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Genetic risk factors for type 2 diabetes mellitus and response
to sulfonylurea treatment
Jesse J. Swena, Henk-Jan Guchelaara, Renée F. Baak-Pabloa,
Willem J.J. Assendelftb and Judith A.M. Wesselsa

Objective After the identification of type 2 diabetes

mellitus (T2DM) risk alleles from genome-wide association

studies, models have been developed to identify subjects

at high risk to develop T2DM. We hypothesize that a panel

of 20 repeatedly associated T2DM risk alleles influences

response to sulfonylureas (SUs).

Methods Two hundred and seven incident SU

(tolbutamide, glibenclamide, glimepiride, gliclazide) users

with T2DM were recruited from four primary care centers.

A genetic risk score per patient was calculated based on

the number of risk-alleles. With this score, patients were

categorized into three predefined genetic risk groups.

The effect of the genetic risk group on the achievement

of stable SU dose, prescribed stable SU dose, and time

to stable SU dose was analyzed.

Results Carriers of more than 17 T2DM risk alleles had a

1.7-fold reduced likelihood to achieve stable SU dose

(P = 0.044). No significant effect of the number of T2DM

risk alleles on prescribed dose was found. Carriers of more

than 17 T2DM risk alleles showed a marginally significant

increased time to stable dose (hazard ratio: 0.81; 95%

confidence interval, 0.75–1.01, P = 0.058).

Conclusion T2DM risk alleles are associated with

response to SUs in primary care T2DM patients. This

suggests that individualization of T2DM treatment

according to genetic profile may be an opportunity

to improve clinical outcome. Pharmacogenetics and

Genomics 21:461–468 �c 2011 Wolters Kluwer

Health | Lippincott Williams & Wilkins.
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Introduction
The incidence of type 2 diabetes mellitus (T2DM) is

increasing at an alarming rate. Worldwide, the number of

patients is expected to increase from 171 million in 2000

to 366 million in 2030 [1]. The therapeutic goal of

treating T2DM patients is to prevent or delay long-term

microvascular and macrovascular complications by achiev-

ing the best possible glycemic control.

Sulfonylureas (SUs) are part of the mainstay of treatment

with oral antidiabetic drugs. Tolbutamide, glibenclamide

(glyburide), gliclazide, and glimepiride are the most

commonly used representatives of this group. These

drugs act by closing the pancreatic b-cell potassium

channels, stimulating insulin secretion [2]. SUs are

initiated at a low dose and escalated to the optimal dose

with intervals of 2–4 weeks until the glycemic target

(HbA1c < 7%) is achieved. However, there is significant

interpatient variability in response to SUs, with approxi-

mately 10–20% of the patients experiencing primary

failure (decrease in fasting glucose level < 1.1 mmol/l)

and a similar percentage having an above average

response (mean reduction HbA1c 1.5–2%) [3–5].

With the completion of multiple genome-wide association

studies (GWAS) the knowledge of the complex genetic

background of T2DM has increased. These studies report

associations between genetic variants and the risk for the

development of T2DM. A panel of 20 T2DM associated

single nucleotide polymorphisms (SNPs) comprising 19

genes out of the GWAS data appears, that has been

replicated in several studies [6–17]. These SNPs are used

in models with the ultimate goal to identify subjects at

high risk to develop T2DM. Although marginally, the

addition of genetic information to clinical T2DM risk

factors increased the ability to predict future diabetes

[18–24].

From the panel of 20 T2DM risk-associated SNPs, the

majority is involved in the process of insulin release from

the pancreatic b-cells (Table 1). As SUs act by stimulat-

ing insulin secretion, response to SU treatment may also

be influenced by these genetic variants. Indeed, two of

the 19 T2DM risk-associated genes, encoding KCNJ11
and TCF7L2, have been previously correlated with

variation in SU response [4]. Furthermore, in subjects
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analyzed for genetic variation in the genes TCF7L2,
PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1,
IGF2BP2, SLC30A8, JAZF1, HHEX, it was reported that

subjects with 12 or more T2DM risk alleles did not

increase their insulin secretion to compensate for the

increased insulin resistance as efficiently as those with 8

or less risk alleles [19]. Therefore, patients with a greater

number of risk alleles may show less response to SU

treatment and individualization of T2DM treatment

according to genetic profile may be an opportunity to

improve clinical outcome.

