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It is hypothesized that certain alleles can have a protective effect not only when inherited by the offspring but also as
noninherited maternal antigens (NIMA). To estimate the NIMA effect, large samples of families are needed. When large
samples are not available, we propose a combined approach to estimate the NIMA effect from ascertained nuclear fami-
lies and twin pairs. We develop a likelihood-based approach allowing for several ascertainment schemes, to accommodate
for the outcome-dependent sampling scheme, and a family-specific random term, to take into account the correlation be-
tween family members. We estimate the parameters using maximum likelihood based on the combined joint likelihood
(C J L) approach. Simulations show that the C J L is more efficient for estimating the NIMA odds ratios as compared to a
families-only approach. To illustrate our approach, we used data from a family and a twin study from the United King-
dom on rheumatoid arthritis, and confirmed the protective NIMA effect, with an odds ratio of 0.477 (95% CI 0.264–0.864).
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INTRODUCTION

Genetic studies typically focus on testing whether a ge-
netic variant is associated with disease risk directly through
the genotype of the offspring, offspring allelic effect, to
identify susceptibility genes involved in complex disor-
ders. However, many genes influence disease susceptibility
through more complex biological mechanisms, such as con-
ditions during embryonic or fetal life. One such mechanism,
the noninherited maternal antigens (NIMA) effect, may be
involved in the pathogenesis of certain autoimmune dis-
eases, such as rheumatoid arthritis (RA) [Feitsma et al., 2007;
Hsieh et al., 2007], renal graft survival [Smits et al., 1998],
and scleroderma [Azzouz et al., 2011; Nelson et al., 1998].
The NIMA effect affects disease susceptibility through a
specific maternal-offspring genotype combination, i.e., the
mother carries the allele of interest but the offspring does
not. When the NIMA effect is present and not correctly mod-
eled it can result in biased estimates of the offspring allelic
effect [Sinsheimer et al., 2003; Weinberg, 1999].

In order to investigate such mechanisms, ascertained
multicase family designs are typically used. They are known
to improve efficiency when studying the association of a rare
disease and a rare mutation, as compared to case-control
studies. To accommodate for potential residual correlation
in disease risks among family members, due to shared but
unmeasured genetic or environmental factors, mixed mod-
els with family-specific random terms are used. An ascer-

tainment correction is needed to account for the outcome-
dependent sampling schemes, often used to increase effi-
ciency when studying a rare disease.

Several methods have been developed to model and/or
test for the NIMA effect [Feitsma et al., 2007; Hsieh et al.,
2006]. However, these methods are not appropriate for fam-
ilies that contain both multiple cases and healthy siblings.
Feitsma et al. [2007] use information only from one affected
offspring per family. Hsieh et al. [2006] take into account
information from multiple affected siblings, but the corre-
lation between disease outcomes among family members,
is ignored. Ignoring this correlation may have an effect on
the ascertainment correction, resulting in biased results for
both standard errors and effect sizes. Both methods ignore
the information available from healthy siblings by exclud-
ing them from the analysis.

Recruiting, genotyping, and interviewing members of
multicase families can be difficult due to the lack of clear
sampling definition and the high cost, resulting in data sets
with small sample size, thus low power to detect the ef-
fect of interest. To enhance the statistical power to identify
disease susceptibility genes, Pfeiffer et al. [2008] and Zheng
et al. [2010] proposed to combine family-based studies with
case-control studies using a prospective likelihood (P L) ap-
proach to model association between genotypes and phe-
notypes of family members. These methods focus on direct
effects, and as expected, due to the larger sample size, they
increase the power to detect the direct offspring allelic effect
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[Pfeiffer et al., 2008; Zheng et al., 2010]. Typically, studies
with multicase families lack power to estimate the effects
of rare protective factors, such as the NIMA effect. Thus,
we propose to combine the multicase family study with a
twin-based study and use the joint likelihood (J L), which
models the joint genotype and phenotype distribution, in-
stead of the P L . The J L can be more efficient for estimating
the genetic odds ratios [Kraft and Thomas, 2000] since it
only conditions on the ascertainment event, and uses infor-
mation from the modeling of genotype distribution of the
parents.

The parental genotypes of twins are not at hand thus
the twin likelihood itself contains no information about the
NIMA effect. However, we can include the NIMA parame-
ter in the model as a nuisance parameter and marginalize the
likelihood by summing over all possible parental genotypes
combinations. We can then estimate the direct protective ef-
fect from both family and twin likelihood and the indirect
NIMA effect from the family likelihood. In a similar way,
Chen et al. [2012] use a semiparametric likelihood where
the environmental effect is treated as a nuisance parameter.
By combining families with twins, as compared to case-
controls, we have more information on familial genotypes
distribution, by assuming Mendelian inheritance, random
mating, and Hardy-Weinberg proportions (HWP).

