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Abstract 23 

Bacterial pathogens such as Staphylococcus aureus and Staphylococcus epidermidis can 24 

survive in different types of cells including professional phagocytes, causing intracellular 25 

infections. Antibiotic treatment of intracellular infections is often unsuccessful due to the low 26 

efficacy of most antibiotics inside cells. Therefore, novel techniques which can improve 27 

intracellular activity of antibiotics are urgently needed. We aimed to use photochemical 28 

internalization (PCI) to enhance cytosolic release of antibiotics from endocytic vesicles after 29 

internalization. Our results show that PCI indeed caused cytosolic release of gentamicin and 30 

significantly increased its efficacy against S. epidermidis in vitro in mouse macrophages. Upon 31 

illumination for 15 min, the killing of intracellular S. epidermidis in RAW 264.7 cells by 10 or 32 

30 g/ml gentamicin was increased to 1 or 3 CFU log, respectively, owing to the use of PCI, 33 

whereas no killing by gentamicin only without PCI was observed. Moreover, survival of S. 34 

aureus-infected zebrafish embryos was significantly improved by treatment with PCI-35 

gentamicin. PCI improved the therapeutic efficacy of gentamicin at a dose of 0.1 ng per embryo 36 

to a level similar to that of a dose of 0.4 ng per embryo, indicating that PCI can lower the 37 

antibiotic dose required for treating (intracellular) staphylococcal infection. Thus, the present 38 

study shows that PCI is a promising novel approach to enhance the intracellular efficacy of 39 

antibiotics via cytosolic release, allowing them to reach intracellular bacteria. This will expand 40 

their therapeutic window and will increase the numbers of antibiotics which can be used for 41 

treatment of intracellular infections.  42 

 43 
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 47 

Introduction 48 

As an opportunistic intracellular pathogen, Staphylococcus aureus can survive in several types 49 

of cells including professional phagocytes such as macrophages and neutrophils, resulting in 50 

high frequencies of occurrence of intracellular infections, possibly leading to life-threatening 51 

infectious diseases such as biomaterial associated infection, endocarditis and sepsis [1-6]. The 52 

closely related commensal Staphylococcus epidermidis also can colonize healthy tissues and 53 

persist intracellularly in macrophages after implantation of biomaterials [7-10]. Like 54 

staphylococci, important bacterial pathogens such as Mycobacterium tuberculosis, Listeria 55 

monocytogenes, and Salmonella typhi can survive intracellularly and cause tuberculosis, 56 

meningitis and typhoid fever, respectively [11, 12]. 57 

Intracellular infections are very difficult to treat since most antibiotics have limited activity 58 

against intracellular bacteria [11-14], because of low penetration of eukaryotic cells [13], low 59 

intracellular retention [13], or high frequencies of resistance development [15]. Resistance may 60 

develop since the low, permissive intracellular concentrations of antibiotics provide a selective 61 

advantage for bacteria with reduced susceptibility [16]. Moreover, some pathogens such as S. 62 

aureus may undergo structural changes inside the host cells, resulting in reduction of sensitivity 63 

to antibiotics [2]. Thus, techniques for improving intracellular activity of antibiotics are 64 

urgently required. Cellular internalization of antibiotics and other biomolecules can be 65 

enhanced by using liposomes, polymeric micro-/nanoparticles and (nano-)biomimetic as 66 

carriers [11, 12, 14, 17], conjugation to specific antibodies, provoking receptor-mediated uptake 67 

[18], or conjugation to cell penetrating peptides [19, 20]. However, development of delivery 68 
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systems or conjugation systems is complex and/or often targeted to single types of antibiotics, 69 

and modifications of the molecular structures of antibiotics may reduce their activity [21]. 70 

Moreover, most of these approaches will hardly mediate efficient release of the cargos from 71 

endocytic vesicles into the cytosol [22, 23]. Endosomal entrapment of many therapeutics is 72 

known to hinder them from reaching their intracellular site of action and will eventually result 73 

in degradation of the entrapped drugs in lysosomes [22, 23]. 74 

To solve this problem, photochemical internalization (PCI) would be a promising method to 75 

improve cytosolic release of therapeutics and as a result enhance their intracellular efficacy. 76 

PCI has recently been developed to improve intracellular efficacy of drugs for tumor treatment 77 

using amphiphilic photosensitizers e.g. tetraphenyl phorphyrin disulphonate (TPPS2a) and 78 

tetraphenyl chlorin disulphonate (TPCS2a) (Figure S1, Supplementary data) [24, 25]. In PCI, 79 

photosensitizers localize to the membranes of endocytic vesicles in which drugs may be 80 

sequestered within cells. Upon illumination, these photosensitizer-bound membranes are 81 

disrupted, causing cytosolic release of the drugs from the vesicles allowing them to reach their 82 

intracellular targets [24, 25].  83 

In the present study, we therefore assessed whether PCI combined with antibiotics can combat 84 

intracellular bacterial infection by enhancing cytosolic release of the antibiotics. Different from 85 

the application of PCI for tumor treatment which aims for an effect on the entire target cancer 86 

cells, we used PCI to deliver antibiotics intracellularly to target another organism, i.e. the 87 

intracellular bacteria. This novel concept is depicted in Scheme 1. Gentamicin was selected as 88 

the antibiotic since it has low intracellular activity due to its inability of endosomal escape [26, 89 

