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Abbreviations 

 

CAD Coronary artery disease 

CCTA Coronary computed tomography angiography 

CMR Cardiovascular magnetic resonance 

ICA Invasive coronary angiography 

IVUS Intravascular ultrasound 

OCT Optical coherence tomography 

PET Positron emission tomography 

PTP  Pre-test probability 

QCA Quantitative coronary angiography 

SPECT Single photon emission computed tomography 
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ABSTRACT  

Aims 

To determine the ranges of pre-test probability (PTP) of CAD in which stress ECG, stress 

echocardiography, coronary computed tomography angiography (CCTA), single-photon emission 

computed tomography (SPECT), positron emission tomography (PET) and cardiac magnetic 

resonance (CMR) can reclassify patients into a post-test probability that defines (>85%) or excludes 

(<15%) anatomically (defined by visual evaluation of invasive coronary angiography [ICA]) and 

functionally (defined by a fractional flow reserve [FFR] ≤0.80) significant CAD. 

Methods and Results 

A broad search in electronic databases until August 2017 was performed. Studies on the 

aforementioned techniques in >100 patients with stable CAD that utilized either ICA or ICA with FFR 

measurement as reference, were included. Study-level data was pooled using a hierarchical bivariate 

random-effects model and likelihood ratios were obtained for each technique. The PTP ranges for each 

technique to rule-in or rule-out significant CAD were defined. 28,664 patients from 132 studies that 

used ICA as reference and 4,131 from 23 studies using FFR, were analyzed.  

Stress ECG can rule-in and rule-out anatomically significant CAD only when PTP is ≥80% [76, 83] 

and ≤19% [15, 25], respectively. CCTA is able to rule-in anatomic CAD at a PTP ≥58% [45, 70] and 

rule-out at a PTP ≤80% [65, 94]. The corresponding PTP values for functionally significant CAD were 

≥75% [67, 83] and ≤57% [40, 72] for CCTA, and ≥71% [59, 81] and ≤27 [24, 31] for ICA, 

demonstrating poorer performance of anatomic imaging against FFR. In contrast, functional imaging 

techniques (PET, stress CMR and SPECT) are able to rule-in functionally significant CAD when PTP 

is ≥46-59% and rule-out when PTP is ≤34-57%. 

Conclusion 

The various diagnostic modalities have different optimal performance ranges for the detection of 

anatomically and functionally significant CAD. Stress ECG appears to have very limited diagnostic 

power. The selection of a diagnostic technique for any given patient to rule-in or rule-out CAD should 

be based on the optimal PTP range for each test and on the basis of the assumed reference standard.  
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INTRODUCTION 

Accurate detection of coronary artery disease (CAD) remains paramount in the 

practice of cardiology. Traditionally, the characterization of “significant” CAD has relied 

upon visual evaluation of coronary artery stenosis during invasive coronary angiography 

(ICA). However, the severity of angiographic stenosis does not unequivocally reflect its 

functional significance.(1) Recently, the invasive assessment of fractional flow reserve (FFR) 

has been adopted to identify functionally significant coronary artery stenoses.(2) Yet, FFR 

evaluation is not without limitations as diffuse CAD and hemodynamic conditions have 

shown an influence on its estimation, it is inherently invasive and costly, and it still does not 

represent the most common practice in invasive evaluation of CAD.(3) 

Stable CAD is understood as the condition characterized by episodes of inducible and 

reversible ischemia commonly associated with transient chest discomfort. The current 

European and American guidelines on the management of stable CAD(2,4) recommend that 

patients with an intermediate pre-test probability (PTP) (ranging from 15 to 85%) of 

significant CAD should undergo non-invasive evaluation(5,6). In subjects whose probability 

of a significant coronary artery narrowing is low (<15%), routine testing is not recommended. 

On the other hand, patients with a high probability (>85%) of the disease calls for direct 

therapeutic interventions.  

In the group of patients with intermediate PTP of significant CAD, the current 

recommendations for the selection of the optimal non-invasive technique are broad and do not 

assign preference of one modality over another. Certain techniques are broadly available 

because of their relative low technical and personnel demands (such as stress ECG) or good 

availability (stress echocardiography, coronary computed tomography angiography [CCTA], 

and single-photon emission computed tomography [SPECT]), while others, like positron 

emission tomography (PET) and stress cardiac magnetic resonance (CMR), although 
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powerful, are much less available and their applicability is still limited by infrastructural and 

capacity requirements (7). 

It is expected that each technique has a particular range of PTP of significant CAD 

where the usefulness of its application is maximized. The performance of non-invasive 

techniques is generally reported in terms of sensitivity and specificity. Nevertheless, these 

numbers cannot be readily utilized in the clinical decision-making process. They can however 

be used to derive positive and negative likelihood ratios (LR+ and LR-), which constitute 

readily useful parameters of a test’s accuracy that facilitate the selection of a diagnostic test 

for individual patients.(8) Given a PTP of significant CAD and the performance of a particular 

test by means of its LR’s, one can assess the post-test probability of significant CAD after 

performing such test. Using this approach, one can estimate the range of PTP when a positive 

or negative test result can confidently rule-in (if the post-test probability goes beyond 85%) or 

rule-out (if the post-test probability drops below 15%) the disease. 

As currently both anatomical (ICA) and functional (FFR) reference standards are 

utilized, it is rational to consider evidence using both standards.(9) The anatomical standard 

has been used in most of the studies available today and there is a massive amount of 

evidence, although functional information has gained increasing interest. It can be expected 

that some tests demonstrate better agreement with ICA while others with FFR. Therefore, 

integration of all available data may provide important clinical information for conscious 

selection of the tests.  

The aim of the present systematic review and meta-analysis was to evaluate the 

diagnostic performance of stress ECG, stress echocardiography, CCTA, SPECT, PET, stress 

CMR, and ICA in the detection of anatomically and functionally significant CAD in order to 

determine the optimal range of PTP in the diagnostic application of each technique for ruling-

in or ruling-out significant CAD. 
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METHODS 

The present systematic review was conducted in accordance to the Preferred Reporting 

items for Systematic Reviews and Meta-analysis (PRISMA)(10) recommendations and the 

MOOSE checklist (see results and e-Table 1 in the supplement).(11) 

Data Sources 

We performed a systematic search for original studies published until August 2017 

that reported on the diagnostic performance of stress ECG, stress echocardiography, CCTA, 

SPECT, PET, stress CMR, and ICA for the detection of significant CAD. 

The search was performed in electronic databases (Medline, Embase, PubMed, 

Scopus, The Cochrane Library, Web of Science, ProQuest) using a broad strategy with a 

combination of MeSH terms and free text words sensitive to: identify studies concerning 1) 

the aforementioned diagnostic techniques, 2) diagnostic performance, 3) patients with 

intermediate pre-test probability of the condition, and 4) significant CAD. The search results 

were limited to the English language and to studies performed in humans. The full search 

string is reported in e-Table 2. Reference lists from relevant studies were scanned and cross-

checked to identify potentially overlooked publications. 