The disease of interest in this article is RA, a genetic dis-
order in which alleles of the HLA-DRB1 gene contribute
most to the genetic risk. A group of alleles in this gene,
called DERAA alleles, are known to have a protective ef-
fect against RA, when present in the genotype of the off-
spring. Recent observations suggest that biologically rel-
evant exposure to HLA-antigens may occur during fetal
development and subsequently through the persistence of
maternal cells in the offspring. This phenomenon is called
microchimerism. It has been proposed that not only inher-
ited but also noninherited maternal HLA-antigens can in-
fluence RA susceptibility [Feitsma et al., 2007]. This im-
plies that the exposure of DERAA-negative offspring to
maternal DERAA-positive HLA-DRB1 antigens during fe-
tal development might have a protective effect on the off-
spring. We applied the combined joint likelihood (C J L) to
94 multicase RA nuclear families [Hay et al., 1993; Wor-
thington et al., 1994] and 78 dizygotic twin pairs [Sil-
man et al., 1993], both collected from the National Repos-
itory of Family Material of the Arthritis and Rheumatism
Council’s.

Our method is a general framework for family-based as-
sociation analysis, incorporating the advantages of several
previously proposed methods such as combining different
data sets, likelihood-based modeling, ascertainment correc-
tion, and modeling correlation between disease outcome
of siblings. This novel method models the joint genotype
and phenotype distribution, taking into account the ascer-
tainment and correlation present in the data, and combines
families and twins studies to increase information to es-
timate the NIMA effect. We introduce the general idea of
the C J L for family-based and twin-based studies. We pro-
vide detailed estimation procedures for the family study
and generalize the method to the twin study. The perfor-
mance of our proposed method is assessed numerically
and different approaches are compared for several sce-
narios, on the efficiency to estimate genetic odds ratios.
The proposed method is illustrated with an analysis of the
Arthritis and Rheumatism Council data and we close with
discussion.

DATA AND METHODS

DATA
Consider a study where information is available from

two different data sets, a family-based and a twin-based
study. For every family, genotype and phenotype informa-
tion is available for the offspring, affected and/or healthy,
and most of their parents. Families were ascertained on the
event of at least two affected offspring per family. Genotypic
and phenotypic information is also available for each twin,
but not for their parents. Twin pairs were ascertained such
that each pair contains at least one affected member.

STATISTICAL MODELS
A commonly used approach for family data is the condi-

tional logistic regression [Breslow and Day, 1980]. It condi-
tions on the number of observed cases in each family, to ac-
commodate for the outcome-dependent sampling scheme,
and uses a family-specific random term, to account for de-
pendencies in disease risk among siblings. When twins are
also available, we propose to estimate the genetic odds ra-
tios by maximizing the combined likelihood for families
and twins, instead of a families-only approach. Under the
assumptions that the data sets are sampled separately from
the same population, with no overlap between them and
with comparable data collection methods, the combined
likelihood can be obtained by the product of the likelihoods
for each independent study.

Notation. Let Yi = (Yi1, Yi2, . . . , Yini ) denote pheno-
types or disease status of ni offspring in family i , where
Yi j = 1 if offspring j is affected and Yi j = 0 if j is unaf-
fected, i = 1, . . . , Nf and j = 1, . . . , ni . Similarly, let Gc

i =
(Gc

i1, Gc
i2, . . . , Gc

ini
) denote the genotypes of the ni offspring

and Gp
i = (Gm

i , G f
i ) their maternal and paternal genotypes.

We denote by Nf and Nt the total number of families and
twin pairs, respectively. Last, let Ai be the ascertainment
event for a family or twin pair.

Likelihood for family-based study. To model the
association between genotypes and phenotypes of fam-
ily members we use the J L . This approach is based on
the joint probability of phenotypes and genotypes, that is
P(Yi , Gc

i , Gp
i | Ai ) and is given by:

J L f (�) =
Nf∏
i=1

P
(
Yi , Gc

i , Gp
i | Ai

)
, (1)

where � is the parameter vector. P(Yi , Gc
i , Gp

i | Ai ) for fam-
ily i is defined as follows:

P

⎛
⎝Yi , Gc

i , Gp
i

∣∣∣∣∣
ni∑

j=1

Yi j ≥ 2

⎞
⎠ =

P

⎛
⎝Yi , Gc

i , Gp
i ,

ni∑
j=1

Yi j ≥ 2

⎞
⎠

P

⎛
⎝ ni∑

j=1

Yi j ≥ 2

⎞
⎠

= P
(
Yi | Gc

i , Gp
i

) × P
(
Gc

i | Gp
i

) × P
(
Gp

i

)

