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Abstract
The presence of cytogenetic clonal heterogeneity has been associated with poor prognosis in patients with acute myeloid
leukemia (AML). Here, we reassessed this association. The study cohort consisted of all patients with an abnormal karyotype
randomized in the EORTC/GIMEMA AML-10 and AML-12 trials. Abnormal karyotypes were classified as no subclones
present (cytogenetic abnormality in a single clone), defined subclones present (presence of one to three subclones), and com-
posite karyotypes (CP) (clonal heterogeneity not allowing enumeration of individual subclones). The main endpoints were
overall survival (OS) and disease-free survival (DFS). Among 1291 patients with an abnormal karyotype, 1026 had no subclones,
226 at least 1 subclone, and 39 a CP. Patients with defined subclones had an OS similar to those with no subclones (hazard ratio
(HR) 1.05, 95% confidence interval (CI) 0.88–1.26), but CP patients had a shorter OS (HR = 1.58, 95% CI 1.11–2.26). However,
in a multivariate Cox model stratified by protocol and adjusted for age, cytogenetic risk group, secondary versus primary AML,
and performance status, clonal heterogeneity lost its prognostic importance (HR = 1.10, 95% CI 0.91–1.32 for defined subclones
versus no subclones; HR = 0.96, 95% CI 0.67–1.38 for CP versus no subclones). Also, the impact of having a donor on DFS was
similar in the three clonal subgroups. In summary, in patients with cytogenetic abnormality, presence of subclones had no impact
on OS. The dismal outcome in patients with a CP was explained by the known predictors of poor prognosis.
Trial registration: AML-10: ClinicalTrials.gov identifier: NCT00002549, retrospectively registered July 19, 2004; AML12:
ClinicalTrials.gov identifier: NCT00004128, registered January 27, 2003.
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Background

Although the overall survival (OS) in younger acute myeloid
leukemia (AML) patients has improved in the recent decades,
disease relapse remains the first cause of death in younger pa-
tients with AML [1–6]. Approximately 60% of younger patients
diagnosed with AML have chromosomal aberrations in their
leukemic cells [1]. Despite the impressive recent progress in the
identification of genetic alterations associated with AML [7, 8],
chromosomal aberrations still belong to the strongest predictive
factors in youngerAMLpatients and remainmandatory for prog-
nostic classification [1, 2, 9]. Specifically, patients can be classi-
fied in favorable, intermediate, or adverse cytogenetic risk groups
[9, 10]. This classification not only provides prognostic informa-
tion but also influences the choice of post-remission treatment
[11, 12], since patients without favorable cytogenetic features
most likely benefit from allogeneic stem cell transplantation
(allo-HSCT) [12, 13]. Even after allo-HSCT cytogenetic risk
group, classification remains a strong prognostic factor [14–16].

In patients with acute lymphoblastic leukemia, several studies
have provided evidence for a complex and multiclonal evolution
of the leukemia [17, 18]. In addition, a higher clonal heterogene-
ity has been associated with poorer outcomes, which is explained
by the increased probability that a specific subclone becomes
chemotherapy-resistant [17]. In the AML setting, karyotype evo-
lution has been demonstrated at the time of AML relapse [19].
More recent studies using whole-genome sequencing confirmed
the observation that AML relapse is associated with the addition
of new mutations and clonal evolution [20–22].

A large (n = 1274) retrospective study assessing data from
two prospective trials carried out by the Study Alliance
Leukemia (SAL) group reported in 2013 that the presence of
cytogenetic clonal heterogeneity, as detected by metaphase
karyotyping, was associated with poor prognosis in patients
with cytogenetically intermediate and adverse-risk AML [23].
This led us to assess the prognostic importance of cytogenetic
clonal heterogeneity in a large number of AML patients in-
cluded in the large EORTC/GIMEMAAML-10 and AML-12
prospective trials. In addition, we evaluated the effect of dif-
ferent types of remission-induction chemotherapies and of the
availability of a donor in this subset of patients.