Study Selection and Quality Assessment 

Studies were included according to the following eligibility criteria: 1) the study aimed 

to investigate stable CAD (not acute coronary syndromes), 2) either catheter-based X-ray 

angiography (ICA) or ICA with FFR evaluation were used as the reference standard for the 

diagnosis of stable CAD, 3) the reported data was explicit or sufficient to extract numbers for 

true and false positive and negative results, and 4) the study included a sample of at least 100 

patients (for robustness). Selected studies were further divided according to the reference 

standard considered (ICA or FFR evaluation). 
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For each included study, the Quality Assessment of Diagnostic Accuracy Studies 

(QUADAS-2) criteria were determined by two authors (LJ and HB). The QUADAS-2 tool 

assesses the study quality in different domains including patient selection, index test, 

reference standard, and flow of patients through the study considering the timing of the index 

test and reference standard. For each article, quality and applicability were assessed in the 

aforementioned domains as follows: “yes” if concern existed based on enough description in 

the report, “no” if there was no concern based on enough description in the report or “unclear” 

if there was inadequate or insufficient information reported in the article to make a judgment.  

Data Extraction 

Data were recorded according to the technique and reference standard utilized. The 

number of subjects, male to female patient proportion, age, type of stressor, tracer utilized (if 

any), stable CAD definition, and prevalence were extracted. The number of true positives 

(TP), false positives (FP), true negatives (TN), and false negatives (FN), as well as derived 

diagnostic performance variables were recorded. 

Study review, quality evaluation, and data extraction were performed in parallel by 

two authors (AS and HB). Any specific discrepancies were resolved by consensus. If 

necessary, a third reviewer (JK) was considered to reach convergence. 

Reference Standard 

Catheter-based ICA alone and ICA with FFR measurement were considered as the 

reference standards for the determination of anatomically significant and functionally 

significant CAD, respectively. Anatomic coronary narrowing >50% was considered as 

determinant of significant CAD and an FFR≤0.80 was considered as functionally significant 

CAD. 

Data synthesis and statistical analysis 
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Hierarchical bivariate random-effects models were constructed to combine individual 

study-level data on the sensitivities and specificities across studies. This model takes the 

correlation between sensitivity and specificity into account, and is described in detail 

elsewhere.(12) The bivariate model used parametrization to render summary points for 

sensitivity and specificity with 95% confidence intervals [CI] for each of the imaging 

techniques. We used an unstructured covariance matrix allowing all variances and covariances 

to be distinct. We then derived summary estimates of the LR+ and LR- with their confidence 

intervals from the model estimates. For echocardiography and SPECT, more than one type of 

stressor was used. We compared if a model distinguishing by type of stressor had a better 

model fit than a model grouping all stressor techniques together. The analysis was performed 

separately for anatomically and functionally significant CAD (according to the reference 

standard used). We used the p-value from the likelihood ratio test to determine if the model 

with a covariate for the type of stressor fitted the data better than a model without such 

covariate. If the p-value was 0.05 or less, we depicted summary estimates for a specific type 

of stressor.  

Utility of non-invasive approaches according to pre-test probability of stable CAD  

Once the positive and negative LRs of each non-invasive diagnostic technique were 

obtained for both accepted reference standards, the ranges and in which every single 

technique allows to confidently rule-in CAD, rule-out CAD, or both were input into a color-

coded graph. Additionally, we created a supplemental color-coded suggestion over the 

structure of the current ESC guidelines stable CAD PTP table to depict the suggested utility of 

each diagnostic technique at each level of risk based on age, sex, and type of symptoms. 
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RESULTS 

Study Characteristics 

The study selection flow chart is shown in Figure 1. Specific characteristics and the 

full reference for each selected study can be consulted in e-Table 3 in the Supplement. After 

eligibility assessment and technique subgroup characterization, 13 studies on stress ECG, 12 

studies on exercise stress echocardiography, 30 on dobutamine stress echocardiography, 9 

studies on CCTA, 28 studies on exercise & adenosine or dipyridamole stress SPECT, 13 on 

exercise stress SPECT, 3 studies on PET, and 11 on stress CMR were considered for the 

pooled analysis on anatomically significant CAD. On the other hand, 2 studies in ICA, 7 

studies on CCTA, 5 on exercise stress SPECT, 4 on PET, and 5 on stress CMR were 

considered for the pooled analysis on functionally significant CAD. 

Study Heterogeneity and Quality 

Risk of bias in the included studies, as assessed with the QUADAS-2 score, showed 

important variation across diagnostic modalities. Overall, PET, CCTA, and stress CMR 

showed a low risk of bias and therefore, did not raise substantial concerns of applicability. 

However, these modalities conveyed the smallest number of studies included. Conversely, the 

proportions of unclear ratings for ECG and echocardiography studies related to the year when 

these were performed. For the oldest studies, insufficient data for this assessment is 

commonly reported. SPECT studies generally rated less well showing a balanced proportion 

of unclear and high risk of bias in all domains. E-Figure 1 in the Supplement shows this 

assessment across techniques in an ascending order of risk. Overall quality per type of 

reference standard is shown in Figure 2. 

Performance Estimates 

The pooled analysis considering anatomically significant CAD included a total of 

2,442 patients for stress ECG, 4,302 for stress echo (with exercise or vasodilator), 2,756 for 
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CCTA, 4,346 for exercise stress SPECT, 6,551 for exercise & adenosine or dipyridamole 

stress SPECT, 418 for PET, and 3,393 for stress CMR. Further, the pooled analysis 

considering functionally significant CAD included 954 for ICA, 1,140 patients for CCTA, 

740 for exercise stress SPECT, 709 for PET, and 588 for stress CMR. Some studies evaluated 

several techniques or technique subgroups simultaneously. Such studies were included as 

independent entries in more than one pooled analysis per technique.  

Table 1 summarizes the performance estimates for every diagnostic technique 

according to each reference standard. Some techniques had various subcategories typically 

according to the type of stressor utilized. Some of these subcategories are less commonly used 

or did not yield adequate information for a summary estimate (e.g. stress echo with 

dobutamine stress n=30, dobutamine stress SPECT n=2, and dobutamine stress CMR n=2) 

and were not included in these estimates. 

Considering anatomically significant CAD, there were 11 vasodilatory stress 

echocardiography studies and analysis considering >50% as significant stenosis yielded a 

sensitivity of 0.75 [0.70, 0.80] and specificity of 0.91 [0.86, 0.94]. These summary estimates 

were not statistically different from the summary estimates obtained for exercise stress echo 

(likelihood ratio test p-value=0.386) and were consequently pooled together. The summary 

estimates obtained from 27 dobutamine stress echocardiography studies were 0.81 [0.77, 

0.85] for sensitivity and 0.84 [0.81, 0.87] for specificity and given that these estimates were 

significantly different from exercise stress echocardiography (likelihood ratio test p-

value=0.012), they were not pooled together but their references can be consulted in the 

supplementary material. 

