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Abstract 

In essence, pharmacogenetic research is aimed at discovering variants of importance to gene-

treatment interaction. However, epidemiological studies are rarely set up with this goal in mind. 

It is therefore of great importance that researchers clearly communicate which assumptions 

they have had to make, and which inherent limitations apply to the interpretation of their results. 

This review discusses considerations of, and the underlying assumptions for, utilizing different 

response phenotypes and study designs popular in pharmacogenetic research to infer gene-

treatment interaction effects, with a special focus on those dealing with of clinical effects of 

drug treatment.  
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Introduction 

Pharmacogenetics can be thought of as a classic example of gene-environment interaction. 

Namely, in the search for genetic variation which can explain inter-individual drug response 

variability, researchers typically aim to answer the question whether a treatment effect differs 

between subjects with different genotypes. In other words, whether an inherited genetic variant 

acts as an effect measure modifier for a certain (drug) treatment. 

Although the term pharmacogenetics was coined halfway through the 20th century by Fredrich 

Vogel (1), widespread interest into the field truly emerged with the completion of the Human 

Genome Project (2) (Figure 1). There now exist large publically available web resources and 

pharmacogenetic databases, made possible by methodological advances in sequencing 

technology and the emergence of genome-wide testing strategies (3, 4). Regrettably, 

contemporary pharmacogenetic research often depends on the type of study data readily 

available, as most epidemiological studies are not developed with pre-specified 

pharmacogenetic research questions in mind. Therefore, a heterogeneous body of literature 

exists. Collective interpretation can be difficult, as limitations and assumptions inherent to 

different epidemiological study designs must be recognised. Unfortunately, there also exist 

notable examples in the literature where authors overextend the scope and significance of their 

findings.  

Here, we discuss considerations relating to different response phenotypes and study designs 

typically found throughout the pharmacogenetic literature. Though many of the considerations 

and pitfalls described in this paper will also apply to other types of pharmacogenetic 

investigations (e.g. those focussing on ADME properties), we will especially focus on studies 

dealing with clinical effects of drug treatment, an area where we feel invalid inference is more 

prevalent or at least more visible. We will clarify which conclusions may be drawn and which 
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limitations naturally follow from which methodological approach. Where applicable we 

provide illustrative examples from the field of statin pharmacogenetics, in which a diverse 

range of phenotypes and study designs have been combined and investigated (5). Here, we will 

focus specifically on investigations into the intended effects of cholesterol reduction, on the 

prevention of vascular events, or on the unintended occurrence of myopathy-related complaints 

after starting statin therapy.  

 

Response phenotypes 

Except for sharply defined clinical outcomes such as mortality, effects of treatment can often 

be visualised as lying on a possible spectrum of outcomes. For example, the clinical spectrum 

of statin-induced myopathy ranges from commonly occurring myalgia to very rare incidents of 

life threatening rhabdomyolysis (6). The narrow approach of dichotomization will thus lead to 

a loss of information and possibly reduced statistical power (7). This may particularly be the 

case for drug efficacy or toxicity phenotypes related to drug dosage. Furthermore, 

dichotomizing outcomes may induce unnecessary phenotypic heterogeneity between studies 

(complicating systemic reviews and meta-analyses), and might conceal possible non-linearity 

in the associations under investigation. Therefore, continuously distributed outcome-traits are 

often preferable when available. However, these outcomes come with their own challenges (e.g. 

non-normal distributions), and may hinder translating the results to clinically meaningful 

findings. For example, prior knowledge of clear clinical bimodality (e.g. disease remission) 

may guide researchers in choosing a response phenotype which most closely aligns with the 

biology of interest. In addition, dichotomous outcomes more often allow for simple visual 

presentation of results and categorization may mitigate the effects of including significant 

outliers in your analysis. 
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Most pharmacogenetic investigations of interest are inherently longitudinal in nature, as one 

wishes to measure a phenotype just before and then after a drug treatment has started. This goal 

corresponds to a criterion essential to causal inference, namely temporality: that exposure 

preceded the outcome (i.e. onset of disease or change over time in a trait) (8). Even for binary 

outcomes (e.g. clinical or adverse events) it will be essential to compare incidence between 

drug exposure categories, including the absence of drug exposure. Whenever possible, 

incorporating both on- and off-treatment observations into the data analysis is therefore 

considered superior to solely basing conclusions on data from one or more observations made 

on-treatment. There exist additional reasons why utilizing repeated measurements is often 

preferable for quantitative traits. Firstly, a single measurement is merely a snapshot of the 

underlying response-curve, not representative of the true response characteristics over the 

whole treatment phase, which is likely to differ per individual (9). Secondly, methods that do 

involve baseline values can eliminate much of the between-subject variability from the 

treatment comparison, and are therefore typically more powerful. Thirdly, limiting the analysis 

to a single on-treatment value ignores possible baseline imbalances between the groups, which 

are likely to occur in non-randomised studies. Taking these into account may help to control 

for confounding by (contra)indication and in distinguishing genetic effects on the response 

phenotype from those on off-treatment levels. Finally, having both on- and off-treatment 

measurements allows for the calculation of change over time, which is easy to communicate to 

a broad non-statistical audience.  

