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Abstract 

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive 

renal cyst formation and expansion. Several clinical trials show that somatostatin (SST) 

analogues halt cyst growth and progression of ADPKD by inhibiting adenosine 3′,5′-cyclic 

monophosphate (cAMP) signaling. However, two studies suggest that the effect of the SST 

analogue octreotide on kidney growth during the first year of treatment is reduced in the 

subsequent follow-ups and the kidney enlargement resumes. We hypothesize that this 

biphasic change in kidney growth during octreotide treatment may be due to changes in SST 

receptor (SSTR) 2 expression. Here we analyzed expression of renal SSTR2 in various 

polycystic kidney disease (PKD) mouse models in which PKD1 gene expression was 

disrupted on postnatal day 10 or 18 by tamoxifen. Using immunohistochemical analysis, we 

showed that the distribution of SSTR2 in murine kidneys is mainly in distal tubules and 

collecting ducts. In addition, in both PKD models, we observed a significant decrease in 

SSTR2 expression in epithelia of dilated tubules and cystic epithelia in mice with end stage 

of PKD compared to wild type mice. These findings were further confirmed by qPCR on 

mRNA levels of SSTR2. In conclusion, our data show that SSTR2 expression levels are 

reduced during kidney cyst growth, which may suggest reduced efficacy in long-term 

treatment with somatostatin analogues. 
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Impact Statement: Somatostatin (SST) analogues has been shown to halt cyst growth and 

progression of ADPKD by several clinical trials. However, two studies suggest that the effect 

of the SST analogue octreotide on kidney growth during the first year of treatment is reduced 

in the subsequent follow-ups and the kidney enlargement resumes. This biphasic change in 

kidney growth during octreotide treatment may be partially explained by alterations in 

SSTR2 expression. Here, we found that SSTR2 is mainly expressed in distal tubules and 

collecting ducts in murine kidneys and the expression of SSTR2 decreases during cyst growth 

in two PKD mice models. Our data may thus provide possible explanations for the lack of 

efficacy in long-term treatment with SST analogues. 

 

Introduction 

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent hereditary 

disorder caused by a mutation in the polycystic kidney disease (PKD)1 or PKD2 gene[1,2]. 

The disease is characterized by progressive development of numerous fluid-filled kidney 

cysts accompanied by interstitial fibrosis formation, leading to destruction of the kidney 

architecture and ultimately kidney failure[1-3]. Extra-renal complications can occur during 

ADPKD, such as cysts in the liver and pancreas, hypertension and cerebral aneurysms[3]. 

Although tolvaptan has recently become available for selected ADPKD patients to slow 

progression of ADPKD, there is currently no cure[4-6]. In order to meet the urgent needs of 

patients, considerable effort has been made to explore the mechanisms that are essential for 

the development of ADPKD, allowing identification of several potential targets for 

therapeutic interventions[7]. 

Renal cyst formation and expansion during ADPKD are the results of excessive epithelial cell 

proliferation, continuous luminal fluid secretion as well as extracellular matrix remodeling 

[4,8]. Previous studies implicate that one of the mechanisms associated with these processes 

is enhanced intracellular cAMP signaling[5,9,10]. Therefore, the molecules that mediate 

cAMP signaling may be potential therapeutic targets for treating ADPKD. Indeed, the 

activation of vasopressin-2 receptor (V2R) induces generation of cAMP, and  targeting V2R 

with its antagonist tolvaptan reduces cAMP levels in kidney epithelial cells limits 

cystogenesis in several PKD models[11-14]. Furthermore, several completed or currently 

active clinical studies under the TEMPO program indicate that tolvaptan shows a treatment 

effect in reducing total kidney volume[6,15,16]. In addition, somatostatin (SST), a cyclic 14 



amino acid peptide hormone, exerts inhibitory effects on cAMP signaling through binding to 

its G-protein-coupled receptors (SSTR1-5)[17]. SST has been proven to inhibit vasopressin-

induced cAMP formation in Madin-Darby Canine Kidney (MDCK) cells and diminishes the 

cAMP concentration in rat cortical and medullary collecting tubules[18,19]. Targeting SSTRs 

with SST analogues inhibits cell proliferation, cAMP levels and hepato-renal cystogenesis in 

rodent models of polycystic kidney and liver disease[11,20-22]. In consistence with these 

observations, a few completed clinical trials with the primary focus of inhibiting cAMP using 

SST analogues (octreotide or lanreotide) have indicated potential clinical benefit in patients 

with ADPKD[23-27]. 