When anatomically significant CAD was used as reference standard, the LR– of 

different tests varied from 0.04 to 0.68. The best performance in ruling out CAD was achieved 

using CCTA and poorest with stress ECG. The LR+ varied from 1.53 to 5.87. The best 
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performance for ruling in CAD was achieved using PET and the poorest with stress ECG. The 

LR+ and LR- for dobutamine stress echocardiography subgroup were 8.03 [4.98, 12.95] and 

0.27 [0.22, 0.34], respectively (not shown in the tables). 

When functionally significant CAD was considered as reference standard, LR– varied 

from 0.13 to 0.44. CCTA, PET, and stress CMR had the best and similar performance in 

ruling out significant CAD (–LR=0.13 [0.07, 0.24]), while interestingly, ICA had the poorest. 

The LR+ of the available techniques varied from 1.97 to 7.10. The poorest performances in 

ruling-in an abnormal FFR were documented for CCTA (LR+=1.97 [1.28, 3.03]) and ICA 

(LR+=2.49 [1.47, 4.21]), while functional imaging tests conversely demonstrated the best 

performance (LR+ range: 3.87-7.1). We could not identify enough robust studies to pool 

estimates for stress ECG and stress echocardiography. 

Effectiveness of non-invasive diagnostic techniques in ruling in/out significant CAD 

The Fagan nomogram is a useful tool to graphically apply LRs to a PTP to calculate 

the post-test probability. A parallel example of its use is depicted in Figure 3, which shows 

how one can calculate the post-test probabilities after a positive or negative test result starting 

from any PTP in an individual patient. 

The same nomogram can be also utilized backwards so that we can assess the PTP 

values that will lead to a defined range of post-test probability for each diagnostic method. 

Therefore, using the data from the meta-analysis, we defined the ranges of PTP of CAD where 

the diagnostic techniques can confidently rule-in (by driving the post-test probability above 

85%) and/or rule-out (by driving the post-test probability below 15%) significant CAD. This 

was done separately for both anatomically and functionally significant CAD. Such ranges are 

schematically shown along with their corresponding upper and lower limits in Figure 4 and 

numerically reported in e-Table 4 in the Supplement. 
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Finally, based on the obtained data described above, we transformed the PTP table 

from the 2013 ESC Guidelines on the management of stable coronary artery disease (4) into a 

supplemental guide that exemplifies how clinicians could implement the resulting estimates of 

performance in this report in order to select a diagnostic test that confidently rules-in or rules-

out CAD (both anatomically and functionally significant CAD) at each patient PTP category 

(e-Figure 2 panels A and B, respectively).  

 

 

 

DISCUSSION 

The present study analyzed the evidence on the performance of different diagnostic 

techniques for the detection of either anatomically or functionally significant CAD. Beyond 

reporting traditional metrics, we also portrayed their performance as LRs and defined the 

optimal ranges of PTP for each test where they can reclassify patients from intermediate to 

either low or high post-test probability of CAD (i.e. rule-out or rule-in, respectively).  

From this analysis several main messages can be driven. Stress ECG appears to have 

very limited diagnostic power to rule-in or rule-out significant CAD. In fact, there was no 

single PTP value in which stress ECG can both define the diagnosis and exclude it. Moreover, 

even to confidently rule-out CAD, a very low PTP (≤19% [15, 25]) is needed, while for 

ruling-in, a PTP ≥80% [76, 83] is required.  

As expected, the performance of imaging methods was clearly better than that of stress 

ECG. However, there appears to be also differences between them. A negative result in 

CCTA, which conveys a strong LR-, can exclude anatomically defined CAD in nearly all 

patients independently of their pre-test probability. The performance was clearly poorer when 

FFR was considered the reference standard as CCTA could only exclude functionally 

significant CAD at a PTP ≤57% [40, 72]. Correspondingly, the rule-in power, that was 
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moderate to good when considering ICA as reference, also clearly deteriorated when FFR was 

used as reference standard.  

The functional imaging techniques (PET, CMR, SPECT), which had only moderate 

power in identifying anatomically significant CAD, performed much better when FFR was 

used as reference standard. This is in agreement with previous notions and a recently 

published meta-analysis (9,13). PET and stress CMR demonstrated the best diagnostic 

performance and offered reasonable range of pre-test probabilities where they could 

simultaneously rule-out or rule-in functionally significant CAD as shown in Figure 4. 

However, the comparison between functional imaging techniques must be done cautiously as 

not enough data was available for stress echocardiography and SPECT studies were older. 

Furthermore, in more recent studies, referral bias to reference technique is a common 

phenomenon with established techniques, which typically leads to underestimation of the test 

specificity. Also, the recent technical advances in were not accounted for as the data was 

heavily weighted by older studies. Therefore, the previously established tests may 

underperform in the present analysis. 

We also assessed the performance of ICA itself in detecting functionally significant 

CAD even though it does not classify as a non-invasive test. ICA demonstrated the poorest 

ruling-out performance of all analyzed techniques when the reference standard was FFR as a 

PTP ≤27% [24, 31] was needed to rule-out functional CAD. Consistently, the PTP range to 

rule-in functionally significant CAD was rather modest (≥71% [59, 81]) and only slightly 

superior to CCTA (≥75% [67, 83]). This behavior fits well with the current recommendation 

that ICA should be used primarily in patients with high PTP. 

Although a pooled evaluation of non-invasive imaging techniques for diagnosing 

functionally significant CAD has been performed recently, (14) the present study expands the 

evidence by also considering stress ECG performance, evaluating the competence of ICA 
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alone in determining functionally significant CAD, conveying the practical ranges of 

application for the involved diagnostic techniques and parsing the determination of CAD both 

against anatomical and functional standards. This is timely and relevant considering that 

anatomical definition of CAD is still widely used in the daily clinical scenario in many 

healthcare centers around the world, while at the same time acknowledging that FFR indeed 

represents the currently most adequate reference standard. 

 

Clinical implications 

Our clinical conclusions partly differ from those in the current clinical guidelines. For 

example, in ESC guidelines (4) stress ECG is recommended in patients with lower 

intermediate PTP (15-65%) of CAD. Our analysis argues against this statement as the 

practical utility of stress ECG in detecting CAD appears very limited (Figure 4A and e-Figure 

2A). However, exercise testing also provides complementary information beyond ECG 

changes, such as exercise capacity, arrhythmias, hemodynamic response, and symptoms 

during exercise, which are considered clinically useful. These, however, could not be taken 

into account in the present analysis. 