We hypothesize that the genetic variants associated with

the development of T2DM are also associated with

response to SU treatment. Therefore, we investigated

the effect of T2DM risk alleles on the response to SU

treatment in T2DM patients in a primary care setting.

Methods
Study setting

In the Netherlands the general practitioner (GP) plays a

central role in the provision of health care. Patients are

listed with one GP who is consulted for all healthcare

problems and indicates whether a referral to secondary

care is appropriate. Typically, the GP keeps an electronic

patient record (EPR) that covers all medical information

concerning the patient including prescription information

and reports from laboratories and specialists. GP’s have

adopted the practice guideline T2DM of the Dutch

College of General Practitioners [25]. Tailoring the

treatment to the individual patient is an important part

of the therapy.

Cohort ascertainment

A total of 207 T2DM patients from four university-

affiliated primary care centers (17 GPs) located in the

vicinity of Leiden, the Netherlands were recruited. The

ascertainment of the cohort has been described in detail

previously [26]. In brief, patients that had at least one

prescription of tolbutamide, glibenclamide, glimepiride,

or gliclazide between January 1992 and June 2008, were

at least 18 years of age and without insulin use at the time

of first SU prescription, and had at least 270 days of

follow-up registered in the EPR, were included. Ethnicity

was not routinely recorded in the EPR but most patients

in the Netherlands are from European ancestry. Patients

received a written invitation by mail from their GP. Of the

472 invited patients, 222 (47%) agreed to participate (see

Fig. S1, Supplemental digital content 1, http://links.lww.
com/FPC/A263, cohort ascertainment). After consent, a

saliva collection kit (DNA Genotek Inc., Ottawa, Ontario,

Canada) was mailed. The study was approved by the

ethics committee of the Leiden University Medical

Center.

Genotyping

We selected a panel of 20 SNPs in 19 genes that have

been associated with the development of T2DM in at

least three GWAS and were consistently replicated in

later studies aimed at estimating the predictive value of

these SNPs on the development of T2DM [6–24]. The

selected SNPs are listed in Table 1. DNA was isolated

from the saliva according to the protocol provided by the

manufacturer (DNA Genotek Inc.). Taqman genotyping

assays for 19 SNPs were designed by and obtained from

Applied Biosystems (Applied Biosystems, Nieuwerkerk

aan den IJssel, the Netherlands). SNP rs757210 could not

be designed as a Taqman genotyping assay and therefore

was genotyped by pyrosequencing (Isogen Life Science,

Maarssen, the Netherlands). Taqman genotyping assays

were performed on the LightCycler 480 II Real-Time

PCR System (Roche Diagnostics, Almere, the Nether-

lands) according to standard procedures. Genotyping

was performed without knowledge of the clinical data.

We obtained an average genotyping success rate of more

than 95%. As a quality control 5% of the samples were

Table 1 Selected single nucleotide polymorphisms associated with type 2 diabetes mellitus

Gene rs number Chromosome Risk allele Year Mechanism References

NOTCH2 rs10923931 1 T 2008 Unknown [9,19–24]
THADA rs7578597 2 T 2008 Unknown [9,19–24]
IGF2BP2 rs4402960 3 T 2007 b-cell dysfunction [8,9,11–13,18–24]
PPARG rs1801282 3 C 2000 Insulin sensitivity [8,9,11–13,19–24]
ADAMTS9 rs4607103 3 C 2008 Unknown [9,19–24]
WFS1 rs10010131 4 G 2007 Unknown [9,13,18–20,22,24]
CDKAL1 rs7754840 6 C 2007 b-cell dysfunction [7–9,11–13,18–24]
JAZF1 rs864745 7 A 2008 b-cell dysfunction [9,19–24]
SLC30A8 rs13266634 8 C 2007 b-cell dysfunction [7–9,11–14,18–24]
CDKN2A/CDKN2B rs10811661 9 T 2007 b-cell dysfunction [8,9,11–13,18–24]

