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Abstract

Background: Observational studies of medical interventions or risk factors are potentially biased by unmeasured
confounding. In this paper we propose a Bayesian approach by defining an informative prior for the confounder-
outcome relation, to reduce bias due to unmeasured confounding. This approach was motivated by the
phenomenon that the presence of unmeasured confounding may be reflected in observed confounder-outcome
relations being unexpected in terms of direction or magnitude.

Methods: The approach was tested using simulation studies and was illustrated in an empirical example of the
relation between LDL cholesterol levels and systolic blood pressure. In simulated data, a comparison of the
estimated exposure-outcome relation was made between two frequentist multivariable linear regression models
and three Bayesian multivariable linear regression models, which varied in the precision of the prior distributions.
Simulated data contained information on a continuous exposure, a continuous outcome, and two continuous
confounders (one considered measured one unmeasured), under various scenarios.

Results: In various scenarios the proposed Bayesian analysis with an correctly specified informative prior for the
confounder-outcome relation substantially reduced bias due to unmeasured confounding and was less biased than
the frequentist model with covariate adjustment for one of the two confounding variables. Also, in general the MSE
was smaller for the Bayesian model with informative prior, compared to the other models.

Conclusions: As incorporating (informative) prior information for the confounder-outcome relation may reduce the
bias due to unmeasured confounding, we consider this approach one of many possible sensitivity analyses of
unmeasured confounding.
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Background
Inferences from observational epidemiological studies
are often hampered by confounding [1, 2]. To estimate
the causal effect of exposure on the outcome, adjustment
for a minimal set of confounding variables (or con-
founders) is required [3–6]. However, there may be un-
measured variables that result in unmeasured (or residual)
confounding. Several design and analytical methods to ac-
count for unmeasured confounding have been proposed

[7], including cross-over designs e.g., [8, 9], instrumental
variable analysis e.g., [10, 11], the use of negative controls
[12], and approaches to collect information on unmeas-
ured confounding variables in a subsample e.g., [13, 14].
In addition, sensitivity analysis of unmeasured confound-
ing is used to quantify the potential impact of unmeasured
confounding [15–17].
Sensitivity analyses can be performed within a fre-

quentist framework as well as within a Bayesian frame-
work. The latter requires for example assumptions on
prior distributions for the unknown parameters of the
unmeasured confounder and its relations with exposure
and outcome [18–21]. However, eliciting prior distribu-
tions for these unknown parameters can be very
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challenging as unmeasured confounders may actually be
unknown. So far, Bayesian sensitivity analyses focused
on allocating informative priors to the effect of the
unmeasured confounders on the exposure or on the out-
come [18, 19, 22]. Instead, it may be more straightfor-
ward to elicit prior distributions for the parameters of
the effects of the observed confounders on the outcome.
Unmeasured confounding of the exposure-outcome

relation may not only affect that relation, but may also
bias the observed relations between confounders and
outcome [23]. Constraining the estimation of the
confounder-outcome relation, or incorporating (inform-
ative) prior information for the confounder-outcome rela-
tion, may (indirectly) reduce the bias due to unmeasured
confounding of the exposure-outcome relation.
The aim of this research was to assess to what extent

using prior information on parameters for an observed
relation between a measured confounder and the out-
come in a Bayesian analysis can reduce bias due to
unmeasured confounding in an estimator of the expos-
ure outcome relation. The remainder of this article is
structured as follows. The bias due to omitting one or
more confounders from a regression model is quantified
in section 2. In section 3, the use of informative priors
for the observed confounder-outcome relation was
tested using simulation studies. Section 4 illustrates the
approach using an empirical example of the relation be-
tween LDL cholesterol levels and systolic blood pressure.
Section 5 provides a general discussion to the paper.