P

⎛
⎝ ni∑

j=1

Yi j ≥ 2

⎞
⎠

. (2)
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The second identity of (2) requires two assumptions.
First, subjects selection should depend only upon poten-
tial subjects’ disease status, not on their covariates, that
is P(

∑ni
j=1 Yi j ≥ 2 | Yi , Gc

i , Gp
i ) = P(

∑ni
j=1 Yi j ≥ 2 | Yi ). Sec-

ond, families should be selected under complete ascertain-
ment, that is P(

∑ni
j=1 Yi j ≥ 2 | Yi ) = 1 for a family with at

least two affected offspring, and 0 otherwise.
The numerator of (2) is a product of the disease pene-

trance function P(Yi | Gc
i , Gp

i ), the transmission probabilities
P(Gc

i | Gp
i ), and the parental genotype probabilities P(Gp

i ). The
disease penetrance function models the disease probability
of ni offspring given the genotypes of the family. We will
explain how we model the penetrance function in the next
section. We assume Mendelian inheritance for the transmis-
sion probability P(Gc

i | Gp
i ), random mating for the parents,

and HWP for the genotype distribution. Thus, the parental
genotype probability P(Gp

i ) is characterized by a single pa-
rameter, the allele frequency q .

The denominator is the ascertainment correction and mod-
els the probability that at least two of the offspring in the
family are affected P(

∑ni
j=1 Yi j ≥ 2). This probability can be

expressed in terms of the marginal distribution by summing
the joint distribution of phenotype and genotypes over all
possible genotype combinations in a family, namely:

P

⎛
⎝ ni∑

j=1

Yi j ≥ 2

⎞
⎠ = 1 −

∑
Gc∗,Gp

∗

P (Gc
∗ | Gp

∗ ) × P (Gp
∗ )

×
⎧⎨
⎩P

⎛
⎝ ni∑

j=1

Yi j = 1

∣∣∣∣∣Gc
∗, Gp

∗

⎞
⎠ + P

⎛
⎝ ni∑

j=1

Yi j = 0

∣∣∣∣∣Gc
∗, Gp

∗

⎞
⎠
⎫⎬
⎭ .

(3)

Disease penetrance function. In this section, we
present the penetrance function for a family in the data set.
Given a set of family-specific random effects ui , we assume
that (Yi1, Yi2, . . . , Yini ) are conditionally independent. Thus,
the penetrance function for one family can be expressed as
the product of the penetrance functions for each offspring
in the family:

P
(
Yi | Gc

i , Gp
i , ui

) =
ni∏

j=1

P
(
Yi j = yi j | Gc

i j , Gp
i , ui

)
.

In order to estimate the parameters of interest, we use
the marginal probability of the disease outcome of the ith
family, given by:

P
(
Yi | Gc

i , Gp
i

) =
∫

ui

P
(
Yi | Gc

i , Gp
i , ui

)
f (ui )dui . (4)

We assume that the random intercept is normally dis-
tributed, ui ∼ N(0, � 2

u ). The integral is analytically in-
tractable and we resort to numerical integration. To eval-
uate the integral, we used the Gauss-Hermite Quadrature
rule.

Last, we specify the individual penetrance function. We
consider here the case where a direct offspring allelic effect
and an indirect NIMA effect affect the disease probability for
each offspring. We assume no direct maternal or paternal

allelic effect. The disease probability for each offspring is
a function of offspring genotype, combination of maternal
and offspring genotype, and the random effect ui :

P
(
Yi j = 1 | Gc

i j , Gm
i , ui

) = logit−1

(
�0 + �1 × I [OAEi j ] + �2 × I [NI MAi j ] + ui

)
, (5)

where logit−1 is the inverse logit function, logit−1(x) =
exp(x)

1+exp(x) . Parameter �0 is the intercept of the logistic model.
Let I [·] denote an indicator function. OAEi j denotes an
event of offspring allelic effect. We assume a dominant
model, where I [OAEi j ] = 1 when one or two copies of the
protective allele are present in the offspring’s genotype and
zero otherwise. Parameter �1 represents the log odds ra-
tio of disease probability for the offspring allelic effect. Let
NI MAi j denote an event of NIMA, where I [NIMAi j ] = 1
if a copy of the protective allele is present in the maternal
genotype but not present in the offspring’s genotype and
zero otherwise. Parameter �2 represents the log odds ratio
of the NIMA effect. The interpretation of parameters is con-
ditional on the family-specific random effects. In Table I,
all possible genotype combination of mother-offspring pair
and resulting effects is reported.