A further consideration is the selection of a valid time interval to assess treatment response, 

which should be based on clinical experience. For example, a steady-state in low-density 

lipoprotein cholesterol (LDL-C) may be expected 4-6 weeks after start of statin treatment (10). 

However, when one is interested in onset of myopathy symptoms a longer period should be 
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considered, e.g. the mean duration of statin therapy before onset of symptoms was 6.3 months 

(range 0.25-48.0) in a retrospective study of 45 patients (11).  

For adverse drug reactions, response phenotypes suitable for pharmacogenetic research will 

generally be those which appear to be strongly tied to the drug exposure. This will often depend 

on baseline disease incidence, whether relative effect sizes observed in large-scale studies are 

of apparent clinical importance, but also whether sufficient evidence supports a causal link 

between the drug exposure and the adverse event. Additional practical considerations such as 

data availability may guide or limit researchers in their investigations. For example, while it 

has been reliably shown that new-onset diabetes mellitus may be caused by statin therapy (12), 

repeated glucose measurements have historically not been assessed within statin trials. This 

likely explains why statin-induced glucose changes have not been examined in the 

pharmacogenetic setting to date. 

 

Defining treatment effect 

The observed average treatment response in a study does not always reflect the benefit of the 

treatment per se, as the context wherein this observation is made is of great importance (Figure 

2). This is because an individuals’ treatment response, defined here as the clinical outcome 

after starting the treatment, is not just a combination of the drug effect (i.e. the underlying 

(un)measured physiochemical response) and the natural course of the disease, but may also 

reflect secondary effects of initiating drug treatment (13, 14). Examples include placebo effects, 

the possibility that the individual may have been motivated to concurrently alter lifestyle habits 

of prognostic significance to the outcome of interest, or that the researcher or study participant 

may (un)knowingly influence the measurement of the endpoint if he/she is aware of the purpose 
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of the study (i.e. observer bias) (14). The latter issue is more likely to occur with subjective 

outcomes, but may be avoided through blinding both researcher and study participants.  

A serious problem in non-randomized studies is the issue of confounding by (contra)indication. 

In routine healthcare the decision to initiate or refrain from drug treatment is based on the 

prognosis of the patient. Consequently, the prognoses of treated and untreated individuals in 

observational studies are typically not comparable. In other words, individuals with more 

indications for treatment are more likely to be treated, but also more likely to have a worse 

outcome. If this is not taken into account through study design or statistical adjustment, 

straightforward inference of treatment benefits may be invalid, as it could seem that treatment 

actually leads to worse outcomes (15). While no statistical adjustment method can fully resolve 

confounding by (contra)indication in observational studies if not all confounders are known, 

its effects should be minimized when possible. Given that genotype is set at conception and 

remains fixed throughout life, confounding by (contra)indication is unlikely to bias the effect 

estimate of a genetic variant on the outcome of interest. However, if confounding bias is present 

for the association between the drug exposure and the outcome of interest, this may in select 

cases carry over to the assessment of interaction between the genetic variant and this drug 

exposure (16). 

In the next sections we show that the degree to which different study designs are able to avoid 

or disentangle these considerations is paramount to the interpretation of results and conclusions 

that can be drawn, also in the field of pharmacogenetics.  

Study designs 

Various studies are available and appropriate to answer different types of pharmacogenetic 

research questions, depending on the stage of drug development. Here we focus on those 

suitable to evaluate the effect of genetic variation on treatment efficacy and adverse drug 
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reactions, questions which will typically be asked after a drug has already been approved for 

clinical use. In addition to post-hoc subgroup analyses within a randomised controlled trial 

(RCT), all traditional population-based epidemiological studies can be used in this phase.  

However, all study designs come with underlying assumptions and limitations, and may not be 

able to answer all relevant questions (Table 1).  