27]. The efficacy of gentamicin against intracellular staphylococci with and without PCI was 90 

evaluated in vitro in RAW 264.7 mouse macrophages and in vivo using a zebrafish embryo 91 

staphylococcal infection model [4, 28]. To the best of our knowledge, our study is the first to 92 

demonstrate this potential of PCI in an entirely new application field, i.e. to improve 93 
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intracellular efficacy of antibiotics, and to show proof of concept of this novel approach to treat 94 

intracellular infections.  95 

 96 

97 

Scheme 1. Proposed mechanism of photochemical internalization (PCI) of antibiotics 98 

combatting intracellular bacteria. a) Cellular uptake of antibiotics and bacteria; amphiphilic 99 
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photosensitizers (PS) are administered together with antibiotics and dock into the plasma 100 

membrane prior to the formation of endosomes (insertion of TPCS2a in magnification); b) 101 

Entrapment of antibiotics and bacteria in endosomes/phagosomes; c) PCI–induced cytosolic 102 

release of antibiotics by disrupting the membranes of endosomes upon illumination and 103 

concomitant dissociation of PS; dashed arrow indicates re-location [29] of liberated PS to the 104 

membranes of phagosomes containing bacteria during illumination, causing PCI-induced 105 

cytosolic release of bacteria. d) Contact of antibiotics with bacteria within the cytosol allowing 106 

antimicrobial action. Of note, the sizes of the symbol of antibiotics, bacteria and 107 

photosensitizers are schematic, not proportional to their actual molecular/cell sizes. (in color) 108 

 109 

Materials and methods  110 

Bacterial strains and inoculum preparation 111 

S. epidermidis strain O-47 [7] was used for in vitro studies with RAW 264.7 mouse 112 

macrophages (indicated as RAW cells in the manuscript, #TIB-71 ATCC, U.S) [30]. The 113 

minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) [27] of 114 

gentamicin (Centrafarm B.V, The Netherlands) for S. epidermidis strain O-47 in RPMI medium 115 

(Gibco, ThermoFisher Scientific) were 0.04 and 0.33 µg/ml, respectively. S. aureus strain 116 

ATCC#49230 was used for zebrafish embryo infection. S. aureus strain RN4220 expressing 117 

mCherry fluorescent protein (designated as S. aureus-mCherry in the manuscript) was 118 

constructed as described [7, 31] and used for in vivo visualization of cell-bacteria interaction in 119 

zebrafish embryos. Bacterial inocula were prepared as described [7, 31].  120 

 121 

Culturing condition of RAW 264. 7 cells 122 
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RAW cells were seeded in 96-well plates (Greiner bio-one) at a concentration of 1 x 105 123 

cells/well and incubated overnight in RPMI medium supplemented with 5 % fetal calf serum 124 

(RPMI) (Gibco, ThermoFisher Scientific) at 37 °C in a humidified atmosphere containing 5 % 125 

CO2.   126 

 127 

Cytotoxicity for RAW cells 128 

Cultured RAW cells were incubated overnight in 200 µl of RPMI containing gentamicin (15.6 129 

to 1000 μg/ml), or incubated for 2 hours in RPMI containing the photosensitizer TPPS2a (0.1 to 130 

0.4 µg/ml) (PCI Biotech AS, Norway). The TPPS2a-treated cells were incubated for another 2 131 

hours in fresh RPMI in order to remove excess TPPS2a from cytoplasma membranes. RAW 132 

cells incubated in RPMI alone served as controls. Cells were protected from light except during 133 

illumination for 15 minutes using the LumiSource device (a broad-band blue light source, λmax 134 

≈ 420 nm; PCI Biotech AS). After illumination, cells were incubated in fresh RPMI for 24 135 

hours.  The effect of gentamicin and of TPPS2a on the metabolic activity of RAW cells was 136 

tested using MTT assay at 24 hours after incubation or using WST-1 assay directly and at 24 137 

hours after illumination, respectively, according to the manufacturer’s instruction (Sigma-138 

Aldrich). In order to test the effect of TPPS2a alone or combined with S. epidermidis on the 139 

viability of RAW cells, cells were either allowed to phagocytose bacteria for 45 minutes (assay 140 

described below) or incubated in bacteria-free medium. After phagocytosis, the cells were 141 

incubated in 200 µl of RPMI containing 0.25 µg/ml TPPS2a for 2 hours, and then incubated in 142 

fresh RPMI for another 2 hours to remove excess cell membrane-bound TPPS2a and 143 

subsequently illuminated for 0, 5, 10 or 15 minutes. Cells only illuminated served as controls. 144 

The influx of propidium iodide was measured to quantify the loss of cell viability directly or at 145 

24 hours after illumination. 146 
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 147 