CCTA has rapidly gained popularity mainly based on its high negative predictive 

value. This was confirmed in the present analysis by the low LR-, which suggests that a 

negative result can reliably rule-out anatomic CAD virtually at any level of intermediate pre-

test probability (Figures 4A and e-Figure 2A). However, with a high probability of CAD, 

exclusion of disease is clinically less beneficial because, statistically, most patients will have 

the disease, and in order to rule-out CAD in one patient, a considerably large number of 

patients must be investigated. Additionally, the rule-out power decreased when considering 

FFR as reference. A known limitation of CCTA is low specificity, especially in identifying 
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functionally significant CAD (53%), and this links to our finding that a PTP ≥75% is required 

to rule it in (Figure 4B). 

Not surprisingly, non-invasive imaging methods that characterize the functional 

consequences of CAD (rather than the coronary atherosclerotic lesions themselves) perform 

better when FFR is used as a reference standard and outperform CCTA (Figure 4A vs. 4B). 

Clearly, every technique has a particular diagnostic performance profile. The techniques focus 

on different levels of the ischemic cascade including wall motion abnormalities 

(echocardiography and stress CMR), relative perfusion abnormalities (stress CMR and 

SPECT), and changes in physiological absolute regional myocardial perfusion (PET).  

Out of the functional imaging tests, PET and stress CMR demonstrated good 

performance with optimal application ranges (for both ruling-in and ruling-out disease) for 

anatomic and functional CAD. Stress echocardiography and SPECT perfusion imaging 

performance numbers appeared moderate but direct comparison to other methods must be 

done cautiously, for the reasons explained above. In addition, as shown in e-Figure 2, the 

clinical impact of these differences in the utility of the various functional tests is modest 

although detectable. It is also important to remember that accessibility, simplicity, expertise, 

personnel, and costs are still important determinants for choosing a given test, and 

unfortunately, these variables could not be included in this analysis. 

Finally, the 2016 update of the stable chest pain guideline, the National Institute for 

Health and Care Excellence (NICE)(15) has chosen not to include the assessment of PTP and 

rather recommended CCTA as the first-line diagnostic test and ischemia testing as second step 

in those with suspected anatomically-relevant CAD. Our analysis does not argue against this 

approach but we would like to underline that such rationale will depend on the actual 

prevalence of CAD in the population. The PTP tables currently included in the guidelines are 

based on reasonably old data while the prevalence of CAD is continuously decreasing. With 
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low prevalence of CAD the primary first task of imaging may be the accurate exclusion of 

anatomic CAD, for which CCTA has demonstrated a strong role. The proposed sequential 

utilization of functional imaging tests may indeed be relevant but it must be kept in mind that 

the evidence is still limited although prognostic utility and overall safety appears to be 

excellent.(16) 

 

Limitations  

The performance of a given test in different publications varies due to numerous 

reasons such as population selection and referral bias. Age, gender or participants with history 

of MI may effect on the estimates of diagnostic accuracy but analyses of these characteristics 

on a group level may lead to spurious results due to the risk of ecological fallacy bias. We did 

not have access to individual patient level data or subgroup data that are needed to validly 

analyze these characteristics. Another potentially important source of variation or bias is study 

selection based on prior test results or known CAD. Although we excluded case-control 

studies, we do not know whether study selection was restricted to participants with specific 

prior test results. The inconsistency between studies lowers the confidence in the summary 

estimates and future studies should aim to dissect sources of bias and variation.  

Furthermore, the present study considers visual analysis alone for the determination of 

significant CAD through ICA. Advances in ICA evaluation, such as QCA and the 

implementation of IVUS and OCT(17), could improve identification of hemodynamically-

significant lesions. However, clinical practice in many centers currently relies on direct visual 

ICA evaluation and, therefore, our results on technique performances are likely to be widely 

applicable. The cutoff of 50% in ICA was used as this was available in all studies. In addition 

to known pitfalls of ICA, FFR is not without limitation as it is highly dependent on achieving 

hyperemia through maximal decrease in microvascular resistances. 
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As the data was available only at the study-level in several reports, we cannot evaluate 

how the different techniques can assess the extent and severity of the disease, which are 

important factors in guiding therapies. As there are limited data on direct comparisons 

between modalities, differences could not be comprehensively tested.  

With regard to analyses using FFR as the reference standard, the low number of 

identified studies did not allow analyzing all modalities. In addition, our summary estimates 

were vastly derived from single test accuracy studies, providing indirect evidence to compare 

test modalities. Due to the very low number of comparative studies identified, no consistency 

check could be performed between direct and indirect summary estimates. Therefore, small 

differences between techniques and summary estimates should be interpreted cautiously and 

considered as directional only. CCTA derived FFR has been investigated recently but this 

method is not yet well standardized and we decided not to include this method in the current 

analysis. It is also possible that the best diagnostic performance could be achieved when the 

tests are applied sequentially.(16) The relevance of complementary features in different 

techniques warrants further investigation. The supplemental technique selection guide (e-

Figure 2) was based on the PTP values published in 2013 ESC guidelines and is naturally 

susceptible to change when updated PTP values are available. 

 

CONCLUSIONS 

The various diagnostic modalities have different optimal performance ranges for the 

detection of anatomically and functionally significant CAD. Stress ECG appears to have 

limited diagnostic value at any level of pre-test probability. Imaging methods perform 

generally better but also have different strengths and weaknesses. CCTA performs best 

against anatomical reference standard and functional tests perform better than CCTA or ICA 

for functionally significant CAD.  
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The selection of a diagnostic technique for any given patient to rule-in or rule-out 

CAD should be based on the optimal PTP range for each test. Using LRs we were able to 

create individual pre-test ranges for each test to rule-in and/or rule-out anatomic or functional 

CAD, and these can be used in aiding in the selection of a diagnostic technique for a given 

patient. 
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FIGURE LEGENDS 

 

Figure 1. Study search and selection flow chart. 

 

Figure 2. QUADAS assessment summary by type of reference standard for significant CAD. 
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Figure 3. Fagan Nomogram. A hypothetical patient with a calculated pre-test probability of 

CAD of 56% (left-sided scales in panels A and B) undergoes: a stress ECG, CCTA or PET 

when anatomically significant CAD is used as the reference standard (panel A), and SPECT, 

CCTA or PET when functionally significant CAD is used as the reference (panel B). In the 

middle scales, LR+ and LR- are identified and straight lines are drawn between the left and 

middle scales, and extrapolated to reach the right-sided scales. In the right-sided scales of 

both panels (A and B), the post-test probability of a positive and negative test result can be 

read. The grey bars represents the range of post-test probability in which CAD cannot 

confidently ruled-in or ruled-out (post-test probability 15-85%). Notice that in panel A, stress 

ECG cannot rule-in or –out but the other two imaging tests can, while in panel B, SPECT 

cannot rule-in or –out, CCTA can only rule-out, and PET can do both. 
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Figure 4. Ranges of clinical pre-test probability in which each single positive test will 

confidently rule-in (in ORANGE) the presence of significant CAD or, conversely a negative 

test will confidently rule-out (in GREEN) based on the LR values of the test. Panel A shows 

these ranges when the reference standard is visually significant stenosis in ICA, while Panel 

B shows the ranges when abnormal FFR is the reference standard. The crosshairs mark the 

mean value and the gradient-colored areas contain their 95% CIs. The results are based on the 

criteria that disease is confidently ruled-out when the post-test probability is <15% and ruled-

in when it is >85%. The numeric values can be consulted in Supplementary e-Table 4. 
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TABLES 

 
Table 1. The performance of different tests for anatomically (left panel) and functionally significant CAD (right 

panel). Note: ICA itself was used as a reference standard for the left panel estimates but was included as a 

technique when FFR was used as the reference. Not every test had enough data using FFR as reference. 