Our discussion here focuses mostly on sources of bias general to all epidemiology. However, 

a source of confounding specific to genetic epidemiology concerns population stratification 

(17). If there exist subgroups of individuals within the study population which differ in terms 

of genotype frequency and disease risk, spurious associations may arise if this is not taken into 

account. Typically, this can occur when individuals from different ethnic backgrounds with 

limited admixture are included in the same analysis (18). However, even apparently 

homogenous populations may contain genetically distinct subgroups (19). As larger samples 

will likely be more heterogeneous, population stratification will be a larger problem here  (17).  

This should be of particular concern to researchers involved in the field of drug-gene 

interaction, where large studies are typically necessary to find promising signals. 

 

Outcome-based designs 

The case-control design is perhaps the most common approach for pharmacogenetic 

investigations into clinical effects, often focussing on adverse drug reactions. Sampling is 

based on the outcome, with individuals who did (cases) develop the outcome of interest being 

compared to those who did not (controls), with regard to drug exposure prevalence and 

genotype frequencies. Case-control studies can be used to assess both main effects of the 

genetic variant and drug exposure on the outcome, but may also assess interaction on the 

additive and multiplicative scale (20) (Table 2).  



9 
 

There also exist case-control studies which solely include individuals with known drug 

exposure, in which the analysis is limited to comparing genotype frequency between cases and 

controls. For the purpose of simplicity we will assume throughout the manuscript and tables 

that a particular susceptibility genotype is classified as being either present or absent. If it can 

be assumed that genotype does not associate with the outcome of interest in the absence of drug 

exposure, potential differences in disease occurrence between genotype groups can be 

interpreted as gene-treatment interactions (21). Whether this assumption is valid is highly 

dependent on the outcome of interest and the observation window chosen to assess this 

outcome. For example, this assumption is likely to hold for LDL-C reduction after statin 

treatment, since genetic variants are unlikely to lead to such acute (i.e. within days/weeks) and 

significant LDL-C changes (~30%) in absence of the drug treatment. In contrast, a treated-only 

case-control study on the occurrence of coronary artery disease after statin use is likely to also 

turn up genetic variants affecting risk in absence of statin treatment, as the underlying 

atherosclerotic process has a much slower onset than statin-induced LDL-C reduction.   

Major benefits of the case-control design are its cost-effectiveness compared to large cohort 

studies, but more importantly that it is highly suited for rare (drug) outcomes. For severe 

adverse drug reactions, it may sometimes even form the only realistic approach to examine 

genetic contributions. When the outcome of interest has a continuous distribution, sampling 

individuals from the extremes of the outcome distribution (e.g. comparing high- with non-

responders in LDL-reduction after starting statin treatment) may greatly increase statistical 

power when faced with budgetary restrictions for genotyping (22). However, as shown for non-

responders to statin therapy in the PROspective Study of Pravastatin in the Elderly at Risk 

(PROSPER) trial, issues of treatment non-adherence are especially important to consider here 

(23). This strategy may also be promising when rare variants are investigated, as their 

prevalence may be greater on the extreme ends of the outcome spectrum (24). 
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There are some notable challenges in performing case-control studies, the first and foremost 

being the selection of an appropriate control group. The control group should be representative 

of the source population in terms of exposure distribution and genetic ancestry (e.g. European, 

Asian or African ancestry), and should ideally consist of individuals who would be classified 

as cases if they had developed the outcome of interest. In other words, controls should meet 

the eligibility requirements for cases except for their outcome status (20). Preferably, a 

geographically defined population should be the source of sampling, so the entire at-risk 

population can be enumerated. For hospital- or clinic-based case-control studies it may be 

difficult to identify this source population, as it does not correspond to a specific geographical 

area. For example, trauma victims referred to the hospital could live nearby or have been flown 

in by helicopter. In general, the catchment area for a hospital or clinic is likely to differ for 

different diseases, which will need to be considered when sampling controls. Similarly, as the 

cases of outcome-based studies on adverse drug reactions are often identified through databases 

it may be difficult to recruit an appropriate control group, especially since these events are 

often underreported (25, 26). Case-control studies nested within an existing cohort may fare 

better in this regard. A further risk is that cases with short survival times may be 

underrepresented if collection of (genetic) data occurs sometime after the event of interest.  