In vitro phagocytosis assay 148 

After culturing in Tryptic Soy Broth (TSB) medium, S. epidermidis bacteria were pelleted by 149 

centrifugation (208,000 x g, 2 minutes), re-suspended in 1.5 ml of PBS mixed with 0.5 ml of 150 

human serum (H1 serum, Bio Whittaker, The Netherlands) and incubated for 20 minutes for 151 

opsonization. The inoculum was adjusted to 1 x 108 CFU/ml with RPMI. The cells were seeded 152 

as described above and medium of cells was replaced by 40 µl of the bacterial inoculum 153 

(bacteria to cell ratio of 40:1) and phagocytosis was allowed to proceed for 45 minutes. RAW 154 

cells were then gently washed four times with 60 µl, and with a final wash with 200 µl of PBS 155 

to prevent carry-over of planktonic S. epidermidis, which was always less than 0.5 % of the 156 

numbers of retrieved intracellular bacteria after these washing steps. Cells were lysed with 100 157 

µl of 1 % saponine. After lysis, the PBS containing lysed cells and bacteria was transferred into 158 

a vial and centrifuged (208,000 x g, 2 minutes). The pelleted bacteria were washed and re-159 

suspended in fresh PBS before quantitative culture of serial 10-fold dilutions[31]. Intracellular 160 

surviving S. epidermidis in RAW cells were expressed as numbers of CFU per well. The 161 

phagocytosis assay is schematically depicted in Figure S2 (Supplementary data). 162 

 163 

Bactericidal activity assay  164 

To test whether photosensitizer TPPS2a has bactericidal activity against S. epidermidis, we 165 

performed a 99.9% lethal concentration assay. After pre-culture in TSB medium, an S. 166 

epidermidis inoculum was prepared of 1 x 106 CFU/ml with refresh TSB medium.  One hundred 167 

l of the inoculum was added to 100 l of TSB medium containing different concentrations of 168 

TPPS2a (final concentrations of 0.005 to 0.5 g/ml) in a 96 wells plate. After overnight 169 
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incubation with TPPS2a, the bacteria were illuminated for 6 minutes using the LumiSource 170 

device, and quantitatively cultured immediately and at 3 and 24 hours after illumination, as 171 

described earlier. Bacteria incubated in TSB medium without TPPS2a served as controls. The 172 

concentration of TPPS2a eliminating 99.9% of the numbers of CFU relative to the inoculum 173 

was defined as the 99.9% lethal concentration (LC99.9)。  174 

 175 

Intracellular antimicrobial activity assay 176 

RAW cells were allowed to phagocytose S. epidermidis.  This bacterial species was chosen for 177 

these experiments since the bacteria survive inside the macrophage in vitro without killing them 178 

[32]. Cells were then washed to remove extracellular bacteria as described earlier, and treated 179 

for 2 hours with gentamicin (1, 10 or 30 µg/ml) with or without TPPS2a (0.25 µg/ml) (Figure 180 

S2, Supplementary data). Cells incubated in RPMI or in RPMI containing TPPS2a served as 181 

controls. The medium was then changed for fresh RPMI containing gentamicin in the identical 182 

concentrations but without TPPS2a, and cells were incubated for 2 hours to remove excess cell 183 

membrane-bound TPPS2a. Medium was then replaced by RPMI containing 1 µg/ml gentamicin 184 

in order to prevent growth of extracellular bacteria in the subsequent steps, and cells were 185 

illuminated for 10 or 15 minutes. Non-illuminated cells served as controls. After illumination 186 

cells were incubated overnight, lysed, and intracellular surviving bacteria were quantitatively 187 

cultured as described earlier.   188 

 189 

Preparation of fluorescently labeled gentamicin  190 
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Gentamicin (Sigma-Aldrich) was labelled with Alexa Fluor 405 succinimidyl ester (Life 191 

Technologies) (ratio of 1:1), purified by C-18 reversed phase chromatography, aliquoted, 192 

lyophilized and stored in the dark at -20°C. 193 

 194 

Confocal fluorescence microscopy  195 

After culturing, RAW cells were seeded in a culture dish at 3x105 cells/dish (MatTek Glass 196 

Bottom Culture Dish, U.S) and incubated overnight in 1 ml of RPMI containing 10 μg/ml 197 

fluorescently labeled gentamicin alone or combined with 1 μg/ml TPCS2a (PCI Biotech AS). 198 

The cells were then incubated in fresh RPMI for 4 hours to remove excess cell membrane-199 

bound TPCS2a, illuminated for 2 minutes and covered with Prolong® Gold antifade reagent (Life 200 

Technologies) for confocal microscopy (Leica).  201 

 202 

Zebrafish husbandry and maintenance 203 

The zebrafish embryo experiments were performed according to the EU Animal Protection 204 

