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ABSTRACT
With population aging, prevalence of low bone mineral density (BMD) and associated fracture risk are increased. To determine
whether low circulating thyroid stimulating hormone (TSH) levels within the normal range are causally related to BMD, we
conducted a two-sample Mendelian randomization (MR) study. Furthermore, we tested whether common genetic variants in
the TSH receptor (TSHR) gene and genetic variants influencing expression of TSHR (expression quantitative trait loci [eQTLs]) are
associated with BMD. For both analyses, we used summary-level data of genomewide association studies (GWASs) investigating
BMD of the femoral neck (n¼ 32,735) and the lumbar spine (n¼ 28,498) in cohorts of European ancestry from the Genetic Factors of
Osteoporosis (GEFOS) Consortium. For the MR study, we selected 20 genetic variants that were previously identified for circulating
TSH levels in a GWAS meta-analysis (n¼ 26,420). All independent genetic instruments for TSH were combined in analyses for both
femoral neck and lumbar spine BMD. In these studies, we found no evidence that a genetically determined 1–standard deviation (SD)
decrease in circulating TSH concentration was associatedwith femoral neck BMD (0.003 SD decrease in BMD per SD decrease of TSH;
95% CI, –0.053 to 0.048; p¼ 0.92) or lumbar spine BMD (0.010 SD decrease in BMD per SD decrease of TSH; 95% CI,�0.069 to 0.049;
p¼ 0.73). A total of 706 common genetic variants have beenmapped to the TSHR locus and expression loci for TSHR. However, none
of these genetic variants were associated with BMD at the femoral neck or lumbar spine. In conclusion, we found no evidence for a
causal effect of circulating TSH on BMD, nor did we find any association between genetic variation at the TSHR locus or expression
thereof and BMD. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
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Introduction

Bone is a dynamic tissue that undergoes continuous
remodeling to maintain its strength and integrity.(1) When

bone remodeling is uncoupled and resorption exceeds forma-
tion, bone mineral density (BMD) progressively decreases and
ultimately leads to osteoporosis.(2) To develop therapies that are
more effective and accompanied by fewer side effects than
current treatments, further research into the molecular mecha-
nisms underlying the pathogenesis of osteoporosis is required.

One of these potential underlying mechanisms is thyroid
status. Briefly, thyroid status is a composite measure of
circulating thyroid stimulating hormone (thyrotropin, TSH)

and free thyroxine (fT4). In healthy individuals, circulating levels
of TSH and fT4 are regulated by the hypothalamic-pituitary-
thyroid axis (HPT axis) via feedforward and negative feedback
mechanisms.(3) Therefore, circulating levels of TSH and fT4 are
inversely related. However, the exact combination of circulating
concentrations of TSH and fT4 is determined by the HPT axis set
point, which is unique for each individual.(4) Thyroid hormones
have a critical role in adult bone turnover and maintenance.(5)

Hyperthyroidism (TSH concentration below the normal refer-
ence range and fT4 circulating level above the normal reference
range) is associated with lower BMD and an increased risk of
fracture, and is an established cause of secondary osteoporo-
sis.(6) Furthermore, a similar relationship has been reported in
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individuals with subclinical hyperthyroidism (reduced circulat-
ing concentration of TSH but circulating fT4 within the normal
reference range),(7,8) and in euthyroid individuals with a
relatively low TSH and relatively high fT4 within the normal
reference range.(9,10) Accordingly, individuals with subclinical
hyperthyroidism had increased bone loss during prospective
follow-up compared to euthyroid individuals.(11) In addition to
effects of thyroid hormone on bone, some studies have
suggested direct effects of TSH on bone.(12,13) However, others
have not confirmed these findings.(14,15) Therefore, it remains
unclear whether observed changes in bone mass and strength
result from increased fT4 levels alone, or whether the associated
decrease in TSH also contributes.
Mendelian randomization (MR) can be used to determine