rs564398 9 A [8,18,20,24]
TCF7L2 rs7903146 10 T 2006 b-cell dysfunction [7–9,11–14,18–24]
HHEX/IDE rs1111875 10 G 2007 b-cell dysfunction [7–9,11–14,18–24]
CDC123/CAMK1D rs12779790 10 G 2008 Unknown [9,19–24]
KCNJ11 rs5219 11 T 2003 b-cell dysfunction [8,9,11–13,19–24]
KCNQ1 rs2237892 11 C 2008 b-cell dysfunction [10,17,24]
MTNR1B rs10830963 11 G 2009 Disturbance of circadian rhythm [6,16,24]
TSPAN8/LGR5 rs7961581 12 C 2008 Unknown [9,19–24]
FTO rs8050136 16 A 2007 Obesity [8,9,11,13,19–22,24]
HNF-1b (TCF2) rs757210 17 A 2007 b-cell dysfunction [15,20,21,24]
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genotyped in duplicate for all assays and no inconsistencies

were observed. Five patients were excluded for quality

reasons (genotype call rate r 80%). All SNPs were in

Hardy–Weinberg equilibrium (P > 0.05), with the excep-

tion of rs2237892 (P = 0.011). This is most probably

ascribed to the very low minor allele frequency of

rs2237892, which was 0.025 in our study and comparable

with previously reported minor allele frequencies of

0.056–0.075 (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_
ref.cgi?rs = 2237892) accessed 5 October 2010.

Definition of effect

For each patient a cumulative genetic risk score was

calculated based on the number of present risk alleles.

Each person could have 0, 1, or 2 of them for each SNP,

resulting in a theoretical individual cumulative risk score

between 0 and 40. This approach assumes an equal and

additive effect of each allele on the risk of T2DM.

To allow categorization of patients, we predefined three

genetic risk groups on the basis of the frequency

distribution of risk alleles. We defined a low genetic risk

group and a high genetic risk group as the quintiles with

the lowest and highest number of T2DM risk alleles,

respectively. All other patients (three quintiles) were

categorized in the intermediate risk group.

The primary endpoint of our study is the effect of the

genetic risk group on achieving stable SU dose. Stable SU

dose was defined as the first period of more than or equal

to 270 consecutive days without SU dose adjustment, or

initiation or adjustment of therapy with other SUs,

insulin or metformin. If therapy with insulin was initiated

patients were censored. The period of more than or equal

to 270 days was chosen because prescriptions in the

Netherlands are limited to a maximum of 90 days and

more than or equal to 270 days equals three consecutive

prescriptions. Stable SU dose was calculated as normal-

ized dose by dividing the prescribed daily dose with the

standard daily dose used by the Pharmaceutical Aid

Committee of the Dutch Health Care Insurance Board

(10 mg glibenclamide; 1000 mg tolbutamide; 160 mg

gliclazide; 2 mg glimepiride). Secondary endpoints of

our study are the stable SU dose and the time required

for dose escalation (time to stable SU dose).

Statistical analysis

The data were analyzed using the SPSS statistical

package (version 16.0, SPSS, Chicago, Illinois, USA).

Deviation from Hardy–Weinberg equilibrium was tested

by the w2 test. Achievement of stable SU dose was

analyzed with the w2 test and multivariate logistic

regression analysis. Differences in mean stable SU dose

between genetic risk groups were analyzed using the

Kruskal–Wallis test and multivariate linear regression

analysis. Associations between the genetic risk groups and

time to stable SU dose were evaluated using the Cox

survival regression analysis. Before multivariate analysis,

all demographic and clinical variables were tested

univariately against the selected outcome. Variables with

a P value of 0.1 or less, age, and sex were selected for

multivariate analysis. All multivariate analyses were

corrected for age and sex.

