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Abstract

The generation of abnormal excitations in pathological regions of the heart is a main trigger for 

lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from 

areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding 

the conditions that lead to ectopy is important to understand the basic biophysical principles 

underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are 

the first to address the question of how geometry of the abnormal region affects the onset of ectopy 

using a combination of experimental, in silico, and theoretical approaches. We paradoxically find 

that, for any studied geometry of the depolarized region in optogenetically modified monolayers of 

cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, 

where the stimulating electrotonic currents are minimal. It contradicts the standard critical 

nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher 

stimulus is expected to produce excitation more easily. Our in silico studies reveal that the 

nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the 

damaged region, the occurrence of which depends on the curvature of that boundary. The onset of 

this instability is confirmed using the Schrödinger equation methodology proposed by Rinzel and 

Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into 

how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be 

used in the future to predict the conditions that can trigger cardiac arrhythmias.
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I Introduction

Arrhythmias are the most common cause of sudden cardiac death worldwide, accounting for 

an estimated 6 million deaths annually [1]. However, the underlying mechanisms are still not 

completely understood. From a practical point of view, it is of paramount importance to 

understand the mechanisms of arrhythmia initiation, since by removing the triggers, 

arrhythmic events can be avoided. Multiple recordings have shown that, in many cases, 

lethal cardiac arrhythmias are triggered by so-called ectopic beats, i.e., ill-timed electrical 

pulses originating from damaged tissue, which disturb normal cardiac rhythm [2,3]. Despite 

their practical importance, the mesoscopic biophysical mechanisms of ectopic activity 

remain largely unknown [4]. In a very general sense, ectopic activity occurs when a 

depolarized region in the heart produces depolarizing currents strong enough to initiate 

propagating waves.

The process of wave initiation by such depolarizing currents seems to be straightforward at 

first sight: larger currents or larger sources can more easily depolarize a cell, overcome the 

sink effect from adjacent cells, and produce a propagating ectopic wave.

This principle works perfectly to describe curvature-velocity relationships of waves in 

excitable media [5]. It closely relates to the nucleation theory of phase transitions [6,7], 

since one also needs to form a critical volume to initiate a phase transition in a metastable 

phase of matter. In electrophysiology, this paradigm is called the source-sink relationship 

[8].

The depolarizing current by itself may depend on many factors, including the shape of the 

ectopic region. The effect of the shape of injury-induced depolarized zones on ectopic 

activity has so far not been studied in depth because it was previously impossible to produce 

a depolarized region of a given shape due to various technical limitations [9,10]. Currently, 

this issue can be resolved by applying optogenetic techniques, which were first applied in 

neuroscience [11] and allow excellent spatiotemporal control of cellular properties and wave 

dynamics in biological excitable media [12,13]. Capitalizing on these advantages, we 

previously showed that optogenetically induced localized oxidative stress can be used to 

generate intentionally shaped zones with sustained depolarization and associated ectopic 

activity [14]. In the current work, this technique was applied to induce quasistable 

depolarized (QSD) zones of predefined shapes in monolayers of cardiac cells.

Remarkably, the ectopic activity was found to preferentially emerge from the sharp convex 

corners of QSD tissue regions. This observation defies the conventional interpretation of the 

source-sink concept, as in convex corners of the QSD region, the density of the depolarizing 

current is minimal.

In order to understand this paradoxical phenomenon, we conducted numerical simulations 

and reproduced the effect in physiologically detailed models and even in simple reaction-

diffusion models. Below, we will link the phenomenon to the occurrence of oscillatory 

instability at the boundary of the QSD region and explain the onset of this instability semi-

analytically using the stationary Schrödinger equation.
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II Materials and Methods

A more detailed description is provided in Appendix B.

A Ectopic activity caused by optogenetic production of reactive oxygen species

A plasma membrane-targeted version of a mini-singlet oxygen generator (miniSOG) [15] 

was expressed in neonatal rat ventricular myocyte (NRVM) monolayers following lentiviral 

transduction, as reported previously [16,17]. Lentiviral vector particles were produced from 

shuttle plasmid pLV.hCMV-IE.miniSOG-PM.hHBVPRE, as detailed elsewhere [17]. The 

mode of action of miniSOG and the proviral DNA structure of the lentiviral vector are 

shown in Figs. S1(a) and S1(b) of the Supplemental Material [18], respectively. After 

establishing practically uniform transduction with miniSOG-encoding lentiviral vector 

particles, optical mapping was performed on eight- to ten-day-old cardiac monolayer 

cultures with the fluorescent voltage-sensitive dye di-4-ANEPPS to observe excitation 

waves. A patterned projection system was used to focus 470-nm LED light in the plane of 

the monolayers, in a region of maximal size 6 × 6 mm. After irradiation with intensity 0.31 

mW/mm2 for 3–6 min, to induce reactive oxygen species (ROS) production, voltage was 

optically monitored. Cumulative ROS damage resulted in ultralong action potentials (APs) 

in the previously irradiated zone, lasting for 2–20 s. Light-induced ROS production did not 

change AP duration (APD) in the unexposed parts of the monolayers, which had an APD80 

of 200–350 ms. The drastic spatial difference in APD caused ectopic waves to emanate from 

the interface between the normal and damaged tissue regions, as shown in the two examples 

of paired optical traces presented in Fig. S1(d) of the Supplemental Material [18]. While, in 

both examples, the optical signals from electrical activity in most of the irradiated region 

remained almost flat with a long plateau phase, the surrounding tissue exhibited periodic 

APs. The ectopic beats emerged only during the plateau phase of ultralong APs, in line with 

our previous findings [14].

B Mathematical model for normal and QSD tissue

A hierarchy of models of different complexity was used, including the Majumder-Korhonen 

model for NRVMs [19], which is the model closest to our in vitro setup. We employed the 

Ten Tusscher–Noble–Noble–Panfilov (TNNP) model for adult human ventricular myocytes 

[20] to study in silico possible manifestations of the effects in human ventricular tissue. We 

also used the FitzHugh-Nagumo (FHN) [21] and the Aliev-Panfilov model [22], which were 

modified to study the generic mechanisms underlying the observed effects. A detailed 

description of all four models is given in Appendix B.

