucose
18F-FEDAC N-benzyl-N-methyl-2-[7,8-dihy-

dro-7-(2-[18F]fluoroethyl)-8-

oxo-2-phenyl-9H-purin-9-

yl]acetamide
18F-FLT [18F]fluorothymidine
18F-FMISO [18F]fluoromisonidazole
18F-FTHA [18F]fluoro-6-thia-heptade-

canoic acid
18F-NaF Sodium [18F]fluoride
68Ga-DOTANOC 68Ga-complex with 1,4,7,10-te-

traazacyclododecane-1,4,7,10-

tetraacetic acid-1-Nal3-

octreotide
68Ga-DOTATATE 68Ga-complex with 1,4,7,10-te-

traazacyclododecane-1,4,7,10-

tetraacetic acid-D-Phe1-Tyr3-

octreotate
68Ga-DOTATOC 68Ga-complex with 1,4,7,10-te-

traazacyclododecane-1,4,7,10-

tetraacetic acid-D-Phe1-Tyr3-

octreotide
99mTc-MIBI 99mTc-sestamibi

acetyl-CoA Acetyl coenzyme A

Ach Acetylcholine

ATP Adenosine triphosphate

CVD Cardiovascular disease

CMR Cardiac magnetic resonance

COMT Catechol-O-methyltransferase

ECG Electrocardiographically

FDA Food and Drug Administration

FFA Free fatty acid

HFpEF Heart failure with preserved

ejection fraction

HF Heart failure

HMR Heart-to-mediastinum ratio

HR Heart rate

ICD Indication for cardioverter-de-

fibrillator implantation

LMI1195 N-(3-bromo-4-(3-[18F]fluoro-

propoxy)benzyl)-guanidine

LV Left ventricular

MAO Monoamine oxidase

MBF Myocardial blood flow

MPI Myocardial perfusion imaging

NE Norepinephrine

PAP Pulmonary artery pressure

PET Positron emission tomography

PH Pulmonary hypertension

PS Phosphatidylserine

RV Right ventricle

SPECT Single-photon emission com-

puted tomography

TCA Tricarboxylic acid

TSPO Translocator protein 18kDa

VMAT Vesicular monoamine

transporter

WBC White blood cell

b-AR b-adrenergic receptor

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause

of death and disease burden around the world.1

Advances in single-photon emission computed tomog-

raphy (SPECT) and positron emission tomography

(PET), which allow for non-invasive imaging, are

vastly improving the evaluation of myocardial perfu-

sion and function.2,3 Nuclear cardiac imaging is useful

to perform diagnosis and risk assessment and to

monitor the impact of therapies through serial imaging.

Several radiopharmaceutical tracers are used in nuclear

cardiology imaging to target perfusion, metabolism,

innervation, and inflammatory conditions. Nuclear

imaging tests are suitable for almost all patients given

the low possibilities of side effects from radiopharma-

ceutical tracers other than minimal radiation exposure.

In this article, we will review SPECT and PET tracers

used in assessing CVD.

See related editorial, pp. 1242–1246
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TRACERS USED FOR CARDIAC IMAGING
(TABLE 1)

Inorganic Tracers

Inorganic compounds 13N-ammonia (13N-NH3) and
15O-water (15O-H2O) have been used for cardiac perfu-

sion imaging.4 Both tracers are labeled with short-lived

positron emitters (13N: 10 minute; 15O: 2 minute), which

are therefore produced with an onsite cyclotron. 15O-

H2O is freely diffused into cardiomyocytes. In contrast,

the uptake mechanism of 13N-NH3 is unclear.5 Almost

all ammonia molecules in the blood would be protonated

to form NH4
? because of its pKa (9.3 at 25 �C). The

ammonium cation would barely penetrate cell mem-

branes to enter cardiomyocytes.

Radiometal Ions

In addition to these inorganic compounds, several

radiometal ions have been used as cardiac imaging

tracers, especially in myocardial perfusion imaging.

Initially, the monovalent cation of potassium-43 (43K?),

a c-emitter, was used for imaging of myocardial perfu-

sion.6 However, the main gamma energy of this

radionuclide (0.37 and 0.67 MeV) is somewhat too high

for SPECT imaging. Also 43K has a relatively long half-

life (22 hours) and emits relatively high-energy b-
particles [300 keV (mean)]. K? is actively transported

into the myocyte by the cell membrane via Na?/K?

pumps. Therefore, other monovalent cations that emit c-
rays suitable for SPECT imaging were sought. The ionic

radius of the candidate should be comparable to that of

K? (138 pm) to be a substrate of a Na?/K? pump. The

monovalent cation of thallium-201 (201Tl?, ionic radius;

150 pm) fulfills these requirements and has been widely

used for diagnosis of coronary artery disease (CAD).

Although 201Tl emits c-rays of 135 and 167 keV,

abundantly emitted characteristic x-rays (69 to 80 keV)

are used for imaging.

A positron emitter, rubidium-82 (82Rb), has an ionic

radius (152 pm) comparable to that of K? in its

monovalent cationic form (82Rb?) and belongs to the

Table 1. Classification of cardiac imaging tracers by characteristics

Characteristics Tracer

Inorganic tracers 13N-NH3

15O-H2O

Radiometal ions 201Tl?

82Rb?

67Ga3?

18F-

Small organic tracers 11C-acetic acid
11C-palmitic acid
123I-IPPA
18F-FDG
123I-BMIPP
18F-FTHA
11C-epinephrine
18F-fluorodopamine

Derivatives of guanethidine, metaraminol, and vesamicol

Neuroreceptor ligands such as prazosin (a-blocker), carazolol
(b-blocker) derivative, b-agonists (CGP12177 and CGP12388),

and quinuclidinyl benzilate (anticholinergic compound)
11C-PK11195
18F-FEDAC

Radiometal complex tracers 99mTc-sestamibi
99mTc-tetrofosmin

Somatostatin analogs and annexin V tagged with 64Cu, 68Ga, or 99mTc
99mTc-tagged annexin A5
111In-oxine
99mTc-HMPAO
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same family as K (alkaline metals). The kinetics of Rb?