Results
Data from 202 T2DM patients were available. The range

of the calculated genetic risk score was 10–26. The

quintiles with the lowest (r 17) and highest (Z 21)

number of T2DM risk alleles consisted of 59 patients

and 62 patients, respectively (Fig. 1). Table 2 presents

the characteristics of the 202 patients. There were no

differences between the different genetic risk groups

observed in any of the patient characteristics except for

age. Patients in the high-risk group were younger at the

time of first SU prescription compared with patients in

the low-risk and intermediate-risk group, respectively

(P = 0.001). Mean follow-up was 5.9 years, reflecting that

most patients (75.2%) were included after 2000. Our

patients received an average of 26 SU prescriptions

during the follow-up period with a median duration of 90

days per prescription.

The results of achieving stable SU dose and the T2DM

genetic risk groups are presented in Fig. 2. Of the patients,

148 (73.3%) achieved stable SU dose. The percentage of

Fig. 1
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patients achieving stable SU dose was lower in the

high-risk group compared with the intermediate-risk and

low-risk groups (61.3 vs. 74.1 vs. 84.7%, respectively,

P = 0.004). In the multivariate logistic regression analysis

age at first SU prescription, the concomitant use of

metformin, and the T2DM genetic risk group were

independently significantly associated with achieving

stable SU dose (Table 3). The regression model

explained 28.7% of the variation in achievement of stable

dose. Data show that patients with a higher T2DM risk

had a 1.7-fold reduced likelihood to achieve stable SU

dose (P = 0.044).

Next, the mean SU starting dose was analyzed. The mean

SU starting dose for all patients was 0.61 (95% CI: 0.58–

0.65). As expected, no differences in SU starting dose

were found between the different genetic risk groups. No

differences in mean stable SU dose were found between

the different T2DM genetic risk groups [low-risk group

0.90, 95% confidence interval (CI) 0.75–1.05 vs. inter-

mediate-risk group 0.84, 95% CI: 0.74–0.94 vs. high-risk

group 0.95, 95% CI: 0.72–1.17, P = 0.97]. In multivariate

linear regression, only the effect of the SU starting dose

and sex were independently significant associated with

stable SU dose, whereas the genetic risk group for T2DM

was not associated with stable SU dose.

As SUs are escalated to the optimal dose, the effect of

the genetic risk group on time to stable SU dose was

evaluated. Carriers of the high-risk genetic profile

(Z 21 risk alleles) had a two-fold and five-fold longer

time to stable dose compared with patients with the

intermediate risk (18–20 risk alleles) and low-risk profile

(r 17 risk alleles) (median time to stable SU dose 160 vs.

59 vs. 31 days, respectively, P = 0.007). In a multivariate

Cox regression analysis including the factors such as age

Table 2 Characteristics of the 202 patients with type 2 diabetes mellitus in primary care

Genetic risk group

Variable no. (%)a All patients Low-risk Intermediate-risk High-risk P value

Subjects 202 59 (29.2) 81 (40.1) 62 (30.7) NA
Men 106 (52.5) 30 (50.8) 45 (55.6) 31 (50.0) 0.77
Women 96 (47.5) 29 (49.2) 36 (44.4) 31 (50.0)
Age in years, mean (SD) 61.4 (10.7) 64.0 (9.5) 62.6 (10.4) 57.3 (11.1) 0.001

Follow-up in years, mean (SD) 5.9 (3.0) 6.0 (3.0) 5.7 (3.0) 6.2 (3.0) 0.52
Visits in year one (SD) 9.6 (4.7) 8.6 (3.7) 10.0 (5.2) 10.0 (4.6) 0.35
Metformin use 62 (30.7) 18 (30.5) 27 (33.3) 17 (27.4) 0.75
Primary sulfonylurea 0.098b

Glibenclamide 12 (5.9) 7 (11.9) 1 (1.2) 4 (6.5)
Tolbutamide 85 (42.1) 18 (30.5) 41 (50.6) 26 (41.9)
Gliclazide 24 (11.9) 7 (11.9) 10 (12.3) 7 (11.3)
Glimepiride 81 (40.1) 27 (45.8) 29 (35.8) 25 (40.3)