An alternative outcome-based design is the case-only study, wherein the analysis is restricted 

to cases (Table 1). This simple approach, which can evaluate gene-treatment interaction on the 

multiplicative scale, assumes that genotype and drug treatment are not correlated in the 

population that gave rise to the cases. Under this assumption this design increases power for 

the test of interaction, thereby lowering the number of cases needed to be genotyped (27). Not 

having or being able to find a suitable control group is another reason why this may be an 

attractive alternative to the conventional case-control study (28). If nested in a RCT the 

distributions of gene and treatment can be assumed to be independent by virtue of 



11 
 

randomisation, making the case-only odds ratio a valid measure of gene-treatment interaction 

(Table 2). The calculated odds ratio may however (slightly) differ between case-control and 

case-only studies, as case-control studies estimate different population parameters (odds-, rate-, 

or risk-ratio), depending on how the controls were sampled (29). An example of the case-only 

approach in the field of statin pharmacogenetics is that by Schiffman and colleagues, who 

performed a genome-wide association study on coronary heart disease risk reduction when 

being treated with pravastatin therapy (30). In the discovery phase they solely included 

coronary heart disease cases from the Cholesterol and Recurrent Events (CARE) trial and the 

West of Scotland Coronary Prevention Study (WOSCOPS) trial, finding that 79 common 

genetic variants were nominally (P<10-4) associated with differential event reduction by the 

therapy. To validate these results, these variants were then genotyped in an additional placebo-

controlled pravastatin trial, and in all remaining patients from CARE and WOSCOPS (with or 

without event) (30). This study thereby exemplified how the case-only approach could be 

utilized as a cost-saving measure, by first screening the genome for promising signals, before 

including controls. 

Nesting a case-only study within a cohort study can be problematic, as it is possible that genetic 

factors could influence the ability to tolerate therapy. Therefore, independence between 

genotype and treatment may not be a valid assumption. While this could also occur within an 

RCT, this experimental study design is more likely to have information on, and be able to 

include in the analysis, enrolled individuals who did not respond or had severe side effects. It 

has been argued that tests of gene-treatment association in controls may indicate whether 

genotype and treatment are truly independent in the source population, if the outcome is 

sufficiently rare (31). If however the assumption of gene-treatment independence is violated 

and ignored, the case-only approach will provide a biased interaction effect and lead to 

increased false-negative results (32). Another limitation of the case-only design is that main 
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effects of either genetic or drug treatment on the outcome cannot be estimated, and inference 

is limited to examining interaction on the multiplicative scale. More generally, all outcome-

based designs which cannot approximate risk ratios (rare disease assumption) or risk 

differences (due to knowing sampling fractions) are unable to examine interaction on the 

additive scale, which is often of greater public health relevance (33). Due to their observational 

nature, outcome-based studies are additionally highly prone to confounding, selection bias (i.e. 

that the association between (drug) exposure and disease differs for participants who were and  

were not included in the study) and information bias (i.e. systematic error in the approach 

adopted for measuring or collecing data from a study) (20). For the last category, especially 

recall bias can pose an issue, which will not apply to genotype but might to drug history. 

 

Cohort-based designs 

Cohort-based designs include the cohort and treated-only designs (Table 1). Typically, the rate 

of occurrence (or recurrence) is compared between individuals with different drug exposures 

levels. Increasingly, population-based cohort studies are undertaken, in which an ideally 

random sample or even the entirety of a defined population is included in which multiple 

hypotheses can be evaluated. Though these relatively expensive and time-consuming studies 

aim to answer the same questions of causality that outcome-based designs do, the extensive 

and repeated phenotyping and follow-up allows for more flexibility in investigating multiple 

outcomes and recent, prior and repeated drug exposure (21). In addition, studying a cohort 

representative of a defined population allows for the calculation of population attributable risks. 

While this type of study typically includes more participants than outcome-based studies, it is 

unlikely that a single study would be able to overcome the power and sample size issues 

associated with genome-wide testing. Considerations of sample size are discussed in detail in 
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a separate section below. As cohort-based designs do not typically allow for blinding of 

researchers and participants, it is very likely that observer effects will not be equal between the 

treatment groups. In addition, if genetic testing was not undertaken close to commencement of 

treatment, selection bias may occur when non-responders or those with severe side effects are 

absent from the population.  

Of greater issue is that the assignment of drug therapy is likely to have been subject driven. 

This means that the prognoses of the treated and untreated subjects will generally not be alike. 

In addition to this previously discussed confounding by (contra)indication, the issue of 

regression-to-the-mean may be problematic here. This occurs because the group of subjects at 

the extremes of the response distribution at baseline not just consists of those who consistently 

have more extreme values compared to the population average, but also those who simply by 

chance had an extreme value at baseline. Subsequent measurements of those who fall in the 

second category will therefore tend to be closer to the population mean thereof. Observed 

phenotypic changes over time may thus (partially) represent this regression-to-the-mean, which 

can occur when participants and/or treatment are selected on phenotypic cut-offs at baseline. 