whether an association is causal, as it eliminates confounding
and reverse causation. MR analysis uses genetic variants
associated with an exposure as instrumental variables instead
of direct measurements of the exposure.(16) Because genetic
traits are inherited independently according to Mendel’s second
law, the determinant is randomly distributed in the population
and independent of the outcome. In the present study, this
assumes that genes associated with thyroid status and genes
associated with BMD are inherited independently. Thus,
analogous to randomized clinical trials, by using MR analysis
the exposure can be assigned randomly and so associations
between exposure (thyroid status) and outcome (BMD) can be
investigated in the absence of confounding and reverse
causation. MR studies can be performed on circulating TSH
and fT4 levels within the normal reference range,(17) because
these measures of thyroid status have been shown to be partly
and independently genetically determined in large-scale
genomewide association studies (GWASs).(18,19) Even though
TSH and fT4 levels are highly correlated, different genetic
variants were associated with circulating levels of TSH than with
fT4.(18) The genetic independence of these traits highlights the
individuality of the HPT-axis set point, and allows for separate
analyses of TSH and fT4.
In the present study, we aimed to investigate whether thyroid

status is causally associated with BMD through a two-sample
Mendelian randomization study. However, due to the limited
number of genetic instruments available for fT4 concentration in
the largest meta-analysis to date on BMD (ie, lack of statistical
power), only the relationship between TSH and BMD could be
investigated rigorously. Additionally, to investigate the TSH
receptor, which mediates TSH action in target cells, we explored
the TSHR gene in a candidate gene study to determine whether
genetic variation at this locus or expression thereof is associated
with BMD.

Materials and Methods

Genetic variants for TSH

We selected single nucleotide polymorphisms (SNPs) for all
genetic loci independently associated with circulating levels of
TSH (p value <5� 10–8) identified by the largest GWAS meta-
analysis to date.(18) All participants included in the GWASwere of
European ancestry, and individuals with known thyroid
pathologies, taking thyroid medication, who underwent thyroid
surgery and with circulating levels of TSH <0.4mIU/L or
>4.0mIU/L were excluded from the analyses. For comparability
of the different cohorts, the circulating levels of TSH were log-
transformed, and standardized to Z-values. Due to these

transformations, the additive beta estimates of the SNPs can
be interpreted as the per-allele standard deviation (SD) change
in logTSH concentration. In total, 20 loci for TSH were identified
in 26,420 participants. Overall, the mean age of participants
ranged from 42.5 to 79.0 years, 44% of the participants were
men. As an illustration, the descriptives of the two largest
included cohorts (PROSPER and SardiNIA) were as follows. In
PROSPER, 49.1% were men and the mean age was 75.3 years
with 3.4 years SD. In the SardiNIA cohort, 46.9% were men and
the mean age was 42.5 years with 17.7 years SD. The mean TSH
concentration was 1.9 mIU/L and 1.7 mIU/L respectively (SD was
0.8 mIU/L for both cohorts).

Data sources and outcome definition

We used publicly available data from the largest meta-analysis
to date on BMD from the Genetic Factors of Osteoporosis
(GEFOS) consortium,(20) which identified novel loci for BMD at
the femoral neck, lumbar spine, and forearm, sites of the three
most common osteoporotic fractures. Forearm BMD data were
not used in the present study, because of the relatively low
number of participants (n¼ 8143). Themeta-analysis on femoral
neck BMD comprised 32,735 participants from nine cohorts of
European ancestry and the meta-analysis on lumbar spine BMD
comprised 28,498 participants from eight cohorts of European
ancestry. Themean age in the participating cohorts ranged from
17.7 to 80.2 years, and 34% of the participants in the meta-
analysis were men. From these data, we extracted the per-allele
beta estimates of the SNPs previously identified in relation to
circulating levels of TSH on femoral neck BMD and lumbar spine
BMD, accompanied by the standard errors and the effect alleles.

Power calculation

The statistical power for the MR analyses for TSH on BMD was
calculated using a publicly available power calculator.(21) For the
femoral neck BMD and the lumbar spine BMD there was
sufficient power (femoral neck power¼ 0.85, and lumbar spine
power¼ 0.80) to detect a causal association with a coefficient of
0.07 SD of BMD per decrease of 1 SD of TSH when using the data
from GEFOS.(20)