are similar to those of K?7, and therefore, 82Rb? has

been widely used as a perfusion imaging tracer with

PET in the United States (USA).8 In addition, the use of

a positron-emitting isotope of K, potassium-38, has been

also reported.9 Trivalent cations of gallium-67 (67Ga3?),

a c-emitter, have been used to detect inflammatory

lesions. Ga3? binds to ferric iron (Fe3?)-binding pro-

teins such as transferrin and lactoferrin which are

accumulated in inflammatory lesions.10 Besides cationic

radionuclides, a monovalent anion of fluorine-18 (18F-)

that is used for bone imaging has been used for imaging

calcification lesions with PET.11

Small Organic Tracers

Tracers of radiolabeled small organic compounds

are used for imaging metabolism, synaptic function, and

inflammation. In metabolic imaging, radiolabeled bio-

molecules and their derivatives are used. Biomolecules,

acetic acid, and palmitic acid, substrates of oxygen

metabolism and fatty acid metabolism, have been

labeled with carbon-11 (11C-acetic acid and 11C-palmi-

tic acid) and used for the assessment of respective

myocardial metabolism.12 Iodophenylpentadecanoic

acid labeled with iodine-123, (123I-IPPA) is also a

substrate of fatty acid metabolism. For labeling with
123I, a phenyl group was incorporated into the structure

of palmitic acid. In the development of tracers, deriva-

tization of a biomolecule is often performed to obtain a

compound that is metabolized by a certain metabolic

step without undergoing further metabolism. 2-[18F]flu-

orodeoxyglucose (18F-FDG) is one such derivative of

glucose. b-methyl-p-[123I]iodophenylpentadecanoic acid

(123I-BMIPP) and [18F]fluoro-6-thia-heptadecanoic acid

(18F-FTHA) introduce a methyl group and thioether in

the alkyl chain, respectively, to terminate b-oxidation in

the course of fatty acid metabolism.

In presynaptic cardiac imaging, a radiolabeled

catecholamine and its derivative are also used as a

tracer. 11C-labeled epinephrine and 18F-labeled fluo-

rodopamine (18F-fluorodopamine) have been used to

image the presynaptic sympathetic nervous system.13 In

addition to biomolecules, xenobiotics including thera-

peutics are radiolabeled and used as tracers. Derivatives

of guanethidine, metaraminol, and vesamicol are used

for presynaptic imaging, and neuroreceptor ligands such

as prazosin (a-blocker), carazolol (b-blocker) derivative,
b-agonists CGP12177 and CGP12388, and quinuclidinyl
benzilate (anticholinergic compound) derivatives are

used for neuroreceptor imaging (Table 4).13

Radiolabeled receptor ligands for translocator pro-

tein 18 kDa (TSPO), peripheral-type benzodiazepine

receptors, have also been used to image inflammation.

TSPO is highly expressed in activated cells of the

mononuclear phagocyte.14

Radiometal Complex Tracers

Some tracers used in nuclear cardiology are radio-

metal complexes containing copper-64 (64Cu), gallium-

68 (68Ga), or technetium-99m (99mTc). They are clas-

sified into two groups. One contains those complexes

that are used as tracers on their own. 99mTc is used to

form a complex with six methoxyisobutylisonitrile

(99mTc-sestamibi) and two 1,2-bis(di(2-

ethoxyethyl)phosphino) ethane (99mTc-tetrofosmin),

which have been used for myocardial perfusion imaging.

Their bulky structures contribute to reducing protein

binding in the blood through steric hindrance. These

tracers are positively charged (monovalent) but lipophi-

lic. Therefore, they can be diffused into myocytes.

The other group includes complexes used as tags for

peptides and proteins. Somatostatin analogs and annexin

V tagged with 64Cu, 68Ga, or 99mTc have been used for

imaging symptomatic carotid atherosclerosis.15 64Cu or
68Ga-tagged somatostatin analogs bind to somatostatin

receptor subtype-2, which is upregulated in macro-

phages. 99mTc-tagged annexin A5 binds to

phosphatidylserine, which is externalized in apoptotic

cells.

White blood cells enclosing radiometals, which are

used for imaging infectious lesions, are prepared using

lipophilic radiometal complexes. Indium-111 (111In)

complexed with 8-hydroxyquinolines (111In-oxine) and
99mTc complexed with exametazime (99mTc-HMPAO)

are diffused into the leucocyte. The subsequent disso-

ciation of ligands results in enclosure of these

radiometals in the cell.

RADIOTRACERS CATEGORIZED BY USE

Perfusion Imaging

Myocardial blood flow (MBF) is supplied by

coronary arteries to preserve adequate myocardial oxy-

gen supply. At rest, coronary artery stenosis must exceed

85% to 90% of luminal diameter before there is a

significant decrease of MBF. In contrast, maximal

coronary flow has been shown to be reduced with

stenosis of 45% to 50% under stress condition.16

Myocardial perfusion images during stress and rest are

compared to detect the stress-induced ischemic change

or myocardial injury (Figure 1).17,18 Several perfusion

tracers are used to assess coronary artery disease (CAD)

(Table 2, Figure 2).17,19–22

SPECT tracers for perfusion imaging. Thal-

lium-201 (201Tl), technetium-99m (99mTc)-sestamibi,

Journal of Nuclear Cardiology� Manabe et al. 1207

Volume 25, Number 4;1204–36 Radiopharmaceutical tracers for cardiac imaging



and 99mTc-tetrofosmin are available for SPECT myocar-

dial perfusion imaging (MPI).