This statistical phenomenon has been demonstrated for a wide range of biological measures, 

including lipid levels (34). Therefore, in non-randomised studies, it should be considered to 

combine multiple baseline measurements to reduce measurement error when selecting subjects, 

or to use suitable statistical methods (35, 36).  

The treated-only design essentially tries to limit the issue of confounding by contraindication 

whilst improving statistical efficiency (37). As the name suggests, this design limits the 

analysis to those exposed to the drug, thereby leaving out the subjects who might have had a 

pertinent contraindication to treatment. This contrasts with cohorts which do include an 

untreated control group, in which confounding by (contra)indication is more commonly 

addressed through statistical adjustment, although applying stricter inclusion criteria at 
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enrolment may also limit this issue (14). A clear benefit of the treated-only approach is that 

less individuals are required for the analysis, which can be highly advantageous when 

genotyping study participants. As noted for the treated-only outcome-based design, the central 

assumption for inferring gene-treatment interaction effects here is that the genetic variant is 

unlikely to explain change in outcome in absence of the drug exposure (21). A clear drawback 

are that the main effects of genetic variants on the outcome are inseparable from drug-treatment 

interaction effects. Observed loci may thus be associated with the natural course of the disease 

(37). In these cases, leveraging publically available data from genome-wide association studies 

(GWAS) may help to substantiate the claim of absence of a main effect of a genetic variant on 

the outcome of interest. This approach will however require these GWAS to have taken into 

account possible effects of drug treatment and to have a similar outcome definition. 

Of special note, an increasing number of researchers are utilizing (singular or repeated) cross-

sectional data from cohort studies to perform genome-wide gene-treatment interaction analyses 

for quantitative traits (38). These efforts have largely been motivated by the issue that the 

design of many cohorts is not ideal for measuring longitudinal drug-induced changes. 

Specifically, assessment may be problematic when drug exposures are rare, when large 

intervals of time separate repeat drug exposure assessment, and when outcome phenotypes are 

not collected at each study visit. Therefore, the use of repeated exposure cross-sections allows 

for more cohorts to contribute, noting that increases in power from including more participants 

has been shown to be larger than the modest increase in power from making use of repeat cross-

sectional measures in the same participants (39).  To date, this approach has particularly been 

applied to questions of gene-treatment interaction for different drug classes on 

electrocardiography-markers (39, 40). Similar research efforts are currently underway for the 

field of statin pharmacogenetics.  
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As study information on exposure and outcome is typically determined at the same time, or at 

least analysed without regard for differences in time, the temporal relationship between 

exposure and outcome remains unclear in these cross-sectional analyses. In fact, making a 

distinction between exposure and outcome will generally not be possible, unless a well-

established drug response phenotype is available (20). Furthermore, aside from the issues 

discussed previously concerning the use of a single on-treatment measurement, care must be 

taken to differentiate effects from those on off-treatment values. Therefore, formal comparison 

with an untreated group is to be advised. Alternative explanations for detected associations 

between genotype and outcome may be differences in number and duration of previous 

treatment(s) and differences in severity of disease. Using data from established cohorts may 

greatly facilitate the execution of these investigations. Nonetheless, due to their inherent 

limitations, cross-sectional studies are most suitable as hypothesis-generating tools for slowly 

developing diseases without sharp onset times, rather than for making solid pharmacogenetic 

inferences of gene-treatment interaction. 

 

Randomized Controlled Trial  

While similar in design to a cohort with a control group, the key difference for the RCT is that 

drug treatment is randomly allocated. As this ensures that the predictors of the outcome are 

equally distributed between the treated and untreated group, we can assume that: “the treated, 

had they remained untreated, would have experienced the same average outcome as the 

untreated did, and vice versa” (41). In addition, this strategy enables blinding of researcher and 

participant, which aims to prevent subsequent differential co-interventions or biased 

assessment of outcomes (42). As previously noted, if the trial is of adequate size the 

distributions of genotype and exposure will be independent. Due to these study characteristics, 
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it is possible to either avoid or account for regression-to-the-mean, confounding by 

(contra)indication, and selection bias. Consequently, it is possible to make more firm 

conclusions regarding the underlying treatment effects than is possible in non-randomised 

studies (Figure 2). While reducing the likelihood of selection bias is a major appeal of RCTs, 

it should be noted that genotyping in blood samples taken after study completion may still 

introduce this problem. 