The administration of octreotide for periods of 6–12 months effectively inhibits the increase 

in total kidney volume[25,26]. This has been confirmed in a 6-month clinical trial which 

demonstrated that lanreotide decreases total kidney volume in 43 ADPKD patients [27]. 

Interestingly, two relative small studies suggest that the efficacy of SST analogue treatment 

appears to reduce with longer follow-ups[23,24]. Long-acting octreotide halts kidney growth 

during the first year of treatment, but with ongoing treatment tolerance develops and the 

effect is reduced during year 2. In the future, more information on efficacy and tolerance of 

prolonged somatostatin treatment will come from an ongoing clinical trial with a period of 

120 weeks[28]. Because of this biphasic change in kidney growth during SST analogues 

treatment, we propose that SSTRs might be progressively down-regulated with ADPKD 

development, leading curtailed long-term efficacy. Since both octreotide and lanreotide have 

the highest affinity for SSTR2 [29], we examined expression of this receptor in various PKD 

mouse models at different time points after disruption of the PKD1 gene.   

 

Materials and methods 

Cell Culture 

SV40 large T-antigen immortalized murine wild type (WT) proximal tubular epithelial cells 

(PTEC) were derived from a Pkd1lox,lox mouse and cultured as previously described[30]. 

Briefly, PTEC cells were maintained at 37°C and 5% CO2 in DMEM/F12 with GlutaMAX 

(Gibco, Fisher Scientific) supplemented with 100 U/ml penicillin/streptomycin (Gibco, Life 

Technologies), 2% Ultroser G (Pall BioSepra), 1x Insulin-Transferrin-Selenium-

Ethanolamine (Gibco, Life Technologies), 25 ng/L Prostaglandin E1 (Sigma–Aldrich), 



30 ng/L Hydrocortisone (Sigma–Aldrich). Murine collecting duct mIMCD-3 cells (American 

Type Culture Collection; ATCC) was maintained in DMEM/F12 with GlutaMAX (Gibco, 

Fisher Scientific) supplemented with 10% fetal calf serum and100 U/ml 

penicillin/streptomycin (Gibco). 

Animal Models of Polycystic Kidney Disease 

The tamoxifen-inducible kidney-specific Pkd1-deletion (tam-KspCad-CreERT2;Pkd1lox2–

11;lox2–11 or in short iKsp-Pkd1del) mice and oral tamoxifen administration have been described 

previously[31,32]. The mice received 150 mg/kg tamoxifen at postnatal day PN18–PN19 

(PN18 model), or 15 mg/kg tamoxifen at PN10–PN11 (PN10 model). PN18 mice were 

sacrificed at 4 or 12 (n=6) weeks after tamoxifen administration and PN10 mice were 

sacrificed at 1 or 3 weeks (n=5) after tamoxifen administration. Mice were bred at the animal 

care facility of the Leiden University Medical Center (LUMC). All experiments were 

approved by the local animal experimental committee of the LUMC and the Commission 

Biotechnology in Animals of the Dutch Ministry of Agriculture. 

qPCR 

Total RNA was isolated from cultured cells or kidney tissues with TRI Reagent (Sigma–

Aldrich) following the manufacturer’s protocol. cDNA synthesis was done with the 

Transcriptor First Strand cDNA Synthesis Kit (Roche) according to the manufacturer’s 

protocol. qPCR was done in duplicate on the LightCycler 480 II (Roche) using 2× FastStart 

SYBR-Green Master (Roche) according to the manufacturer’s protocol. The following 

primers were used: hypoxanthine guanine phosphoribosyltransferase (HPRT): forward 5’-