Likelihood for twin-based study. In this section,
we modify the J L presented in the previous section to
model data from twin-based studies. Since no parental
genotypes are available in the twin study, it is not possi-
ble to estimate the indirect NIMA effect. Namely, the twin
likelihood contains no information about NIMA. However,
we need to include the NIMA parameter in the twin likeli-
hood to ensure that the parameters of the family and twin
likelihood have the same interpretation. Missing data are
dealt with by marginalizing over all possible parental geno-
types combinations, treating �2 as a nuisance parameter.
Following the notation used in (1), the J L for the twin data
set is given by:

J Lt (�) =
Nt∏

i=1

P (Yi , Gc
i , | Ai ) , (6)

where P(Yi , Gc
i , | Ai ) for twin pair i is given as follows:

P

⎛
⎝Yi , Gc

i

∣∣∣∣∣
2∑

j=1

Yi j ≥ 1

⎞
⎠ =

∑
Gp

∗

P

⎛
⎝Yi , Gc

i , Gp
∗

∣∣∣∣∣
2∑

j=1

Yi j ≥ 1

⎞
⎠

=
∑
Gp

∗

P(Yi | Gc
i , Gm

∗ ) × P(Gc
i | Gp

∗ ) × P(Gp
∗ )

1 −
∑

Gc∗,Gp
∗

P

⎛
⎝ 2∑

j=1

Yi j = 0 | Gc
∗, Gm

∗

⎞
⎠ ×P(Gc

∗ | Gp
∗) × P(Gp

∗ )

.

Combined likelihood for the family and twin
studies. To obtain joint estimates for the NIMA and di-
rect offspring allelic effect, we maximize the combined like-
lihood for both data sets, given by the product of the likeli-
hood contribution from family study (1), and the likelihood
contribution from twin study (6):

C J L (�u, �0, �1, �2) = J L f (�u, �0, �1, �2)

×J Lt (�u, �0, �1, �2) . (7)
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TABLE I. Possible genotype combination of mother-offspring pair and resulting protective effects

Offspring genotype Maternal genotype Resulting effect

No copy of protective allele No copy of protective allele Reference category
One/two copies of protective allele No/one/two copies of protective allele Offspring allelic effect
No copy of protective allele One copy of protective allele NIMA effect

Information to estimate the direct allelic effect, the base-
line risk, and the variance of the random effect comes both
from twins and families. On the other hand, the family like-
lihood allows us to estimate also the NIMA effect. By adding
the twins to the families, we borrow information to better
estimate the direct allelic effect, which will also improve
the estimate of the NIMA parameter through the family
likelihood.

SIMULATION STUDY

The primary goal of the simulation study was to test ef-
ficiency gain for estimating effects that depend on parental
genotype, such as NIMA, when a twin data set, with missing
parental information, is combined with a data set comprised
of nuclear families. In addition, we wanted to study the fi-
nite sample properties of the J L itself and relative to the
P L . In particular, we investigated the impact of family size,
variance of random effects and ascertainment scheme on
the parameter estimates, and compared our method with
the PL used in previous studies, in terms of efficiency and
bias of estimates of NIMA effect.

In each scenario, genotype frequencies were selected to
mimic the frequency of DERAA alleles in the English popu-
lation, that is 0.15 [Ann Morgan, personal communication].
To generate genotypes of family members, maternal and
paternal genotypes were generated assuming random mat-
ing and HWP. Offspring genotypes were generated assum-
ing Mendelian transmission. Disease outcomes of offspring
were generated according to the random effects model (5).
The family-specific random intercept was assumed to be
normally distributed with mean zero and variance either
1.5 or 2.5, resembling results from previous literature on
heritability of RA [van der Woude et al., 2009]. Two differ-
ent ascertainment schemes were used, that is, families were
included in the study if at least one or two offspring were af-
fected. Twins were generated as families with two offspring,
ascertained such that at least one twin per pair is affected.
Parental genotype and phenotype information was ignored
to mimic the real data set. We set �0 to −3, representing a
rare disease with marginal population prevalence approx-
imately 5%. The true parameter values for offspring allelic
and NIMA effect, �1 and �2, were fixed at −0.5 and −1,
corresponding to an odds ratio of 0.6 and 0.4, respectively.
In total, 16 scenarios were generated, each consisting of 103

simulated data sets, with corresponding family and sam-
ple size, ascertainment scheme, and variance of the random
effect as indicated in Table II.