To identify the mechanism behind the ectopic activity observed in our in vitro experiments, a 

generic description of the tissue was used in order to relate the observed phenomena to the 

most fundamental properties of cardiac excitation, i.e., excitation of cardiomyocytes by local 

currents and establishment of a transient refractory state in the cells following excitation. In 

our view, this can best be achieved by employing low-dimensional models, which focus on 

these processes, rather than by relying on complex descriptions of the underlying ionic 

currents and Ca2+ dynamics. Simplified models often describe complex spatiotemporal 
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phenomena without loss of essential details (see, e.g., Ref. [23]). Therefore, we used the 

classical cubic FHN model [21] in one (1D) or two (2D) spatial dimensions:

∂u
∂t = − f u − υ + D Δ u, ∂υ

∂t = ε u − γ r υ , (1)

where u is the normalized transmembrane potential, v represents recovery processes, f(u) = 

u(u − 1)(u − a), 0 < a < 0.5, and ε ≪ 1. To distinguish between illuminated (i.e., oxidatively 

damaged) tissue exhibiting ultralong APs (i.e., quasistable depolarization) and normal (i.e., 

nonilluminated) tissue, we altered the slope of the second variable γ r  as follows. Normal 

tissue was modeled as a monostable system (γ = γmono = 1.5), as it allows an excitable 

regime. After excitation (u ≈ 1), the system returns to the resting potential (u = 0); see the 

nullclines in Fig. 3(a). Such a monostable system supports propagating waves as well. The 

tissue exhibiting quasistable depolarization, however, stays in the depolarized state much 

longer than the duration of a normal AP. The QSD tissue reaches this depolarized state from 

rest only after a depolarizing wave has passed through it. The described computational 

model contains a slow timescale variable, which, in the limiting case, can be adiabatically 

eliminated [24], and QSD tissue can, therefore, be modeled as a bistable system, which can 

be realized in Eq. (1) by choosing γ = γbi > 5.85, producing stable states u = 0 and u = u3 > 

0, as shown in Fig. 3(a). The other parameters of the model were taken to be a = 0.13, ε = 

0.004, and D = 2.0. The size of the computational domain was 1024 × 1024, with a central 

bistable square zone of size 400 × 400. Parameters for other shapes and models are 

described in Appendix B.

III Results

A Effect of QSD tissue geometry on ectopic beat generation in optogenetic experiments 
with cardiac monolayer cultures

In the first set of experiments, we generated ultralong APs in a square region (i.e., QSD 

region) of 6 × 6 mm by local light-induced production of ROS and studied its effect on AP 

propagation. Following electrical stimulation, an initial wave of excitation propagated 

through the tissue, inducing long-lasting depolarization inside the square. This generated 

secondary excitation waves (i.e., ectopic beats) at the corners of the previously illuminated 

area, which subsequently traveled through the medium; see Fig. 1(a). The spatiotemporal 

organization of electrical activity during the ectopic beats is shown in Fig. 1(b). Consistent 

with our previous findings, the center of the illuminated area (green trace) entered into a 

prolonged state of depolarization (i.e., became QSD) without significant oscillations, while 

the unexposed tissue produced normal APs (magenta trace). The border zone between both 

regions showed larger oscillations (blue trace) than the center of the illuminated area. 

Moving from the center to the periphery of the cell monolayer, there were gradients in the 

amplitude of the oscillations indicative of electrotonic effects. The observed wave emission 

is paradoxical, for the following reason. The square region produces depolarizing 

electrotonic currents that excite the normal surrounding tissue of lower membrane potential. 

The density of the depolarizing current obviously depends on the shape of the heterogeneity, 

Teplenin et al. Page 4

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and it will be lowest at its corners, where the ratio of depolarized to repolarized tissue is 

minimal. Because of this unfavorable source-sink relationship, the corners of the square are 

the least likely regions for impulse generation, which is expected to occur in the most 

concave regions of the interface, e.g., in the middle of the square’s edges.

To further study how the boundary geometry affects ectopic activity, additional optogenetic 

experiments were performed, in which areas of ultralong APD had a Pacman-like or elliptic 

shape; see Figs. 1(c) and 1(d). In line with the results presented in Fig. 1(a), the first ectopic 

beat emerged from the “jaw tip” of the Pacman rather than from its “mouth,” as shown in 

frames 2–4 of Fig. 1(c). A similar result was obtained for the elliptic heterogeneity, since 

once again the ectopic activity was generated at the sites of highest curvature (i.e., the 

vertices) [Fig. 1(d)]. In total, such dynamics was observed in 29 out of 36 experiments for 

the square-shaped heterogeneity, in 5 out of 5 cases for the Pacman-like heterogeneity, and 

in 3 out of 4 cases for the elliptical heterogeneity. Our in vitro experiments, thus, robustly 

show that, contrary to what would be expected based on classical source-sink considerations, 

ectopic activity can originate from the parts of the depolarized region with the highest 

curvature, where the density of the depolarizing electrotonic current is lowest.

B Numerical simulations of ectopic beat generation at the boundary of QSD regions

The experimental results described above were reproduced in numerical simulations of the 

detailed Majumder-Korhonen model of the NRVM monolayer [Fig. 2(a)]. Similar results 

were obtained for the detailed human TNNP ventricular model [Fig. 2(b)]. Thus, both in 

modeling studies and in in vitro experiments, the ectopic activity always originates at the 

corners of the QSD region. This holds true for a wide range of APDs in the QSD region; 

e.g., the phenomenon can be observed in silico even for QSD zones with moderately 

prolonged (1–1.2 s) APDs, resulting in the generation of just one ectopic beat from the 

corners (Fig. S5 of the Supplemental Material [18]). As also in vitro moderately prolonged 

APDs give rise to ectopic activity from the corners of a square QSD region (Fig. S6 of the 

Supplemental Material [18]), this phenomenon appears to be very robust. Although ionic 

models accurately reproduce the biophysical mechanism of AP generation, in a 

mathematical sense, they are quite complex. Thus, in order to isolate the fundamental 

mechanisms driving the observed phenomenon, it is always beneficial to reproduce it using a 

minimalistic generic description. We were able to reproduce this effect using simplified low-

dimensional models, i.e., modified versions of the Aliev-Panfilov and FHN models [Figs. 

2(c) and 2(d), respectively]. A detailed motivation of the simplified models choice is 

presented in Appendix B. As a further simplification, we were able to reproduce the same 

effect when the QSD region was represented as a bistable system and the normal cells as a 

monostable system [Fig. 3(a)], which was achieved by changing the parameter γ. This 

produced similar results as obtained in vitro. [Compare Figs. 1(a)–1(d) with Figs. 3(b)–3(e), 

respectively.] The ectopic activity originated from the corners of the bistable (i.e., QSD) 

region, as in the in vitro experiments. Similar data were obtained for the bistable/monostable 

version of the Aliev-Panfilov cardiac tissue model [22] (Fig. S2 of the Supplemental 

Material [18]). These results suggest that ectopic activity is more likely to occur in high-

curvature border zones of the bistable (i.e., QSD) region than in border areas with low 

curvature. Consistently, a small discshaped bistable region yielded a propagating response in 
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the surrounding tissue [Fig. 3(f)], but a larger QSD disc did not [Fig. 3(g)]. The fact that the 

effect persists even in a simple computer model implies that it is related to fundamental 

properties of excitation. Looking closer to the initiation mechanism of the ectopic waves, we 

found that the interface at the boundary of the bistable region exhibits oscillatory activity 

[Figs. 3(c), 3(f), and 3(g)]. In the simulation result Fig. 3(c), two oscillations of small 

amplitude are followed by one with a larger amplitude. The larger oscillation then forms an 

impulse propagating from the corner of the QSD region into the surrounding normal tissue. 