Methods
Notation
We consider studies of a continuous exposure (denoted
by X), a continuous outcome (Y), and two continuous
confounders (Z and U). All relations are assumed to be
linear. All variables are considered related to the out-
come, according to the model: yi = βyxxi + βyzzi + βyuui + εi,
where lower case letters represent the realisations of the
random variables Y, X, Z, and U, i is a subject indicator
(i = 1, …, n), and ε ~ N(0,σ2). The confounders are con-
sidered related to the exposure: xi = βxzzi + βxuui + ζi,
and the confounders are also related to each other: zi =
βzuui + ξi, with ζ ~ N(0,σx

2) and ξ ~ N(0,σz
2). For all

models, the intercepts are assumed independent of all
other terms in the models and are omitted here and in
the following equations. The coefficients of these models
represent an increase in the dependent variable by β.. for
each unit increase in the independent variable. The
structural relations between the variables are presented
in Fig. 1.

Bias due to unmeasured confounding
For the fairly simple model outlined in Fig. 1, there are
three possible scenarios of confounding adjustment:

scenario 1.) both confounders Z and U are measured
and adjusted for (e.g., by a multivariable regression ana-
lysis of Y on X, including Z and U as covariates);
scenario 2.) none of the confounders are measured and
hence none is adjusted for; and scenario 3.) one con-
founder (Z) is measured and adjusted for, while the
other (U) is not. Because our interest is in situations in
which unmeasured confounding is present, we only con-
sider scenarios 2 and 3.
In both scenarios, the effect of X on Y can be estimated

by means of a linear regression model. In the following,
we assume all assumptions of the linear regression model
are met, except that unmeasured confounding may be
present. As a result, the estimator for the effect of X on Y
is expected to be biased due to unmeasured confounding.
Details about the bias due to unmeasured confounding
are provided in Additional file 1: Appendix 1.
In scenario 2, the bias due to omitting Z and U from

the data analytical model can be expressed as:

bias βyx
� �

¼ βyz βxz
Var Zð Þ
Var Xð Þ þ βzuβxu

Var Uð Þ
Var Xð Þ

� �

þ βyu
Var Uð Þ
Var Xð Þ βxu þ βzuβxz

� �
;

ð1Þ

where Var(Z), Var(X), and Var(U) denote the marginal
variances of Z, X, and U, respectively. Equation (1) indi-
cates that the bias resulting from omitting two con-
founders is independent of the true exposure-outcome
relation βyx. Furthermore, the bias increases with in-
creasing strength of the relation between each of the
confounders and the outcome or the exposure (βyz, βyu,
βxz, and βxu). The bias is the result of different backdoor
paths [24] from X to Y: X← Z→ Y, X←U→ Y, X←

Fig. 1 Structural relations between an exposure (X), an outcome (Y),
and two confounders (Z and U) of the exposure-outcome relation.
See main text for details and explanation
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Z←U→ Y, and X←U→ Z→ Y, which can be identi-
fied in the equation.
In scenario 3 the bias due to omitting U from the data

analytical model, while adjusting for Z, can be expressed as:

bias βyxjz
� �

¼ βxuβyu
Var Uð Þ 1−ρ2uz

� �
Var Xð Þ 1−ρ2xz

� � ; ð2Þ

where ρ2uz is the squared (Pearson’s) correlation between
U and Z, ρ2xz is the squared correlation between X and
Z, and VarðUÞð1−ρ2uzÞ and VarðXÞð1−ρ2xzÞ, represent the
conditional variances of U given Z and of X given Z,
respectively. Equation (2) shows that the bias resulting
from omitting one confounder from the adjustment
model is independent of the true exposure-outcome
relation βyx. Furthermore, the bias increases as the rela-
tion between the unmeasured confounder and the out-
come (βyu) or the exposure (βxu) increases.
As the correlation between the confounders (ρuz) in-

creases, the bias of the estimator of the exposure-outcome
relation decreases. Intuitively, when two confounders are
correlated, adjusting for one accounts for some of the
variability (and thus confounding effect) in the other.
Therefore, adjustment for one confounder may reduce the
bias that is caused by the other [25, 26]. In addition, in a
linear model, Var(X|Z) ≤Var(X) and the larger the abso-
lute value of ρxz the smaller Var(X|Z). Because of this
decreased Var(X|Z), the residual bias carried by U, i.e. βxu
βyuVarðUÞð1−ρ2uzÞ , is amplified. This bias amplification