To study the finite sample properties of the J L , we ap-
plied the likelihood to all scenarios of Table II. Results are
summarized in Table III. Effect of different family and sam-
ple size on the parameter estimates is reflected by com-
paring scenarios 1–4. When both sample and family size
are small, e.g., scenario 1, � 2

u is overestimated resulting in
an underestimated �0 . However, estimates of the log odds

TABLE II. Simulation scenarios with varying sample
and family size, ascertainment scheme and variance of
the random effects

Scenario Number of Number of Ascertainment Variance of
families offspring scheme random effect

1 100 3
∑

j Yi j ≥ 1 1.5
2 100 5

∑
j Yi j ≥ 1 1.5

3 500 3
∑

j Yi j ≥ 1 1.5
4 500 5

∑
j Yi j ≥ 1 1.5

5 100 3
∑

j Yi j ≥ 1 2.5
6 100 5

∑
j Yi j ≥ 1 2.5

7 500 3
∑

j Yi j ≥ 1 2.5
8 500 5

∑
j Yi j ≥ 1 2.5

9 100 3
∑

j Yi j ≥ 2 1.5
10 100 5

∑
j Yi j ≥ 2 1.5

11 500 3
∑

j Yi j ≥ 2 1.5
12 500 5

∑
j Yi j ≥ 2 1.5

13 100 3
∑

j Yi j ≥ 2 2.5
14 100 5

∑
j Yi j ≥ 2 2.5

15 500 3
∑

j Yi j ≥ 2 2.5
16 500 5

∑
j Yi j ≥ 2 2.5

ratios for the offspring allelic and NIMA effect are nearly
unbiased, −2.3% and 3.4%, respectively. Increasing family
size from 3 to 5, scenario 2, reduces the bias of both effects
to 0.1% and 2.4% and their standard deviations by 8.5%
and 11.43%, respectively. On the other hand, increasing the
number of families from 100 to 500, scenario 3, reduces the
bias of both effects to −1.4% and −1.0% and their standard
deviations by 55.6% and 58.4%, respectively. To study the ef-
fect of different � 2

u on the parameter estimates, we compared
scenarios 1–4 with scenarios 5–8 or/and scenarios 9–12 with
scenarios 13–14. When � 2

u increases from 1.5 to 2.5, from sce-
nario 1 to scenario 5, bias on the estimate of �0 and � 2

u itself
increases. However, this does not introduce much bias in
the estimation of the offspring allelic and NIMA param-
eters. Different ascertainment schemes were compared by
contrasting scenarios 1–4 with scenarios 9–12. Bias in � 2

u and
�0 estimates increases when ascertainment is

∑
j Yi j ≥ 2, as

compared to
∑

j Yi j ≥ 1 while estimates of the offspring al-
lelic and NIMA parameters remain unbiased, e.g., bias in
scenario 9, for �1 and �2, is 1.9% and 5.7%, respectively.

Next, we compare the two different likelihoods to model
family/twin data in terms of efficiency, the P L used in ex-
isting methods, with the approach we use in this article,
the J L . We define the percentage of efficiency improve-
ment of likelihood A over B, for estimating a parameter �,
as EI = (1 − Var(�A)

Var(�B ) ) × 100. Positive values mean that likeli-
hood A performs better. In Figure 1, we plot the EI of the
J L over the P L , for estimating the log odds ratios of the
offspring allelic and NIMA effect. All values are positive;
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TABLE III. Summary statistics for parameter estimates of the J L (1) under the penetrance model P(Yij = 1 | Gc
ij,

Gm
i , ui) = logit−1(�0 + �1 × I[OAEij] + �2 × I[NI MAij] + ui). The results are based on 1,000 simulated data sets per

scenario, each of sample size 100 or 500 and number of offspring per family three or five. The families were ascertained
such that each family would have at least one or at least two affected offspring. The protective allele frequency was 0.15.
All scenarios are described in detail in Table II. Each entry lists the mean estimates (standard deviation of estimates)
over the 1,000 simulated data sets

Scenario True values

�2
u = 1.5 �0 = −3 �1 = −0.5 �2 = −1

1 2.148 (2.538) −3.365 (1.460) −0.477 (0.349) −1.034 (0.507)
2 1.584 (1.038) −3.049 (0.579) −0.501 (0.319) −1.024 (0.449)
3 1.571 (0.771) −3.052 (0.466) −0.486 (0.155) −0.990 (0.211)
4 1.543 (0.411) −3.022 (0.226) −0.497 (0.140) −1.000 (0.197)

�2
u = 2.5 �0 = −3 �1 = −0.5 �2 = −1

5 3.517 (3.382) −3.476 (1.612) −0.478 (0.397) −1.016 (0.541)
6 2.724 (1.662) −3.104 (0.766) −0.503 (0.344) −1.022 (0.469)
7 2.587 (1.152) −3.045 (0.572) −0.492 (0.169) −1.001 (0.231)
8 2.577 (0.629) −3.033 (0.290) −0.504 (0.149) −1.003 (0.196)