These numerical data strongly resemble the in vitro results of Fig. 1(b). Because of the 

presence of noise in the optical mapping experiments, the number of smaller amplitude 

oscillations needed to produce a propagating impulse in a real cardiac monolayer could not, 

however, be reliably determined. The importance of these oscillations was therefore 

scrutinized in simulations, in which the potential in the bistable region was clamped to its 

higher stable value u = u3. In this case, ectopic activity from the corners disappeared. 

Instead, the system generated a single pulse propagating from the entire border of the 

heterogeneity, which was followed by the establishment of a steady-state spatial distribution 

of voltage (Fig. S3 of the Supplemental Material [18]).

To further study the boundary oscillations that are responsible for ectopic beat generation, 

we performed simulations for different nullcline slopes γbi in the bistable region (Fig. 4), 

keeping the same 2D setup as in Fig. 3(a). Numerical calculations in the 2D domain were 

compared to 1D simulations modeling the presence of a planar QSD region. Numerically 

computed stationary solutions were used as initial conditions. The following changes were 

observed. First, for γbi = 20, i.e., deep in the bistable regime, no oscillations occurred at the 

interface [Fig. 4(a)]. For γbi = 14 [Fig. 4(b)], oscillations emerged in 1D at the interface that 

did not produce any waves. However, in 2D, a periodic propagating response from the 

corners of the square was observed. Finally, for γbi = 11 [Fig. 4(c)], low amplitude 

oscillations occurred at the interface between the mono- and bistable regions and 

periodically produced ectopic activity, both in 1D and in 2D, which in the latter case arose at 

the corners.

By plotting the amplitude of oscillation versus γbi, the bifurcation curve for a 1D domain 

[Fig. 4(d), blue line] was generated. This curve showed that, at γbi ≤ 15.5, oscillations with 

increasing amplitude arose. A similar bifurcation curve was generated for a circular 

depolarized region with radius R = 36.0 (red line). In this case, the bifurcation already 

occurs at γbi = 15.9. Thus, we again find that curvature makes the onset of instability easier, 

in line with the observed ectopic wave emission from corners. However, still it is not clear 

why curvature shifts the bifurcation point.

IV Mechanism of Curvature-Dependent Instability

Two different approaches were chosen to explain the curvature effect: (i) the curvature-

velocity relationship and (ii) the Schrödinger equation analogy by Keener and Rinzel [25].

A Qualitative explanation by backward motion of wavefront

First, in a very general sense, the effect of positive curvature on wave propagation is a 

reduction of propagation velocity, which can be explained by the fact that the density of 
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local currents for a radially expanding (i.e., convex) wavefront is smaller than that for a 

planar wavefront. Oppositely, negative curvature, as present in a collapsing circular (i.e., 

concave) wavefront, results in a more favorable source-sink relationship and, therefore, 

faster wave propagation than no curvature. Let us now consider a stationary distribution of 

voltage for the planar and curved domain and find out how the curvature of the boundary can 

contribute to the onset of instability. The instability can occur either by a slight shift of the 

stationary solution in the forward direction (i.e., towards the normal tissue) or by a similar 

shift backwards. The forward motion, which is similar to the expansion of a wavefront, 

should generally be inhibited by curvature, while backward motion should be strengthened 

by it. The importance of either effect can be assessed numerically, since, in the radially 

symmetric case, one can write the 2D Laplacian from Eq. (1) as Δu = (∂2u/∂r2) + (1/r)(∂u/

∂r), where r is the radial coordinate and the term Icurv = (1/r)(∂u/∂r) accounts for the 

wavefront curvature. We performed simulations in which Icurv was present only in the 

normal or bistable region. We found that, when Icurv was present inside the QSD region only, 

it enhanced the instability. For example, in the case of a circular depolarized region with a 

radius R = 36.0, the ectopic waves started to appear for γbi = 15.3, compared to γbi = 13.9 in 

the fully radially symmetric system. However, in the opposite case, when Icurv was present 

outside the bistable area, the formation of ectopic activity was observed for γbi < 12.5 only. 

Thus, under these circumstances, the curvature of the wavefront hindered the development 

of ectopic activity. Overall, we can conclude that informally the observed deviation from the 

conventional source-sink mismatch concept can be explained by the fact that curvature 

potentiates the initial backward motion of the wave to the inside of the QSD region, which 

breaks the stability of the system and eventually results in the onset of ectopic activity.

B Semianalytical study of the instability using a Schrödinger equation analogy

To further analyze the oscillatory instability leading to ectopic activity, we extended the 

theoretical approach by Keener and Rinzel in Ref. [25]. However, in order to apply it, a 

simplification is introduced. The oscillatory instability occurs in the coupled mono- and 

bistable system and, thus, is present in both QSD and normal regions. In other words, the 

presence of the monostable region triggers activity in the border zone of the bistable region, 

leading to ectopic beat generation. However, in order to perform an analytical analysis, we 

need to restrict ourselves to one region only and replace the other region by a boundary 

condition. We keep the bistable QSD region and replace the normal (monostable) region by 

the Dirichlet boundary condition u = 0. The rationale for this is that such a boundary 

condition creates a current load on the QSD region similar to that of the monostable region. 

Indeed, if we consider a square 2D domain in a bistable regime and Dirichlet boundary 

condition u = 0 at the square’s boundary, the important features of Fig. 4 will be reproduced.

In particular, for large values of γ, the solution is stable. Decreasing γ leads to oscillations 

at the boundary [Fig. 5(a)], which occur at the corners and are similar to the oscillations seen 

in Figs. 3(c) and 4(b). Thus, once again, we see that curvature of the boundary potentiates 

the instability. To account for the effects of the boundary curvature, we will perform 

analytical calculations for the onset of instability on an interval [l, L] (0 < l ≪ L) and on an 

annulus with radii [l, L] and compare the results. We choose an annulus instead of a disc 

because it simplifies the analysis and, for small l, the inner boundary has no effect on the 
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onset of instability, which occurs at the outer boundary of the domain. Although our analysis 

can be extended to a disc, this will require additional estimations at r = 0, which would 

complicate presentation of the results.

Formally, we consider Eq. (1) and impose Dirichlet boundary conditions u(L) = 0 and u(l) = 

u3 for the 1D case and for an annulus. In both 1D and 2D, such boundary conditions allow a 

spatially nonuniform distribution of voltage (i.e., a smooth transition from u = 0 to u = u3), 

which is normally stationary in time and mimics the boundary between the QSD region and 

normal tissue from Fig. 3.

In this case, when γ is decreased, in the same way as in Fig. 4, we also observed the 

transition from stationary to oscillatory behavior, which is moreover facilitated by curvature.