Subgroup analyses in trials have also been criticized (43), but “breaking” the randomisation 

will typically only occur if researchers condition on a variable that occurs after treatment, 

which will not apply to genotype. Though RCTs are considered the gold standard to estimate 

unbiased drug-SNP interaction effects, a variety of reasons exist which explain why researchers 

may prefer observational study settings instead. Trials will typically have included a select 

number of participants, thus leading to reduced statistical power compared to large 

observational cohorts. In addition, the relative limited number and narrow definition of 

exposures and outcomes under investigation may allow for less flexibility for pharmacogenetic 

enquiries. For example, both drug exposures and outcomes may be more clinically meaningful 

when examined as classes not envisioned when designing the trial. Other considerations 

include concerns of generalizability due to RCTs often having strict exclusion criteria, and that 

the RCT approach is even less suited than the cohort-based designs to investigate rare adverse 

outcomes. This results from individuals with relevant co-morbid conditions or with severe side 

effects typically being excluded before randomisation (e.g. during a run-in phase), in addition 

to trials often not having adequate follow-up to investigate outcomes which can occur long 

after the invention (44).  

An approach analogous to that of the RCT, known as Mendelian randomisation, is increasingly 

being used in the context of pharmacogenetics and pharmacovigilance. These investigations, 

in which the causal effect of an exposure on an outcome is assessed by using a genetic proxy 
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(e.g. one or multiple genetic variants) instead of the exposure (45), have been applied to a range 

of different types of questions. For example, summary level statistics from a large-scale 

pharmacogenetic meta-analysis of GWAS of statin-induced lipid response were recently used 

to demonstrate that genetic predisposition for increased LDL-C levels may decrease efficacy 

of statin therapy if effects on off-treatment lipid levels are taken into account (46). Mendelian 

randomisation might alternatively be used to predict unintended drug effects. For example, 

Swerdlow and colleagues used SNPs in the HMGCR (i.e. the enzyme targeted by statins) gene 

to demonstrate that the increase in new-onset type 2 diabetes risk is “at least partially” 

explained by HMGCR inhibition (47). In theory, Mendelian randomisation investigations 

could reveal these effects prior to drugs licensing, potentially preventing exposure of large 

groups of patients to unnecessary risks (48). Lastly, stratifying Mendelian randomisation 

analyses could provide evidence which subpopulations are likely to derive greater benefit from 

a drug, which could guide future RCTs (49). 

 

Considerations of sample size 

A major issue in pharmacogenetic research has been the poor reproducibility of promising 

signals, likely in part due to underestimation of the sample sizes necessary to examine gene-

treatment interaction. It has previously been demonstrated that study sizes for investigations 

into interaction on the multiplicative scale should be over four times as large as those necessary 

to detect main effects of the same magnitude (50). Given the relatively small effect sizes 

involved, it should therefore not come as a surprise that necessary sample sizes can run into 

the tens of thousands when genome-wide strategies are considered, where one must not just 

account for multiple testing but also consider the necessity of replicating ones results (51). 

Programs for sample size and power calculations for gene-treatment interaction have also been 
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used to estimate sample size requirements for investigations into clinical effects of statin 

therapy (5). In addition to study design, researchers must consider the expected sizes of both 

the genetic effect and the drug response, the size of their interaction effects, allele frequencies, 

mode of inheritance, and the prevalence of the drug treatment and outcome. Moreover, studies 

are likely to genotype variants in linkage disequilibrium with the true causal variant, which will 

also influence sample size requirements (52). 

In recent years, data from mega-biobanks have been become increasingly available, which will 

provide unprecedented possibilities for pharmacogenetic enquiries. It should however be noted 

that participation rates have been relatively low, which will pose unique challenges when 

interpreting results. For example, only 5.2% of the 9.2 million individuals invited to enter the 

population-based UK Biobank actually participated in the baseline assessment (53). Similarly, 

in mid-2015 the Million Veterans Program estimated their response rate at 13.2% of the first 3 

million invited individuals (54). In addition, it is highly questionable whether signals which 

can only be detected under these increased sample sizes will actually translate into clinically 

meaningful results. 

Further considerations must be made when multiple study designs are incorporated in the same 

analysis via a meta-analytic approach. In the next section we will examine some of these 

considerations, taking the largest pharmacogenetic meta-analysis of genome-wide association 

studies of statin-induced LDL-C changes as an example (55). 