particularly happens when the confounder (Z) that is ad-
justed for acts like an instrumental variable (IV) or
near-IV, meaning that it has a stronger relation with the
exposure (X) than with the outcome (Y) [27, 28].
In scenario 3, the linear regression analysis of Y on X

and Z, yielding an estimate of βyx ∣ z, is a biased estima-
tor of the relation between X and Y. However, this linear
regression analysis is also a biased estimator of the rela-
tion between Z and Y (βyz ∣ x). When we assume all vari-
ables follow a multivariate standard normal distribution,
the bias in the βyz ∣ x relation can be expressed as:

bias βyzjx
� �

¼ β
0
yu

ρzu−ρxzρxu
1−ρ2xz

� �
; ð3Þ

where β0yu represents the conditional (or direct) effect of
U on Y if both are standardized. Equation (3) shows that
the unmeasured confounder (U) of the exposure-
outcome relation may also confound the observed rela-
tion between the measured confounder (Z) and the out-
come. If Z and X are independent (i.e., ρxz = 0), the bias
is simply the result of the backdoor path from Z to Y via
U (i.e., β0yuρzu). Note that even if Z and U are independ-

ent, the observed relation between Z and Y is biased,
due to conditioning on X, which is a collider of Z and U

and hence conditioning on X opens a path from Z to Y
via U [24].

Reducing unmeasured confounding using a Bayesian
model
As indicated above, unmeasured confounding of the
exposure-outcome relation can also bias the relation be-
tween an observed confounder and the outcome. Hence,
an unexpected relation between a confounder and the
outcome may suggest the presence of unmeasured con-
founding. Allocating informative priors to the observed
confounder-outcome relation may not only reduce the
bias in that parameter, but also may reduce the bias due
to unmeasured confounding of the exposure-outcome
relation.
In the absence of information about the confounder U,

the relation between X and Y only can be controlled for
confounding by Z. In a Bayesian framework, we can spe-
cify a linear model of Y as a function of X and Z. The
parameters of interest, βyx, βyz and σ2, can then be esti-
mated using their joint posterior distribution given the
data for Y, X, and Z. The joint posterior distribution is
proportional to the product of the density of the data
times the joint prior distribution of the parameters:

P βyx; βyz; σ
2jY ;X;Z

� �
αf Y jX;Z; βyx; βyx; σ2

� �

g βxy; βyz; σ
2

� �
;

ð4Þ
where g(βxy, βyz, σ

2) is the joint prior distribution and
f(Y| X, Z, βyx, βyz, σ

2) is the probability density of Y con-
ditional on the parameters:

f Y jX;Z; βyx; βyz; σ2
� �

¼
Y

i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
− yi−βyxxi−βyzzi
� �2

2σ2

0
B@

1
CA:

ð5Þ
Assuming independent priors for the different parameters,

the joint prior is simply a product of all marginal priors.
Incorporating (informative) prior information for the

confounder-outcome relation, may (indirectly) reduce
the bias due to unmeasured confounding (by the un-
measured variable U) of the exposure-outcome relation.
This was tested through simulation studies, which are
described in the next section.

Simulation study of Bayesian analysis to control for
unmeasured confounding
Objective
A simulation study was performed to test the possible
decrease in bias in the estimator of the exposure-out-
come relation by using informative priors for the
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confounder-outcome relation. In simulated data, a com-
parison of the estimated relation between the exposure
(X) and the outcome (Y) was made between two frequen-
tist (OLS) multivariable linear regression models and three
Bayesian multivariable linear regression models.