The stability of the stationary solution in such a setup can be studied analytically. First, note 

that the stationary solutions (u, v) = [ϕ(x), η(x)] to Eq. (1) have η = (ϕ/γ), such that, in the 

absence of curvature (i.e., on a line), ϕ(x) can be found by direct integration of the following 

equation, which can be viewed as Newton’s equation in a potential field:

1
D − f ϕ − ϕ

γ + ∂2ϕ
∂x2 = 0, ϕ l = u3, ϕ L = 0, (2)

where u3 is the largest root of f(u). Stability can be analyzed by linearizing around a 

stationary solution. Considering the perturbation u=ϕ + ϕ1, v=η + η1, with ϕ1 = eλtψ(x), η1 

= eλtz(x), yields the stationary Schrödinger equation [25]

− ∂2ψ
∂x2 + V x ψ = Eψ , (3)

with potential V(x) = f′[ϕ(x)]/D and energy E = −[λ+ (ε/λ + εγ)]/D, subjected to the 

boundary conditions ψ(l) = 0, ψ(L) = 0. The stability of the stationary solution is lost when 

λ, which can be found from the energy E = −[λ + (ε/λ + εγ)]/D, has a positive real part 

[25]. From the relation between E and λ, one can see that decreasing E leads to 

destabilization of the solution, a property that will be used below. Note that, since ϕ(x) is 

monotonously decreasing and f′ is a quadratic function, V(x) has the shape of a potential 

well; see Fig. 5(b).

Our numerical simulations have shown that the instability occurs when γ is decreased below 

a critical value. Since a change of γ alters the stationary solution ϕ(x) of Eq. (1), it affects 

the shape of the potential well V(x), but not its depth. Representative cases are shown in Fig. 

5(b) together with the numerically computed ground energy level for this potential. 

Lowering γ widens the well, which decreases the energy of the ground state and, thus, 

facilitates the onset of instability. Figure 5(c) shows the real part of λ as a function of γ 
calculated from the ground state energy in Schrödinger’s equation, predicting a critical value 

of γ = 7.813 and a nonzero imaginary part of λ at this value, indicating a Hopf bifurcation. 
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We have also determined the critical value of γ by direct numerical calculations and found it 

to be γ = 7.810, thus very close to the theoretically predicted value. Now let us consider the 

effect of curvature of the domain boundary at x = L (representing the edge of the depolarized 

region) on the onset of the instability. In this case, stationary solutions {ϕr(r), ηr(r)} can be 

found from

1
D − f ϕr −

ϕr
γ +

∂2ϕr

∂r2 + 1
r

∂ϕr
∂r = 0. (4)

.

The curvature term (1/r)(∂ϕr/∂r) is equivalent to a friction force when Eq. (4) is interpreted 

as a particle in a Newtonian potential. Friction generally slows down the motion, and, in 

Appendix A, it is shown in detail that, as a result, ϕr(x) ≤ ϕ(x), making the potential well 

broader.

When performing stability analysis on this new steady-state profile ϕr for the radially 

symmetric case, we can substitute ψ = r−1/2χ, yielding

− ∂2 χ
∂r2 + Vr r χ = E χ, χ l = 0, χ L = 0, (5)

with a modified potential Vr(r) = −f′[ϕr(r)]/D − 1/(4r2). The additional centrifugal term 

−1/(4r2) always lowers the potential well. As a result, we have shown that the spectrum of 

the radially symmetric problem Er will always be lower in comparison to the case without 

curvature. Therefore, in our model, positive curvature of the domain boundary will always 

potentiate the onset of an oscillatory (Hopf) instability.

Also, when the QSD region has a more complex shape, the Schrödinger equivalence still 

applies. In that case, the stationary solution will produce a potential well in two or three 

spatial dimensions that is localized near the boundary of the QSD region. This well will be 

broader in the regions where the profile of the stationary solution is less steep. As, in highly 

curved portions of the interface (e.g., at the corners), diffusion (i.e., electrotonic) effects are 

more pronounced, a local broadening of the well can be expected there. The Schrödinger 

eigenfunctions will, thus, be localized in the broader parts of the well, and these are 

precisely the boundary oscillations that cause the onset of instabilities. We can now 

understand the emergence of ectopic beats at sharp corners from a physical principle: In the 

corners, the transition in voltage between QSD and normal tissue will be less steep, offering 

more room for boundary oscillations to develop.

V Discussion

In this study, optogenetics has been applied to investigate the onset of ectopic activity in 

cardiac tissue. In our setup, the ectopic activity originated from the boundary of a QSD 
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(ultralong AP) region. Contrary to the classical principle of source-sink mismatch, the 

ectopic activity preferentially arose at the boundaries between the oxidatively damaged 

region and the normal tissue with the highest curvature. Using in silico models and an 

analytical approach, we demonstrate that the mechanism of this effect is closely related to 

the occurrence of oscillatory (i.e., Hopf) instability at these sites.

We demonstrated such a mechanism in detailed physiological and simplified generic models. 

Since we reproduced the results in different models and uncovered the general underlying 

biophysical mechanism, we expect that our results might be applicable to different clinical 

situations, in which the APD is abnormally lengthened beyond 2 s. Such situations of APD 

prolongation might be a result of oxidative stress [26], drug treatment, poisoning, or genetic 

mutations [26–29]. Compounds with strong APD-prolonging ability include Ca2+ channel 

agonists like Bay K8644; class Ia antiarrhythmics (e.g., quinidine); unintended hERG 

channel blockers like the antibiotic erythromycin; certain class III antiarrhythmics (e.g., 

E4031); and a large variety of neurotoxins (e.g., anemone toxin). APD-prolonging mutations 

have been found, e.g., in the genes encoding calmodulin [30], calmodulin-dependent kinase 

II [31], and fast Na+ and L-type Ca2+ channels [32,33]. APDs are also drastically increased 

during bradycardia induced by disease or rest and sleep [28,29]. The fact that APD 

prolongation might occur heterogeneously due to intrinsic transmural differences in 

repolarization kinetics, e.g., caused by increased late Na+ and decreased slowly delayed 

rectifier currents in the midmyocardial wall [28], further increases the proarrhythmic risk. 

However, as we showed experimentally (see Fig. S6 of the Supplemental Material [18]) and 

in numerical simulations (see Fig. S5 of the Supplemental Material [18]), extreme 

prolongation of AP is not required for ectopic wave initiation from the corners of a QSD 

region. It was also found for shorter APDs of 1.2 s in vitro, of 1 s in the Majumder-

Korhonen model of NRVMs, and of 1.5 s in the TNNP model of adult human ventricular 

cardiomyocytes. These APDs are well within the range of those described in multiple 

channelopathies [32,33]. APDs of 1–2 s can be manifested in a transient fashion during 

pause-induced [32,34] or rhythm-acceleration-induced [35,36] APD prolongation. Both of 

these disturbances lead to torsade de pointes arrhythmias, which are widely observed 

clinically for different types of long QT syndrome [37]. To sum up, our results might apply 

to various clinical situations given the wide range of prolonged APDs for which the 

emission of ectopic waves from high curvature areas was manifested.

