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Lower serum calcium is 
independently associated with CKD 
progression
Cynthia J. Janmaat1, Merel van Diepen1, Alessandro Gasparini   2, Marie Evans   2, Abdul 
Rashid Qureshi2, Johan Ärnlöv   2, Peter Barany   2, Carl-Gustaf Elinder2,3, Joris I. Rotmans4, 
Marc Vervloet5, Friedo W. Dekker1 & Juan Jesus Carrero2,6

Disturbances in calcium metabolism are common in individuals with chronic kidney disease (CKD), but 
whether they are associated with subsequent kidney function decline is less clear. In a CKD 3–5 cohort 
of 15,755 adult citizens of Stockholm with creatinine tests taken during 2006–2011 and concurrent 
calcium testing at cohort entry, we investigated the association between baseline serum calcium and 
the subsequent change in estimated glomerular filtration rate (eGFR, by CKD-EPI) decline using linear 
mixed models. Mean (SD) baseline corrected serum calcium was 9.6 (0.5) mg/dL. Mean (95%-confidence 
interval [CI]) eGFR decline was −0.82 (−0.90; −0.74) mL/min/1.73 m2/year. In advanced CKD stages, 
higher baseline serum calcium was associated with less rapid kidney function decline. The adjusted 
change (95%-CI) in eGFR decline associated with each mg/dL increase in baseline serum calcium was 
−0.10 (−0.28; 0.26), 0.39 (0.07; 0.71), 0.34 (−0.02; 0.70) and 0.68 (0.36; 1.00) mL/min/1.73 m2/year 
for individuals in CKD stage 3a, 3b, 4, and 5, respectively. In a subgroup of patients using vitamin D 
supplements, the association between baseline serum calcium and CKD progression was eliminated, 
especially in CKD stage 3b and 4. To conclude, in individuals with CKD stage 3b to 5, lower baseline 
corrected serum calcium, rather than higher baseline serum calcium, associated with a more rapid CKD 
progression. Lower serum corrected calcium seems to be indicative for vitamin D deficiency.

The identification of modifiable risk factors for chronic kidney disease (CKD) progression is important to the 
design, study and implementation of preventive strategies1,2. Disturbances in mineral metabolism are prevalent 
in advanced CKD stages and have been suggested not only to be the consequence of CKD, but also a potential 
cause for a more rapid kidney function decline3,4. Hyperphosphatemia has been consistently associated with 
CKD progression5–7, as well as FGF-23 excess and the calcium-phosphorus product8,9. Less evidence exists on 
the association between calcium disturbances and kidney function decline, with two recent studies reporting 
conflicting and counterintuitive associations: while Schwarz et al.8 found no association between calcium and 
CKD progression in CKD stage 1–5 patients, Lim et al.10 reported low serum calcium to be associated with a 
faster kidney function decline in a pooled cohort of CKD stage 3–4 patients. Intuitively, it would be expected 
that high serum calcium concentrations contribute to rapid kidney function deterioration, due to precipitation 
of calcium-phosphorus product in vessels causing vascular calcifications11, or to acute effects of hypercalcemia. 
Preceding studies used a composite outcome of progression (50% decline or eGFR slope >−5 mL/min/1.73 m2 
plus initiation of renal replacement therapy [RRT]), and did not investigate the absolute change in kidney func-
tion for each CKD stage. Furthermore, the kidney has compensatory mechanisms to maintain calcium-phosphate 
balance until late CKD stages12,13, and therefore serum calcium may solely appear as overt risk factor for pro-
gression in advanced CKD12. To clarify this issue, we here aimed to determine the plausible association between 
serum calcium and subsequent kidney function decline in non-dialysis patients with CKD stages 3–5 separately 
from a large regional-representative healthcare system.
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Results
Baseline characteristics.  Out of a total of 65,070 adult individuals with an eGFR at study entry that qual-
ified as CKD 3–5, we included 15,755 for whom concurrent calcium was measured. See Fig. 1 for a flowchart 
of patient inclusion. These patients had a total of 63,468 consecutive eGFR assessments during observation. 
Median (IQR) age was 79.9 (70.2–85.8) years, and 39% were men. Median (IQR) eGFR was 48.1 (37.2–55.0) mL/
min/1.73 m2. A total of 9,286 patients had CKD stage 3a, 4,190 patients had CKD stage 3b, 1,784 patients had 
CKD stage 4 and 495 patients had CKD stage 5. Baseline characteristics are shown in Table 1. The majority of 
participants had baseline corrected calcium levels within the normal reference range, i.e. 8.6–10.2 mg/dL (2.15–
2.55 mmol/L)14. Only 1.1% and 7.4% of participants had hypo- and hypercalcemia, respectively. In participants 
with hypocalcemia, 30% received vitamin D therapy, and only one person received active vitamin D therapy. 
Participants with CKD stage 5 were younger and more often men than the patients with CKD stages 3a to 4. 
Diabetes mellitus, hypertension, albuminuria and hyperphosphatemia were more prevalent in CKD stage 5 com-
pared to other CKD stages. CKD stage 5 participants used phosphate binders more often than other CKD stages, 
and those with CKD stages 4–5 more often used active vitamin D analogues and diuretics compared to stage 3. 
Twelve variables were used as potential confounders and used to impute missing values. Ten of these variables 
were complete in all patients. Hemoglobin and phosphorus, had 15% and 71% of missings, respectively. As antic-
ipated from a healthcare extraction, a few participants had a dipstick albuminuria or an iPTH test taken at the 
index date. Because these variables were available for 13% and 8% of the total study population, respectively, they 
were not considered for multivariable adjustment in our primary analysis.