GGCTATAAGTTCTTTGCTGACCTG-3’ and reverse 5’-

AACTTTTATGTCCCCCGTTGA-3’; SSTR2: forward 5’-TCCTCCGCTATGCCAAGAT -

3’ and reverse 5’-CAATGGCCAGGTTAAGGATG-3’; SSTR5: forward 5’-

GCAAGGTCTTGGCCTTTATG-3’ and reverse 5’-CAGTCTTCACCATGCGTCTG -3’; 

Data were analysed with LightCycler 480 Software, version 1.5 (Roche). Gene expression 

was calculated using the LinRegPCR method as described previously[33] and normalized to 

HPRT expression, giving the relative gene expression. Mean gene expressions and standard 

deviations of the different groups were calculated. 

(Immuno)histochemistry 



Kidney tissues were fixed in formalin, embedded in paraffin and 4-μm-thick slides were 

subsequently stained with haematoxylin and eosin according to routine procedures. Segment 

marker staining was performed with sequential renal sections (4 µm), using rabbit polyclonal 

anti-megalin (Pathology LUMC), goat polyclonal anti-Tamm-Horsfall protein (uromodulin; 

Organon Teknika-Cappel), and rabbit polyclonal anti-aquaporin-2 (Calbiochem) as 

previously described[34]. SSTR2 staining was performed with a rabbit monoclonal anti-

SSTR2 antibody (Abcam, ab134152). A horseradish peroxidase (HRP)-conjugated polymer 

detection system was applied for visualization, using rabbit envision HRP (Dako) or rabbit 

anti-goat HRP (Dako) as the secondary antibody. Immune reactions were revealed using 

diaminobenzidine and counterstained with haematoxylin. 

cAMP assay 

Levels of cAMP were measured in mice control and PN10 cystic kidneys (n = 2 for each 

experimental condition). cAMP levels were determined by the cAMP enzyme immunoassay 

kit (Sigma-Aldrich Chemie N.V.). 

Statistical analysis 

Statistical comparisons between groups were performed using an unpaired t-test. p values less 

than 0.05 were considered significant. 

Results 

The expression pattern of SSTR2 in normal mouse kidneys 

We investigated the expression pattern of SSTR2 in paraffin-embedded kidney sections of 

adult WT mice. Proximal tubules, distal tubules and collecting ducts were identified by 

staining for their specific markers megalin, Tamm-Horsfall protein and aquaporin-2, 

respectively (Figure 1A). SSTR2 was mainly detected in a large proportion of distal tubules 

and collecting ducts; In contrast, SSTR2 staining was almost absent in proximal tubules. To 

verify this observation, we subsequently examined the mRNA levels of SSTR2 and SSTR5 in 

PTEC and mIMCD-3 cells that derived from proximal tubules and collecting ducts 

respectively (Figure 1B). The mRNA level of SSTR2 was higher in the collecting ducts than 

in the proximal tubules, confirming the results of the SSTR2 immunostaining. 

SSTR2 expression decreased during cyst growth in two PKD mouse models  



We next examined SSTR2 expression in the Pkd1del models during different phases of 

disease. Deletion of the Pkd1 gene in mice of different age results in distinct PKD 

phenotypes[35,36]. Previous studies have indicated that inactivation of Pkd1 at prenatal day 

10 results in rapid cyst formation within 3 weeks and cysts are primarily from distal tubules 

and collecting ducts[36]. In contrast, the PN18 model has a much slower progression of PKD 

and develops polycystic kidneys within 3 months, with cysts derived from all tubular 

segments[36] (Figure 2).  

At the early stage of PKD in the PN18 model (PN18+4weeks), SSTR2 expression was still 

observed in most of the dilated tubules originating from distal tubules and collecting ducts. 