Statistical analyses

Methods for MR analysis of summary-level data have been
described previously.(17,22,23) Briefly, associations between indi-
vidual genetic instruments for circulating levels of TSH and BMD
were estimated, after taking into account multiple testing via
Bonferroni correction based on the number of genetic instru-
ments tested. We combined effects of the individual genetic
instruments using inverse-variance–weighted (IVW) analyses,(23)

resulting in a weightedmean estimate of the effect of genetically
determined 1-SD decrease in circulating level of TSH on BMD of
the femoral neck and the lumbar spine in SD. However, this
method could suffer from bias, because of potential pleiotropic
effects of the genetic variants on other apparently unrelated
phenotypes. If genetic variants have pleiotropic effects that
influence outcome (eg, BMD) via alternative pathways, the
observed associations can be biased. Therefore, MR-Egger
regression(24) was conducted as sensitivity analysis to account
for potential pleiotropy and to formally test the presence of
directional pleiotropy. Additionally, we performed weighted
median estimator (WME) analyses,(25) which estimate a weighted
median effect of genetically determined 1-SD decrease in
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circulating level of TSH on BMD. Similarity of the IVW and WME
effect estimates indicates that the results are robust.(25) We also
performed additional sensitivity analyses to account for possible
regression dilution of analyses. In two-sample MR analyses, the
reliability of the results dependson theprecisionof thepreviously
measured association between the genetic variants and the
exposure (ie, circulating TSH concentration). If the reported effect
sizes for TSH do not reflect the true effect of the genetic variants,
the association between the genetically determined levels of TSH
andBMDwill beerroneous.Oneof the available tests to assess the
resulting imprecision of the MR is the I2GX statistic.

(26) Preferably
the I2GX statistic is close to 1, but an I2GX statistic �0.9 is still
acceptable.(26) If the I2GX statistic is lower, the effect estimate is
likely to be diluted, which means the observed association is an
underestimation of the true effect. This type of bias can be
corrected by simulation extrapolation (SIMEX).(27) This method
simulates estimates of the investigated association with increas-
ing imprecision to extrapolate a more precise estimate.

The combined effects of the genetic variants were
calculated using the codes in R that were provided online
by the authors.(24–26) Results are presented as the mean effect
per 1-SD genetically determined decrease in circulating TSH
level together with the 95% confidence interval (CI); a two-
sided p value of less than 0.05 was considered statistically
significant.

Candidate gene association study on the TSH receptor

To investigate whether variation in the TSH receptor gene
(TSHR) is associated with BMD, we conducted a candidate gene
association study using the same publicly available summary
level data of the GEFOS consortium.(20) SNPs were indexed if
located in the TSHR gene or within 50,000 base pairs upstream
or downstream. Additionally, previously reported SNPs
influencing expression of TSHR (expression quantitative loci
[eQTLs]) were included in the study. We excluded SNPs with a
minor allele frequency (MAF) lower than 5% or if the SNP was
absent from the GEFOS datasets. To determine an appropriate
threshold for statistical significance, we based the correction
factor on the number of independent genetic variants,
meaning those not in linkage disequilibrium (LD). The number
of independent genetic variants was calculated using the web-
based tool LDlink (considering an R2< 0.4).(28) A cutoff of
R2< 0.4 was chosen, to limit the number of independent
variants to a minimum, resulting in a smaller chance of false
negative results. A –log(p value) plot was constructed using R
package ggplot2(29) for both femoral neck and lumbar spine
BMD, with a Bonferroni-corrected significance threshold
(p¼ 0.05/number of independent variants) and a nominal
threshold (p¼ 0.05).

Results

Effect of individual genetic instruments for TSH

The associations between individual genetic instruments for
circulating concentration of TSH and BMD are summarized in
Table 1. Of the 20 SNPs previously associated with circulating
TSH level, 19 were available in the BMD datasets; for rs6885099
in PDE8B we used rs2046045 as a proxy SNP (R2¼ 1.00,
D0 ¼ 1.00). None of the individual genetic instruments for
circulating concentration of TSH were associated with femoral
neck BMD (p values >0.05) (Fig. 1A) or lumbar spine BMD
(p values >0.05) (Fig. 1B).