Directive 2010/63/EU. Adult wild type (WT) or transgenic (Tg) zebrafish and embryos were 205 

maintained as described [33] and handled in compliance with animal welfare regulations, as 206 

approved by the local animal welfare committee (DEC).  207 

 208 

Injection into zebrafish embryos 209 

Injections of antibiotic solution (alone or with photosensitizers) or bacterial inoculum into the 210 

blood circulation of zebrafish embryos via either the blood island or the duct of Cuvier was 211 

performed as described [34]. An injection volume of 1 nl was used for all injections performed 212 
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in the present study. The needles were pulled from a glass capillary (Harvard apparatus) and 213 

the tip was broken at an outer diameter of approximately 15 µm using a microscope with a scale 214 

bar (Leica M20) [34]. Pressure and injection time of the FemtoJet microinjector (Eppendorf) 215 

were subsequently adjusted to deliver liquid droplets with a diameter of 125 µm, corresponding 216 

to a calculated volume of 1 nl.   217 

 218 

Dose finding of S. aureus for zebrafish embryo infection 219 

Using graded inocula of S. aureus (ATCC#49230 strain; 6000, 3000, 500 and 100 CFU per 220 

embryos), we assessed the lethal challenge dose for zebrafish embryos. Embryos were injected 221 

at 30 hours post fertilization, and individually maintained in 200 μl of E3 medium as described 222 

[33]. Medium was refreshed daily. The injected doses were checked by quantitative culture of 223 

5-6 embryos per group, crushed using a MagNA lyser (Roche). Survival was monitored daily 224 

until 4 days post injection.  225 

 226 

Visualization of co-localization of phagocytes and bacteria in zebrafish embryos  227 

At 30 hours post fertilization, inocula of S. aureus-mCherry were injected into zebrafish 228 

embryos of the Tg line (mpeg1: Gal4/UAS: Kaede) featuring macrophages expressing Kaede 229 

green fluorescent protein [35]. The injected doses were checked as described above. At 32 hours 230 

post fertilization, so 2 hours post injection, images were recorded under bright field as well as 231 

with the FITC and mCherry filters, using a fluorescence microscope (LM 80, Leica).  232 

 233 

Toxicity for zebrafish embryos 234 
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Gentamicin (0.16 to 16 mg/ml) or TPCS2a (0.25 to 25 µg/ml) solutions (both in PBS) or 235 

mixtures were injected into WT zebrafish embryos at 32 hours post fertilization. Control 236 

embryos received PBS injections. The embryos were group-wise maintained in petri-dishes, 237 

and protected from light except during illumination for 10 minutes with the LumiSource to 238 

activate the TPCS2a photosensitizer, at 34 hours post fertilization. Survival of embryos was 239 

monitored daily until 6 dpi based on the observation of movement and heartbeat of the embryos. 240 

 241 

Treatment of S. aureus-infected zebrafish embryos  242 

Wild type zebrafish embryos were injected with 3000 CFU of S aureus ATCC#49230 at 30 hpf, 243 

and randomly divided into groups for different treatments. At 32 hours post fertilization 1 nl of 244 

PBS solution containing gentamicin alone (0.05, 0.1 or 0.4 μg/ml) or combined with 0.25 μg/ml 245 

TPCS2a was injected. Control embryos received PBS injections. The embryos were protected 246 

from light except during illumination for 10 minutes with the LumiSource, at 34 hours post 247 

fertilization. They were separately maintained in E3 medium which was refreshed daily. 248 

Survival was monitored until 6 days post fertilization.  The blue light LumiSource lamp was 249 

used to illuminate zebrafish embryos for two reasons: 1) Since zebrafish embryos are 250 

transparent and thin, deep tissue penetration of light is therefore not needed and the blue light 251 

(λmax ≈ 420 nm) is capable of penetrating the embryos for in vivo light-activation of TPCS2a; 2) 252 

The LumiSource lamp is a practical way to simultaneously illuminate multiple zebrafish 253 

embryos since it has a light emission surface area of 765 cm2. 254 

 255 

Statistical analysis 256 
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For in vitro studies with RAW cells, data were analyzed by one-way ANOVA, and 257 

subsequently groups were compared pairwise by either Dunnett’s or Sidak’s multiple 258 

comparisons tests, depending on the experimental setup. Percent survival of embryos and 259 

differences between pairs of survival curves were analyzed using the Kaplan-Meier method and 260 

log rank test, respectively. Differences were considered significant for P values ≦ 0.05.  All 261 

analyses were performed using GraphPad Prism 7.0.  262 

263 

Results 264 

Effect of gentamicin, TPPS2a and TPPS2a-S. epidermidis combination on 265 

metabolic activity and viability of RAW cells  266 

Exposure to up to 250 µg/ml of gentamicin for 24 hours did not reduce the metabolic activity 267 

of RAW cells. Without illumination, 0.4 µg/ml of TPPS2a did not reduce the metabolic activity. 268 

With illumination for 15 minutes, concentrations of TPPS2a up to 0.25 µg/ml did not reduce the 269 

metabolic activity, neither immediately after illumination (T = 0) nor after 24 (T = 24) or 48 270 

hours (T = 48) (Figure 1a). Hence, we chose 250 µg/ml of gentamicin and 0.25 µg/ml of TPPS2a 271 

as the maximum concentrations for further experiments. 272 

The effect of TPPS2a-PCI treatment alone or in presence of S. epidermidis on viability of RAW 273 

cells was assessed immediately (T = 0) and at 1 hour after illumination for 0, 5, 10 or 15 minutes 274 