 

 

Anatomically Significant CAD Functionally Significant CAD 

Test 
Sensitivity 

[95%CI] 

Specificity 

[95%CI] 

+LR 

[95%CI] 

-LR 

[95%CI] 
Test 

Sensitivity 

[95%CI] 

Specificity 

[95%CI] 

+LR 

[95%CI] 

-LR 

[95%CI] 

     ICA 68% 

[60, 75] 

73% 

[55, 86] 

2.49 

[1.47, 4.21] 

0.44 

[0.36, 0.54] 

Stress 

ECG 

58% 

[46, 69] 

62% 

[54, 69] 

1.53 

[1.21, 1.94] 

0.68 

[0.49, 0.93] 

     

Stress 

Echo 

85% 

[80, 89] 

82% 

[72, 89] 

4.67 

[2.95, 7.41] 

0.18 

[0.13, 0.25] 

     

CCTA 97% 

[93, 99] 

78% 

[67, 86] 

4.44 

[2.64, 7.45] 

0.04 

[0.01, 0.09] 

CCTA 93%  

[89, 96] 

53% 

[37, 68] 

1.97 

[1.28, 3.03] 

0.13 

[0.06, 0.25] 

SPECT 87% 

[83, 90] 

70% 

[63, 76] 

2.88 

[2.33, 3.56] 

0.19 

[0.15, 0.24] 

SPECT 73% 

[62, 82] 

83% 

[71, 90] 

4.21 

[2.62, 6.76] 

0.33 

[0.24, 0.46] 

PET 90% 

[78, 96] 

85% 

[78, 90] 

5.87 

[3.40, 

10.15] 

0.12 

[0.05, 0.29] 

PET 89% 

[82, 93] 

85% 

[81, 88] 

6.04 

[4.29, 8.51] 

0.13 

[0.08, 0.22] 

Stress 

CMR 

90% 

[83, 94] 

80% 

[69, 88] 

4.54 

[2.37, 8.72] 

0.13 

[0.07, 0.24] 

Stress 

CMR 

89% 

[85, 92] 

87% 

[83, 91] 

7.10 

[5.07, 9.95] 

0.13 

[0.09, 0.18] 

Abbreviations: CI, confidence intervals; CMR, stress cardiac magnetic resonance; CCTA, computed tomography; ECG, 

electrocardiogram; ICA, invasive coronary angiography; LR, likelihood ratio; PET, positron emission tomography; SPECT, single photon 

emission computed tomography (Exercise stress SPECT with or without Dipyridamole or Adenosine); Stress Echo, exercise stress 

echocardiography 
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ONLINE SUPPLEMENTARY MATERIAL 

 

The performance of non-invasive tests to rule-in and rule-out significant coronary artery 

stenosis in patients with stable angina: 

A meta-analysis focused on post-test disease likelihood 
 

 

Table S1. MOOSE Checklist. 

Items Recommendation Described in element or page 

Reporting of background should include 

1 Problem definition 6 

2 Hypothesis statement 6 

3 Description of study outcome(s) 8 

4 Type of exposure or intervention used (non-invasive techniques) 6-7 

5 Type of study designs used 7 

6 Study population 7 

Reporting of search strategy should include 

7 Qualifications of searchers (eg, librarians and investigators) 7-8 

8 Search strategy, including time period included in the synthesis and key words 7 

9 Effort to include all available studies, including contact with authors 8 

10 Databases and registries searched 7 

11 Search software used, name and version, including special features used (eg, 
explosion) 

7 

12 Use of hand searching (eg, reference lists of obtained articles) 7 

13 List of citations located and those excluded, including justification Fig 1 and E-table 2 

14 Method of addressing articles published in languages other than English (na) 7 

15 Method of handling abstracts and unpublished studies 7 

16 Description of any contact with authors 7-8 

Reporting of methods should include 

17 Description of relevance or appropriateness of studies assembled for assessing the 
hypothesis to be tested 

7-8 

18 Rationale for the selection and coding of data (eg, sound clinical principles or 

convenience) 

9 

19 Documentation of how data were classified and coded (eg, multiple raters, blinding 

and interrater reliability) 

8 

20 Assessment of confounding (eg, comparability of cases and controls in studies where 

appropriate) 

7-8 

21 Assessment of study quality, including blinding of quality assessors, stratification or 

regression on possible predictors of study results 

7, Fig 2 

22 Assessment of heterogeneity 8-9, 10 

23 Description of statistical methods (eg, complete description of fixed or random effects 

models, justification of whether the chosen models account for predictors of study 
results, dose-response models, or cumulative meta-analysis) in sufficient detail to be 

replicated 

8-9 

24 Provision of appropriate tables and graphics Fig 1-5, E-table 1,3 

Reporting of results should include 

25 Graphic summarizing individual study estimates and overall estimate Fig 4, Table 1 
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Table S2. Electronic search terms 

 

Search string (("Electrocardiography"[Mesh] OR stress ECG OR stress electrocardiography) OR 

("Echocardiography, Stress"[Mesh] OR stress echocardio*) OR ("Computed Tomography 

Angiography"[Mesh] OR coronary computed tomography angiography OR CCTA OR 

coronary angiotomography OR MDCT) OR ("Tomography, Emission-Computed, Single-

Photon"[Mesh] OR SPECT OR SPET) OR ("Positron-Emission Tomography"[Mesh] OR 

PET) OR ("Magnetic Resonance Imaging"[Mesh] OR cardiac magnetic resonance OR 

CMR) OR ("Coronary Angiography"[Mesh] OR invasive coronary angiography OR ICA) 

OR ("Fractional Flow Reserve, Myocardial"[Mesh] OR FFR)) AND (("Coronary Artery 

Disease"[Mesh] OR stable coronary artery disease OR stable CAD OR stable angina)) 

AND ((diagnosis OR performance)) 

Filter 

 

Human Studies 

 

26 Table giving descriptive information for each study included e-Table 2 

27 Results of sensitivity testing (eg, subgroup analysis) 11 

28 Indication of statistical uncertainty of findings 11, 16 

Reporting of discussion should include 

29 Quantitative assessment of bias (eg, publication bias) NA 

30 Justification for exclusion (eg, exclusion of non-English language citations) Fig 1 

31 Assessment of quality of included studies Fig 2 and e-Fig 1 

Reporting of conclusions should include 

32 Consideration of alternative explanations for observed results 16-17 

33 Generalization of the conclusions (ie, appropriate for the data presented and within the 

domain of the literature review) 

19, Fig 5 

34 Guidelines for future research 18 

35 Disclosure of funding source 20 
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Table S3. Characteristics of included studies on diagnosis of angiographically and functionally significant CAD. The full reference list in included after the table. 