�2
u = 1.5 �0 = −3 �1 = −0.5 �2 = −1

9 2.827 (3.001) −4.236 (2.864) −0.519 (0.265) −1.057 (0.407)
10 1.98 (1.765) −3.408 (1.442) −0.501 (0.258) −1.020 (0.386)
11 2.472 (2.290) −3.929 (2.194) −0.499 (0.120) −0.999 (0.173)
12 1.607 (0.672) −3.091 (0.560) −0.497 (0.112) −0.994 (0.167)

�2
u = 2.5 �0 = −3 �1 = −0.5 �2 = −1

13 3.468 (3.347) −3.673 (2.465) −0.540 (0.316) −1.056 (0.459)
14 2.944 (2.032) −3.308 (1.341) −0.501 (0.299) −1.024 (0.423)
15 3.524 (2.852) −3.778 (2.148) −0.500 (0.144) −1.016 (0.205)
16 2.716 (1.084) −3.141 (.721) −0.501 (0.129) −0.999 (0.175)

thus, the J L is always more efficient. Improvement mainly
depends on sample size and less on family size, e.g., EI is
approximately the same in scenarios 1 and 3 as compared
to scenario 2. Moreover, improvement, due to J L , is higher
when information is limited, i.e., when families are small
and ascertainment is

∑
j Yi j ≥ 2.

Last, we compared the performance of the J L when dif-
ferent data sources are available: ascertained families-only
vs. ascertained families and twins. In terms of likelihoods,
we compare the J L in (1) with the C J L in (7). Efficiency
improvement of the families-only against the combined ap-
proach, with families and 100 twin pairs, is plotted in Fig-
ure 2. The C J L approach is more efficient under all sce-
narios studied. The percentage of improvement is similar
across different values of variance of the random effects or
ascertainment scheme. Nonetheless, improvement is notice-
ably high when the sample size of the nuclear family data
is small. When the twin data set was added, we expected
efficiency improvement for the offspring allelic effect, due
to increased sample size. Interestingly, there was also effi-
ciency improvement for the NIMA effect, which depends on
the maternal genotype. The parameter estimates and their
standard deviations, using the C J L , are listed in Supporting
Information Table SVI.

In order to asses the performance of our method when
both direct offspring and NIMA effects are under the null,
�1 = �2 = 0, and cases in which there only exists a direct
offspring, �2 = 0, or only a NIMA effect, �1 = 0, we sim-
ulated the scenarios presented in Table II with the corre-
sponding effect sizes. We first estimated the effects opti-
mizing the J L using only the families. Later, we added
100 twin pairs and optimized the C J L . The estimated ef-

fect sizes remain unbiased. The results are listed in Sup-
porting Information Tables SI and SII for the J L and in
the Supporting Information Tables SIII, SIV, and SV for the
C J L .

The performance of our approach will vary across dif-
ferent frequencies of the protective allele. All the results
presented above concern an allele frequency of 0.15, in or-
der to mimic the allele frequency in the population we are
studying. To study the performance of the method when al-
lele frequency is lower, we also applied the C J L to samples
generated with a protective allele frequency of 0.05. As ex-
pected, the parameter estimates are more biased for small
sample sizes. Larger samples are needed to obtain unbi-
ased estimates. Results are listed in Supporting Information
Table SVII.

DATA EXAMPLE

This study was motivated by a data set consisting of 94
ascertained nuclear families, collected from the Arthritis
and Rheumatism Council. Our goal is to study the effect
of NIMA in RA susceptibility. In 51 families, the genotype
of one of the parents, mainly the father, was missing. In
34 families, of which eight had a missing mother and 26 a
missing father, we were able to construct the genotypes us-
ing the genotypes of the offspring and the genotype of the
other parent. Namely, we reconstructed the missing geno-
type in accordance with Mendelian transmission law. For
the remaining 17 families, of which nine were mothers and
eight were fathers, we were able to reconstruct only one
of the alleles using this approach. In order to impute the
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Fig. 1. Efficiency improvement of JL against PL compared for different family/sample size, ascertainment schemes, and variance of
random effect. For both likelihoods, the disease penetrance function was P(Yij = 1 | Gc

ij, Gm
i , ui) = logit−1(�0 + �1 × I[OAEij] + �2 ×

I[NI MAij] + ui). Values below zero represent no EI by using the J L and values above zero represent EI of the J L against the PL. Each
point represents the efficiency improvement in each of the 16 scenarios presented in Table II .

second allele, we made use of the initial 4-digit allele cod-
ing of the HLA-DRB1 gene. There are 26 possible 4-digit
sequences in the HLA-DRB1 gene, six of which express
this DERAA allele, see van der Woude et al. [2010]. We
imputed the second allele based on sampling from con-
trol 4-digit allele distribution. For six of nine mothers, we
had only the first 2 digits of the 4-digit genotyping and
for the rest three, we had no information about the second
allele.