Association between baseline serum calcium and subsequent kidney function decline.  The 
median (IQR) length of follow-up was 4.3 (2.0–5.3) years, and the median (IQR) number of eGFR measure-
ments per patient was 5.0 (2.0–13.0). The overall mean annual rate of decline in patients with CKD stages 3a-5 
was −0.82 (95% CI −0.903; −0.738) mL/min/1.73 m2, and the mean annual rate of decline was −0.657 (95% 
CI −0.775; −0.539), −1.013 (95% CI −1.175; −0.851), −1.457 (95% CI −1.634; −1.279) and −0.965 (95% CI 
−1.294; −0.636) mL/min/1.73 m2 for patients with CKD stage 3a, 3b, 4 and 5, respectively. The (adjusted) change 
in the rate of decline in kidney function associated with one unit higher (i.e. mg/dl) of serum calcium is shown 
in Table 2. While no association was observed between serum calcium at baseline and subsequent eGFR decline 
in patients with CKD stage 3a, a consistent negative association was found in the remaining CKD stages: in other 
words, for every unit higher in baseline serum calcium, the associated eGFR decline was slower. The other way 
around, lower baseline serum calcium is associated with a faster subsequent kidney function decline. The adjusted 
associations in these stages are substantial, ranging from an increase of 24% to 70% of the mean annual decline 
rate for every unit lower in serum calcium. Aforementioned is illustrated in Fig. 2, which shows the modelled 
longitudinal trajectories in eGFR associated with corrected baseline serum calcium levels in CKD stage 3a to 
5. Provided in the figure are the calcium eGFR trajectories based on the fully adjusted linear mixed model for 
the mean corrected baseline calcium level per CKD stage, the lower (8.6 mg/dL) and upper (10.2 mg/dL) refer-
ence limits, assuming the mean and the mode from the study population in each CKD stage for continuous and 
categorical covariates, respectively. Furthermore, a dose-response relationship seemed present: for higher CKD 
stages, lower serum calcium was associated with a more rapid kidney function decline, i.e. the lower the eGFR, 
the stronger the effect of lower calcium on subsequent decline (Table 2). This was confirmed by multiplicative 
interaction tests between baseline eGFR and serum calcium (Table 3). The negative interaction term indicates a 
smaller coefficient for higher eGFR. Let us suppose the adjusted value of 0.019 mL/min/1.73 m2: this means given 
that we have one unit increase in baseline eGFR, one unit increase in baseline calcium results in a smaller addi-
tional change in eGFR decline of 0.019 mL/min/1.73 m2. In other words, the effect of serum calcium on kidney 
function decline is stronger, for lower baseline eGFR, thus the higher the CKD stage.

Sensitivity analyses.  Various sensitivity analyses were performed. (1) Additional adjustment for baseline 
eGFR values yielded similar results (Supplementary Table S1). (2) A subgroup analysis in patients with vita-
min D supplementation at baseline showed that the association between baseline corrected serum calcium and 
subsequent kidney disease progression is abrogated among users of vitamin D medication (Supplementary 
Table S2). (3) To test the possible impact of albuminuria and iPTH adjustment, we performed multiple imputa-
tion analysis on these covariates and observed comparable results in our models (Supplementary Tables S3a-b). 