 
Study Year Reference No. of 

patients 

Mean Age Women (%) Prior MI 

(%) 

Sensitivity (%) Specificity (%) Prevalence of 

CAD (%) 

Technique 

Amanuallah1 1997 ICA 222 71 46 0 92.9 72.6 76.7 SPECT Vasodilator 

Anthopoulos2 1996 ICA 120 75 40 40 86.5 83.9 74.2 Echo Dobutamine 

Bateman3 2006 ICA 112 67 54 25 87.1 92.9 62.5 PET 

Beleslin4 1994 ICA 136 50 14.7 56.6 87.4 82.4 87.5 Echo Exercise 

Beleslin4 1994 ICA 136 50 14.7 56.6 74 94.1 87.5 Echo Vasodilator 

Beleslin4 1994 ICA 136 50 14.7 56.6 82.4 76.5 87.5 Echo Dobutamine 

Berman5 2006 ICA 785 N/A N/A 0 90.6 55.5 70.7 SPECT Vasodilator 

Berman5 2006 ICA 290 N/A N/A 0 82.7 86.2 77.6 SPECT Vasodilator 

Berman5 2006 ICA 365 NA NA 0 91.3 55.6 75.3 SPECT Exercise 

Bernhardt6 2009 ICA 823 64 24 N/A 87.5 82.6 38 Stress CMR 

Bettencourt7 2013 FFR 101 62 23 0 100 61.4 43.6 CCTA 

Bettencourt7 2013 FFR 101 62 34 0 88.6 87.7 43.6 Stress CMR 

Beygui 8 2000 ICA 179 61 16.2 4.5 50.8 62.3 36.3 Stress ECG 

Bokhari9 2008 ICA 218 56 31 0 81.1 78.7 65.6 SPECT Exercise 

Budoff10 2008 ICA 227 57 41 0 94.5 82.6 24.2 CCTA 

Celutkine11 2012 ICA 151 62 41.1 0 83 92.9 35.1 Echo Dobutamine 

Chae12 1993 ICA 243 62 100 42 71.2 65 67.1 SPECT Exercise 

Chae 12 1993 ICA 243 65 100 42 25.1 38.2 72 Stress ECG 

Chen 13 2013 ICA 151 65 40 0 92.3 95.7 35.9 Stress CMR 

Christian14 1992 ICA 688 63 23 42 91.8 39.4 81.3 SPECT Exercise 

Crouse15 1991 ICA 228 62 32.9 0 97.1 64.2 76.8 Echo Exercise 

Danad16 2014 FFR 281 61 32 0 89.3 84 39.9 PET 

Danad17 2013 FFR 120 58 49 0 75 83.1 40.8 PET 

Daou18 2002 ICA 338 56 17 60 63 76.7 78.4 SPECT Exercise 

Daou 18 2002 ICA 338 59 8.3 59.8 46.9 63.8 76.3 Stress ECG 

DeFACTO study19 2012 FFR 252 62.9 29.4 6 83.9 41.7 54.4 CCTA 

DISCOVER-FLOW20  2011 FFR 103 62.7 28 17 94.8 24.4 56.3 CCTA 
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Dolan21 2001 ICA 112 61 45 22 71.4 81 81.3 Echo Dobutamine 

Dondi22 2004 ICA 130 63.2 40 0 96.3 72.7 83.1 SPECT Exercise 

Doyle23 2003 ICA 184 59 100 N/A 61.5 82.3 14.1 SPECT Vasodilator 

Ebersberger24 2013 FFR 116 63 39 0 85 86.8 34.5 Stress CMR 

Elhendy25 1996 ICA 133 60 23.5 N/A 78.4 86.4 83.5 Echo Dobutamine 

Elhendy26 1998 ICA 290 58 30.3 N/A 72.2 85.5 76.2 Echo Dobutamine 

Elhendy27 1998 ICA 295 N/A N/A N/A 75 86.8 77 Echo Dobutamine 

Emmett28 2002 ICA 100 60 23 0 88.6 63.3 70 SPECT Exercise 

EVINCI-study29 2015 ICA 293 60.9 39 0 73 66.8 34 SPECT Vasodilator 

EVINCI-study29 2015 ICA 475 60.9 39 0 90.7 91.9 29.4 CCTA 

Ferrara30 1991 ICA 109 62 37.7 N/A 78.9 99 82.6 Echo Vasodilator 

Fragasso31 1999 ICA 101 61 45.5 0 61.4 90.9 56.4 Echo Vasodilator 

Fragasso31 1999 ICA 101 61 45.5 0 87.7 79.6 56.4 Echo Dobutamine 

Gallowitsch32 1998 ICA 107 64 46 39.3 94.3 90.7 49.5 SPECT Vasodilator 

Greenwood33 2012 ICA 752 65 37 0 86.5 83.4 39.4 Stress CMR 

Geleijnse34 1995 ICA 223 58 31.4 0 72 78.8 64.1 Echo Dobutamine 

Gentile35 2001 ICA 132 70 31 0 93.5 54.2 81.8 SPECT Vasodilator 

Gentile 35 2001 ICA 132 70 31.8 0 85.2 58.3 81.8 Stress ECG 

Go36 1990 ICA 202 NA NA 47 93.4 78 75.3 PET 

Gonzalez37 2005 ICA 145 60 32 36 87.2 57.1 80.5 SPECT Vasodilator 

Greenwood33 2012 ICA 752 60 37 0 66.5 82.7 39.4 SPECT Vasodilator 

Groothuis38 2013 ICA 192 56 51 0 85.5 81.3 35.9 Stress CMR 

Groutars39 2003 ICA 123 63 27.6 52 96.9 59.3 78.1 SPECT Exercise 

Gueret40 2013 ICA 746 61 29 20 91 50 34.7 CCTA 

Hamasaki 41 1996 ICA 125 64 24 0 83 65.4 37.6 Stress ECG 

Hambye42 2004 ICA 100 63 52 43 73.3 78.6 86 SPECT Vasodilator 

Hanekom43 2007 ICA 150 66 33 19 91 52.5 59.3 Echo Dobutamine 

Hecht44 1993 ICA 180 56 13.9 N/A 93.4 86.1 76.1 Echo Exercise 

Hecht45 1993 ICA 136 59 11 N/A 83 90.5 69.1 Echo Exercise 

Hecht 46 1990 ICA 116 58 19.8 42.2 51.5 64.6 58.6 Stress ECG 
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Hennessy47 1997 ICA 317 60 27.8 42.2 85.4 60.5 86.4 Echo Dobutamine 