At 12 weeks after tamoxifen administration, PN18 mice developed massive cystic kidneys 

and showed a clear loss of SSTR2 expression in almost all cysts compared with PN18 mice at 

4 weeks (Figure 3A and also compare Figure 3A and B to Figure 1A). Similarly, PN10 model 

also showed reduction in SSTR2 levels along the disease progression compared with WT 

mice. SSTR2 expression was decreased in cystic epithelia at mild stage (PN10+1weeks) of 

PKD and was lost in the majority of cysts at the end stage of the disease (compare Figure 3C 

to Figure 1A). To verify this finding, we also analysed mRNA levels of SSTR2 in the animal 

kidney lysates, using SSTR5 as a comparison. The mRNA levels of SSTR2 from PN18+12 

weeks mice was significantly lower compared to WT mice, whereas this reduction was not 

detected in PN10 mice (Figure 3D and E). 

 

Discussion 

ADPKD is a heterogenetic disorder caused by mutations in the PKD1 or PKD2 gene, but 

additional factors are also involved[1,2,8,36]. There is compelling evidence that aberrant 

cAMP signalling plays a critical role in renal and liver cystogenesis[5]. Several animal 

models (including ours) for cystic kidney disease demonstrate elevated cAMP content in 

kidneys (Fig. S1A), and show that reduced cAMP increase, by targeting SSTRs, limits the 

disease progression[5,11,20-22]. Based on these findings and the fact that SSTRs are 

expressed in human kidneys[37], SST analogues have been tested in several clinical trials for 

treating ADPKD. Although somatostatin analogues significantly halt cyst growth and 

progression of ADPKD during the first year of treatment, the effect then reduces, as observed 

for octreotide [23-28]. 



The reduced long-term treatment-effect of SST analogues may be partially explained by the 

data described in this study. Here, we show that renal SSTR2 expression is down-regulated 

during cyst growth in mice with ADPKD. In two PKD mouse models, expression of SSTR2 

declined progressively in dilated distal tubules and collecting ducts, and was completely lost 

in almost all cystic epithelia at the end stage of the disease. The findings in 

immunohistochemistry were supported by data on corresponding mRNA expression of 

SSTR2 in PN18 mice, but not in PN10 mice. This may be due to the fact that PN10 mice 

were still in developmental stage and the proliferation indices varied between animals, so that 

the mRNA expression could not correctly reflect protein expression.  

We also studied SSTR2 expression in human material in order to correlate our findings with 

human disease. In immunohistochemical analysis, we observed that SSTR2 is mildly 

expressed in all kidney segments, but high expression is mainly in proximal tubules. 

Importantly, cystic lesions of ADPKD patients also showed decreased expression of SSTR2 

in epithelia of dilated tubules and cystic epithelia compared with healthy controls (Fig. S1B). 

Using antibodies that generated against  the same immunizing peptide, 

ETQRTLLNGDLQTSI corresponding to residues 335–369 of the human SSTR2, other 

investigators detected renal SSTR2 expression in the same pattern as we observed in 

immunohistochemical experiment[38-41]. However, the results from immune-histochemical 

analysis are not in line with our qPCR analysis, which showed more SSTR2 expression in 

cells derived from human collecting duct than proximal tubules, similar as observed in mice 

(Fig. S1C); Therefore, we are not fully confident with the immunohistochemistry results from 

the human tissue. Further research to confirm SSTR2 expression pattern in human kidney 

using another experimental method is required.    

Our findings, showing decreased SSTR2 expression in kidney cysts, are in line with the 

previous study reporting diminished expression of SSTR1 and SSTR2 in cystic 

cholangiocytes of animal models and patient of PKD[21]. The mechanism by which SSTR2 

expression is down-regulated during cyst growth remains elusive. However, it has been 

shown that treatment with SST analogues (in response to octreotide and pasireotide) increases 

immunoreactivity of SSTR2 in cystic cholangiocytes[21]. Furthermore, it is suggested that 

SST has the ability to up-regulate SSTR2 at cell membrane[42]. Thus, it is tempting to 

speculate that the decrease in SSTR2 expression may be due to defective epithelial 

differentiation, which could be partially restored by SST analogues treatment during the 

progression of cystic kidney disease. 