 

Genomic Investigation of Statin Therapy (GIST) consortium 

A major limitation of previously performed individual pharmacogenetic studies of statins was 

the lack of statistical power to detect small pharmacogenetics effects. To overcome this 

problem, a large meta-analysis of all available data on statin response was initiated, in which 
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the investigators aimed to combine results from statin trials and large-scale cohorts. For their 

meta-analysis on differential response in LDL-C to statin therapy, the GIST consortium 

included 6 statin-trials (n=8,421) and 10 observational studies (n=10,175) for the discovery 

stage. Thereafter, the most promising signals were validated in a further 22,318 subjects. 

Within this large GWAS effort, four loci were found to be associated with LDL-C lowering 

response to statin therapy. The most significant association was for a SNP on chromosome 6, 

at LPA (rs10455872, minor allele frequency (MAF)=0.08, beta=0.052, standard error 

(s.e.)=0.004, P=7.41x10-44), indicating that carriers of the rs10455872 SNP respond to statins 

with a 5.2% smaller LDL-C lowering effect per minor allele compared with non-carriers. The 

second strongest was a SNP at APOE on chromosome 19 (rs445925, MAF=0.11, beta=-0.051, 

s.e.=0.005, P=8.52x10-29), indicating an additional 5.1% increase per allele in LDL-C lowering 

effect compared to non-carriers. In addition, SNPs at two novel GWAS loci were shown to be 

significantly associated with statin response: SORT1/CELSR2/PSRC1 at chromosome 1 

(rs646776, MAF=0.22, beta=-0.013, s.e.=0.002, P=1.05x10-9) and SLCO1B1 at chromosome 

12 (rs2900478, MAF=0.16, beta=0.016, s.e.=0.003, P=1.22x10-9). 

Notably, the consortium solely included statin-users, which made it possible to compare 

associations found in trials with those of observational studies. In addition, this approach made 

it possible to gather large enough numbers, given the necessity to account for multiple testing. 

To mimic the trial setting as close as possible, only incident statin users with a pre- and post-

measurement were included from observational studies.  

As discussed previously, the central assumption for inferring gene-treatment interaction effects 

via this treated-only approach is that genotype should be unlikely to significantly correlate with 

the response in absence of drug exposure. Given that the underlying disease course (i.e. LDL-

C levels) can be assumed to be quite stable in absence of lipid-lowering treatment, this 

assumption may very well be valid. In addition, placebo- and observer-effects will likely be 
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near absent for statin-induced LDL-reduction, which will exist for more subjective complaints 

such as those seen within the field of psychiatric pharmacogenetics (56). The suitability of this 

approach was reinforced by the large homogeneity of estimates when RCTs and observational 

studies were separately considered.  

A major point of discussion however surrounded the question how to account for the possible 

effect of genetic variants on off-treatment values, which cannot simply be accounted for by 

taking the (fractional) difference between on- and off-treatment levels as the outcome. In the 

end, the researchers solely included participants with on- and off-treatment LDL-C levels. Each 

study independently performed a GWAS on the difference between the natural log-transformed 

LDL-C levels on- and off-treatment which can be interpreted as the fraction of differential 

LDL-C lowering in carriers versus non-carriers of a genetic variant. These analyses were then 

adjusted for natural log-transformed off-treatment values to try to distinguish drug-treatment 

interaction effects from genetic effects on off-treatment LDL-C levels, a strategy for which 

there exists extensive debate, particularly for non-randomised studies (57, 58) By performing 

additional analyses, the researchers were however able to validate this approach. These 

included calculating formal gene-treatment interaction terms within a trial not involved in the 

first-stage meta-analysis for the genetic variants found to be genome-wide significant, but also 

by adjusting for the measurement error and intra-individual variation in off-treatment values in 

the only study which had multiple baseline measurements available (59).  

The main limitation of the analysis is the large degree of clinical heterogeneity. This is 

evidenced not only by differences in eligibility criteria of the original studies, leading to the 

inclusion of different patient groups, but also by differences in statin types (n=8) and dosages. 

While adjustment for statin dose was achieved by dividing the dose by the statin-specific dose 

equivalent based on daily dosages required to achieve mean 30% LDL-C reduction, changes 

in dose during follow-up could not be taken into account.  Nonetheless, the project remains a 
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clear example that if certain assumptions can be realistically met, inherent limitations to 

pharmacogenetic inference may be overcome.  

 

Conclusion 

Pharmacogenetic research is an expanding field, whose relevance is slowly becoming visible. 