Hennessy48 1998 ICA 218 62 100 47.7 49 85 90.8 Echo Dobutamine 

Hida49 2009 ICA 119 68 33 0 51.6 87.7 52.1 SPECT Vasodilator 

Ho50 1997 ICA 223 58 19.3 N/A 93.8 78.7 72.7 Echo Dobutamine 

Hoffmann51 1996 ICA 150 46 20.5 0 75.8 87.3 63.3 Echo Dobutamine 

Hoffmann52 1999 ICA 283 56 33.3 0 72.1 78 64.7 Echo Dobutamine 

Hung53 2006 ICA 126 66 30 8.7 92.6 64.4 64.3 SPECT Vasodilator 

Ishida54 2003 ICA 104 66 22 0 89.6 85.2 74 Stress CMR 

Jakljevic55 2012 FFR 154 65 NA 0 87.0 67.0 35.1 SPECT Vasodilator 

Jeetley56 2006 ICA 123 62 46 33 85.9 50 69.1 SPECT Vasodilator 

Johansen57 2005 ICA 357 57 63 0 74.6 79.2 35.3 SPECT Vasodilator 

Joutsiniemi58 2014 FFR 104 64 62 0 94.6 86.6 35.6 PET 

Kajander59 2010 FFR 107 63 45 0 95 86.6 37.4 CCTA 

Kajander59 2010 ICA 104 63 45 0 94.7 90.9 36.5 PET 

Kajinami60 1995 ICA 251 56 30.7 N/A 73.7 75.4 53 Stress ECG 

Kajinami60 1995 ICA 251 56 32 0 82.7 59.3 53 SPECT Exercise 

Kang61 2013 FFR 700 62 30 0 71.4 60.6 38 ICA 

Khattar62 1998 ICA 100 62 30 28 67.6 80.8 74 Echo Dobutamine 

Khattar 62 1998 ICA 100 62 30 70 69.6 40.9 56 Stress ECG 

Ko63 2014 FFR 115 64 24 10 94.4 54.3 78.3 CCTA 

Koskinen64 1987 ICA 100 57 44.7 N/A 63.3 80 90 Stress ECG 

Latcham65 1995 ICA 106 63 39.3 N/A 74.4 65 81.1 Echo Dobutamine 

Lipiec66 2008 ICA 103 58 36 50 92.4 54.2 76.7 SPECT Vasodilator 

Mahmarian67 1990 ICA 360 56 26 22 86.9 86.7 74.7 SPECT Exercise 

Mairesse68 1994 ICA 129 56 30.2 0 75.9 84.8 64.3 Echo Dobutamine 

Mairesse 68 1994 ICA 129 56 26.4 N/A 42.2 82.6 64.3 Stress ECG 

Manka69 2015 FFR 150 63 30 0 84.7 90.8 56.7 Stress CMR 

Manka70 2012 FFR 120 64 25 0 89.9 82.4 57.5 Stress CMR 

Marcovitz71 1992 ICA 141 60 40.4 10.6 96.3 65.6 77.3 Echo Dobutamine 

Marwick72 1992 ICA 150 57 21.3 N/A 84.2 86.1 76 Echo Exercise 
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Marwick73 1995 ICA 161 60 100 0 79.7 81.4 36.7 Echo Exercise 

Marwick74 1995 ICA 147 58 40.8 0 71 90.6 42.2 Echo Exercise 

Marwick75 1993 ICA 217 58 28.1 0 71.8 82.7 65.4 Echo Dobutamine 

Meijboom76 2007 ICA 104 58 27 0 100 75 84.6 CCTA 

Meijboom77 2007 ICA 123 62 100 0 100 75 51.2 CCTA 

Meijboom77 2007 ICA 279 58 0 0 98.9 89.9 68.1 CCTA 

Meijboom78 2008 ICA 360 60 32 0 99.2 64 68 CCTA 

Merkle79 2007 ICA 228 61 21 0 93 85.7 75.4 Stress CMR 

Meuwissen80 2002 FFR 151 60 29 38 69.2 76.7 34.4 SPECT Vasodilator 

Michaelides 81 1999 ICA 245 52 11 0 65.9 88.2 86.1 Stress ECG 

Miller82 1997 ICA 243 63 1.2 34.7 91.1 27.5 83.5 SPECT Vasodilator 

Miller83 2008 ICA 291 59 26 0 87.4 89.6 59.8 CCTA 

Miyazono84 1998 ICA 112 66 27.7 N/A 74.2 90 55.4 Echo Vasodilator 

Mohiuddin85 1996 ICA 202 58 41 N/A 90 85.7 79.2 SPECT Vasodilator 

Motwani86 2012 ICA 111 61 26 12 93.8 66.7 87.3 Stress CMR 

Mouden87 2014 FFR 100 66 36 NA 60 76.25 20 SPECT Vasodilator 

Nagel88 1999 ICA 163 60 29.3 0 74.3 81.5 66.9 Echo Dobutamine 

Nallamothu89 1995 ICA 321 57 0.33 0 80.9 68.5 83.2 SPECT Exercise 

Nallamothu 89 1995 ICA 321 57 24.9 N/A 46.2 59.5 76.9 Stress ECG 

Nedelikovic90 2006 ICA 117 54 22 27.4 92.8 91.7 59 Echo Vasodilator 

Nedelikovic90 2006 ICA 117 54 22 27.4 89.9 87.5 59 Echo Dobutamine 

Nedelikovic90 2006 ICA 117 54 22 27.4 95.7 91.67 59 Echo Dobutamine 

Norgaard91 2014 FFR 254 64 36 2 93.8 33.9 31.5 CCTA 

Norgaard91 2014 FFR 254 62 36 2 63.8 82.8 31.5 ICA 

Ostojic92 1994 ICA 150 51 16.7 50.7 71 89.5 87.3 Echo Vasodilator 

Ostojic92 1994 ICA 150 51 16.7 50.7 74.8 79 87.3 Echo Dobutamine 

PACIFIC trial93 2016 FFR 206 58 36 0 57.0 93.8 45.1 SPECT Vasodilator 

PACIFIC trial93 2016 FFR 208 58 36 0 90.2 60.3 44.2 CCTA 

PACIFIC trial93 2016 FFR 204 58 36 0 86.7 84.2 44.1 PET 

Parodi94 1999 ICA 101 55 19.8 0 77.5 76.2 79.2 Echo Vasodilator 
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Pasierski95 2001 ICA 248 53 33 0 81.9 96.2 46.8 Echo Exercise 