99mTc-labeled myocardial perfusion tracers.
Thallium-201

201Tl, introduced in the 1970 s, was the first SPECT

MPI tracer available in a clinical setting.23 In 1975,

Wackers et al. reported on the imaging of acute

myocardial infarction with 201Tl.24 201Tl is produced in

a cyclotron and has a relatively long half-life (73 hours),

and therefore requires lower injection doses to minimize

radiation exposure. 201Tl is a potassium analog and is

transported into the myocyte via cell membrane Na?/K?

pumps during the first transit in proportion to regional

MBF.
201Tl emits low-energy photons (71 to 80 keV),

therefore requiring longer imaging acquisition times and

resulting in limited image quality due to absorption and

photon scattering especially in obese patients. Biodis-

tribution of 201Tl is generally proportional to organ

blood flow. Injected 201Tl is rapidly cleared from the

blood with maximal concentration by normal myocar-

dium (5% to 8% remains in the blood at 5 minutes). The

whole-body retention curve can be represented by a

biexponential curve. 201Tl is excreted slowly in both

feces and urine. Approximately 4% to 8% of the

administered dose is excreted in the urine in the first

24 hours.25,26 Lung uptake of 201Tl is generally low. An

increased lung uptake is known to be associated with

greater segmental myocardial perfusion abnormality,

increased severity and extent of CAD, and subsequent

adverse cardiac events.27

Whole-body radiation exposure after an injection (2

to 4 mCi) is up to * 25 mSv.28,29

201Tl has a higher extraction coefficient than do
99mTc-labeled perfusion tracers (Figure 3). The higher

extraction fraction may be an advantage for MBF

quantification.30

Stress images are acquired 5 to 15 minutes after

tracer injection in order to avoid the ‘‘upward creep’’

phenomenon due to rapid respiration if the stress is

produced through exercise. Redistribution images are

acquired 2 to 4 hours after initial injection. Differential

washout rates of normal regions (with faster washout) vs

regions with ischemic segments (slower washout) con-

tribute to the redistribution or normalization of the

abnormal regions in delayed images.
99mTc-labeled myocardial perfusion trac-

ers. 99mTc is a generator-produced agent eluted from

molybdenum-99 (99Mo). Despite its initial Food and

Drug Administration (FDA) approval, 99mTc-teborox-

ime is far less commonly used due to the excessive

initial uptake in the myocardium and rapid washout.31,32

99mTc-sestamibi and 99mTc-tetrofosmin have had wide-

spread clinical use. The first use of 99mTc-tetrofosmin

for humans was reported in 1993 as part of a phase 1

clinical trial.33 Injected 99mTc-labeled perfusion tracer

distributes in the myocardium according to regional

myocardial perfusion. Its uptake by myocardium is

related to the presence of intact mitochondria.34

Because its half-life is 6 hours, the administered

dose is relatively larger and the radiation exposure is

lower respectively than those associated with 201Tl.29

The peak energy level of c-rays from 99mTc is about 140

keV, which is suitable for c-camera imaging and

electrocardiographically (ECG) gated myocardial perfu-

sion SPECT.
99mTc-sestamibi is rapidly cleared from blood after

intravenous administration. Lung uptake is generally

Figure 1. Myocardial perfusion images Perfusion images of short-axis image at stress (A) and
rest (B), vertical long-axis image at stress (C) and rest (D) using 99mTc-product, and fused image
of stress perfusion and CT coronary angiography (CTCA; E) are displayed. Severe perfusion
reduction is detected in the inferior wall at stress (white arrows). Fill-in is seen at rest indicating
stress-induced ischemia in the right coronary artery (RCA). CTCA revealed significant stenosis
in the RCA (orange arrows).
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low. However, marked accumulation is present in liver

and spleen at resting condition during the first 60

minutes after injection. After an injection with exer-

cise stress, substantially less uptake is observed in the

liver and spleen with excellent visualization of heart.35

99mTc-tetrofosmin is rapidly cleared from the blood (\
5% remains in blood by 10 minutes) after intravenous

administration. Uptake in myocardium is approxi-

mately 1.2% with minimal redistribution, and

approximately 1% at 2 hours. Clearance from liver

is quick (\ 4.5% remains by 60 minutes) and lung

uptake is also rapidly reduced.33,36,37 Myocardial

uptake of 99mTc-tetrofosmin is higher from 5 to 60

minutes than is that for 99mTc-sestamibi. The biolog-

ical half-life of 99mTc-tetrofosmin in normal

myocardium and liver is significantly shorter than

that of 99mTc-sestamibi. Heart-to-lung ratios for
99mTc-tetrofosmin and 99mTc-sestamibi are similar,

whereas heart-to-liver ratios for 99mTc-tetrofosmin

are significantly higher from 30 to 60 minutes post

injection compared to those for 99mTc-sestamibi.37,38

Total whole-body radiation after a typical injection

dose (10 to 25 mCi) is * 10.6 mSv for 99mTc-

tetrofosmin and 12.0 mSv for 99mTc-sestamibi.28

Separate stress and rest injections are required for

the detection of stress-induced ischemia due to its slow

clearance from myocytes. Both 99mTc-sestamibi and
99mTc-tetrofosmin have lower extraction coefficients

than does 201Tl (Figure 3).39 Recent SPECT systems

allow the quantification of MBF from dynamic tracer

imaging due to the improved sensitivity and temporal

resolution.40,41

PET tracers for myocardial perfusion
imaging. Several PET tracers can be used to assess

myocardial perfusion.18 These include 82Rb, 13N-NH3,

and 15O-H2O (Figure 4).19 Both 13N-NH3 and 82Rb are

commonly used for both qualitative and quantitative

measurements.34,42–44 Visual assessment of PET

myocardial perfusion imaging provides high diagnostic

accuracy in the detection of CAD.17 Dynamic imaging

analysis permits quantitative assessment of MBF and

coronary flow reserve (CFR), which is defined as the

Figure 2. Schematic representation of tracers for assessing myocardial perfusion 201Tl and 82Rb
are potassium analogs and are transported into the myocyte by cell membrane Na?/K? pumps.
Injected uptake of 99mTc-sestamibi, 99mTc-tetrofosmin, and 18F-flurpiridaz in the myocardium is
related to the presence of intact mitochondria. The uptake mechanism of 13N-NH3 is unclear.
After being taken into the myocyte, 13N-NH3 underwent metabolic trapping with the conversion
of NH3 to glutamine, glutamic acid, and carbamoyl phosphate. 15O-H2O is metabolically inert
and freely diffusible tracer.
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ratio of MBF at peak hyperemia to MBF at rest. CFR

measurements provide additional value in the detection

of multi-vessel disease and risk stratification of CAD

patients.45–49 15O-H2O is an ideal myocardial flow tracer

to quantify MBF with a linear relation between first-pass

extraction and perfusion, but the perfusion images are

not of high quality as they are with the other 2 PET

tracers (Figure 3).19,30,50,51

82Rb is the most widely used tracer because it is a

strontium-82 (82Sr)/82Rb generator-produced tracer that

does not require a cyclotron for its production.52,53 Love

et al. initially developed rubidium-86 for myocardial

perfusion imaging with a dog.7 Following non-human

studies, Selwyn et al. applied 82Rb to a human for the

first time in 1982.54. The short physical half-life of 82Rb

(76 seconds) enables sequential rest/stress scanning.
82Rb is a potassium analog, and therefore injected 82Rb