(T = 1) (Figure 1b). Cells illuminated in absence of TPPS2a served as controls. Illumination as 275 

such did not influence cell viability. Cells exposed to TPPS2a alone or combined with S. 276 

epidermidis showed significant reduction of viability when illuminated for 5-15 minutes and 277 

for 10-15 minutes, respectively (Figure 1b).  278 
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 279 

Figure 1. Effect of TPPS2a and TPPS2a combined with S. epidermidis on metabolic activity and 280 

viability of RAW cells. a) Metabolic activity of RAW cells expressed as percent conversion of 281 

WST-1 reagent relative to that of non-treated cells (0 µg/ml). Differences between the TPPS2a-282 

treated groups and the non-treated group were analyzed using Dunnett’s multiple comparisons 283 

test; b) Viability of RAW cells  recorded as percentage of cells not permeable to propidium 284 

iodide. The cells were treated with illumination only, with TPPS2a and illumination, or with 285 

TPPS2a combined with S. epidermidis and illumination. Differences between indicated groups 286 

were analyzed using Dunnett’s multiple comparisons test; Data represent mean ± standard 287 

deviation (n=3) in Panel a and b, *, P ≦ 0.05; **, P < 0.01; ***, P < 0.001.  288 
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PCI-induced cytosolic release of gentamicin enhances efficacy against 289 

intracellular S. epidermidis in RAW cells  290 

 291 

Figure 2. PCI-enhanced efficacy of gentamicin against intracellular S. epidermidis in RAW 292 

cells. a) Reduction of numbers of CFU of intracellular S. epidermidis by TPPS2a-PCI of 293 

gentamicin. Cells containing S. epidermidis were illuminated only, treated with 0.25 µg/ml 294 

TPPS2a or gentamicin (GEN) only or with GEN-TPPS2a combinations. Cells subsequently were 295 

illuminated for 0, 10 or 15 minutes. Differences between GEN alone and respective GEN-296 

TPPS2a treatments were analyzed using Sidak’s multiple comparisons test. Data represent mean 297 
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± standard deviation (n=3). *, P ≦ 0.05, ***, P < 0.001; b) PCI-induced cytosolic release of 298 

gentamicin in RAW cells upon illumination. Gentamicin was labeled with Alexa Fluor 405 299 

(blue) and TPCS2a was observed in the red channel. Intracellular co-localization of gentamicin 300 

and TPCS2a is shown as magenta color in the merged images. Scale bars = 10 µm. (in color) 301 

 302 

To study whether TPPS2a with illumination itself would kill bacteria, we exposed S. epidermidis 303 

bacteria to TPPS2a at concentrations of up to 0.5 g/ml and illuminated the bacteria. The 304 

numbers of CFU of S. epidermidis were not reduced after incubation with TPPS2a and 305 

illumination, showing that TPPS2a with illumination has no inhibitory or cidal effect on the 306 

bacteria.  307 

To investigate whether TPPS2a-PCI enhanced the efficacy of gentamicin against intracellular S. 308 

epidermidis in vitro, we exposed S. epidermidis-infected RAW cells to TPPS2a only (0.25 309 

µg/ml), to gentamicin only (1, 10 or 30 µg/ml) or to the respective gentamicin-TPPS2a 310 

combinations (Figure 2a). Since with 5 minutes of illumination no effect of the gentamicin-311 

TPPS2a combinations was observed (data not shown), cells were illuminated for 10 or 15 312 

minutes. Treated but non-illuminated cells and cells only illuminated served as controls. 313 

Without illumination, none of the treatments caused reduction of the numbers of intracellular 314 

bacteria in RAW cells. Treatment with TPPS2a-illumination or only with illumination did not 315 

affect intracellular survival of S. epidermidis. None of the treatments with gentamicin only, 316 

with or without illumination for 10 or 15 minutes, showed significant reduction in numbers of 317 

CFU of intracellular S. epidermidis. Treatment with TPPS2a and 30 µg/ml gentamicin with 318 

illumination for 10 minutes significantly enhanced killing of intracellular bacteria (1 log 319 

reduction). With illumination for 15 minutes, combination of TPPS2a and either 10 or 30 µg/ml 320 

gentamicin significantly increased killing of intracellular S. epidermidis to levels of 1 and 3 log 321 



 17

reduction, respectively. A repetition experiment showed highly similar results (Figure S3, 322 

Supplementary data).  323 

To investigate whether PCI induced cytosolic release of gentamicin, intracellular distribution 324 

of gentamicin and photosensitizer in RAW cells with and without illumination was visualized 325 

(Figure 2b). For these and subsequent in vivo studies with zebrafish embryos we selected 326 