Pasierski95 2001 ICA 248 53 33 0 74.1 97.7 46.8 Echo Dobutamine 

Peteiro96 2012 ICA 116 61 15.5 40.5 84 63.4 64.7 Echo Exercise 

Picano97 1989 ICA 374 54 23.4 36 72.7 87.8 80.2 Echo Vasodilator 

Picano98 1993 ICA 178 58 15.6 0 72.3 95.8 73 Echo Vasodilator 

Pilz99 2006 ICA 171 62 37 28.1 96.5 82.8 66.1 Stress CMR 

Pingitore100 1996 ICA 110 60 16.7 N/A 81.5 94.4 83.6 Echo Vasodilator 

Pingitore100 1996 ICA 110 60 16.7 30 94.6 88.9 83.6 Echo Dobutamine 

Porter101 2011 ICA 100 62 40 29 59.6 72.9 52 Echo Vasodilator 

Poyraz102 2014 ICA 281 62.6 61.2 0 86 94 27 SPECT Vasodilator 

Psirropoulos103 2002 ICA 606 54 52 19.8 93 43.8 19.6 SPECT Exercise 

Quinones104 1992 ICA 112 57 33.2 N/A 74.4 88.5 76.8 Echo Exercise 

Roger105 1995 ICA 127 N/A N/A N/A 87.9 70 84.3 Echo Exercise 

Roger106 1997 ICA 340 65 28.2 0 78.2 40.9 74.1 Echo Exercise 

San Roman107 1996 ICA 102 62 43 0 77.8 97.4 61.8 Echo Vasodilator 

San Roman108 1998 ICA 102 64 51 0 81.8 94.4 64.7 Echo Vasodilator 

San Roman107 1996 ICA 102 62 43 0 77.8 94.9 61.8 Echo Dobutamine 

San Roman108 1998 ICA 102 64 51 0 78.8 88.9 64.7 Echo Dobutamine 

Santana Boada109 1998 ICA 163 60 38 0 91.7 89.6 58.9 SPECT Vasodilator 

Santana-Boado 109 1998 ICA 163 60 38.7 0 66.7 70.7 49.7 Stress ECG 

Schaap 110 2013 FFR 129 63 35 0 79.7 90.8 49.6 SPECT Vasodilator 

Schwitter111 2013 ICA 425 61 33 27 59.2 72.2 48.5 SPECT Vasodilator 

Schwitter111 2013 ICA 533 60 27 27 75.2 58.9 48.5 Stress CMR 

Severi112 1994 ICA 429 55 28.4 0 74.8 89.6 57.3 Echo Vasodilator 

Shabestari113 2007 ICA 143 63 28 0 96.3 57.1 75.5 CCTA 

Sharples114 2007 ICA 224 NA NA 23 87.3 60.8 68.3 SPECT Vasodilator 

Sharples114 2007 ICA 226 62 32 31 74 72.7 75.2 Stress CMR 

Shelley115 2003 ICA 108 70 NA 0 94 79 59.3 SPECT Vasodilator 

Shirai116 2002 ICA 603 63 3 31 44.7 96.5 39.3 SPECT Exercise 

Slomka117 2006 ICA 174 63 33 0 83.9 81.1 78.7 SPECT Vasodilator 
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Smart118 2000 ICA 386 61 34.5 N/A 85 86.8 72.5 Echo Dobutamine 

Tadehara119 2008 ICA 101 72.1 48 19.7 93 70 53.4 SPECT Vasodilator 

Takase120 2004 ICA 102 66 17 44.1 93.4 84.6 74.5 Stress CMR 

Takeuchi121 1993 ICA 120 63 25.8 N/A 85.1 93.5 61.7 Echo Dobutamine 

Thompson122 2005 ICA 116 60 30 0 86.4 78.6 75.9 SPECT Vasodilator 

Watkins123 2009 FFR 101 60 28 24 94.9 91.3 77.2 Stress CMR 

Wolak124 2008 ICA 114 65 100 0 79.7 73.3 60.5 SPECT Vasodilator 

Wu125 2009 ICA 218 64 38 2.8 94.6 62.5 59.6 SPECT Vasodilator 

Yoon126 2009 ICA 344 63.3 63 0 87 34 63.7 SPECT Vasodilator 
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Figure S1. QUADAS assessment summary per diagnostic technique for ICA- and FFR-significant CAD 
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Table S4. Ranges of pre-test probability where the diagnostic techniques can confidently rule-in and rule-out 

anatomically or functionally significant CAD  

 

Pre-test probability to rule-in or rule-out Anatomically Significant CAD 
 

Prob. to Rule-Out [95%CIs] Prob. to Rule-In [95%CIs] 

Stress ECG ≤19 [15, 25] ≥80 [76, 83] 

CCTA ≤80 [65, 94] ≥58 [45, 70] 

PET ≤58 [36, 77] ≥51 [37, 64] 

Stress CMR ≤56 [41, 70] ≥56 [41, 72] 

Stress ECHO ≤48 [40, 56] ≥56 [45, 67] 

SPECT ≤47 [41, 53] ≥68 [63, 72] 

Pre-test probability to rule-in or rule-out Functionally Significant CAD 
 

Prob. to Rule-Out [95%CIs] Prob. to Rule-In [95%CIs] 

ICA ≤27 [24, 31] ≥71 [59, 81] 

CCTA ≤57 [40, 72] ≥75 [67, 83] 

PET ≤56 [43, 68] ≥50 [41, 58] 

Stress CMR ≤57 [48, 65] ≥46 [38, 54] 

SPECT ≤34 [27, 41] ≥59 [47, 70] 
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Figure S2. Simple guide to help selection of a test to detect stable CAD based on age, sex and symptoms. Table A 

shows the selection of a test to detect anatomic ICA-defined CAD and table B, FFR-defined CAD.  Examples: In a 55-

year old male patient with atypical angina CCTA, SPECT, PET and stress CMR can reliably rule-out anatomically 

significant CAD but stress ECG or stress echocardiography cannot (A). To assess the performance of imaging tests to 

detect functionally significant CAD (assessed by FFR) in the same patient (B) one can see that PET and stress CMR 

results can both rule-out and rule-in significant CAD while CCTA can only confidently rule-out if a negative result is 

documented. ICA and SPECT are not recommended tests in this patient. No data about Stress ECG and stress 

echocardiography was available against FFR. Note: the guide table is based on the 2013 ESC SCAD Guidelines and 

may be subject to change when the pre-test probabilities are updated. Abbreviations: SCAD, stable coronary artery 

disease; CMR, stress cardiac magnetic resonance; CT, coronary computed tomography angiography; ECG, stress 

electrocardiogram; Echo, stress echocardiogram; FFR, fractional flow reserve; ICA, invasive coronary angiography; 

PET, positron emission tomography; SPECT, single photon emission computed tomography. 

 