Combined effect of the genetic instruments for TSH

Using the IVW analyses (Table 2), we found no evidence for an
association between genetically determined lower circulating
levels of TSH and femoral neck BMD (0.003 SD decrease in BMD
per SD decrease in TSH; 95% CI, �0.053 to 0.048; p¼ 0.92)
(Fig. 1C) or lumbar spine BMD (0.010 SD decrease in BMD per SD
decrease in TSH; 95% CI, –0.069 to 0.049; p¼ 0.73) (Fig. 1D). The
estimates from MR-Egger regression and WME analyses were
consistent with these results. Because the I2GX-statistic of the
combined genetic variants for TSH was 0.81, we performed
additional SIMEX of the MR-Egger estimate, which did not
materially change the observations. Moreover, MR-Egger did not
indicate the presence of directional pleiotropy given the
absence of evidence of deviation of the regression line from
the intercept.

Common genetic variants in the TSH receptor locus and
expression loci

A total of 755 common SNPs were mapped either in the TSHR
locus or in eQTLs. In the GEFOS dataset, 706 of themapped SNPs
were available, amounting to 44 independent loci (Supporting
Table 1). –Log (p value) plots are shown for the TSHR SNPs and
BMD of the femoral neck (Fig. 2A) and the lumbar spine (Fig. 2B).
At the nominal significance of p< 0.05, five SNPs were
associated with femoral neck BMD and three with lumbar spine
BMD. However, none of these associations remained statistically
significant following Bonferroni correction for multiple testing.

Discussion

We used Mendelian randomization to determine whether lower
circulating levels of TSH within the normal range are causally
associated with reduced BMD. Despite interrogating the largest
publicly available GWAS meta-analyses,(20) we were unable to
demonstrate an association between genetic instruments for
circulating levels of TSH and femoral neck or lumbar spine BMD.
Furthermore, no significant association was found between
common genetic variants within the TSHR gene or expression
regulating regions thereof and BMD. Thus, we found no
evidence for a causal relationship between lower circulating
levels of TSH within the normal range and reduced BMD, or for
any association between genetic variance in the TSHR gene or
TSHR expression and BMD.

These findings add to previous research regarding the role of
TSH in the skeleton, which has yielded contrasting results. In
osteoblasts of rodent and of human origin TSH receptors were
identified,(30) although no expression of the TSHa or TSHb
subunits was observed.(31) The reported effects of TSH on
osteoblasts in vitro are contradictory because inhibition,(32)

stimulation,(33–35) andnoeffect(31,36) of TSHondifferentiation and
function have all been observed. Furthermore, in human
osteoblasts, TSH receptor expression and cAMP responses to
TSH are low, making physiologically relevant actions of TSH
unlikely.(37) In osteoclasts thefindingshavebeenmore consistent,
with the majority reporting TSH inhibiting osteoclast formation
and function whereas others have shown no effect.(32,35,36)

In vivo, thyroid hormone treated TSHR-knockout mice
displayed decreased BMD and bone strength,(32,38) but impor-
tantly, this phenotype also reflects the consequences of
profound congenital hypothyroidism and delayed thyroid
hormone replacement.(31) Consistent with this, adult rodents,
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treated with TSH doses insufficient to alter systemic T3 or T4
level, showed suppressed bone resorption and increased
formation.(35,39,40) By contrast, a similar skeletal phenotype of
delayed bone development(31) was reported in two contrasting
mouse models for congenital hypothyroidism (i) Pax8-knockout
micewith no T4 or T3 but grossly elevated TSH in the presence of
a fully functional TSH receptor and (ii) TSHR-knockout mice with
no T4 or T3 but grossly elevated TSH in the absence of a
functional TSH receptor. Although these results do not support a
predominant role for the TSH receptor in bone, the effects of TSH
could be masked by the severely reduced T4 and T3 levels.
Human observational studies have shown strong indications

for an association between higher thyroid status within and
outside the normal range and lower BMD.(6,8,9) Importantly, in
observational studies in humans, no conclusions can be drawn
on relative roles of TSH or thyroid hormones because they
are maintained by the HPT axis in a physiological reciprocal
relationship.(41) In two genetic studies investigating
the relationship between TSH and BMD, the nonsynonymous
Asp727Glu polymorphism in the human TSHR gene
(rs1991517) has been associated with higher mean
BMD.(42,43) However, this observation has not been replicated
by other studies and no other common TSHR genetic variants
have been associated with BMD.
In this study we investigated the effect of circulating TSH