Figure 1.  Flowchart of patient inclusion.
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(4) Repeating the main analyses with separate adjustment for diuretics and hypertension yielded similar results 
(Supplementary Table S4). (5) Trend analysis in each CKD stage by quintiles of serum calcium distribution, 
suggested a gradual (and not a non-linear) higher rate of eGFR decline with lower serum calcium at baseline, 
in particular for patients with CKD stage 5 (Supplementary Table S5). (6) The magnitude of the association 
was confirmed when using uncorrected serum calcium (Supplementary Tables S6a-b). (7) Similar results were 
obtained when repeating the analysis in patients with serum corrected calcium levels within the normal reference 
range (Supplementary Tables S7a-b). (8) The results were similar when selecting individuals with at least 3 eGFR 
tests available (Supplementary Tables S8a-b). (9) We observed similar associations in the complete case analysis 
(without imputation) (Supplementary Tables S9a-b). (10) Finally, we tested the association between calcium and 
time to event analysis for dichotomous endpoints of CKD progression. In total, 629 (4%) patients started RRT, 
1594 (10%) had a sustained GFR decline of more than 30% and 5436 (35%) died during follow-up. In the adjusted 
Cox proportional-hazards regression analysis, a borderline not significant lower risk of a sustained GFR decline 
of >30% was present for each mg/dL increase in baseline corrected calcium levels, for both CKD stage 4 and 5. 
This association was not present in CKD stage 3a and 3b (Supplementary Table S10). In addition, adjusted Cox 
proportional-hazards regression analysis showed a trend towards higher risk of RRT with lower calcium levels at 
baseline (Supplementary Table S11). Although, this association was only significant for CKD stage 4, the observed 
trend is consistent with findings obtained from linear mixed models.

Discussion
Intuitively, a higher serum calcium would be expected to be associated with a more rapid kidney function deteri-
oration11. In contrast, we demonstrate in this study that lower baseline serum calcium, already within the normal 
reference range, is associated with a subsequent more rapid eGFR decline in individuals with CKD stages 3b-5. 

All (n = 15,755)
CKD 3a 
(n = 9,286)

CKD 3b 
(n = 4,190)

CKD 4 
(n = 1,784)

CKD 5 
(n = 495)

Age (years) 79.9 (70.2–85.8) 79.0 (69.8–85.1) 81.9 (73.5–87.2) 80.1 (68.2–86.4) 73.2 (61.6–82.4)

Sex (% men) 6,140 (39.0) 3,323 (35.8) 1,676 (40.0) 841 (47.1) 300 (60.6)

Comorbidities (%)b

Diabetes mellitus 2,352 (14.9) 1,012 (10.9) 723 (17.3) 480 (26.9) 137 (27.7)

Cardiovascular disease 1,502 (9.5) 722 (7.8) 479 (11.4) 251 (14.1) 50 (10.1)

Hypertension 9,794 (62.2) 5,035 (54.4) 2,981 (71.1) 1,411 (79.1) 399 (80.6)

Corrected calcium (mg/dl)∗ 9.5 ± 0.5 9.5 ± 0.5 9.6 ± 0.5 9.5 ± 0.6 9.6 ± 0.9

Hypercalcemia (>10.2 mg/dl) 1,165 (7.4) 560 (6.0) 371 (8.9) 161 (9.0) 73 (14.7)

Hypocalcemia (<8.6 mg/dl) 179 (1.1) 63 (0.7) 34 (0.8) 46 (2.6) 36 (7.3)

Vitamin D use (%)c 55 (30.7) 4 (6.3) 6 (17.6) 19 (41.3) 26 (72.2)

Active vitamin D use (%)c 1 (0.6) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.8)

Albumin corrected calcium (mg/dl)∗ 9.6 ± 0.5 9.6 ± 0.5 9.6 ± 0.5 9.6 ± 0.6 9.7 ± 0.8

Serum albumin (g/l)∗ 37.0 ± 4.1 37.5 ± 3.8 36.6 ± 4.1 35.8 ± 4.5 35.4 ± 4.8

Albuminuria (% yes)d 720 (4.6) 270 (2.9) 205 (4.9) 167 (9.4) 78 (15.8)

Baseline eGFR (ml/min/1.73 m2) 48.1 (37.2–55.0) 53.9 (49.9–57.2) 38.8 (34.9–42.2) 24.4 (20.3–27.5) 11.0 (8.5–13.1)

Number of repeated eGFR tests 5.0 (2.0–13.0) 4.0 (1.0–10.0) 6.0 (2.0–13.0) 9.0 (4.0–17.0) 8.0 (4.0–15.8)