TPCS2a. This photosensitizer absorbs red light which has a favorable tissue penetration, and 327 

therefore is more suitable for applications in vivo than TPPS2a [36]. Without illumination, both 328 

gentamicin and TPCS2a localized within intracellular compartments in the periphery of the cells, 329 

likely endocytic vesicles. After illumination both gentamicin and TPCS2a were released into the 330 

cytosol. Gentamicin seemed to accumulate at the nuclei of the RAW cells.  331 

 332 

Dose finding of S. aureus for zebrafish embryo infection and visualization of 333 

cell-pathogen interaction in vivo 334 

To assess suitable doses of S. aureus for zebrafish embryo infection, we injected graded inocula 335 

with doses of 6000, 3000, 500 or 100 CFU per embryos into the blood circulation at 30 hours 336 

post fertilization. The actual doses of bacteria injected were close to the aimed doses with minor 337 

variations in each group (Figure 3a). Death rate of S. aureus-infected embryos was proportional 338 

to the inoculum dose (Figure 3b). The dose of 3000 CFU/embryo caused approximately 50% 339 

of the embryos to die at 4 days post injection (Figure 3b), which is suitable to assess the efficacy 340 

of antibiotic treatment.  341 

In order to investigate whether S. aureus was phagocytosed shortly after injection, we 342 

challenged 1 day old transgenic zebrafish embryos expressing Kaede green fluorescent protein 343 

in their macrophages (Figure 4d), with 3000 CFU of mCherry red fluorescent protein-344 
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expressing S. aureus. We chose the time point of 2 hours post injection to assess whether the 345 

injected S. aureus were phagocytosed by zebrafish macrophages since the majority of S. aureus 346 

are taken up by zebrafish macrophages and/or neutrophils with 2 hours post injection, and these 347 

cells containing bacteria are important niches for S. aureus infection in the embryos [4, 37]. In 348 

the present study co-localization of S. aureus and macrophages was observed in the blood 349 

circulation at 2 hours post injection (Figure 3d). The bacteria not associated with labelled 350 

phagocytes seemed to be clustered (Figure 3d), suggesting that they were phagocytosed by the 351 

non-labelled phagocyte type of the embryos such as neutrophils. This shows that (a portion of) 352 

S. aureus had been phagocytosed in vivo at 2 hours post injection, which is in line with the 353 

results reported in the previous studies [4, 37].  354 
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 355 

Figure 3. Determination of S. aureus challenge doses for zebrafish embryo infection and co-356 

localization of S. aureus and zebrafish macrophages. a) CFU numbers of S. aureus cultured 357 

from crushed embryos injected with inocula of 100 to 6000 CFU in 1 nl PBS. The red lines 358 

represent the median numbers of CFU. b) Effect of different inocula of S. aureus on survival 359 

of embryos. PBS injections served as controls. Initial group sizes ranged from 26 to 38 embryos. 360 

c) Bright field image of a representative 1 day old zebrafish embryo at 2 hours post S. aureus 361 

injection. Scale bar = 500 µm. The blue box indicates the area shown in d) at high magnification 362 

with co-localization of S. aureus-mCherry (red) and zebrafish macrophages (green) as co-363 

localization in yellow (arrows). Scale bars = 100 µm in d). (in color) 364 
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 365 

Enhanced survival of S. aureus-infected embryos treated with gentamicin 366 

combined with PCI  367 

 368 

Figure 4. Survival of non-infected and S. aureus-infected zebrafish embryos treated with 369 

gentamicin only or gentamicin-TPCS2a combinations after illumination for 10 min. a) Effect of 370 

gentamicin alone (GEN) or combined with TPCS2a (T) (in 1 nl of PBS) on non-infected embryos. 371 

Embryos injected with PBS served as controls. Initial group sizes ranged from 31 to 35 embryos; 372 

b) Survival of embryos infected with 3000 CFU of S. aureus treated with gentamicin only or 373 
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combined with TPCS2a. PBS mock treatment served as control. Initial group size ranged from 374 

31 to 33 embryos. Differences between survival of each of the treated groups versus the PBS 375 

control group, as well as between survival of the gentamicin only group and the respective 376 

gentamicin-TPCS2a treatment group were analyzed using Log-rank test.  **, p < 0.01. ***, p < 377 

0.001. (in color) 378 

 379 

To test their toxicity for zebrafish embryos, the effect of injection of graded doses of gentamicin, 380 

TPCS2a and gentamicin-TPCS2a combinations on survival was assessed. TPCS2a and 381 

gentamicin both showed a dose-dependent toxicity, with maximal non-toxic concentrations of 382 

2.5 x 10-3 and 2 ng/embryo, respectively (Figure S4 a and b, Supplementary data). 383 

Combinations of 1.6 or 0.8 ng/embryo gentamicin with 2.5 x 10-3 ng/embryo TPCS2a did not 384 

significantly reduce survival of embryos (Figure 4a).  385 

To investigate whether PCI enhanced the efficacy of gentamicin against staphylococcal 386 

infection in vivo, we treated S. aureus-infected zebrafish embryos (3000 CFU/embryo) with 387 

gentamicin alone or combined with TPCS2a (Figure 4b). All treatments significantly improved 388 

survival as compared to the PBS mock treatment. Addition of TPCS2a significantly improved 389 

the treatment efficacy of 0.1 ng gentamicin, resulting in levels of survival similar to those 390 

obtained with treatment of 0.4 ng gentamicin alone. This shows that PCI enhances the efficacy 391 

of gentamicin against S. aureus infection in vivo in zebrafish embryos and lowers the required 392 

dose for efficacy. However, a minimal gentamicin dosing is necessary to observe the enhancing 393 

effect of TPCS2a, since TPCS2a did not improve the efficacy of 0.05 ng gentamicin. 394 