Several issues should be taken into consideration when interpreting our data. First, although 

our Pkd1del models are well-established models to study ADPKD, they do not completely 

mimic the progression of cystic disease in patients with ADPKD. For example, the Pkd1del 

model has relatively synchronized cyst formation, since deletions in the Pkd1 gene can 

happen at the same time in much larger numbers of cells than in human ADPKD[8]. 

Therefore, our descriptive data obtained in animal models cannot fully represent the human 

situation. Second, although octreotide, lanreotide and pasireotide mainly target SSTR2, 

SSTR5 also shows relatively high affinity for SST analogues[29] and its expression should be 

investigated in normal and cystic kidneys. However, the commercially available antibody that 

is frequently used to detect SSTR5 in murine tissue failed to produce consistent and 

reproducible data [43] (data not shown), which may be explained by the fact that it is only 

rat-specific. Finally, our data suggested that the SSTR2 expression pattern may be different 

between human and murine kidneys, which should be kept in mind when targeting SSTR2 

with SST analogues.   

In conclusion, we present the distribution of SSTR2 in murine kidneys and irrespective of the 

potential clinical relevance, our data suggest that expression of SSTR2 decreases during the 

development of ADPKD. Reduced target expression may also be taken into account when 

targeting other trans-membrane receptors for treating ADPKD. 
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Figure legend 

Fig. 1. SSTR2 expression pattern in WT adult mouse kidney. (A) Representative segment 

markers and SSTR2 antibody stained sections. MEG = megalin; THP = Tamm-Horsfall; AQP 

2 = Aquaporin-2. Asterisks indicate the same area on sequential sections with THP (in 

enlarged picture 1) and SSTR2 staining (in enlarged picture 2). Also, arrowheads indicate the 

same area on sequential sections with AQP 2 (in enlarged picture 3) and SSTR2 staining (in 

enlarged picture 2). (B) SSTR2 and SSTR5 mRNA levels in PTEC and mIMCD3 cells were 

assessed by real-time reverse transcriptase PCR. Data are expressed relative to the 

housekeeping gene HPRT (n=3). 

Fig. 2. Kidneys from P10 and P18 models after PKD1 gene disruption. (A) Hematoxylin 

and eosin-stained sections of kidneys harvested from PN10 and PN18 mice at different time 

points after PKD1 gene disruption. 

Fig. 3. SSTR2 expression decreases during cyst growth in both P10 and P18 mice with 

ADPKD. (A) Image of renal section from PN18 mice at late stage (PN18+12wks) of PKD 

was immunostained using antibodies specific for SSTR2. The black frame indicates the area 

where non-dilated tubules with positive for SSTR2 staining. (B and C) Images of renal 

sections from PN18 and PN10 mice were immunostained using SSTR2 antibodies. 

Enlargements of SSTR2 images are shown in the lower panel. Arrowheads indicate dilated 

tubules or cysts with positive SSTR2 staining and asterisks indicate dilated tubules or cysts 

which show virtually negative SSTR2 staining. (D) and (E) SSTR2 and SSTR5 mRNA levels 

in PN18 and PN10 mice kidney tissue at different time points after PKD1 gene disruption 

were assessed by real-time reverse transcriptase PCR. Data are expressed relative to the 

housekeeping gene HPRT. The comparison is between kidneys from WT and end stage of 

diseases, n=5-7, *P<0.05 (t test). 

Fig. S1. Expression of SSTR2 in human kidneys. (A) cAMP assay was implemented 

showing a clear increase in cAMP levels in PN10 cystic kidneys compared to normal kidneys 



(n=2). (B) Representative proximal tubules marker megalin and SSTR2 antibody stained 

sections. Left panel shows the same area on sequential sections from normal human kidneys 

with MEG and SSTR2 staining. Middle and right panels show the same area on sequential 

sections from kidneys of patient with ADPKD. (C) SSTR2 mRNA levels in HK2 and 

RCTEC cells were assessed by real-time reverse transcriptase PCR. Data are expressed 

relative to the housekeeping gene GAPDH (n=3) 
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