Besides by ultralong APs, ectopy from boundary areas of high curvature can also be caused 

by regional multifold increases in Ca2+ conductance. Such a local increase in Ca2+ 

conductance can result from long-chain fatty acid accumulation due to regional ischemia 

[38]. We illustrated this case in Fig. S7 of the Supplemental Material [18].

Another possible example is the ectopic activity arising from the ostia of pulmonary veins, 

which is one of the major triggers of atrial fibrillation. It was reported that patients with a 

common ostium of the left pulmonary veins have a higher propensity for developing atrial 

fibrillation [39]. This common ostium has an elliptic shape, thus containing border areas of 

high curvature, which may be a reason for the higher chance of developing arrhythmias.
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Apart from providing a possible explanation for the emergence of particular forms of cardiac 

ectopy, our results may also help to refine surgical ablation procedures. Our finding that 

boundary curvature can play an important role in the generation of arrhythmic waves 

suggests that smoothening the borders between healthy and diseased myocardium may be 

beneficial, and that ablation of only the sharp convex corners of damaged cardiac tissue 

might be sufficient to prevent ectopic activity.

Usually, ectopic or focal activity is believed to be a result of abnormal automaticity caused 

by early or delayed afterdepolarizations [40] or so-called injury currents from damaged 

tissue [3]. For injury currents, it has been reported that abnormal automaticity may originate 

from the coupling of an excitable cell with another cell with a higher (i.e., less negative) 

resting membrane potential [41–43]. Despite the fact that the resting states of both cells are 

stable, an oscillatory (i.e., Hopf) bifurcation can emerge in such a coupled system. A similar 

situation exists in Figs. 1(c) and 3(c). However, in our case, the Hopf bifurcation emerges 

from the coupling of multiple mono- and bistable cells in a diffusive manner.

Keener and Rinzel [25] were the first to identify this Hopf instability in a FHN system for 

the case of a single fiber with Dirichlet or Neumann boundary conditions at one of the ends. 

Here, we have extended their approach to curved domains.

Similar behavior has been observed for the interface between oscillatory and excitable 

regions in the Belousov-Zhabotinsky reaction [44,45]. However, no local bifurcation 

analysis was possible for simulation of this chemical activity, since the limit cycles already 

had a high amplitude.

In physical systems, curvature-induced effects have been observed in nonlinear optics of 

solitons [46,47], shock waves in Bose-Einstein condensate [48], the appearance of additional 

curvature-induced magnetic force in a magnetic shell [49], the onset of superconductivity in 

curved domains [50,51], the appearance of prohibited states in condensed matter physics and 

material science [52], and curvature-induced bound states for quantum wires [53]. In all 

these cases, positive curvature induced unusual behavior, which cannot be observed under 

normal conditions in a flat geometry. The last example is most striking and stems from the 

fundamental result of topological trapping of a quantum particle [54]. In Ref. [54], it was 

shown that a quantum mechanical particle is preferentially trapped in a region of high 

curvature of a spatially extended Schrödinger well. The same principle applied here: The 

strong curvature near corners of the QSD region lowers the energy of the Schrödinger well 

precisely there. Overall, it is not surprising to find a quantum mechanical analogy in a 

reaction-diffusion context due to the long-standing mathematical similarity of the diffusion 

and Schrödinger equations [55]. One can just go to imaginary time and get the similar 

retrograde diffusion equations. Similarity between the diffusion formalism and Schrödinger 

equation can also be found on more general physical grounds due to the analytical 

continuation connection between the Wiener integral for the Brownian motion process and 

the Feynman path integral [56]. Therefore, the quantum mechanical analogy of localization 

might be applicable to more complex cases of multiple diffusing species [44] in comparison 

to the simple diffusion of voltage in our case. Because of the simplicity and generality of our 
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computer model, we would expect similar effects to be found in other areas of biology, 

chemistry, and physics.

Albeit we reproduced the phenomenon in complex detailed models, in our research we have 

intentionally focused on a simplified computer model for cardiac tissue in order to relate the 

effect to the most fundamental properties of cardiac excitation and to be able to perform an 

analytical study of the dynamics. It would, however, also be of interest to investigate the role 

of different ionic currents in the observed effects in a more detailed mathematical model of 

cardiac muscle cells.

In our paper, we were able to reproduce the experimentally observed effect of ectopy from 

the corners in a highly relevant mathematical model for our experimental system, namely, 

the Majumder-Korhonen model of NRVMs and in a detailed and more clinically relevant 

model of adult human ventricular cardiomyocytes. Although, in all our in silico models, 

ectopy from boundary areas with high curvature occurs for a wide range of parameters (for 

example, for the QSD zone, as shown in Fig. 4, 11 ≤ γbi ≤ 14 results in corner-confined 

ectopy), we did not study in detail all possible regimes in such a system, e.g., ectopy from 

corners, faces, or middles of the region, and the locations of such regimes in the parametric 

space. It would, hence, be interesting to investigate all possible manifestations of ectopy in a 

wider class of mathematical models, including detailed models for human cardiac tissue 

(see, e.g., O’HaraRudy [57] and Grandi [58]) and modern low-dimensional cardiac models 

(see, e.g., Mitchell-Schaeffer [59] and Corrado [60]) in future studies.

The extension of our work to 3D would be of importance as well, since injured cardiac 

ventricles typically exhibit a complex 3D structure. The effects of curvature on ectopic 

activity are expected to be even more pronounced in 3D systems than in our 2D 

preparations.

In conclusion, we have demonstrated, using complementary in vitro and in silico models, 

that the border zones between damaged and healthy myocardium with the highest positive 

curvature are the most likely areas for the onset of ectopic activity. As the electrotonic load 

for formation of excitation is maximal in such areas, this effect is paradoxical. Our finding, 

thus, adds a new potential mechanism for cardiac ectopy and represents an additional 

controllable degree of freedom to prevent arrhythmogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Annemarie Kip, Cindy Bart, Marc Engels, and Jia Liu for excellent technical support and help in 
producing lentiviral vector particles and Iolanda Feola for guidance in preparing NRVM monolayers. We also thank 
Rupamanjari Majumder and Nina Kudryashova for fruitful discussions. This work was supported by the 
Netherlands Organization for Scientific Research (NWO Vidi Grant No. 917143 to D. A. P.). A. S. T., D. A. P., and 
A. V. P. initiated and designed the research. A. S. T. performed experiments and computations. A. S. T., H. D., and 
A. V. P. analyzed data and conceived theoretical explanations. A. A. F. V. designed genetic engineering tools. A. A. 
F. V. and D. A. P. provided reagents; D. A. P. provided funding sources; and A. S. T., H. D., A. V. P, A. A. F. V., and 
D. A. P. wrote the paper.