Data analysis
Every simulated data set was analysed in five different
ways: two frequentist analyses and three Bayesian ana-
lyses. The two frequentist regression models included
none or one of the two confounding variables: linear re-
gression analysis without and with adjustment for the
measured confounder Z. The three Bayesian regression
analyses all incorporated the information about one con-
founder, but used different informative priors for the
confounder-outcome relation. The performance of these
methods was compared in terms of bias and precision of
the estimator of the exposure-outcome relation. The
simulation study was performed in R, version 3.1.1 [29].
The Bayesian model described in section 2.3 was used.

All Bayesian regression analyses were adjusted for Z, but
not for U. We used uninformative priors for σ2 and βyx:
σ ∼U(0,100) and βyx ∼N(μ = 0, τ = 0.001), where τ indi-
cates the precision of the distribution. We used inform-
ative priors for the parameter βyz, but with different
levels of precision. A normal informative prior was as-
sumed for βyz, with the true value for βyz as the mean
and different values for the precision, which were pro-
portionate to the sample size n of the simulated data
sets: βyz ∼N(μ = βyz, τ = n, n/10, n/100). The precision
could take three different values representing different
degrees of certainty in the prior information. The Bayes-
ian models were specified using the rjags package in R
[30], which provides an interface from R to JAGS
(http://mcmc-jags.sourceforge.net).
Since the priors for σy and βyx were non-informative,

the posterior distributions could be approximated by the
product of the density of the data and the prior of βyz.
The Gibbs sampler was used with four parallel chains
for 2000 iterations. The first 1000 iterations were dis-
carded as burn-in runs. Since the marginal posterior was
normal, we chose to present the mean of the posterior
distribution as an estimate of βyx|z.

Data generation
Data were generated according to the structure depicted
in Fig. 1 and consisted of a continuous exposure (X), a
continuous outcome (Y), and two continuous con-
founders (Z and U). First, U was sampled from a normal
distribution: U ~ N(0, σu

2). Second, Z was generated
based on U: zi = βzuui + ξi, with ξ ~ N(0, σz

2). Then, X
was generated based on U and Z: xi = βxzzi + βxuui + ζi,
with ζ ~ N(0, σx

2). Finally, Y was generated based on U,
Z, and X: yi = βyxxi + βyzzi + βyuui + εi, with ε ~ N(0, σ2).

In all simulations, the variances σu
2, σz

2, σx
2, and σ2

were set to 1. Furthermore, the exposure-outcome rela-
tion was fixed at βyx = 0 (i.e. zero relation). The param-
eter βzu was set at 0, or 1. The parameters βyz, and βxz
were set at 1 or 2, indicating that the observed con-
founder Z was related to X and to Y in all scenarios. The
parameters βyu and βxu were set at 0, 1, or 2. All combi-
nations of the parameters settings were evaluated
through simulations, leading to 72 different scenarios.

Comparison of methods
For each scenario 100 datasets of 1000 subjects each
were generated. In each dataset the methods described
above were applied. For each scenario separately, the
performance of these methods was compared in terms
of bias of the estimator of the relation between X and Y,
the empirical standard deviation (SD) of the estimated
relations between X and Y, and the mean squared error
(MSE). For the frequentist models, we computed the
average of the estimated regression coefficients (bias),
their standard deviation (SD), and the mean of the
squared difference between the estimated regression co-
efficient and the true exposure-outcome relation (MSE).
For the Bayesian models, we computed the average of
the posterior means (bias), their standard deviation (SD),
and the mean of the squared difference between the
posterior mean and the true exposure-outcome relation
(MSE).

Example study of the relation between cholesterol levels
and blood pressure
To illustrate the application of the use of informative
priors for the observed confounder-outcome relation we
used data on the relation between low-density lipopro-
tein (LDL cholesterol) levels and systolic blood pressure
(SBP). This example was based on the Second Manifes-
tations of Arterial disease (SMART) study, which is an
ongoing prospective cohort study of patients with mani-
fest vascular disease of vascular risk factors [31]. For this
example, we assumed that there are two possible con-
founders of the LDL-SBP relation, namely body mass
index (BMI) and blood glucose levels (BGL). A data set
of 1000 observations was simulated based on the
variance-covariance matrix and the vector of means of
these four variables in the cohort study. In all analyses,
BMI was considered to be a measured confounder, while
BGL was considered to be unmeasured.