is actively transported into myocytes through the Na?/

K? adenosine triphosphate (ATP) transport system. This

uptake of 82Rb is dependent on MBF and its first-pass

retention fraction is approximately 65% at rest. The

relatively low lesion contrast with low spatial resolution

due to the lower extraction fraction and high positron

range is a slight disadvantage of 82Rb.39 In 2000, 13N-

NH3 PET was approved by the United States Food and

Drug Administration (FDA) to evaluate myocardial

perfusion in patients with known or suspected CAD.19

13N-NH3 was also approved by the Japanese Ministry of

Health and Welfare in March 2012 (Table 2).55

The uptake mechanism of 13N-NH3 is unclear. After

being taken into the myocyte, 13N-NH3 underwent

metabolic trapping with the conversion of NH3 to

glutamine, glutamic acid, and carbamoyl phosphate.56

13N-NH3 PET is suitable for imaging and measuring of

MBF due to its high first-pass extraction fraction and

retention in the myocardium with rapid clearance from

the blood pool, which also give it high diagnostic

accuracy.57 The requirement for a cyclotron limits the

clinical use of 13N-NH3. Its relatively longer half-life

(9.96 minutes) necessitates a longer interval between

rest and stress scans, resulting in low throughput in a

clinical setting. These are the main disadvantages of
13N-NH3.

39 The FDA has approved 82Rb and 13N-NH3

for clinical use (Table 2). The Japanese Ministry of

Health, Labour, and Welfare has approved 13N-NH3 for

detecting CAD in cases of CAD unable to be diagnosed

with using SPECT MPI.55

15O-H2O is unique in being metabolically inert and

freely diffusible, which are considered ideals for mea-

suring MBF due to the linear relationship between first-

pass extraction and perfusion.58 The shorter half-life

(2.04 minutes) enables consecutive rest/stress protocols,

similar to the case with 82Rb.59,60 However, 15O-H2O

requires an on-site cyclotron for tracer production and

also is suboptimal for visual assessment due to the low

signal-to-noise ratios. These conditions lead to its use

being limited in clinical settings. 15O-H2O has gained

wide popularity in research settings due to its excellent

kinetic properties.19,61–63 A recent study by Danad et al.

examined stress MBF and CFR in 330 patients with

CAD,64 possibly indicating that 15O-H2O could move

from research to clinical use.

Fluorine-18 (18F)-flurpiridaz, an analog of the

insecticide pyridaben, is a novel MPI tracer that can

bind to the mitochondrial complex-1 inhibitor.51,65 The

positron range of 18F is 1.03 mm, shorter than that of

other PET perfusion tracers (Table 2). Injected 18F-

flurpiridaz shows very high first-pass extraction and high

affinity in myocardial tissue with slow washout from

cardiomyocytes (Figure 3). Therefore, accurate quan-

tification of MBF and CFR measurements with high

image quality and excellent diagnostic accuracy are

expected.66–68 Because of the longer half-life of 18F

(109.8 minutes), delivery of unit doses from regional

cyclotrons may be possible, similar to the case with

fluorine-18-labeled fluorodeoxyglucose (18F-FDG). In

the meantime, repeated measurements of stress and rest

studies would likely be difficult due to the longer half-

life, and therefore a separate day protocol or some

correction for the residual activity of the first acquisition

might be needed. Phase 2 clinical trials showed

promise,67 and phase 3 clinical trials demonstrated the

diagnostic usefulness for specific subpopulations such as

women and obese patients.

Figure 3. Extraction fraction of each perfusion tracer The
extraction fraction of 15O-H2O is nearly 100% due to its
exclusive property of being metabolically inert and freely
diffusible. The extraction fraction of 82Rb is lower than that of
the other PET tracers. 201Tl has a higher extraction fraction
compared to that associated with 99mTc-MIBI.

Journal of Nuclear Cardiology� Manabe et al. 1211

Volume 25, Number 4;1204–36 Radiopharmaceutical tracers for cardiac imaging



Metabolic Imaging

The heart derives its energy from a variety of

sources such as free fatty acids (FFA), glucose, lactate,

and ketone bodies (Figure 5).69 Glucose metabolism

dominates after feeding, and fatty-acid metabolism

dominates under long-fasting conditions.69 Carbohy-

drates taken into cardiomyocytes are metabolized into

pyruvic acid using various enzymatic actions. If oxygen

supply is sufficient, ATPs are produced from glucose via

the glycolysis system in the tricarboxylic acid (TCA)

cycle and electron transfer system.70 In the ischemic

state, acid metabolism is impaired due to insufficient

oxygen supply to the myocardium.71 Alternatively ATP

is produced from lactic acid because anaerobic glycol-

ysis with less oxygen consumption becomes

predominant. However, anaerobic glycolysis produces

less ATP than does aerobic glycolysis. If severe

myocardial ischemia continues, myocardial cells

become necrotic as ATP production diminishes.72 Sev-

eral SPECT and PET tracers have been used or tried

clinically to assess myocardial metabolism (Table 3,

Figure 6).