Families mainly contain two, three, and four offspring.
There are also three large families with five, eight, and
10 offspring. A total of 86 families of 94 contain exactly
two affected offspring and eight families contain three af-
fected offspring. The maternal-offspring genotype combina-
tion that leads to the potential NIMA effect occurs only in
eight families. In these eight families, four have one child,
two have two children, and two have three children un-
der potential NIMA effect. In addition, 20 offspring be-
longing to 13 families are under offspring allelic effect.
Since there is so little information in the family data set,
we decided to combine it with a data set of 78 ascertained
twin pairs, also collected from the Arthritis and Rheuma-
tism Council in the same period. Pairs mainly contain
one affected member and only in three pairs both mem-
bers are affected. In four pairs, both twins carry the DE-
RAA allele, DERAA-concordant, while in 10 pairs, only

one twin has the allele, DERAA-discordant. In total, 18
twins are under offspring allelic effect. Information on
parental genotype of twins is not available, thus the exact
number of twins under a possible NIMA effect cannot be
determined.

Initially, we only analyzed the family data, using both the
J L and the P L approach. Results are listed in the first two
lines of Table IV. None of the likelihoods gave statistically
significant results for the NIMA effect, estimated odds ratios
0.176 (95% CI 0.010–3.066) and 0.607 (95% CI 0.348–1.058) for
the P L and the J L approach, respectively. Concerning the
offspring allelic effect, only the J L resulted in a statistically
significant result, odds ratios 0.194 (95% CI 0.023–1.622) for
the prospective and 0.297 (95% CI 0.179–0.493) for the JL
approach. Then we combined the families with the twins
and applied the C J L . The odds ratio of the NIMA effect
was statistically significant, 0.477 (95% CI 0.264–0.864) and
the confidence intervals of the odds ratios of the offspring
allelic effect became narrower; 0.241 (95% CI 0.152–0.380).

To conclude, we estimated a significant protective effect of
the DERAA allele, coming directly from the genotype of the
offspring and indirectly from the maternal genotype. That
is, individuals carrying the DERAA allele have a decrease
in risk of RA compared to individuals who do not carry it.
Furthermore, individuals who do not carry the protective
allele DERAA, but their mother does, have a decrease in risk
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Fig. 2. Efficiency improvement of C J L approach of families and twins, against the J L approach for families-only. The efficiency improve-
ment is compared for different family/sample size, ascertainment schemes, and variance of random effect. For both likelihoods, disease
penetrance function was P(Yij = 1 | Gc

ij, Gm
i , ui) = logit−1(�0 + �1 × I[OAEij] + �2 × I[NI MAij] + ui). Values below zero represent no

efficiency improvement by using the C J L and values above zero represent improvement of the C J L against the PL. Each point represents
the efficiency improvement in each of the 16 scenarios presented in Table II.

to develop RA as compared to non-DERAA carriers whose
mother also does not carry the protective allele.

DISCUSSION

In this article, we have presented a likelihood-based
method for association studies combining family with twin
data. Our method is appropriate for testing and estimat-
ing effects of genes that act directly through the individ-
ual’s genotype but also for genes that act through com-

plex biological mechanisms. We overcome the problem of
small sample size by combining the family data set with
a twin data set and using a J L approach to model the
association between genotypes and phenotypes. By using
a J L approach, we exploit the information coming from
Mendelian transmission law, HWP, random mating and
modeling of parental genotype distribution, to increase the
efficiency to estimate the genetic odds ratios. The com-
bined approach, not only enhances the statistical power to
detect direct allelic effects, but also effects depending on
maternal-offspring genotype combinations, such as NIMA

TABLE IV. Parameter estimates (95% CI) of the disease penetrance model P(Yij = 1 | Gc
ij, Gm

i , ui) = logit−1(�0 + �1 ×
I[OAEij] + �2 × I[NI MAij] + ui) by types of likelihood approaches used, prospective (PL), joint (J L), or combined joint
likelihood (C J L), and type of data included, families-only or families and twins

Design Variance Intercept OROAE ORNI MA

Families-only
P L 1.573 (1.161–2.130) 0.005 (0.001–0.025) 0.194 (0.023–1.622) 0.176 (0.010–3.066)
J L 2.133 (1.633–2.786) 0.001 (0.000–0.006) 0.297 (0.179–0.493) 0.607 (0.348–1.058)

Families and twins
C J L 2.416 (1.709–3.416) 0.002 (0.000–0.010) 0.241 (0.152–0.380) 0.477 (0.264–0.864)

Genet. Epidemiol.