Comparison of methods
The different methods described in section 3.2.1 were
applied to the example data. As a reference, we fitted a
linear regression model of SBP on LDL, including BMI
and BGL as covariates (referred to as the ‘full model’).
BMI was considered to be a measured confounder, while
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BGL was considered to be unmeasured. The perform-
ance of the different methods was assessed by the differ-
ence between the estimated LDL-SBP relations from the
different models and the LDL-SBP relation obtained
from the full model.
The Bayesian approach was implemented in two ways.

We first used the estimated regression coefficient of the
effect of BMI on systolic blood pressure from the full
model (i.e., 0.32), as the mean for the prior distribution
of the measured confounder on the outcome, and preci-
sion equal to the sample size (i.e., τ = 1000). We then
used an relation from the literature as the prior mean. A
previous study on the relation between BMI and SBP in
adults found a linear regression coefficient of 0.77 [32].
This relation was used as the mean of the prior distribu-
tion of the measured confounder and outcome. Since we
were less certain about this prior information, we used a
smaller precision (τ = 100). For all the other relations we
used uninformative priors as described in Section 3.2.1.

Results
Simulation study
Table 1 shows the results of the simulation study for the
scenarios where βxz = βyz = 2. Similar patterns were ob-
served for other values of βxz and βyz; these are omitted

from the Table for brevity. Results for all simulated
scenarios can be found in Additional file 2: Appendix 2.
The Bayesian model with precision 100 (i.e., n/10)
showed results that were in between those of the Bayes-
ian models with precision 1000 (i.e., n) and precision 10
(i.e., n/100). Results for the Bayesian model with preci-
sion 100 are omitted for clarity (see Additional file 2:
Appendix 2).
In most scenarios, the Bayesian model with precision

1000 showed less bias than the frequentist model with
covariate adjustment. Noticeable exceptions in Table 1
are scenarios 8 and 14, in which the Bayesian model
with precision 1000 was more biased than the frequen-
tist model with covariate adjustment (which was actually
unbiased). The reason for this is that in these scenarios
U is not a confounder of the X-Y relation (because
βxu = 0), yet it is a confounder of the Z-Y relation

(e.g., in scenario 8 dβyzjx= 1.50, while βyz = 1). As the

Bayesian model corrects the bias in the Z-Y relation,
it induces a bias in the X-Y relation. In scenarios 10
and 16 in Table 1, the Bayesian models and the
frequentist model with covariate adjustment yielded
similar, yet biased, results. In these scenarios, the esti-
mated relation between Z and Y from the frequentist

Table 1 Results of the simulation study of different methods to control for confounding