SPECT tracers for metabolic imaging. For

fatty acid metabolism evaluation, SPECT examination

using iodine-123-labeled beta-methyl-p-iodophenylpen-

tadecanoic acid (123I-BMIPP) has been clinically used in

Japan.44,73,74 However, 123I-BMIPP was initially devel-

oped in the United States and the first human use was in

1986 by Knapp et al.75 After the initial development in

the US, the Japanese community took over development

of 123I-BMIPP. The first human use in Japan was

reported in 1991 in a Japanese article.76 Following this

Japanese article, Kurata et al. reported Japanese 123I-

BMIPP data in an international journal in 1992.77 123I-

BMIPP is an iodinated fatty-acid analog used to assess

myocardial fatty acid metabolism.78,79 This tracer,

however, is not approved for clinical use in the US

despite its successful for clinical use even successive

early experience use in that country.80 Iodine-123-

labeled iodophenylpentadecanoic acid (123I-IPPA) is a

radiolabeled free fatty acid (FFA) analog which is in

phase 3 trials in United States but which has not yet been

approved.81

Following intravenous injection, 123I-BMIPP and
123I-IPPA are rapidly distributed to various organs, such

as liver and heart, and cleared rapidly from the

blood.81–84 Initial uptake of the administered dose of
123I-BMIPP is assumed to be about 6% by the heart and

14% by the liver. The residual 123I-BMIPP is distributed

uniformly in other organs and tissues.76,85,86 After initial

uptake, only a portion of the 123I-BMIPP and 123I-IPPA

is metabolized immediately to water-soluble low-molec-

ular-weight products. Most of the 123I-IPPA undergoes

metabolism similar to that of long-chain fatty acids,

through rapid mitochondrial beta-oxidation.87,88 The

initial and late clearance of 123I-IPPA are thought to

reflect b-oxidation and clearance of tracer incorporated

into triglyceride pools, respectively.88 123I-IPPA images

show minimal background activity and good image

quality. The metabolism of 123I-BMIPP is slower than

that of 123I-IPPA because 123I-BMIPP is a modified-

branched fatty acid analog with a methyl group on the

beta-carbon. Both of the end products are excreted in a

conjugated form in the urine.76,89,90

123I-BMIPP scintigraphy when combined with per-

fusion imaging may show preserved perfusion, but fatty

acid metabolism is impaired as myocardium shifts from

metabolizing fatty acids to metabolizing predominantly

glucose following ischemic episodes. Therefore, the

region of perfusion-metabolic mismatch (123I-BMIPP

defect larger than perfusion defect) indicates the pres-

ence of ischemic myocardium (Figure 7). 80,91–93 123I-

BMIPP has been approved in Japan only for clinical

use.44

PET tracers for metabolic imaging. 18F-FDG

is the most frequently used tracer around the world and

is employed mainly for the assessment of malignant

tumors. For the purposes of nuclear cardiology imaging,
18F-FDG PET was first used to define and identify viable

myocardium in CAD in the 1980 s.94 Since 18F-FDG is

an analog of glucose, once taken up into the cardiomy-

ocytes via the glucose transporter (GLUT), it is

phosphorylated to 18F-FDG-6-phosphate by hexokinase

as well as glucose.95 18F-FDG-6-phosphate accumulates

intracellularly without being metabolized during glycol-

ysis, a condition referred to as ‘‘metabolic trapping’’

(Figure 6). Therefore, myocardial viability can be

Figure 4. Qualitative images of PET tracers 82Rb PET has relatively low lesion contrast with
low spatial resolution. 13N-NH3 PET shows clear images due to rapid clearance from the blood
pool. With 15O-H2O PET, it is difficult to distinguish between myocardium and blood pool.
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evaluated by assessing the accumulation of 18F-FDG in

myocardium. To determine myocardial viability, oral

glucose loading or an insulin-glucose clamp is applied to

enhance 18F-FDG uptake in viable myocardium.96,97 In

ischemic myocardium, 18F-FDG accumulation in the

myocardium is maintained under a fasting condition due

to the dominant anaerobic glucose metabolism. On the

other hand, in the infarcted scar tissue, 18F-FDG

accumulation is absent due to non-availability of glu-

cose metabolism. In a clinical setting, 18F-FDG PET

viability assessment is performed using the myocardial

perfusion image obtained by SPECT or PET.94,98 A

region with preserved 18F-FDG accumulation but

reduced myocardial perfusion indicates viable myocar-

dium. In such a case, functional recovery after coronary

revascularization is likely especially with extensive

mismatch pattern.
11C-palmitate and fluorine-18-labeled fluoro-6-thia-

heptadecanoic acid (18F-FTHA) have been used to

evaluate fatty acid metabolism.99–101 Similar to the case

with to 18F-FDG PET, a shift in myocardial metabolism

from fatty acid to glucose can be estimated using these

fatty acid analogs.102

Myocardial oxygen metabolism can be non-inva-

sively evaluated by 11C-acetate PET.103,104 11C-acetate

taken into myocardium is converted into acetyl-CoA,

consecutively metabolized and excreted into 11C-CO2

via the TCA cycle. The 11C-acetate clearance rate is

used to assess myocardial oxygen consumption since

TCA cycle activity is directly linked with myocardial

oxygen consumption which is independent of the con-

centration of energy substrates for the

myocardium.105,106 11C-acetate PET allows for non-

invasive observation of regional myocardial oxygen

metabolism in the presence of ischemia,107,108 car-

diomyopathy,109,110 and heart failure (HF) in a state of

deprived energy.111,112 Myocardial oxidative metabo-

lism in the RV can also be estimated using 11C-acetate

PET.113–116 11C-acetate PET permits the evaluation of

both blood flow and oxygen metabolism with one

examination using some model analysis due to the

relatively high extraction fraction.62

Sympathetic Imaging

The heart has extensive innervation, both sympa-

thetic and parasympathetic. The sympathetic nervous

system uses norepinephrine (NE), and the parasympa-

thetic nervous system uses acetylcholine (Ach) as the

main neurotransmitters. NE is synthesized from the

Figure 5. Schematic representation of cardiac energy metabolism Substrates are transported
across the extracellular membrane into the cytosol through GLUT for glucose and FAT for fatty
acid. Metabolized intermediates such as pyruvate and acyl-CoA are transported across the inner
mitochondrial membrane for oxidation. Then inside the mitochondrion, substrates are oxidized
or carboxylated and fed into the TCA cycle and ETC to produce ATP. GLUT, glucose
transporter; FAT, fatty acid transporter; G-6-P, glucose-6-phosphate; ATP, adenosine triphos-
phate; TCA, tricarboxylic acid; ETC, electron transport chain; CA I, carnitine acyltransferase I;
CA II, carnitine acyltransferase II.
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Figure 6. Tracers for assessing cardiac energy metabolism 18F-FDG is a glucose analog in
which the oxygen in position C-2 is replaced with 18F. 18F-FDG is actively transported into the
cell mediated by GLUT in the same way as glucose. Once inside the cell, glucose and 18F-FDG
are phosphorylated by hexokinase. Phosphorylated glucose (G-6-P) continues along the
glycolytic pathway for energy production. However, 18F-FDG-6-phosphate cannot enter
glycolysis and is trapped intracellularly in a condition known as ‘‘metabolic trapping.’’ GLUT,
glucose transporter; G-6-P, glucose-6-phosphate; FDG, 18F-fluorodeoxyglucose; FDG-6-P, 18F-
FDG-6-phosphate.