Phosphorus (mg/dl)∗ 3.7 ± 0.9 3.4 ± 0.6 3.5 ± 0.7 3.9 ± 0.8 5.1 ± 1.3

iPTH (pg/ml)* 143.8 ± 144.6 72.8 ± 49.1 104.0 ± 67.5 161.1 ± 125.5 270.2 ± 249.5

Serum Hb (g/l) 131.5 ± 16.0 134.7 ± 15.2 129.2 ± 15.7 123.8 ± 15.7 119.1 ± 16.5

Medication (%)

Calcium supplements 105 (0.7) 88 (0.9) 15 (0.4) 1 (0.1) 1 (0.2)

Bisphosphonates 836 (5.3) 537 (5.8) 240 (5.7) 51 (2.9) 8 (1.6)

Phosphate binders 313 (2.0) 9 (0.1) 40 (1.0) 112 (6.3) 152 (30.7)

Vitamin D therapy 915 (5.8) 99 (1.1) 175 (4.3) 366 (20.5) 275 (55.6)

Active vitamin D use 54 (0.3) 10 (0.1) 16 (0.4) 18 (1.0) 10 (2.0)

Diuretics 7,876 (50.0) 3,842 (41.4) 2,440 (58.2) 1,252 (70.2) 342 (69.1)

Thiazide diuretics 492 (3.1) 335 (3.6) 124 (3.0) 31 (1.7) 2 (0.4)

Loop diuretics 2,184 (13.9) 995 (10.7) 689 (16.4) 410 (23.0) 90 (18.2)

Table 1.  Baseline characteristics of the study population by CKD stagea. aContinuous variables are expressed as 
mean ± standard deviation or median (interquartile range), and categorical variables are expressed as number 
(percentage). bComorbidities are deduced from Charlson domains. cThese numbers only apply to patients 
with hypocalcemia (<8.6 mg/dL). d% Albuminuria is presented as percentage of the total study population, 
instead of the percentage of the patient population in which an actual albuminuria test was performed. Due to 
the missingness, the percentages shown are an underestimation of the actual percentage of albuminuria in the 
study population. *To convert serum albumin in g/dl to g/l, multiply by 10; serum calcium in mg/dl to mmol/l, 
multiply by 0.2495; serum phosphorus in mg/dl to mmol/l, multiply by 0.3229; serum iPTH in pg/ml to ng/l, 
multiply by 1.
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We showed that the adjusted change in kidney function decline was attenuated by a value between 0.34 and 
0.68 mL/min/1.73 m2 for CKD stages 3b to 5, which corresponds to 24–70% reduction of the mean annual decline 
rate, for every unit increase in calcium. Thus, the effects are potentially large, especially considering that serum 
calcium can easily vary between 9 and 10 mg/dL in these patients. This observation confirms and expands previ-
ous literature and underscores the need for a better understanding of the role of calcium in CKD progression8,10. 
Strengths of our analysis are its large, real-world healthcare setting, the study of kidney function decline rate, and 
the a priori separation of CKD stages, allowing weighing the relative contribution of calcium to CKD progression 
rate for each CKD stage12,13.

Our observational study does not allow inference of causality in the association between serum calcium and 
CKD progression. Our results are similar to those of Taylor et al., who showed that a low, rather than high, uri-
nary calcium excretion associated with increased risk of CKD15. Current knowledge of the pathophysiology of 
CKD-MBD favors the argument of lower calcium being a risk marker and/or proxy of other underlying processes: 
in the natural history of (untreated) CKD progression, hypocalcemia usually develops and is associated with 

CKD 3a (n = 9,286) P* CKD 3b (n = 4,190) P* CKD 4 (n = 1,784) P* CKD 5 (n = 495) P*
Change in eGFR decline per each mg/dL higher albumin-corrected calcium (negative = extra decline)a

  Raw data −0.098 (−0.362; 0.165) 0.46 0.515 (0.196; 0.835) 0.002 0.428 (0.085; 0.772) 0.01 0.649 (0.323; 0.975) <0.001

  Model 1 −0.003 (−0.044; 0.038) 0.98 0.390 (0.073; 0.707) 0.02 0.328 (−0.003; 0.686) 0.07 0.683 (0.359; 1.008) <0.001

  Model 2 −0.009 (−0.277; 0.260) 0.95 0.391 (0.074; 0.708) 0.02 0.344 (−0.015; 0.704) 0.06 0.682 (0.355; 1.009) <0.001

Table 2.  Association between baseline corrected serum calcium and the subsequent rate of kidney function 
decline (95%-CI). aIn mL/min/1.73 m2 per year. Model 1 adjusted for age, sex, blood pressure, DM, CVD, serum 
albumin and hemoglobin. Model 2 adjusted for covariates in model 1 plus serum phosphorus, active vitamin D 
therapy and calcium supplements. *P-value for difference in the change in the rate of kidney function decline 
with one unit higher serum calcium.