 395 

Discussion 396 
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Intracellular niches are considered a ”safe haven” for intracellular bacterial pathogens such as 397 

staphylococci, where they are protected from clearance by the host [1-3, 8, 10]. Intracellular 398 

infections are very difficult to treat with most conventional antibiotics, and even are considered 399 

part of the cause of antibiotic resistance development [2, 11, 16]. Although some approaches 400 

such as using micro-/nano-sized vehicles as carriers for delivery of antibiotics [11, 12, 14, 17] 401 

and conjugation of antibiotics to cell penetrating peptides or specific antibodies [18-20] are 402 

reported to improve their cell penetration,  endosomal entrapment of antibiotics after 403 

endocytosis still remains a major problem, resulting in low bioavailability of the drugs in the 404 

cytosol [22, 23]. Therefore, novel approaches to enhance intracellular activity of antibiotics are 405 

urgently needed. In our study, we have devised and applied a novel use of photochemical 406 

internalization (PCI) as a means of controlled release of antibiotics into the cytosol, targeting 407 

intracellular bacteria. We have applied PCI to enhance intracellular activity of gentamicin, an 408 

antibiotic with limited efficacy inside cells, against staphylococci both in vitro and in vivo. In 409 

RAW cells, PCI induced cytosolic release of gentamicin and increased eradication of 410 

phagocytosed S. epidermidis. In vivo, in a zebrafish embryo model with S. aureus internalized 411 

by phagocytes, PCI enhanced efficacy of gentamicin against S. aureus infection and lowered 412 

the required dose of the antibiotic. To the best of our knowledge, our study is the first to 413 

demonstrate the potential of PCI to enhance antimicrobial efficacy of an antibiotics inside cells 414 

and thus provides a new concept for treating intracellular infections. 415 

Photosensitizers such as TPPS2a and TCPS2a have been developed for treatment of tumors by 416 

enhancing delivery of cytotoxic chemotherapeutics [24, 25, 38]. According to the principle of 417 

PCI, the doses of photosensitizer and light required to disrupt the endosomal/lysosomal 418 

membranes are likely sublethal [39]. In our study, although PCI had slight to moderate levels 419 

of cytotoxicity for RAW cells in vitro (Figure 1b), the concentrations required to enhance the 420 

efficacy of gentamicin in vivo did not significantly reduce survival of the zebrafish embryos 421 
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(Figure S4). Similarly, in a recent clinical phase I trial for delivery of the antitumor drug 422 

bleomycin TPCS2a-PCI was shown to be safe and tolerable for human patients receiving 423 

infusions of TPCS2a solution [38].TPPS2a and TPCS2a molecules tend to preferentially 424 

accumulate in diseased tissues and inflamed areas [24, 25], and other similar types of 425 

photosensitizers were shown to be internalized by local highly active cells in inflamed areas, 426 

such as macrophages and neutrophils [40, 41]. Therefore, treatment of infected areas by PCI 427 

combined with antibiotic therapy will likely preferentially target phagocytic cells containing 428 

bacteria. Moreover, any cytotoxicity of photosensitizers will only be induced when illumination 429 

is applied. Therefore, application of site-specific illumination to diseased tissues/inflamed areas 430 

will minimize the potential side effects of PCI on healthy tissues and normal cells which are 431 

not exposed to illumination. Compared to chemical endosomal disruption agents such as 432 

chloroquine, ammonium chloride and methylamine which have relatively high toxicity and low 433 

cell/tissue specificity [42, 43],  PCI provides temporally and spatially controlled cytosolic 434 

release of therapeutics from endocytic vesicles with potentially less side effects in vivo [24, 44].  435 

Treatment of S. epidermidis-infected RAW cells by gentamicin alone, even with relatively high 436 

concentrations (10 and 30 µg/ml), did not remarkably reduce the numbers of the intracellular 437 

bacteria. Combining the treatment with PCI however significantly improved the efficacy 438 

(Figure 2). A similar efficacy-enhancing effect of PCI was observed in vivo in our zebrafish 439 

embryo S. aureus infection model (Figure 4). PCI did however not increase the efficacy of the 440 

lowest dose of gentamicin, neither in vitro nor in vivo. Possibly the amount of intracellular 441 

gentamicin was too low to be efficacious even after cytosolic release following PCI treatment. 442 

Interestingly, in our experiments with RAW cells the liberated gentamicin molecules seemed 443 

to accumulate at the nuclei after illumination. This is in line with the observation of gentamicin 444 

binding to the nuclei of kidney cells [45]. Although theoretically such binding may reduce the 445 

amount of free gentamicin in the cytosol, enhanced efficacy of gentamicin by PCI (4-fold) was 446 
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still observed in our study. This suggests that intracellular activity of antibiotics which do not 447 

show nuclear binding, might be even more strongly enhanced by PCI. Our results, showing an 448 

enhancing effect of PCI on antibiotic efficacy in the zebrafish embryo infection model, offer 449 

prospects for further in vivo studies in larger mammalian animal models. In vivo studies with 450 