Low-risk group; patients with 17 or less risk alleles. Intermediate-risk group: patients with 18–20 risk alleles. High-risk group; patients with at least 21 risk alleles.
NA, not applicable; SD, standard deviation.
aUnless stated otherwise.
bw2 for primary sulfonylurea vs. genetic risk group.
P value < 0.05 is regarded as significant and indicated with bold font.
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on first SU prescription, sex, and the concomitant use of

metformin, patients with a higher number of risk alleles

showed a marginally significant increased time to stable

SU dose (hazard ratio: 0.81; 95% CI: 0.75–1.01,

P = 0.058) (Fig. 3).

Discussion
To the best of our knowledge, this is the first study

exploring the relationship between response to treatment

with SUs and T2DM risk alleles. In this retrospective

cohort study of 202 T2DM patients, patients with more

than 17 risk alleles have a 1.7-fold reduced likelihood to

achieve a stable SU dose. These patients also show a

marginally significant increased time to achieve stable SU

dose compared with carriers of less than 17 risk alleles.

However, the number of T2DM risk alleles does not

seem to affect the average stable SU dose used. There-

fore, our data suggest that patients with a higher number

of T2DM risk alleles have a decreased and delayed

response to SU treatment.

Drug response is determined by both pharmacokinetics

and pharmacodynamics of a drug. Several groups have

investigated genetic variation in genes affecting the

pharmacokinetics of SU response. Two variants in CYP2C9,

CYP2C9*2 and CYP2C9*3, have been associated with a

decreased SU metabolism in healthy volunteers [27]. Five

studies assessed the effect of these polymorphisms in

T2DM patients. Presence of the CYP2C9*3 allele was

associated with an increased risk for hypoglycemia [28,29].

Tolbutamide users with a CYP2C9*2 or CYP2C9*3 allele

have been shown to have a significantly lower dose

escalation compared with homozygous carriers of the

CYP2C9*1 allele [30]. In a large cohort of 1073 incident

SU users with T2DM Zhou et al. [31] found that carriers

of the CYP2C9*2 or CYP2C9*3 allele were less likely

to fail on SU monotherapy. In a recent study we found

no statistically significant effect of the CYP2C9*2 or

CYP2C9*3 allele on the prescribed stable dose [26].

Variation in genes associated with the pharmacodynamics

of SUs in T2DM patients has received considerably less

attention. Genetic variants associated with SU response

have been described for some monogenic forms of

diabetes [32–34]. For polygenic T2DM, variants in the

genes KCNJ11, TCF7L2, ABCC8, IRS1, and NOS1AP have

been associated with SU response [35–38]. Of these,

only the genes KCNJ11 and TCF7L2 were reported to

contribute to an increased risk for T2DM in published

GWAS. KCNJ11 encodes the Kir6.2 subunit, one of the

two subunits that form the ATP-sensitive potassium

channel involved in insulin release. Carriership of the

E23K variant of the KCNJ11 gene has been associated

with failure to SU therapy, but there are some conflicting

results [39–41]. Variants in the TCF7L2 gene have also

been associated with SU response. In a study with 901

incident SU users, patients with the TT genotype for

rs7903146 were 1.73 times less likely to be treated to

lower a target HbA1c of 7% in the first 3–12 months of

treatment compared with patients with the CC genotype

[42]. For a variant in linkage with rs7903146 an even

larger effect (odds ratio = 1.95) was reported. In this

study, none of the individual risk alleles were significantly

associated with the achievement of stable dose (see Table

S2, Supplemental digital content 2, http://links.lww.com/
FPC/A264), risk allele frequency and association with

Table 3 Analysis of factors relevant for achieving stable sulfonylurea dose in patients with type 2 diabetes mellitus in primary care

Univariate Multivariatea

Factor OR 95% CI R2 P value OR 95% CI P value

Constant 1.81 NA 0.654
Male vs. female sex 1.55 0.83–2.91 0.009 0.17 1.54 0.72–3.29 0.262
Effect of age (per year increase) 1.06 1.03–1.09 0.069 < 0.001 1.04 1.00–1.08 0.036