Figure 2.  Modelled longitudinal trajectories in eGFR associated with corrected baseline serum calcium levels 
in CKD stage 3a, 3b, 4, and 5. Provided are the calcium GFR trajectories based on the fully adjusted linear 
mixed model for the overall mean corrected baseline calcium level, the lower (8.6 mg/dL) and upper (10.2 mg/
dL) reference limits, assuming the mean for continuous covariates and the mode (most frequent values) for 
categorical covariates the study population in each CKD stage.
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secondary hyperparathyroidism16. Physiologically, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) enhances intes-
tinal calcium absorption. Since declining of 25(OH)D3 and especially 1,25(OH)2D3 is an early feature of CKD, 
hypocalcemia in CKD is generally considered to be a consequence of that12. Low levels of the 25(OH)D3 substrate 
may contribute to decreased levels of 1,25(OH)2D3 production, particularly in CKD patients with nephrotic 
range proteinuria12. Therefore, it is possible that a lower serum calcium in this setting might indicate suboptimal 
supplementation of vitamin D deficiency, assuming a pathophysiological role in CKD progression of vitamin 
D deficiency. Both experimental and epidemiologic studies have shown that 25(OH)D3 deficiency itself might 
contribute to a progressive decline in kidney function17–19. In a subgroup analysis in patients using vitamin D sup-
plements at baseline, we observed that the association between baseline serum calcium and subsequent kidney 
disease progression was abbrogated in participants with CKD stage 3b and 4. This supports the hypothesis that a 
lower serum corrected calcium at baseline may be indicative for vitamin D deficiency. Also, in CKD stage 5 the 
association between lower serum calcium concentrations and CKD progression was attenuated among vitamin 
D users, although not abbrogated. This might indicate suboptimal supplementation of native vitamin D in this 
patient group, which indeed in general has the highest dose requirements. In addition to the role of 25(OH)D3, 
the impaired kidney function in CKD patients results in limited capacity to produce 1,25(OH)2D3 out of 25(OH)
D3, due to the smaller amount of 1α-hydroxylase. Because of the low prevalence of active vitamin D use in our 
study population (sampled shortly before this medication entered in the Swedish market), correcting for active 
vitamin D therapy did not influence our results and the results should be interpreted with caution. Recently, 
low 1,25(OH)2D3 levels has been attributed to FGF23 accumulation20,21. In turn, elevated levels of FGF-23 have 
been consistently associated with CKD progression22,23 and could in itself be a risk factor for kidney function 
decline via increased phosphate excretion per nephron, not mediated by 1,25(OH)2D39,24. Furthermore, Jean 
et al. showed that the use of oral cholecalciferol corrected vitamin D deficiency in dialysis patients, thereby also 
increasing the level of serum 1,25(OH)2D3 threefold25. Altogether, we speculate that mainly decreased vitamin D 
concentrations and associated suboptimal native vitamin D supplementation, and/or elevated FGF23, explain the 
association between lower serum calcium and CKD progression observed in CKD stages 3b to 5. This remains an 
observational study and in any case, the finding that lower serum calcium increases the rate of kidney function 
decline needs confirmation and further exploration in experimental studies.