818 Balliu et al.

effects. Namely, we use information from both data sets
to better estimate the direct allelic effect, which gives us
increased efficiency to estimate also the indirect NIMA
effect. The method takes into account both the sampling
scheme of the data and residual correlation between phe-
notype of siblings using an ascertainment correction and a
family-specific random effects model.

Our approach extends existing methods for combining
data sets [Pfeiffer et al., 2008; Zheng et al., 2010] to include
indirect effects, using a J L , instead of a P L approach and
adding twins, instead of a case-control data set. We com-
pared the proposed J L method with the traditionally used
P L approach and showed that our method is more efficient
for estimating the genetic odds ratios, especially for small
families with stringent selection schemes. For prospective
or JL methods, including ours, ascertainment is essential to
obtain unbiased parameter estimates. Here, we considered
cases for which subjects’ selection depends only upon po-
tential subjects’ disease status and not on their covariates.
When ascertainment is also based on covariates, here geno-
types, another model for ascertainment correction should
be considered.

Using the J L , power can considerably increased, how-
ever at the cost of greater computational intensity, in the
presence of large families. In our data set, the families where
relatively small and numerical optimization of the J L was
possible on a single computer. However, in the presence of
large families, the computational burden rises exponentially
with the family size. For given parameter values and allele
frequency, the denominator (3) for family i sums over max-
imum 3ni possible familial genotype combinations. If all the
families in the data set have a fixed size, the denominator
needs to be calculated only p times for each maximization
iteration, where p is the number of sample points to use for
the Gauss-Hermite Quadrature approximation of the inte-
gral (4). Unfortunately, this is rarely the case in real data sets
where the family size varies but the computation burden can
be essentially reduced by using a grid search.

Here, we combine a family data set with a twin data set.
However, the method can be extended to include other types
of readily available data, such as sibling pairs, monozygotic
twins, or case-parent trios data sets. Nowadays, the combi-
nation of already available data is facilitated from existing
nationwide registries of families and twins at high risk for
particular traits. Extension of the likelihood-based analy-
sis described here, to accommodate multiallelic marker, is
trivial, if HWP and random mating assumptions are made.
Although we have focused on association of single single-
nucleotide polymorphisms the approach can be extended
to allow for the analysis of haplotypes . Since haplotypes
combine linkage disequilibrium information from multi-
ple markers simultaneously, this approach could be more
powerful than our current approach. Direct extension to ac-
commodate haplotypes is not straightforward, due to the
increase in the number of parameters needed to model the
haplotypes, and is beyond the scope of this article. The pro-
posed method can be extended to other complex biologi-
cal mechanisms, such as maternal effects or imprinting, by
adding the appropriate covariates in the logistic regression
(5). Last, by incorporating our method to methodology ap-
plied in Houwing-Duistermaat et al. [2000], we could study
whether genetic NIMA effects of RA could create a protec-
tion for diseases associated with RA, such as cardiovascular
disease or anemia.

We employed a fully parametric models for the random
effects distribution. Since no straightforward diagnostics
are available to evaluate the validity of the random effects
model assumptions, there is a potential for model misspec-
ification. Nevertheless, the estimates of the fixed effects are
robust-to-moderate misspecifications of the underlying ran-
dom effects distribution [Heagerty and Kurland, 2001; Pfeif-
fer et al., 2003]. One could also analyze the data simply by
using a generalized estimating equations (GEE) approach
[Liang and Zeger, 1986]. However, since the GEE estimates
do not take into account the sampling design, the result-
ing covariate effect estimates might be biased, because the
family and twin data sets are not a random sample of the
families and twins in the population. While the random ef-
fects model allows one to accommodate ascertainment of
the families as well as residual familial correlation, the in-
terpretation of the parameters is conditional on the random
effects [Fitzmaurice et al., 1993]. Marginal parameter esti-
mates can be obtained using the approximate formula of
Diggle et al. [1994]. This approximation uses the variance
of the random effects. In the simulation study, we observed
that the estimate of the variance, needed for the marginal-
ization, might be biased when sample size is small. Thus, we
recommend to use the approximation formula only when
the sample size and/or family size are large, e.g., 500 fami-
lies with three offspring when ascertainment is at least one
affected offspring.

To conclude, we confirmed the protective effect of the
inherited DERAA alleles, offspring allelic effect, and the
noninherited maternal DERAA alleles, NIMA effect. The
simulation study and the result of the real data analysis
suggest that a combined approach can be more powerful,
as compared to a families-only approach, when the infor-
mation on the initial family data set is restricted.
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