While post-hoc subgroup comparisons in RCTs are still considered the gold standard in 

pharmacogenetic research of treatment efficacy, there exist many research questions for which 

RCTs cannot provide the solution. As all study designs and response phenotypes have their 

merits and problems, authors should be vigilant to avoid making conclusions which their 

methodology cannot back up. In particular, the assumptions needed to make inferences on 

gene-treatment interaction must be carefully considered, especially when case-only or treated-

only strategies are employed. These challenges to inference remain ever relevant as new 

avenues of pharmacogenetic investigations emerge, including those using epigenetics or 

mRNA, as these studies will typically be performed in similar research settings.  
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Figure legends 
Figure  1. Appearance of the terms pharmacogenetic(s) or pharmacogenomic(s) in PubMed-

indexed publications across the past 25 years. The Human Genome Project was completed in 

2003. 

 

Figure 2. Non-randomized study on treatment response. The observed treatment response to 

drug X depends not just on the underlying physiochemical response and natural course of the 

disease process, but also on secondary effects of being allocated drug X. Moreover, 

confounding by (contra)indication may occur if reasons to initiate or refrain from drug 

treatment also associate with the outcome of interest. Pharmacogenetic research aims to answer 

which, if any, inherited genetic factors explain variation in the outcome of interest in the 

presence of a certain (drug) treatment (i.e. drug-gene interaction effects), distinguishing these 

effects from direct (i.e. main genetic effects) on the outcome.  
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Figure 1. 

 

Figure 2. 
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Table 1. Popular epidemiological study designs suitable for pharmacogenetic research questions on clinical effects of drug therapy 
Design Graphical representation Key assumptions for gene-

treatment interaction Advantages Limitations 

Outcome-based designs 

Case-control 

 

Valid control selection 

Cost-effective; can evaluate rare 
events caused by rare variants; can 
assess both main and interaction 

effects 

Prone to selection/information bias and 
confounding due to observational design 

Treated-only 
case-control 

 

As case-control; no association between 
genotype and outcome in untreated group 

Genotyping untreated individuals not 
needed 

See case-control; can only assess 
interaction on multiplicative scale  

Case-only, 
nested within 

RCT 

 

No association between genotype and 
drug exposure in source population 

More efficient than case-control in 
evaluating interaction effects; 

genotyping controls not needed 

See case-control; can only assess 
interaction on multiplicative scale; gene-

treatment independence assumption 
unlikely to hold in non-randomised 

cohort 

Cohort-based designs 

Cohort  

 

- 

Repeated measures; can study 
multiple outcomes and rare exposures; 
can evaluate both main and interaction 

effects, can assess population-
attributable risk 

Subject-driven assignment of treatment; 
resource-intensive; prone to differential 
loss-to-follow up (selection bias); prone 

to information bias and confounding; 
inefficient for rare outcomes 

Treated-only 
cohort 

 

No association between genotype and 
outcome in untreated group 

Avoids issue of confounding by 
contraindication; more efficient than 
cohort study in evaluating interaction 

effects 

See cohort; can only assess interaction 
effects; prior knowledge necessary to 

make key assumption for gene-treatment 
interaction 

Trial-based design 

Subgroup 
analyses 

within RCT 

 

Valid randomisation procedure 

Random allocation of treatment 
assures comparability at baseline; 

regression-to-the-mean can be taken 
into account; allows for blinding 

Resource-intensive; limited 
generalizability; inefficient for rare 

outcomes 

RCT denotes randomised controlled trial 
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Table 2. Comparison of effect estimators from outcome-based study designs 

Case-control setting (frequency data complete) 

Drug (E) Genotype (G) Cases Controls Effect estimator 

- - a b  

- + c d ORG = b*c / a*d 

+ - e f ORE = b*e / a*f 

+ + g h ORGE = b*g / a*h 

To assess for interaction on the multiplicative scale: ORGE / (ORG * ORE) 

Treated-only case-control setting (subset of frequency data) 

Drug (E) Genotype (G) Cases Controls Treated-only case-control OR = f*g / e*h 

- - n/a n/a If the genetic variant G is not associated with the 

outcome among untreated individuals (ORG=1), the 

treatment-only case-control OR will estimate the 

assessment of interaction on the multiplicative scale 

from the case-control setting. 

- + n/a n/a 

+ - e f 

+ + g h 

Case-only setting (subset of frequency data) 

Drug (E) Genotype (G) Cases Controls Case-only OR = a*g / c*e 

- - a n/a If the drug treatment E and genetic variant G are not 

associated among controls (i.e. source population), 

the case-only OR will estimate the assessment of 

interaction on the multiplicative scale from the case-

control setting. 

- + c n/a 

+ - e n/a 

+ + g n/a 

OR denotes odds ratio. While the above table denotes genotype as the presence of absence of a certain susceptibility 

genotype, it will equally hold for more complex situations, including combinations of alleles at multiple loci. 

 

 

 