Metformin use vs. no metformin use at stable sulfonylurea dose 0.07 0.03–0.16 0.238 < 0.001 0.07 0.03–0.17 < 0.001

Genetic risk group (low-risk - intermediate-risk - high-risk group) 0.54 0.35–0.82 0.042 0.004 0.59 0.35–0.99 0.044

-, stepwise increase from low-risk to intermediate-risk to high-risk group; CI, confidence interval; OR, odds ratio; R2, variation in the achievement of stable dose.
aR2 for the complete model was 0.287.
P value < 0.05 is regarded as significant and indicated with bold font.
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achievement of stable SU dose of the individual SNPs).

This is most likely due to the limited sample size of our

study and the probable small effect size of the individual

risk alleles.

Our study has some limitations. No data were available

for patients that switched to another GP or who died after

1992. Therefore, we cannot completely rule out the

possibility of selection bias, although this is conceptually

very unlikely. A nonresponse analysis with age, sex, type

of first prescribed SU, metformin use, and GP showed no

differences between participants and patients who did

not consent to our study, suggesting that no selection bias

has occurred on any of these parameters.

We selected stable SU dose as the primary endpoint of

our analysis. Ideally macrovascular (e.g. diabetes-related

death or myocardial infarction) or microvascular events

(e.g. retinopathy or renal failure) would have been used.

Alternatively, biomarkers related to these events, such as

HbA1c or fasting plasma glucose (FPG) might have been

used. However, as data concerning these parameters were

not routinely recorded in the EPR, data were too sparse

to be used in our analysis. Therefore, we selected stable

SU dose as an alternative. Although, no SU pharmaco-

genetics studies have used stable SU dose as endpoint,

this parameter closely reflects actual clinical practice.

The time to stable SU dose analysis assumes that GPs

adhere to the T2DM guideline of the Dutch College

of General Practitioners and titrate SU dose in response

to glucose and HbA1c levels. We have three arguments

that support our assumption. Firstly, mean FPG was

7.77 mmol/l (95% CI: 7.42–8.12, n = 95) for the subgroup

of patients with a FPG measurement available during

stable SU dose. Secondly, the adherence of GPs to

guidelines is reported to be good in the Netherlands [43].

Finally, even if GPs do not adhere to the T2DM

guideline, and bias would be introduced to our analysis,

there is no reason to assume that the nonadherence of

GPs is not divided randomly over the different genetic

risk groups. Therefore, possible nonadherence does not

affect the comparison of the time to stable dose between

the different genetic risk groups but can only affect the

absolute results of this analysis.

There are multiple known factors that predict a good

response to SUs including baseline HbA1c, recently

diagnosed diabetes, mild-to-moderate fasting hyper-

glycemia (< 12.2–13.3 mmol/l), good b-cell function (high

fasting C-peptide level), no history of insulin therapy,

and absence of islet cell or glutamic acid decarboxylase

antibodies [3]. However, for none of these factors

sufficient data were available in our retrospective cohort

study and we were unable to account for their effect. In

addition, the available data on weight, a factor that is

associated with the onset of T2DM, were too sparse to be

included in the analysis as a covariate. As a consequence

we cannot rule out that patients with a higher number of

risk alleles also have a more severe form of T2DM that

might confer to an a priori decreased probability to

achieve stable SU dose. In our opinion, the only way to

collect sufficient high quality data that cover all of these

parameters would be to conduct a prospective observa-

tional study. Ideally such a study would include two

treatment arms with pharmacological different drugs or

placebo. Such a design would allow differentiating

between the effect of T2DM risk alleles on disease

progression and effect on treatment.

The results of different SUs were pooled in one analysis.

Although SUs are generally reported to have equipotent

glucose lowering effects when administered in maximally

effective doses [3,5], it would be interesting to investi-

gate if our hypothesis is valid for each of the individual

SUs. However, due to the sample size of our study such a

subgroup analysis was not possible.