Various limitations of this study should be considered. We found a low annual eGFR decline of 0.82 mL/
min/1.73 m2, which may seem low but it is however similar to what is reported in other healthcare utilization 
cohorts26. Furthermore, this is a CKD 3–5 cohort derived from a healthcare utilization database, and the indica-
tions for calcium and creatinine testing rendered a population selection of mainly elderly individuals. This old 
age may also be partially responsible for the overall low mean annual eGFR decline27,28. We also found a mortality 
rate of 35%, exceeding the total number of events of RRT (10%). However, it is broadly accepted that rates of 
death exceed those of RRT, especially in older age groups. This has been previously described in other health-
care cohorts26,29. Moreover, the association between serum calcium at baseline and subsequent annual eGFR 
decline was assumed to be linear and this is hard to confirm definitively. However, we performed trend analyses 
and showed that a linear assumption for the studied association seems justifiable. Another limitation is that our 
real-world healthcare utilization nature limits our capacity to have a full set of covariates (they are available only 
if the physician ordered the test), and we used multiple imputation to test as a sensitivity analysis the impact of 
correcting for iPTH and dipstick albuminuria. Multiple imputation is a preferred method independent of the 
proportion of missingness, if two assumptions are met: the number of observations should be sufficient and 
missing data should be reasonably related to observed patient characteristics (missing at random or MAR)30. We 
believe that both assumptions are easily met in our study. Further, it is uncertain if albuminuria can be regarded 
a confounder or, instead, to be within the causal pathway, and that is why we regard this as sensitivity analysis. A 
final limitation is that we did not have laboratory information on urine albumin/creatinine ratio, FGF23 levels, 
ionized calcium, 25(OH)D3 levels or HbA1c levels. Considering the above, the uncertainty of the results should 
be kept in mind.

The recently updated KDIGO guidelines on CKD-MBD management emphasize the need for optimal moni-
toring of serum calcium in CKD stages 3–5, based on the presence and magnitude of abnormalities31,32. In addi-
tion, guidelines suggest avoiding hypercalcemia, and state that mild and asymptomatic hypocalcemia can be 
tolerated in order to avoid inappropriate calcium loading. Furthermore, rising PTH levels or above the upper 
limit should be evaluated for hypocalcemia or vitamin D deficiency. However, solid evidence what the appropri-
ate level is for lower serum calcium is lacking. We propose that low calcium levels may be interpreted as a proxy 

All patients (n = 15,755) P*
Additional change in eGFR decline per each mg/dL higher albumin-
corrected calcium for each mL/min/1.73 m2 higher unit of eGFR 
(negative = smaller effect)

   Raw data −0.021 (−0.032; −0.009) <0.001

   Model 1 −0.019 (−0.030; −0.008) 0.001

   Model 2 −0.019 (−0.030; −0.008) 0.001

Table 3.  Multiplicative interaction tests between baseline corrected serum calcium and baseline eGFR in its 
association with subsequent kidney function decline (95%-CI). Model 1 adjusted for age, sex, blood pressure, 
DM, CVD serum albumin and hemoglobin. Model 2 adjusted for covariates in model 1 plus serum phosphorus, 
active vitamin D therapy and calcium supplements. *P-value for difference in the change in the rate of kidney 
function decline with one unit higher serum calcium.
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for increased FGF23 or deficiency of vitamin D in clinical practice. If the lower serum calcium levels are indeed 
indicative for either vitamin D deficiency or FGF23 excess, interventions should aim to restore this disorder. 
Possible interventions should not involve calcium supplementation, but most likely instead the prescription of 
native vitamin D, as also advised in current KDIGO guidelines, especially when a deficiency is established or sus-
pected based on calcium levels32,33. In order to investigate the causal role of serum calcium in CKD progression, a 
RCT with vitamin D therapy would be required. The use of calcium supplements in CKD patients raises concerns 
about safety, given the attention to the plausible risks of calcium overload33,34. However, partly because of this, the 
potential role of lower serum calcium in CKD progression may not be recognized.

In summary, we showed in our large CKD 3–5 cohort that lower serum calcium, already within the normal 
reference range, was associated with a subsequent faster kidney function decline in individuals with CKD stages 
3b, 4 and 5 not requiring dialysis. This association remained after adjustment for various confounders. Lower 
serum calcium may be indicative for vitamin D deficiency. If confirmed, these results may have clinical implica-
tions for disease-preventive strategies and emphasize the need to better delineate the role of calcium in the course 
of disease.

Methods
Study design, setting and study subjects.  The Stockholm CREAtinine Measurements (SCREAM) 
project is a healthcare utilization cohort from the sole healthcare provider in the region of Stockholm, Sweden 
(Stockholm County Council), described elsewhere in more detail35,36. SCREAM collected healthcare information 
on all Stockholm residents over the age of 18 years with a valid personal identification number and who had a 
measurement of serum creatinine undertaken in in- or outpatient care during 2006–2011. For these individuals, 
all standard laboratory tests performed during the period were retrieved. The dataset was then linked to regional 
and national administrative databases with complete information on demographic data, healthcare utilization, 
diagnoses, validated end stage renal disease outcomes, vital status and pharmacy-dispensed medicines. The insti-
tutional review board for use of de-identified data at Karolinska Institutet, Stockholm, Sweden and the Swedish 
National Board of Welfare approved the study. Because data is de-identified, no informed consent is necessary 
according to Swedish ethical rules.