levels, within the normal range, on BMD in the absence of
confounding, by using genetic variants associated with
circulating TSH level as instrumental variables in a two-sample
MR analysis using summary level data. This highly efficient
method allows for large sample sizes to be used, but has the
disadvantage that stratified analyses, for example by sex, age, or
menopausal status, are not possible. Analyses in specific
subgroups such as postmenopausal women would also have

been of interest, due to their increased risk of developing
osteoporosis.(44) Furthermore, in previous observational studies
stronger associations between thyroid status and BMD were
observed in women compared to men.(8,45) Therefore, we
cannot conclude that no association between TSH levels and
BMD is present in more vulnerable subgroups. Nonetheless, in
the general population as a whole, we found no causal
association between TSH and BMD. Another potential limitation
of our study is overlap between GWAS meta-analyses of thyroid
function parameters and GWASmeta-analyses of BMD; three out
of nine cohorts (Framingham Heart Study, TwinsUK study, and
Rotterdam Study) were included in both studies. If weak
instruments were used, this overlap in study populations could
lead to bias.(46) Because all genetic instruments were selected
from among the top hits of the largest published GWAS on
thyroid function to date, the instrument strength was assumed
to be sufficient based on previous studies.(47) Therefore,
potential effects of weak instrument bias can be expected to
be negligible.(46) Furthermore, the genetic instrument identifi-
cation and the MR were performed in cohorts of European
ancestry, which may limit generalizability to non-European
populations. A potential limitation of our combined genetic
variants for circulating TSH level could be that they also reflect
the circulating levels of fT4, due to the reciprocal physiological
relationship between TSH and fT4 in healthy individuals.(41)

However, the GWAS that identified the variants for TSH had
identified different genetic variants for fT4.(18) Reciprocal
associations of TSH SNPs with fT4 were assessed in sensitivity
analyses, yet, as stated by the authors, the study was
underpowered to detect any statistically significant associa-
tions.(18) Even though no certain conclusions can be drawn, the
results of the sensitivity analyses did not imply strong reciprocal
associations with circulating fT4 levels for the SNPs associated

Table 1. Associations of Individual Genetic Instruments for TSH With BMD of the Femoral Neck and the Lumbar Spine

Gene SNP Chromosome Position
Effect
allele EAF

Effect on
TSH in SD F-statistic

Femoral neck
BMD in SD

Lumbar
spineBMD

in SD

NR3C2 rs10032216 4 149669506 T 0.781 0.087 63 0.0069 0.0052
FGF7 rs10519227 15 49746364 A 0.245 �0.072 43 0.0005 �0.0123
CAPZB rs10799824 1 19841174 A 0.161 �0.113 89 �0.0056 �0.0244
ITPK1 rs11624776 14 93595591 A 0.660 �0.064 34 �0.0021 0.0026
VEGFA rs11755845 6 43904780 T 0.266 �0.065 42 �0.0097 �0.0023
IGFBP5 rs13015993 2 217625523 A 0.736 0.078 61 0.0068 0.0014
MBIP rs1537424 14 36574018 T 0.608 �0.052 33 0.0108 0.0069
GLIS3 rs1571583 9 4267209 A 0.249 0.057 32 �0.0023 0.0015
PRDM11 rs17723470 11 45227567 T 0.279 �0.065 42 0.0042 0.0036
MIR1179 rs17776563 15 89119104 A 0.322 �0.060 36 0.0039 0.0100
NFIA rs334699 1 61620496 A 0.052 �0.141 45 0.0009 �0.0091
MAF/LOC440389 rs3813582 16 79749353 T 0.674 0.082 67 �0.0125 �0.0016
INSR rs4804416 19 7223848 T 0.569 �0.057 40 0.0015 �0.0063
ABO rs657152 9 136139265 A 0.343 0.058 42 �0.0026 �0.0018
PDE8B rs6885099 5 76530349 A 0.594 �0.141 245 �0.0033 0.0125
PDE10A rs753760 6 166046483 C 0.691 0.100 100 �0.0008 0.0099
NRG1 rs7825175 8 32416274 A 0.210 �0.066 36 �0.0035 0.0099
VEGFA rs9472138 6 43811762 T 0.285 �0.079 62 �0.0115 �0.0028
SASH1 rs9497965 6 148521292 T 0.415 0.051 32 �0.0034 �0.0008
SOX9 rs9915657 17 70127536 T 0.541 �0.064 51 0.0063 �0.0040