Figure 7. Ischemic memory imaging Perfusion image of 99mTc product shows slightly reduced
perfusion (A, C), whereas moderately reduced 123I-BMIPP uptake is seen in the anterior to
septal wall (B, D), which indicates perfusion-metabolic mismatch. Coronary angiogram shows
no significant stenosis (E); however, vasospastic angina in the left anterior descending artery due
to the spasm is proved through intracoronary injection of acetylcholine (F).
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amino acid tyrosine in presynaptic neurons (Figure 8).

NE is transported into the presynaptic neuronal terminal

vesicles by the vesicular monoamine transporter

(VMAT). Exocytosis is led by the activation of volt-

age-dependent calcium channels and vesicles at the

presynaptic neuron. Some of the NE released into the

synaptic cleft binds to the adreno-receptors for down-

stream effects, while much of the NE undergoes

reuptake into presynaptic neurons via the terminal

transporter (uptake-1).117–119

The sympathetic nerve is vulnerable to ischemia,

and sympathetic nervous function may decline even if

myocardial blood flow at rest is maintained.120 In HF,

continued stimulation of the b1 receptor due to

increased norepinephrine levels results in a decrease of

receptor density (down regulation), with corresponding

poor reactivity to the stimulation. Moreover, in a

persistent state of sympathetic hyperactivity, the ability

to retain norepinephrine is also decreased at the nerve

terminal end.121 Abnormal neuro-hormonal function is

reported in various heart diseases, and worsening of

neuronal function is associated with cardiac events and

sudden cardiac death.122–124

SPECT tracers for sympathetic imag-
ing. Iodine-123-labeled metaiodobenzylguanidine

(123I-MIBG) is widely used as a SPECT tracer to

evaluate the presynaptic sympathetic innervation of the

heart.125–127 The first use of 123I-MIBG in humans was

in 1981 by a University of Michigan group.128 It is an

analog of catecholamine, which is taken up via the

uptake-1 mechanism and stored in synaptic vesicles as is

NE. Tracers are released into the synaptic cleft from the

synaptic vesicle via the exocytosis pathway, but do not

lead to any physiological activity without binding to the

catecholamine receptor. Since it is not metabolized by

monoamine oxidase (MAO) or catechol-O-methyltrans-

ferase (COMT), most of the released tracer is reabsorbed

at the synapse terminal and again stored in synaptic

vesicles. Therefore, information reflecting the process of
123I-MIBG uptake into the synapse terminal, storage in

the vesicles, secretion, reabsorption, and release into the

blood is obtained from sympathetic imaging.129,130 An

early anterior planar image at 15 minutes after injection

and a late anterior planar image starting at 3 to 4 hours

after injection are acquired to calculate the heart-to-

mediastinum ratio (HMR) and the washout ratio (Fig-

ure 9). These parameters are considered to be standards.

The high liver uptake and relatively high energy of the

tracers make the image quality suboptimal. It is difficult

to evaluate SPECT images especially in severe HF,

which usually has limited myocardial 123I-MIBG

radioactivity. Therefore, planar data acquisition is stan-

dard for 123I-MIBG imaging.131 Although these images

present an easily obtained index, inter-institutional

differences of the HMR due to differences in camera-

collimator systems being used have hampered multi-

center comparisons. Recently, standardization among

different collimator types has been achieved using the

calibration phantom and could easily be extrapolated to

the images of other institutions.132,133 Late HMR pro-

vides the relative distribution of cardiac sympathetic

nerve terminals, which is related to neuronal function

from uptake to release. Washout ratio represents the

information of the sympathetic drive. Several studies

have presented that patients with chronic HF and a low

late HMR and/or an increased washout rate are at

increased risk for cardiac death.

PET tracers for sympathetic imaging. As a

PET tracer, carbon-11-labeled hydroxyephedrine (11C-

HED) is used mainly to assess presynaptic cardiac

sympathetic nerve distribution.134 11C-HED is still the

most widely used PET tracer for sympathetic nervous

function imaging in mainly research settings.135 Extrac-

ardiac uptake is mainly by the liver with very limited

lung uptake. In ischemic heart disease, a mismatch

region of myocardial blood flow and sympathetic

dysfunction is reported as a decision criterion for

prediction of fatal arrhythmia and indication for car-

dioverter-defibrillator implantation (ICD).136,137 The

distribution abnormality of cardiac sympathetic dener-

vation has been demonstrated in previous 11C-HED

studies, including those involving patients with

HF,138,139 cardiac arrhythmias,140,141 myocardial infarc-

tion,142,143 cardiac diabetic neuropathy,144,145 and HF

with preserved ejection fraction (HFpEF).146

N-[3-bromo-4-(3-18F-fluoro-propoxy)-benzyl]-guani-

dine (LMI 1195) is a novel 18F-labeled ligand to image the

norepinephrine transporter.147 18F-fluorometaraminol,148

11C-phenylephrine,149 18F-fluorodopamine,150 and

Figure 8. Schema of myocardial adrenergic neuronal termi-
nals Figure A shows the schematic representation of
myocardial adrenergic neuronal terminals and Figure B shows
the chemical structure of each tracer. MIBG is actively taken
up into sympathetic nerves through the uptake-1 mechanism
and then stored in the synaptic vesicle in a manner similar to
that for norepinephrine (NE). Nerve stimulation releases
MIBG and NE into the synaptic cleft through exocytosis.
MIBG does not bind to the postsynaptic receptor and is not
metabolized by monoamine oxidase (MAO) or catechol-O-
methyltransferase (COMT). Most of the released MIBG
undergoes reuptake through the uptake-1 mechanism, and the
remaining MIBG goes into the blood (spillover). 123I-MIBG,
m-[123I]iodobenzylguanidine; 11C-HED, 11C-hydrox-
yephedrine; DAG, diacylglycerol; AR, adrenergic
receptor;Gq, phospholipase C-coupled Gq-protein; Gs, phos-
pholipase C-coupled Gs-protein; ATP, adenosine triphosphate;
cAMP, cyclic adenosine monophosphate; IP2, inositol bispho-
sphate; PIP2, phosphatidylinositol biphosphate.