Scenario Parameter settings Frequentist model Bayesian model

Unadjusted Adjusted for Z Adjusted for Z, τ = 1000 Adjusted for Z, τ = 10

βzu βxz βxu βyu Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

1 0 1 0 0 0.50 0.027 0.25 0.00 0.034 0.0011 0.00 0.025 0.0006 0.00 0.033 0.0011

2 1 1 0 0 0.67 0.027 0.45 0.00 0.035 0.0012 0.00 0.022 0.0005 0.00 0.034 0.0012

3 0 1 1 0 0.33 0.024 0.11 0.00 0.024 0.0006 0.00 0.021 0.0004 0.00 0.024 0.0006

4 1 1 1 0 0.50 0.016 0.25 0.00 0.031 0.0009 0.00 0.017 0.0003 0.00 0.030 0.0009

5 0 1 2 0 0.17 0.017 0.029 0.00 0.014 0.0002 0.00 0.013 0.0002 0.00 0.014 0.0002

6 1 1 2 0 0.36 0.012 0.13 0.00 0.020 0.0004 0.00 0.011 0.0001 0.00 0.020 0.0004

7 0 1 0 1 0.50 0.034 0.25 0.00 0.043 0.0019 0.00 0.032 0.001 0.00 0.043 0.0018

8 1 1 0 1 1.00 0.036 1.00 0.00 0.034 0.0012 0.23 0.026 0.055 0.00 0.034 0.0012

9 0 1 1 1 0.67 0.023 0.45 0.50 0.029 0.25 0.38 0.024 0.15 0.50 0.029 0.25

10 1 1 1 1 0.83 0.018 0.69 0.33 0.028 0.11 0.33 0.017 0.11 0.33 0.028 0.11

11 0 1 2 1 0.50 0.016 0.25 0.40 0.016 0.16 0.36 0.015 0.13 0.40 0.015 0.16

12 1 1 2 1 0.64 0.011 0.41 0.33 0.018 0.11 0.29 0.010 0.085 0.33 0.017 0.11

13 0 1 0 2 0.50 0.049 0.25 −0.01 0.066 0.0044 0.00 0.047 0.0022 −0.01 0.063 0.004

14 1 1 0 2 1.34 0.045 1.79 0.01 0.057 0.0033 0.57 0.036 0.32 0.034 0.055 0.0042

15 0 1 1 2 1. 01 0.032 1.00 1.00 0.037 1.00 0.72 0.035 0.52 0.99 0.037 0.97

16 1 1 1 2 1.17 0.024 1.36 0.67 0.038 0.45 0.67 0.021 0.45 0.67 0.037 0.45

17 0 1 2 2 0.83 0.019 0.70 0.80 0.020 0.64 0.71 0.019 0.50 0.80 0.020 0.64

18 1 1 2 2 0.91 0.013 0.83 0.67 0.023 0.45 0.58 0.012 0.33 0.66 0.022 0.44

Bias refers to the bias in the estimator of the relation between X and Y, compared to the true X-Y relation (βyx = 0). τ indicates the precision of the prior
distribution of the Z-Y relation in the Bayesian model and is proportional to the sample size of each generated data set (n = 1000). Abbreviations: SD – standard
deviation of the empirical distributions of the parameter estimates; MSE – mean squared error of the parameter estimates. See text for details on simulation study
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model with covariate adjustment corresponded with
the mean of the prior distribution of this relation

(i.e., dβyzjx = 1.00 and βyz = 1). Hence, the Bayesian

model did not reduce bias, compared to the frequentist
model. In scenarios 1–7, all methods that adjusted for the
measured confounder Z yielded unbiased results, because
the variable U was not a confounder in these scenarios
(βyu = 0). The extent to which the Bayesian model reduced
bias was substantially smaller when the precision was 10
instead of 1000.
The standard deviation (SD) of the empirical distribu-

tion of the parameter estimates was smaller for the
Bayesian model with precision 1000, compared to the
frequentist model with covariate adjustment and the
Bayesian model with precision 10 (the latter two show-
ing approximately the same SD). Also, in general MSE
was smaller for the Bayesian model with precision 1000,
compared to the other models.

Empirical example
In the empirical example of the relation between
low-density lipoprotein (LDL cholesterol) levels and
systolic blood pressure (SBP)., LDL increased BP, after
adjustment for BMI and BGL, but omitting BGL from
the data analytical model reduced the estimated effect
substantially from 1.24 to 1.03 (Table 2). The amount of
bias of the LDL-SBP relation slightly decreased when
using an informative prior for the confounder outcome
relation (i.e., for the BMI-SBP relation). However, even
when the ‘correct’ prior, based on the full model, was
used, the estimated effect of LDL on SBP remained
substantially different from the reference value.

Discussion
This simulation study on the value of Bayesian analysis
with informative priors for the relation between the
measured confounder and the outcome in the presence
of unmeasured confounding shows that such an analysis
can reduce the bias due to unmeasured confounding
substantially. The magnitude of the remaining bias
decreases as the precision of the (correct) informative
prior increases.