Data presented as beta coefficients per effect allele.
TSH¼ thyroid stimulating hormone; BMD¼bone mineral density; SNP¼ single-nucleotide polymorphism; EAF¼ effect allele frequency;
SD¼ standard deviation.
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with circulating TSH. Therefore, the results for the MR study on
lower circulating TSH might be influenced by slightly higher
levels of fT4, yet these effects appear to be small. A final
limitation of using genetic variants for TSH identified by this
GWAS meta-analyses is the euthyroid state of the included
participants. Because circulating TSH levels in clinical thyroid
dysfunction are unlike the individual set point,(48) we cannot

extrapolate our results to individuals with TSH outside the
reference range. Thus, our results are only applicable to adults
with circulating TSH levels within the reference range.

In addition, we investigated the association of common
genetic variants in the TSHR gene locus and the expression loci
with BMD in a candidate gene study. For this analysis we used
706 common genetic variants (44 independent loci), which

Fig. 1. The effect of genetic instruments for TSH levels on BMD. Results are presented as the beta coefficients. (A, B) The x-axis presents the per-allele
effect on BMD for each individual genetic variant; the y-axis presents the 1/standard error (1/SE) for each effect estimate. The association between 20
individual genetic variants for TSH levels and (A) femoral neck BMD in standard deviations and (B) lumbar spine BMD in standard deviations. (C, D) The x-
axis presents the decrease in TSH in standard deviations; the y-axis presents the effect on BMD. The modeled association between genetic instruments
for TSH and BMD using IVW analysis, MR Egger, and WME are shown for (C) femoral neck BMD in standard deviations and (D) lumbar spine BMD in
standard deviations. IVW¼ inverse-variance weighted; WME¼weighted median estimator.

Table 2. Mendelian Randomization Estimates for TSH on BMD

Femoral neck BMD in SD p Lumbar spine BMD in SD p

Inverse-variance weighted 0.00 (�0.05; 0.05) 0.92 �0.01 (�0.07; 0.05) 0.73
MR-Egger

Estimate �0.09 (�0.23; 0.08) 0.28 �0.03 (�0.20; 0.15) 0.71
Intercept 0.01 (�0.01; 0.02) 0.15 0.00 (�0.01; 0.02) 0.75

MR-EggerþSIMEX
Estimate �0.10 (�0.13; 0.03) 0.16 �0.04 (�0.21; 0.14) 0.68
Intercept 0.01 (�0.00; 0.02) 0.15 0.00 (�0.01; 0.02) 0.75

Weighted median 0.00 (�0.08; 0.07) 0.90 �0.02 (�0.10; 0.07) 0.67

Data presented as beta coefficients with 95% confidence interval per standard deviation decrease of serum level thyrotropin (TSH).
TSH¼ thyroid stimulating hormone; BMD¼bone mineral density; SD¼ standard deviation; SIMEX¼ simulation extrapolation.
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covered the majority of the common variation in TSHR and the
eQTLs of this gene. A limitation of this method is the unknown
effect of the tested genetic variants inside the TSHR gene on the
TSH receptor and on thyroid status, yet we observed no
indication for biologically relevant associations between this
gene and BMD. Furthermore, an important limitation is the
absence of 49 SNPs mapped to the TSHR gene in the summary-
level data we used. Nevertheless, we found no association
between common variation of the TSHR locus and BMD despite
using the largest human dataset available for BMD of the
femoral neck and lumbar spine.

Conclusion

In summary, we found no evidence that circulating TSH levels in
the normal range are causally associated with BMD nor did we
find any association between common genetic variation in the
TSHR gene or expression of TSHR and BMD. Therefore, the
associations found in observational studies between low
circulating TSH and lower BMD are possibly related to the
reciprocal higher levels of fT4, due to residual confounding or
reverse causality. In clinical treatment of thyroid disease,
treatment is aimed at normalization of TSH levels into the
normal range and alleviation of symptoms. Based on our current
results, we found no indications for inappropriateness of current
guidelines aimed at restoration of TSH within the normal
reference range with regard to bone health. In future research,

better genetic tools for fT4 levels are required to further
interpret the effects of thyroid status on BMD. Additionally, more
clinical end points could be investigated resulting in greater
clinical applicability.
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