b
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11C-epinephrine151 are the other radiotracers for evaluating

presynaptic neuronal function. Several tracers such as 18F-

fluorocarazolol,152 4-[3-[(1,1-dimethyl)amino]-2-hydrox-

ypropoxy]-1,3-dihydro-2H-benzimidazol-2-11C-one (11C-

CGP12177),153 and (S)-4-(3-(2’-11C-isopropylamino)-

2-hydroxypropoxy)-2H-benzimidazol-2-one (11C-CGP

12388)154 have been reported for assessing postsynaptic

sympathetic neuronal functions through measurement of

myocardial b-adrenergic receptor (b-AR) density, which
directly regulatesLVsystolic function.155There are several

reports regarding tracers for imaging the parasympathetic

nervous system,156,157 but the clinical role of these has not

yet been established (Table 4).

Imaging of Inflammation and
Atherosclerosis

Nuclear medicine imaging can be used to view

several in vivo pathological processes in inflammation

and atherosclerosis. Several novel tracers may have uses

Figure 9. Representative case of 123I-MIBG scintigraphy and 11C-hydroxyephedrine PET A
male in his 40s suffered from dilated cardiomyopathy, with a left ventricular ejection fraction of
approximately 30%. An early anterior planar image at 15 min after injection (A) and a late
anterior planar image starting at 4 hours after injection (B) are acquired to calculate the heart-to-
mediastinum ratio (HMR) and the washout ratio. Calculated early HMR, delayed HMR, and
washout ratio were 1.7, 1.4, and 40.3%, respectively. Whole retention index from 11C-
hydroxyephedrine PET was calculated as 0.044. Distribution of sympathetic nerve system was
lower especially in the lateral wall.
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for tracking inflammation, hypoxia, or active calcifica-

tion (Table 5).

SPECT tracers for imaging of inflammation
and atherosclerosis. Gallium-67 (67Ga) scintigra-

phy has been used to detect inflammatory lesions

including infection and sarcoidosis.158,159 Several fac-

tors influence 67Ga accumulation in inflammatory

lesions. These factors include increased delivery and

accumulation of transferrin-bound 67Ga due to increased

blood flow and vascular membrane permeability. The

tendency of 67Ga to bind to lactoferrin and leukocytes

also leads to highly concentrated uptake of 67Ga.160

Imaging is performed at 48 to 72 hours after tracer

injection. In clinical settings, physicians ideally look to

have results immediately following a diagnostic test, and

therefore a late imaging protocol is one of the major

limitations of 67Ga. 67Ga scanning is useful to differen-

tiate acute myocarditis from acute myocardial

infarction.161 67Ga scintigraphy has been a major ana-

lytical tool in the diagnosis of cardiac sarcoidosis.162

There is no significant distribution in normal myocar-

dium.163 This is an advantage of 67Ga when applied to

cardiac sarcoidosis. However, generally speaking, 67Ga

has a limited role in the evaluation and management of

sarcoidosis.163

Inflammatory cells such as granulocytes, lympho-

cytes, and macrophages are migrated into inflammatory

lesions, resulting in the activation of a biological defense

mechanism. SPECT imaging with indium-111 (111In)-

radiolabeled autologous white blood cells (WBC) has

proven to be valuable in the detection of endocarditis.
111In-WBC is highly specific for infectious lesions

because granulocytes are recruited to the site of inflam-

matory foci but have limited sensitivity due to a weak

signal.164–166

Apoptosis imaging. Tissue apoptosis is consid-

ered to be one of the earlier stages of vascular plaque

rupture,167 and therefore detecting apoptotic lesions may

precipitate effective treatments to prevent cardiovascu-

lar events. Apoptotic cells externalize negatively

charged phosphatidylserine (PS).15 Human protein

annexin A5 binds to PS. 99mTc-labeled annexin A5 has

been shown to have higher uptake in the carotid arteries

of vulnerable stroke patients.168 99mTc-tagged annexin

A5 specifically accumulates in vascular atherosclerotic

lesions, which is a great advantage. In contrast, the

signal intensity of 99mTc-labeled annexin A5 is quite a

bit lower than that of 18F-FDG.169 99mTc-labeled

annexin A5 drew much interest a decade ago but has

not had wide clinical application, perhaps due to the

lower signal intensity and tracer availability.

PET tracers for imaging of inflammation
and atherosclerosis. Glucose is consumed in large

quantities in the inflammatory process, and therefore

Figure 10. Representative case of cardiac sarcoidosis Maximum intensity projection (MIP)
image of 18F-FDG PET (A), PET/CT coronal image (B), short-axis image of 18F-FDG PET (C),
late gadolinium enhancement (LGE)-MRI (D), and fused image of 18F-FDG PET and LGE-MRI
(E) at pre-therapy, MIP image of 18F-FDG PET (F) and PET/CT coronal image (G) at post-
therapy (steroid 30 mg/1 month) are displayed. 18F-FDG PET detected focal cardiac uptake and
multiple lymph node disease in the supraclavicular, mediastinum, hilum, abdominal, and pelvis
region at pre-therapy. 18F-FDG uptake is seen at the same site of LGE-MRI abnormal intensity.
At post-therapy, 18F-FDG uptakes were markedly lower. 18F-FDG is useful not only for
diagnosis but also to confirm the effectiveness of treatments.
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active inflammatory lesions show high 18F-FDG accu-

mulations. It is necessary to suppress physiological

myocardial glucose metabolism in order to accurately

evaluate myocardial inflammatory lesions using 18F-

FDG PET. Among effective approaches to reducing

physiological myocardial glucose metabolism, long-

period fasting is the most common. Long-period fasting

combined with a low-carbohydrate diet and/or high-fat

diet and unfractionated heparin intravenous injection are

also used. These approaches lead to myocardial free

fatty acid metabolism dominance.170 18F-FDG PET is

more useful than are perfusion SPECT and delayed

enhanced cardiac magnetic resonance (CMR) to not only

diagnose but also monitor treatment effects in inflam-

matory heart disease such as cardiac sarcoidosis

(Figure 10).171 Myocardial ischemia (reflecting a shift

to glucose metabolism), other cardiomyopathy (reflect-

ing microcirculatory ischemia and inflammation), and

cardiac tumors also show 18F-FDG accumulation.172–175

Incomplete suppression of physiological myocardial
18F-FDG uptake may cause false positives. Therefore,