PCI in mouse models have already been performed extensively for cancer treatment[46, 47]. 451 

The available relevant information on PCI modality from these studies supports further 452 

investigation on PCI-antibiotic treatment of intracellular infection in vivo. Moreover, since the 453 

photosensitizer TPCS2a has passed clinical phase I trials for safety testing in human patients [38] 454 

and many antibiotics to be combined with PCI are available, there is the possibility to relatively 455 

rapidly progress towards clinical studies of PCI-antibiotic treatment of diseases associated with 456 

intracellular infections.  457 

Eradication of intracellular bacteria by antibiotics may be impeded by their different subcellular 458 

localization inside cells [13, 27]. Even when endosomes containing antibiotics and 459 

photosensitizers would be ruptured after illumination, bacteria might still be safely shielded 460 

within phagosomes, which would not necessarily contain photosensitizers. Our results however 461 

did show increase of killing of the intracellular bacteria. This may be explained in two ways. 462 

After rupture of the endosomes containing antibiotics, photosensitizer molecules dissociated 463 

from the lysed endosomal membranes may intracytoplasmically re-localize to the membranes 464 

of phagosomes containing the bacteria, and also rupture these membranes (Scheme 1). As a 465 

result, bacteria are released into the cytosol and are intracellularly killed by gentamicin. In 466 

addition, during PCI partially ruptured vesicles are suggested to fuse with still intact 467 

intracellular vesicles causing them to also become leaky/ruptured, even without additional 468 

illumination [29]. Such fusion therefore may also (partially) contribute to the cytosolic release 469 

of both antibiotics and bacteria, facilitating the intracellular antimicrobial action. Since 470 

intracellular delivery of bioactive molecules using PCI generally does not rely on particular 471 
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properties of the molecules to be delivered [24, 25], PCI can likely also improve the intracellular 472 

efficacy of other antibiotics than gentamicin via controlled release of drugs into the cytosol of 473 

cells. Such antibiotics may be other aminoglycosides, glycopeptides and macrolides, whose 474 

activity likely is limited by their inability of endosomal escape [13, 26, 27]. PCI thus has a 475 

strong potential to increase the numbers of antibiotics to be effective in treatment of 476 

intracellular infection and may increase their therapeutic window, since PCI will lower the 477 

effective antibiotic dose owing to enhanced intracellular delivery. Because PCI can in principle 478 

enhance intracellular delivery of different antibiotics, it has the potential to enhance efficacy of 479 

antibiotic treatment of infections caused by a broad range of intracellular bacterial pathogens 480 

such as Mycobacterium tuberculosis, Listeria monocytogenes and Salmonella typhi [11, 12]. 481 

As a result, PCI may also help reduce the rate of resistance development which might occur 482 

intracellularly due to the low, permissive concentration of antibiotics.  483 

Infectious diseases involving intracellular bacteria can occur or relapse at different sites of the 484 

human body (e.g. skin, deep tissues, urinary tract and lung). In addition to professional 485 

phagocytes, non-professional phagocytic cells (e.g. epithelial cells, osteoblasts) can be niches 486 

for intracellular bacteria [1, 2, 11]. The potential of PCI-antibiotic combinations to treat such 487 

local infections is dependent on whether light can be applied to the site of infection with 488 

intracellular bacteria. Similar to antibacterial photodynamic therapy (aPDT) [48-50], PCI can 489 

be considered for local treatment of (sub)cutaneous skin or mucosal infections such as infected 490 

chronic wounds, ulcers, abscesses and diabetic foot infection as well as for nasal and oral 491 

infections (e.g. chronic rhinosinusitis and periodontal infections), where the site of infection is 492 

accessible for light required for the controlled release of antibiotics. The PCI-antibiotic 493 

treatment of infections of internal organs, deep tissue or bone is more challenging, but certainly 494 

not impossible. Techniques such as those developed for clinical applications of PDT in the 495 

treatment of tumors in bile duct, lung, brain and bladder [51] offer a good toolset to develop 496 
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PCI-enhanced treatment for deep infections. Consequently, PCI has strong potential to improve 497 

antibiotic treatment of intracellular infections in a broad spectrum of clinically challenging 498 

infectious diseases.  499 

 500 

Conclusions  501 

In our in vitro mouse macrophage as well as in vivo zebrafish embryo studies, we demonstrate 502 

that photochemical internalization (PCI) can significantly enhance the antimicrobial efficacy of 503 

an antibiotic with limited activity (e.g. gentamicin) against (intracellular) staphylococcal 504 

infection, likely owing to the cytosolic release of the antibiotic. To the best of our knowledge 505 

we are the first to report an entirely novel application of PCI, i.e. to specifically enhance the 506 

efficacy of antibiotics against intracellular infections. This opens new avenues to improve the 507 

antibiotic treatment of infections associated with intracellular survival of bacteria and may also 508 

help prevent resistance development.    509 
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