We achieved a high success rate of genotyping with a call

rate of more than 95% for all individual SNPs. After

exclusion of five patients with a call rate of less than or

equal to 80, 0.9% of the genotype data were missing.

Missing genotype data were replaced with a risk score

of 0. To test the sensitivity of our analysis for this

replacement, we reanalyzed the data using two alter-

native approaches. First, as for some SNPs the wild-type

allele is the risk allele, missing data were replaced with

the score of the wild-type allele. As a result, two patients

were reclassified from the low-risk to the intermediate-

risk group, and one patient was reclassified from the

intermediate-risk group to the high-risk group. Secondly,

we excluded all patients with any missing data, resulting

in the exclusion of an additional 31 (15.3%) patients.

Similar results on all end points were obtained with

all approaches, except for the effect of the genetic risk

score that lost statistical significance in multivariate

analysis after exclusion of all patients with missing

data. These sensitivity analyses indicate that our results

are valid.

The analysis of the effect of the genetic risk score on

SU response assumes that each risk allele has an equal

and additive effect, both within and between loci. This

is clearly a simplification of the mechanism leading to

variation of SU response. However, this approach is used

in all GWAS studies concerning prediction of T2DM.

Until it is clear what the true effect size of individual risk

alleles is, the additive genetic model is probably the most

appropriate and consistent method to analyze T2DM

genetic data.

We chose to compare the quintile with the lowest (r 17,

n = 59, low-risk group) and highest (Z 21, n = 62, high-

risk group) number of T2DM risk alleles, whereas

patients with 18–20 risk alleles were pooled in one group

(n = 81, intermediate-risk group) (Fig. 1). The use of

quintiles was based on a study by Lyssenko et al. [19] and

allows potentially easy translation to the clinic by clear
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classification of T2DM patients. The cutoffs for the

quintiles with the highest and lowest number of T2DM

risk alleles fell within the group of patients with 21 and

17 risk alleles respectively. We categorized patients with

17 risk alleles to the low-risk group and 21 alleles to the

high-risk group, resulting in a slightly larger number of

patients in both categories than anticipated. To ascertain

that our results are not solely due to study design, we also

analyzed the genetic risk score as a continuous variable

instead of the analysis of risk groups. Next to this genetic

risk score (range 10–26), sex, age on first SU prescription,

and the use of metformin were included in the multi-

variate analysis. Data showed similar results for both the

effect size and direction for the genetic risk score (odds

ratio 0.88 95% CI: 0.76–1.02, P = 0.11). This suggests

that with increasing number of risk alleles, the chance of

achieving stable SU dose decreases.

The concept of disease-related genes influencing re-

sponse to treatment is not new. For example, variation in

the gene coding for the 5-hydroxytryptamine 2A receptor

has been associated with variation of clozapine response

and increased susceptibility to schizophrenia [44,45].

Variation in the gene coding for the b-2-adrenergic

receptor has been associated with airway responsiveness

to b-2-receptor agonists and susceptibility to lower airway

reactivity in patients with asthma [46,47]. Our results

show that patients with a higher number of risk alleles

were younger at the date of their first SU prescription.

This may be the result of a more ‘aggressive’ form of

T2DM. For many complex diseases such as T2DM, there

may be multiple genetic backgrounds resulting in similar

phenotypic disease, each requiring a different drug

treatment. Our results support this concept, and support

the use of disease-related genes in pharmacogenetic

studies. We should emphasize, however, the fact that

we have only begun to unravel the genetic determinants

of drug response in T2DM and that although many of

the genes are associated with b-cell function, the exact

mechanism behind our finding remains unclear. Our

results do provide some ‘proof of principle’ that the

complex background of T2DM may ultimately result in

the identification of different genetic subgroups of

T2DM patients that require different pharmacotherapy.

However, replication in an independent cohort and

further elucidation of the causal mechanisms underlying

SU response are warranted.

In conclusion, T2DM-associated risk alleles are asso-

ciated with response to SU treatment in primary care

T2DM patients. This suggests that individualization of

T2DM treatment according to genetic profile may be an

opportunity to improve clinical outcome.
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