new tracers have been developed to detect inflammatory

heart disease and atherosclerotic lesions. These radio-

pharmaceuticals target tissue apoptosis, tissue

calcification, activated macrophages, and tissue hypoxia.
68Ga complexed with [1,4,7,10-tetraazacyclodode-

cane-1,4,7,10-tetraacetic acid]-1-Nal3-octreotide (68Ga-

DOTANOC),176 fluorine-18 fluorothymidine (18F-

FLT),177 68Ga complexed with [1,4,7,10-tetraazacy-

clododecane-1,4,7,10-tetraacetic acid]-Phe1-Tyr3-

octreotide (68Ga-DOTATOC),178 and fluorine-18 fluo-

romisonidazole (18F-FMISO)179 have been reported to

improve specificity with regard to diagnosis of cardiac

sarcoidosis.
68Ga-tagged tracers can be prepared using a gener-

ator system and have been applied for clinical oncology

imaging. Activated macrophages show upregulated G-

protein-coupled somatostatin receptor subtype-2 recep-

tors. In an observational study involving oncology

patients, uptake of 68Ga complexed with a somatostatin

analog, 1,4,7,10-tetraazacyclododecane-1,4,7,10-te-

traacetic acid-D-Phe1-Tyr3-octreotate (68Ga-

DOTATATE), in large arteries increased in relation to

age.180 A recent study prospectively revealed 68Ga-

DOTATATE uptakes in carotid and coronary arteries in

patients with unstable CVD.181 Unlike 18F-FDG, 68Ga-

DOTATATE does not have physiological myocardial

uptake and therefore could potentially play a clinical

role in detecting vulnerable plaque.

An alternative to 68Ga, Copper-64 (64Cu) com-

plexed with the somatostatin analog (64Cu-

DOTATATE) has been used. 64Cu has a shorter positron

range and longer half-life. Thus, 64Cu DOTATATE may

have improved spatial resolution over that of 68Ga-

DOTATATE. 64Cu DOTATATE also showed positive

uptake in carotid atherosclerotic lesions.182 64Cu-labeled

DOTATATE uptake was positively linked to the

expression of membrane receptor CD163, indicating

that 64Cu-labeled DOTATATE uptake was associated

with hemorrhagic macrophage migration.

Translocator protein. Translocator protein

18kDa (TSPO), a peripheral-type benzodiazepine recep-

tor, locates in peripheral tissue and the brain.183 TSPO is

a protein highly expressed in activated cells of the

mononuclear phagocyte lineage.184 Carbon-11 labeled

[1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-

isoquinolinecarboxamide] (11C-PK11195) is a first

specific ligand for TPSO, and its uptake has been

revealed in symptomatic carotid atherosclerotic

lesions.185 However, 11C-PK11195 has some limitations

such as high non-specific binding and high lipophilicity.

To overcome these limitations, we developed an 18F-

labeled TPSO ligand, N-benzyl-N-methyl-2-[7,8-dihy-

dro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-

yl] acetamide (18F-FEDAC). 18F-FEDAC showed high

in vitro binding affinity for TSPO with high selectiv-

ity.186 18F-FEDAC was initially developed as a tracer

for imaging brain inflammation, and subsequent study

revealed that this tracer could potentially be used for

imaging inflammation in peripheral organs.187 Indeed,
18F-FEDAC can be used to visualize lesions in rat

liver.14,188 In a rat lung injury model, 18F-FEDAC

uptake increased with the progression of lung inflam-

mation (Figure 11).189 The uptake of 18F-FEDAC in the

heart of a rat was approximately twice as high as that in

the lung.187 With 18F-FEDAC the uptake ratio for heart

to lung is higher than that with 13N-NH3. The same is

true for the heart-to-liver uptake ratio measured with

each of these tracers respectively. However, uptake

ratios are similar for heart to lung and heart to liver

measured using 18F-FEDAC and 18F-FDG (Figure 12).

In this regard, 18F-FEDAC may have potential for

detecting cardiac inflammatory lesions or vascular

inflammatory lesions.

Fluorine-18 anion (18F-), which is administered as

the sodium salt 18F-NaF, has been used as a bone-imaging

agent to detect metastatic bone lesions. Since 18F-

accumulates in calcification lesions, it has also been used

to evaluate the severity or disease activity of aortic

stenosis.190 During the progression of atherosclerosis,

calcification may appear in intermediate lesions. In

contrast, with inflammation, active calcification may

appear during the later stages of disease progression.

However, it is still important to detect actively progress-

ing calcification, because this may be one of the signs of

plaque rupture.191 Prospective studies with clinical out-

comes are ongoing to assess whether coronary 18F uptake

represents a future cardiovascular risk.
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SUMMARY AND CONCLUSION

Nuclear cardiology using targeted tracers via

SPECT and PET allows for diagnosis through non-

invasive imaging. Not only myocardial perfusion but

also cardiac metabolism, sympathetic nervous

system activity, and inflammatory disease are targeted

by nuclear cardiology using specific radiopharma-

ceuticals.

Figure 12. Histology showed leukocyte infiltration in the lung injury model. Scale bar: 20 lm.
18F-FEDAC showed higher uptake ratios of heart/lung and heart/liver compared to those with
13N-NH3 and similar to that with 18F-FDG. 18F-FDG, 18F-fluorodeoxyglucose; 18F-FEDAC, N-
benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]-fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]
acetamide.

Figure 11. 18F-FEDAC imaging a comparison between 18F-FEDAC imaging and double
staining of translocator protein (TSPO) for neutrophils. Arrows indicate examples of cells
doubly positive for TSPO (green) and chloroacetate esterase (red spots) staining. Control group
showed no positive 18F-FEDAC uptake in either lung (A). No neutrophils were seen in the
control. Lung injury model using lipopolysaccharide showed positive 18F-FEDAC uptake in
both lungs (B).
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