From this healthcare utilization database, we constructed a cohort study with participants having CKD stages 
3–5. The index date was the date of the first eGFR test available per adult participant at study entry. We then 
selected all those participants with eGFR <60 mL/min/1.73 m2 after entry to construct a cohort of individuals 
classified as having CKD stages 3–5. Of those, we selected participants that had a concurrent measurement of 
serum calcium (defined as a serum calcium test taken at index date of up to 90 days before index date). For the 
purpose of this study (progression of CKD), we excluded individuals with prior renal replacement therapy, as 
ascertained by linkage with the Swedish Renal Registry. We then derived information on comorbid history, con-
comitant medication use and laboratory values from the other linked data sources. Because this is a real-world 
healthcare database, the availability of other laboratory tests at the time of index date depends on healthcare use 
and physicians’ ordering of the test.

Biochemical assessments and study covariates.  All blood and urine laboratory tests were performed 
as part of a healthcare encounter. Biochemical assessments were performed routinely by three different laborato-
ries that provide services to the region (Aleris, Unilabs and Karolinska). Inter- as well as intra-laboratory variation 
is considered minimal, with the three laboratories being frequently audited for quality and harmonization by the 
national Government-funded organisation EQUALIS (www.equalis.se). We considered only laboratory tests per-
formed in the outpatient setting as they reflect stable medical conditions. Serum creatinine measurements were 
standardized to isotope dilution mass spectrometry. The eGFR was estimated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) formula, taking into account age, sex and serum creatinine. Data on 
ethnicity were not available by law, but we expected the misclassification of eGFR to be minimal, given the vast 
majority of residents in the Stockholm region is Caucasian. We extracted information of any concomitant testing, 
if available, of serum calcium, serum intact parathyroid hormone (iPTH), serum phosphorus, serum hemoglobin 
(Hb), serum albumin and dipstick albuminuria. To maximize the inclusion of data, we considered laboratory 
tests performed at index date or the closest to index date and up to 90 days before. Serum calcium levels were 
corrected for serum albumin by the conventional Payne’s formula: corrected calcium = measured calcium (mg/
dL) +0.8 × (4- serum albumin [g/dL])37.

Other study covariates were considered as follows: age was defined as age at index date and analyzed con-
tinuously. Comorbid history was calculated from ICD-10 codes issued during 5 years prior to index date, with 
the exception of Diabetes Mellitus history, which was ascertained over the preceding 25 years because of its 
non-transient nature and long-term effects. Charlson Comorbidity index domains were used for identification of 
major diseases38. According to these domains, cardiovascular disease was defined as acute myocardial infarction, 
congestive heart failure, peripheral vascular disease and cerebrovascular disease; Diabetes mellitus was consid-
ered as the composite of diabetes with and without complications. Hypertension was defined by (a) relevant 
ICD-10 codes (ICD-10 I10-I15) and (b) pharmacy dispensation of antihypertensive medication (ATC codes for 
diuretics C03, RAAS inhibitors C09, C03DA, beta-blockers C07 and calcium channel blockers C08). Information 
on drug-dispensations comes from linkage with the Swedish Prescribed Drug Registry, collecting information 
on all prescription drugs dispensed at Swedish pharmacies. For the purpose of this study, repeated dispensations 
of calcium supplements (ATC code A12AA04, A12AA06, A12AA12, A12AX), phosphate binders (ATC code 
V03AE), active vitamin D analogues (ATC code A11CC04, A11CC03, H05BX02, H05BX03) and diuretics (ATC 
code C03) were extracted. Intake of medication at study inclusion considered any dispensation in the 3 months 
prior to the baseline measurement.

http://www.equalis.se
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Study exposure.  The study exposure was serum calcium. To test the hypothesis that the association between 
serum calcium and CKD progression depends on CKD stage, analyses were stratified according to CKD stages at 
baseline. CKD staging 3–5 was based on KDIGO criteria (i.e. stage 3 eGFR 30–59 mL/min/1.73 m2, stage 4 eGFR 
15–29 mL/min/1.73 m2 and stage 5 eGFR <15 mL/min/1.73 m2)2. CKD stage 3 was further subdivided in stage 3a 
(eGFR 45–59 mL/min/1.73 m2) and stage 3b (i.e. eGFR 30–44 mL/min/1.73 m2)39,40.