Teplenin et al. Page 12

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



References

[1]. Mehra R. Global Public Health Problem of Sudden Cardiac Death. J Electrocardiol. 2007; 
40:S118.doi: 10.1016/j.jelectrocard.2007.06.023 [PubMed: 17993308] 

[2]. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME. Reentrant and Focal Mechanisms 
Underlying Ventricular Tachycardia in the Human Heart. Circulation. 1992; 86:1872.doi: 
10.1161/01.CIR.86.6.1872 [PubMed: 1451259] 

[3]. Janse MJ, Van Capelle FJ, Morsink H, Kléber AG, Wilms-Schopman F, Cardinal R, d’Alnoncourt 
CN, Durrer D. Flow of “Injury” Current and Patterns of Excitation During Early Ventricular 
Arrhythmias in Acute Regional Myocardial Ischemia in Isolated Porcine and Canine Hearts. 
Evidence for Two Different Arrhythmogenic Mechanisms. Circ Res. 1980; 47:151.doi: 
10.1161/01.RES.47.2.151 [PubMed: 7397948] 

[4]. Winfree AT. The Geometry of Biological Time. Vol. 12. Springer Science & Business Media; New 
York: 2001. 

[5]. Dierckx H, Bernus O, Verschelde H. Accurate Eikonal-Curvature Relation for Wave Fronts in 
Locally Anisotropic Reaction-Diffusion Systems. Phys Rev Lett. 2011; 107 108101. doi: 
10.1103/PhysRevLett.107.108101

[6]. Cahn JW, Hilliard JE. Free Energy of a Nonuniform System. III. Nucleation in a Two-Component 
Incompressible Fluid. J Chem Phys. 1959; 31:688.doi: 10.1063/1.1730447

[7]. Bates PW, Fife PC. The Dynamics of Nucleation for the Cahn-Hilliard Equation. SIAM J Appl 
Math. 1993; 53:990.doi: 10.1137/0153049

[8]. Kléber AG, Rudy Y. Basic Mechanisms of Cardiac Impulse Propagation and Associated 
Arrhythmias. Physiol Rev. 2004; 84:431.doi: 10.1152/physrev.00025.2003 [PubMed: 15044680] 

[9]. Arutunyan A, Webster DR, Swift LM, Sarvazyan N. Localized Injury in Cardiomyocyte Network: 
A New Experimental Model of Ischemia-Reperfusion Arrhythmias. Am J Physiol. 2001; 
280:H1905.doi: 10.1152/ajpheart.2001.280.4.H1905

[10]. Pitts KR, Toombs CF. Coverslip Hypoxia: A Novel Method for Studying Cardiac Myocyte 
Hypoxia and Ischemia In Vitro. Am J Physiol. 2004; 287:H1801.doi: 10.1152/ajpheart.
00232.2004

[11]. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-Timescale, Genetically 
Targeted Optical Control of Neural Activity. Nat Neurosci. 2005; 8:1263.doi: 10.1038/nn1525 
[PubMed: 16116447] 

[12]. Watanabe M, Feola I, Majumder R, Jangsangthong W, Teplenin AS, Ypey DL, Schalij MJ, 
Zeppenfeld K, de Vries AA, Pijnappels DA. Optogenetic Manipulation of Anatomical Re-entry 
by Light-Guided Generation of a Reversible Local Conduction Block. Cardiovasc Res. 2017; 
113:354.doi: 10.1093/cvr/cvx003 [PubMed: 28395022] 

[13]. McNamara HM, Zhang H, Werley CA, Cohen AE. Optically Controlled Oscillators in an 
Engineered Bioelectric Tissue. Phys Rev X. 2016; 6:031001.doi: 10.1103/PhysRevX.6.031001

[14]. Teplenin A, Jangsangthong W, Feola I, Schalij M, Ypey D, De Vries A, Pijnappels D. Microfoci 
of Oxidative Stress Increase Pro-arrhythmic Risk as Revealed by Patterned Illumination of 
Optogenetically Engineered Myocardial Cultures. European Heart Journal. 2016; 37:711.

[15]. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien 
RY. A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, 
Tissues, and Organisms. PLoS Biol. 2011; 9:e1001041.doi: 10.1371/journal.pbio.1001041 
[PubMed: 21483721] 

[16]. Engels MC, Askar SF, Jangsangthong W, Bingen BO, Feola I, Liu J, Majumder R, Versteegh MI, 
Braun J, Klautz RJ, et al. Forced Fusion of Human Ventricular Scar Cells with Cardiomyocytes 
Suppresses Arrhythmogenicity in a Co-culture Model. Cardiovasc Res. 2015; 107:601.doi: 
10.1093/cvr/cvv191 [PubMed: 26142215] 

[17]. Feola I, Teplenin A, de Vries AA, Pijnappels DA. Optogenetic Engineering of Atrial 
Cardiomyocytes. In: Kianianmomeni A, editorOptogenetics. Methods in Molecular Biology. Vol. 
1408. Humana Press; New York: 2016. 319–331. 

[18]. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevX.8.021077 for 
Supplementary Figures 1-7

Teplenin et al. Page 13

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://link.aps.org/supplemental/10.1103/PhysRevX.8.021077


[19]. Majumder R, Engels MC, De Vries AA, Panfilov AV, Pijnappels DA. Islands of Spatially 
Discordant APD Alternans Underlie Arrhythmogenesis by Promoting Electrotonic Dyssynchrony 
in Models of Fibrotic Rat Ventricular Myocardium. Sci Rep. 2016; 6 24334. doi: 10.1038/
srep24334

[20]. ten Tusscher KH, Noble D, Noble P-J, Panfilov AV. A Model for Human Ventricular Tissue. Am 
J Physiol. 2004; 286:H1573.doi: 10.1152/ajpheart.00794.2003

[21]. FitzHugh R. Impulses, and Physiological States in Theoretical Models of Nerve Membrane. 
Biophys J. 1961; 1:445.doi: 10.1016/S0006-3495(61)86902-6 [PubMed: 19431309] 

[22]. Aliev RR, Panfilov AV. A Simple Two-Variable Model of Cardiac Excitation. Chaos Solitons 
Fractals. 1996; 7:293.

[23]. Zykov V, Krekhov A, Bodenschatz E. Fast Propagation Regions Cause Self-Sustained Reentry in 
Excitable Media. Proc Natl Acad Sci USA. 2017; 114:1281.doi: 10.1073/pnas.1611475114 
[PubMed: 28123066] 

[24]. Keener J, Sneyd J. Mathematical Physiology: I: Cellular Physiology. Springer Science & 
Business Media; New York: 2010. 