An obvious prerequisite when using the proposed
Bayesian approach to correct for unmeasured confound-
ing is prior knowledge about the relation between the
measured confounder and the outcome. We argue that
in many clinical research situations, such prior know-
ledge exists for many observed confounders, at least in
terms of direction and order of magnitude of the rela-
tion. That information may be obtained from rigorously
designed and conducted large epidemiological studies or
from meta-analysis of individual patient data of rando-
mised trials. Obviously, the impact of the Bayesian
approach depends on the precision of the prior distribu-
tion. Informative priors with relatively small precision
have little impact in term of confounding correction, yet
allow Bayesian algorithms to be used. In practice it
might be difficult – or researchers may be reluctant – to
specify relatively highly informative priors.
If only the direction (but not the magnitude) of the

confounder-outcome relation is included in the prior,
the precision of the prior will be relatively small and the
impact of the Bayesian analysis may be relatively small
too. We did not include this particular form of prior
distribution in our simulation study, but instead focused
on distributions with the same mean, yet different
precision.
As with any simulation study, an obvious limitation to

our work is the finite number of simulated scenarios that
we evaluated. For example, we only considered situa-
tions with two confounders, one being measured, one
unmeasured. Although the two confounders Z and U
could be considered as representing two sets of mea-
sured and unmeasured confounders, respectively, future
research could address scenarios of multiple con-
founders with, e.g., different distributions of the con-
founders. Another scenario that we did not evaluate and
could be the topic of future research is specification of
the priors, such that these do not correspond to the
‘true’ confounder-outcome relation. The robustness to
various levels of misspecifications of the prior distribu-
tion still needs to be studied.
Where to position this Bayesian approach in the

toolbox of the researcher doing observational epidemio-
logic research? Given that many observational studies

Table 2 Estimated effect of LDL cholesterol levels on systolic blood pressure, using different methods to deal with unmeasured
confounding

Referencea Frequentist analysis Bayesian analysis - 1 Bayesian analysis - 2

Prior for relation BMI-SBPb – – N(μ = 0.32, τ = 1000) N(μ =0.77, τ = 100)

Estimated effect of LDL on SBPb 1.24 (0.53) 1.03 (0.53) 1.06 (0.53) 1.05 (0.54)

Estimated effect of BMI on SBPb 0.32 (0.15) 0.44 (0.14) 0.33 (0.03) 0.66 (0.08)

Figures represent estimates (SE) of the estimated relations, or the mean (standard deviation) of the posterior distributions. In all analyses (except for the
reference), BMI was considered a measured confounder of the LDL-SBP relation, while blood glucose level was considered unmeasured confounder. Bayesian
analysis 1 and Bayesian analysis 2 differ in the mean and precision of the prior distribution of the relation between BMI and SBP
aThe reference is based on the full model, i.e., is adjusted for BMI and blood glucose levels
bSBP was measured in mmHg, LDL in mmol/l, and BMI in kg/m2
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potentially suffer from unmeasured confounding, sensi-
tivity analysis of unmeasured confounding is often
important. Eliciting priors for unobserved (and possibly
unknown) confounding variables is likely to be difficult.
On the other hand, focusing on the approximate size of
the relations between measured confounders and the
outcome provides the opportunity to perform a Bayesian
sensitivity analysis as outlined in this paper.
Informative priors for the measured confounder-out-

come relations can reduce unmeasured confounding bias
of the exposure-outcome relation. In case of observing un-
expected confounder-outcome relations a sensitivity ana-
lysis of unmeasured confounding could be considered,
in which prior information about the observed
confounder-outcome relations is incorporated through
Bayesian analysis.

Conclusions
In this paper we proposed a Bayesian approach to reduce
bias due to unmeasured confounding by expressing an in-
formative prior for a measured confounder-outcome rela-
tion. A simulation study on the value of this Bayesian
analysis with informative priors for the relation between
the measured confounder and the outcome in the presence
of unmeasured confounding shows that such an analysis
can indeed reduce the bias due to unmeasured confound-
ing substantially. The magnitude of the remaining bias de-
creases as the precision of the (correct) informative prior
increases. We consider this approach one of many possible
sensitivity analyses of unmeasured confounding.
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