Study outcome.  The study outcome was the change in annual eGFR decline counted from the baseline. The 
rate of decline was defined as the absolute change in eGFR per year. This was calculated from all available consec-
utive eGFR measurements as performed in healthcare. In this analysis, patients were censored if they emigrated 
from the region, initiated renal replacement therapy, died or reached end of the observation period, which was 
December 31, 2011, whichever came first. Information on vital status was obtained via linkage with the Swedish 
Population Registry, and information on emigration from the region was supplied by the Healthcare provider 
records cross-matched with the regional censoring office.

Statistical analyses.  Categorical variables are presented as percentage of total; continuous variables are pre-
sented as mean values with standard deviation (SD) or median with interquartile range, depending on the  distribu-
tion. Baseline characteristics are presented for the total study population and stratified by CKD stage. P-values are 
two-tailed, and P < 0.05 was considered statistically significant. All analyses were performed with SPSS version 23.0.

Missing values were imputed with multiple imputation methods using a fully conditional specification with 
10 repetitions41–43. Besides potential confounders, all available baseline variables and follow-up time were used 
for imputation. Follow-up time was logarithmically transformed; age and baseline eGFR values were square root 
transformed before entering in the imputation model. Estimates and standard deviations were calculated in 
each imputation set and pooled into one overall estimate and standard deviation according to Rubin’s rules44,45. 
Multiple imputation is the preferred method compared to complete case analysis in case of missing data30,41,46,47. 
Complete case analysis will lead to biased estimates and loss of power. The preference for multiple imputation is 
independent of the proportion of missingness up to 90%30.

Linear mixed models (LMM) with random intercept and slope were used to estimate the change in the annual 
rate of kidney function decline associated with one unit (1 mg/dl) increase in baseline calcium. This model exam-
ines how serial eGFR measurements depended on baseline serum calcium. Results are expressed as regression 
coefficients and 95% CIs. Results are reported as the absolute change in annual rate of decline in kidney function 
that can be attributed to a unit increase in calcium at baseline. A negative change indicates a greater decline due 
to calcium increase; and a positive change indicates less decline48. Multivariable analyses were used to adjust for 
potential baseline confounders. In a first model, we adjusted for age, sex, presence of DM, CVD, hypertension, 
serum albumin and hemoglobin. In a second model, we further adjusted for serum phosphate, active vitamin 
D therapy and calcium supplements. We did not adjust for iPTH in the primary analysis because iPTH lies in 
the causal pathway of the hypothesis hereby tested49. Instead, iPTH adjustment was considered in a sensitivity 
analysis (see below). We neither adjusted for phosphate binder use, since these frequently contain calcium, as 
such acting as calcium supplements50. LMM analyses were stratified by CKD stage. To investigate a potential 
dose-response relationship between baseline serum calcium and eGFR decline across baseline eGFR levels, we 
included an interaction term with baseline eGFR in the complete dataset combining all CKD stages. For increas-
ing baseline eGFR (i.e. lower CKD stage), the coefficient for this interaction term estimates the additional change 
in kidney function decline associated with a unit (i.e. mg/dL) increase in baseline serum calcium.

To validate the robustness of our findings, several additional sensitivity analyses were performed. Analyses 
were repeated (1) adjusting for baseline eGFR levels; (2) in the subgroup of patients using vitamin D supple-
mentation; (3) after adjustment for imputed albuminuria and iPTH. The additional adjustment for albuminuria 
was performed, given that active vitamin D deficiency contributes to progressive kidney function decline via 
albuminuria51; (4) adjusting for diuretics (ATC code C03) and hypertension (ICD-10 I10–15), separately; (5) 
categorizing calcium by quintiles of distribution. This was done to assess the potential of non-linear trends in 
the association between calcium and CKD progression; (6) using uncorrected serum calcium as the exposure, 
because the precision of this corrected value to predict the “gold standard” free (ionized) calcium is limited and 
because albumin might be a determinant of the outcome of interest52,53; (7) selecting only participants whose 
corrected serum calcium was within the normal reference range (i.e. 8.6–10.2 mg/dL); (8) selecting only partici-
pants with at least 3 eGFR tests available during follow up; (9) complete-case analysis (without multiple imputa-
tion); and (10) finally we used Cox proportional-hazards regression analysis for the assessment of the association 
between baseline serum calcium levels and subsequent risk of either a sustained GFR decline of more than 30% 
or the risk of RRT. These were considered secondary outcomes, because dichotomization of the outcome leads to 
loss of information and power.

Data availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files). The datasets used and/or analysed during the current study are available 
from the corresponding author on reasonable request.
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