[25]. Rinzel J, Keener JP. Hopf Bifurcation to Repetitive Activity in Nerve. SIAM J Appl Math. 1983; 
43:907.doi: 10.1137/0143058

[26]. Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The Arrhythmogenic 
Consequences of Increasing Late INa in the Cardiomyocyte. Cardiovasc Res. 2013; 99:600.doi: 
10.1093/cvr/cvt145 [PubMed: 23752976] 

[27]. Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC. Cardiac Late Na+ Current: 
Proarrhythmic Effects, Roles in Long QT Syndromes, and Pathological Relationship to CaMKII 
and Oxidative Stress. Heart Rhythm. 2015; 12:440.doi: 10.1016/j.hrthm.2014.11.009 [PubMed: 
25460862] 

[28]. Antzelevitch C. M Cells in the Human Heart. Circ Res. 2010; 106:815.doi: 10.1161/
CIRCRESAHA.109.216226 [PubMed: 20299671] 

[29]. Qu Z, Chung D. Mechanisms and Determinants of Ultralong Action Potential Duration and Slow 
Rate-Dependence in Cardiac Myocytes. PLoS One. 2012; 7:e43587.doi: 10.1371/journal.pone.
0043587 [PubMed: 22952713] 

[30]. Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered Calmodulins Reveal the 
Unexpected Eminence of Ca2+ Channel Inactivation in Controlling Heart Excitation. Proc Natl 
Acad Sci USA. 2002; 99:17185.doi: 10.1073/pnas.262372999 [PubMed: 12486220] 

[31]. Koval OM, Guan X, Wu Y, Joiner M-l, Gao Z, Chen B, Grumbach IM, Luczak ED, Colbran RJ, 
Song L-S, et al. CaV 1.2 β-Subunit Coordinates CaMKII-Triggered Cardiomyocyte Death and 
Afterdepolarizations. Proc Natl Acad Sci USA. 2010; 107:4996.doi: 10.1073/pnas.0913760107 
[PubMed: 20194790] 

[32]. Moreno JD, Yang P-C, Bankston JR, Grandi E, Bers DM, Kass RS, Clancy CE. Ranolazine for 
Congenital and Acquired Late INa Linked Arrhythmias: In Silico Pharmacologic Screening. Circ 
Res. 2013; 113:e50.doi: 10.1161/CIRCRESAHA.113.301971 [PubMed: 23897695] 

[33]. Huang X, Kim TY, Koren G, Choi B-R, Qu Z. Spontaneous Initiation of Premature Ventricular 
Complexes and Arrhythmias in Type 2 Long QT Syndrome. Am J Physiol. 2016; 311:H1470.doi: 
10.1152/ajpheart.00500.2016

[34]. Viswanathan PC, Rudy Y. Pause Induced Early Afterdepolarizations in the Long QT Syndrome: 
A Simulation Study. Cardiovasc Res. 1999; 42:530.doi: 10.1016/S0008-6363(99)00035-8 
[PubMed: 10533588] 

[35]. Burashnikov A, Antzelevitch C. Acceleration-Induced Action Potential Prolongation and Early 
Afterdepolarizations. J Cardiovasc Electrophysiol. 1998; 9:934.doi: 10.1111/j.
1540-8167.1998.tb00134.x [PubMed: 9786074] 

[36]. Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng 
W, Clancy CE, Moons L, et al. Abrupt Rate Accelerations or Premature Beats Cause Life-
Threatening Arrhythmias in Mice with Long-QT3 Syndrome. Nat Med. 2001; 7:1021.doi: 
10.1038/nm0901-1021 [PubMed: 11533705] 

[37]. Sweeney MO, Ruetz LL, Belk P, Mullen TJ, Johnson JW, Sheldon T. Bradycardia Pacing-
Induced Short-Long-Short Sequences at the Onset of Ventricular Tachyarrhythmias: A Possible 

Teplenin et al. Page 14

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Mechanism of Proarrhythmia? J Am Coll Cardiol. 2007; 50:614.doi: 10.1016/j.jacc.2007.02.077 
[PubMed: 17692746] 

[38]. Huang J, Xian H, Bacaner M. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular 
Myocytes. Proc Natl Acad Sci USA. 1992; 89:6452.doi: 10.1073/pnas.89.14.6452 [PubMed: 
1321440] 

[39]. Schwartzman D, Bazaz R, Nosbisch J. Common Left Pulmonary Vein. J Cardiovasc 
Electrophysiol. 2004; 15:560.doi: 10.1046/j.1540-8167.2004.03351.x [PubMed: 15149426] 

[40]. Qu Z, Hu G, Garfinkel A, Weiss JN. Nonlinear and Stochastic Dynamics in the Heart. Phys Rep. 
2014; 543:61.doi: 10.1016/j.physrep.2014.05.002 [PubMed: 25267872] 

[41]. Keener JP. Model for the Onset of Fibrillation Following Coronary Artery Occlusion. J 
Cardiovasc Electrophysiol. 2003; 14:1225.doi: 10.1046/j.1540-8167.2003.03045.x [PubMed: 
14678140] 

[42]. Peercy BE, Keener JP. Coupled Cell Model of Border Zone Arrhythmias. SIAM J Appl Dyn Syst. 
2005; 4:679.doi: 10.1137/040615973

[43]. Jacquemet V. Pacemaker Activity Resulting from the Coupling with Nonexcitable Cells. Phys 
Rev E. 2006; 74 011908. doi: 10.1103/PhysRevE.74.011908

[44]. Bishop KJ, Grzybowski BA. Localized Chemical Wave Emission and Mode Switching in a 
Patterned Excitable Medium. Phys Rev Lett. 2006; 97 128702. doi: 10.1103/PhysRevLett.
97.128702

[45]. Motoike IN, Nakata S, Iguchi Y, Takemura KK, Hayashi K, Yoshikawa K. Apex of a V-Shaped 
Cut Field Acts as a Pacemaker on an Oscillatory System. Chem Phys Lett. 2010; 490:238.doi: 
10.1016/j.cplett.2010.03.046

[46]. Mihalache D, Mazilu D, Lederer F, Kivshar YS. Spatiotemporal Surface Solitons in Two-
Dimensional Photonic Lattices. Opt Lett. 2007; 32:3173.doi: 10.1364/OL.32.003173 [PubMed: 
17975634] 

[47]. Batz S, Peschel U. Solitons in Curved Space of Constant Curvature. Phys Rev. 2010; 81 053806. 
doi: 10.1103/PhysRevA.81.053806

[48]. Conti C. Localization, and Shock Waves in Curved Manifolds. Science bulleti. 2016; 61:570.doi: 
10.1007/s11434-016-1040-z

[49]. Gaididei Y, Kravchuk VP, Sheka DD. Curvature Effects in Thin Magnetic Shells. Phys Rev Lett. 
2014; 112 257203. doi: 10.1103/PhysRevLett.112.257203

[50]. Jadallah HT. The Onset of Superconductivity in a Domain with a Corner. J Math Phys (NY). 
2001; 42:4101.doi: 10.1063/1.1387466

[51]. Bauman P, Phillips D, Tang Q. Stable Nucleation for the Ginzburg-Landau System with an 
Applied Magnetic Field. Arch Ration Mech Anal. 1998; 142:1.doi: 10.1007/s002050050082

[52]. Bowick MJ, Giomi L. Two-Dimensional Matter: Order, Curvature and Defects. Adv Phys. 2009; 
58:449.doi: 10.1080/00018730903043166

[53]. Duclos P, Exner P. Curvature-Induced Bound States in Quantum Waveguides in Two and Three 
Dimensions. Rev Math Phys. 1995; 07:73.doi: 10.1142/S0129055X95000062

[54]. DaCosta R. Quantum Mechanics of a Constrained Particle. Phys Rev. 1981; 23:1982.doi: 
10.1103/PhysRevA.23.1982

[55]. Nagasawa M. Schrödinger Equations and Diffusion Theory. Vol. 86. Birkhäuser; Basel: 2012. 

[56]. Schulman LS. Techniques and Applications of Path Integration. Courier Corporation; Mineola: 
2012. 

[57]. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the Undiseased Human Cardiac Ventricular 
Action Potential: Model Formulation and Experimental Validation. PLoS Comput Biol. 2011; 
7:e1002061.doi: 10.1371/journal.pcbi.1002061 [PubMed: 21637795] 

[58]. Grandi E, Pasqualini FS, Bers DM. A Novel Computational Model of the Human Ventricular 
Action Potential and Ca Transient. J Mol Cell Cardiol. 2010; 48:112.doi: 10.1016/j.yjmcc.
2009.09.019 [PubMed: 19835882] 

[59]. Mitchell CC, Schaeffer DG. A Two-Current Model for the Dynamics of Cardiac Membrane. Bull 
Math Biol. 2003; 65:767.doi: 10.1016/S0092-8240(03)00041-7 [PubMed: 12909250] 

Teplenin et al. Page 15

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[60]. Corrado C, Niederer SA. A Two-Variable Model Robust to Pacemaker Behaviour for the 
Dynamics of the Cardiac Action Potential. Math Biosci. 2016; 281:46.doi: 10.1016/j.mbs.
2016.08.010 [PubMed: 27590776] 

[61]. https://imagej.nih.gov/ij/

[62]. Trenor B, Cardona K, Gomez JF, Rajamani S, Ferrero JM Jr, Belardinelli L, Saiz J. Simulation 
and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human 
Heart Failure. PLoS One. 2012; 7:e32659.doi: 10.1371/journal.pone.0032659 [PubMed: 
22427860] 

Teplenin et al. Page 16

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://imagej.nih.gov/ij/


Fig. 1. 
Optogenetic induction of quasistable depolarized zones (red areas) leads to ectopic waves 

emanating from the most curved portions of the interface between tissue with ultralong and 

normal action potentials. (a) Time series of a single experiment showing ectopic waves 

originating from the corners of a square quasistable depolarized region after a first wave has 

passed. (b) Distribution of the oscillations amplitude during ectopic activity at the positions 

indicated by the green, blue, and magenta dot. (c) Generation of an ectopic wave from the 

“jaw tip of a Pacman.” (d) Generation of an ectopic wave from the vertex of an elliptic 
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interface. In all figures, the symmetry is broken by the first wave passing through the 

medium.
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Fig. 2. 
Numerical modeling of ectopic wave generation from corners of a square quasistable 

depolarized region in four different cardiac tissue models. For each model, a snapshot of 

ectopic activity and voltage signals at three different locations, indicated by the green, blue, 

and magenta dots, are presented. (a) Majumder-Korhonen model of neonatal rat ventricular 

myocytes. (b) ten Tusscher–Noble–Noble–Panfilov model of adult human ventricular 

myocytes. Both detailed physiological models contained an increased conductance and slow 

inactivation variable of the late Na+ current in the QSD tissue. (c) Aliev-Panfilov model. (d) 
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FitzHugh-Nagumo model. Both of these simplified models contained a slow repolarizing 

variable, in addition to the bistable kinetics of the QSD tissue. In all snapshots of ectopic 

activity, the symmetry is broken by the first wave passing through the medium.
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Fig. 3. 
Numerical modeling of ectopic waves in the FitzHugh-Nagumo model. (a) Modeling 

scheme. White zones with ultralong action potentials (i.e., quasistable depolarization) are 

represented by a bistable system (γ = 14), while the surrounding black zone (normal tissue) 

is modeled as a monostable system (γ = 1.5). (b) Snapshots of ectopic beat generation from 

the corner of a quasistable depolarized square after passing of an initial wave [compare to 

Fig. 1(a)]. (c) Distribution of oscillation amplitude for oscillatory activity in (b); [compare to 

Fig. 1(b)]. (d),(e) Preferential generation of ectopic activity from the highest curvature areas 
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of Pacman-shaped (d) and elliptic (e) regions [compare to Figs. 1(c) and 1(d), respectively]. 

The symmetry is broken by the first wave passing through the medium in (b) and (d). The 

wave was coming from the bottom of the domain. (f),(g) Ectopic wave potentiation by the 

curvature of the border zone in radially symmetric cases. Time traces, corresponding to 

snap-shots, are indicated by green, blue, and magenta lines. (f) Sub-threshold 

nonpropagating oscillatory response from a disc of large size (low curvature). (g) 

Propagating periodic response from a disc of small size (high curvature).
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Fig. 4. 
Influence of the nullcline slope 1/γ of the bistable zone on ectopic wave generation. (a)–(c) 

Induction of ectopic activity for γ = 20 (a), 14 (b), or 11 (c). Left panels: Nullclines. Middle 

panels: Space-time plots of 1D simulation. Right panels: Snap-shot from 2D simulation. (a) 

For γ = 20, only the stationary solution is found in 1D and 2D. (b) For γ = 14, subthreshold 

oscillatory activity is seen in 1D and periodic waves emanating from the corners in 2D. (c) 

For γ = 11, a propagating response is observed both in 1D and 2D. Like in (b), the ectopic 

origins are located in the corners of the bistable regions. (d) Bifurcation diagram for a 

Teplenin et al. Page 23

Phys Rev X. Author manuscript; available in PMC 2018 September 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



curved (R = 36.0, red line) and flat (blue line) interface between the monostable (i.e., 

excitable) and bistable (i.e., quasistable depolarized) regions.
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Fig. 5. 
(a) Localization of oscillations in corners of a bistable domain with zero Dirichlet boundary 

condition and γ = 8.9. (b) Schrödinger potential wells with ground energy (dashed lines) 

values for γ = 6.6 (red line) and γ = 13 (blue line). (c) Stability parameter Reλ for different 

values of γ, from the ground energy calculation of the Schrödinger eigenvalue problem. The 

points corresponding to γ = 6.6 and γ = 13 are indicated by red and blue dots, respectively, 

for matching with the potential well profiles in (b).
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