Methods

Study design

In the EORTC/GIMEMA AML-10 trial [1], patients were
randomized to receive either daunorubicin (DNR; 50 mg/

m2), mitoxantrone (MTZ; 12 mg/m2), or idarubicin (IDA;
10 mg/m2) on days 1, 3, and 5 in addition to standard-dose
cytarabine (SDAC; 25-mg/m2 bolus followed by 100 mg/m2

given as a continuous infusion daily for 10 days) and
etoposide (100 mg/m2 on days 1–5) for induction
chemotherapy.

In the EORTC/GIMEMA AML-12 trial [2], patients were
randomized between induction with SDAC or high-dose
cytarabine (HiDAC; 3 g/m2 every 12 h as a 3-h IV infusion on
days 1, 3, 5, and 7), in addition to DNR (50 mg/m2 per day on
days 1, 3, and 5) and etoposide (50 mg/m2 per day on days 1–5).

In both trials, a second cycle of induction was administered
in patients who achieved a partial response (PR). Patients who
achieved a complete remission (CR) or a CR with incomplete
count recovery (CRi) after one or two courses of induction
chemotherapy received a consolidation chemotherapy with
the same anthracycline as in the induction course plus inter-
mediate dose cytarabine (500 mg/m2 every 12 h as a 2-h IV
infusion on days 1–6). Patients ≤ 45 years in the AML-10 trial
and ≤ 50–60 years in the AML-12 trial, respectively, were
then scheduled to undergo an allo-HSCT in first CR/CRi if
they had an HLA-identical sibling donor (in both trials) or, in
AML-12 trial only, if they had an unrelated donor and required
two induction courses or had AML with chromosome abnor-
malities involving 3q, 5, 7, t(6;9), t(9;22), 11q23, or complex
abnormalities [2]. Patients without a donor were scheduled to
undergo an autologous HSCT (auto-HSCT) in first CR/CRi.

Criteria for response and relapse followed the Report of the
National Cancer Institute-sponsored workshop [24].

Cytogenetic assessment

For both trials, cytogenetic examinations were per-
formed at diagnosis. Cytogenetic data were centrally
collected, reviewed, and classified using the EORTC
risk classification [25]. For the current analysis, all cy-
togenetic data were centrally re-reviewed. Karyotypes
were described following the International System for
Human Cytogenetic Nomenclature [26]. Chromosomal
gains or structural aberrations had to be detected in at
least two metaphases and chromosomal losses in three
metaphases to be categorized as clonal [26]. These
thresholds were applied to the karyotypes as a whole,
but not to single unequivocally related subclones. For
the current analysis, clonal heterogeneity was classified
similar as in the SAL study [23], as either no subclones
(cytogenetic abnormality present in a single clone),
presence of defined subclones, or composite karyotypes
(CP) when karyotypic heterogeneity was too complex to
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allow enumeration of individual subclones. In addition,
cytogenetic risk groups were classified using the refined
UK Medical Research Council (MRC) classification
[10]. Monosomal karyotype (MK) was defined as the
presence of two or more monosomies, or a single

monosomy in the presence of structural abnormalities
as previously reported [27, 28]. MK were further
subclassified between one monosomy (MK1), or two
(MK2) or three (MK3) monosomies as previously de-
scribed [28].

Table 1 Patient characteristics according to cytogenetic clonal heterogeneity

No subclones
(N = 1026), N (%)

Defined subclones
(N = 226), N (%)

Composite karyotype
(N = 39), N (%)

Chi-squared test:
P value

Study and randomized arm 0.064
AML-10 556 (54.2) 109 (48.2) 20 (51.3)
DNR 196 (19.1) 33 (14.6) 4 (10.3)
MTZ 184 (17.9) 26 (11.5) 6 (15.4)
IDA 176 (17.2) 50 (22.1) 10 (25.6)
AML-12 470 (45.9) 117 (51.8) 19 (48.7)
SDAC 235 (22.9) 56 (24.8) 12 (30.8)
HiDAC 235 (22.9) 61 (27.0) 7 (17.9)
Gender 0.76
Male 563 (54.9) 130 (57.5) 22 (56.4)
Female 463 (45.1) 96 (42.5) 17 (43.6)
Age (years) 0.026
15–25 128 (12.5) 40 (17.7) 0 (0.0)
26–35 196 (19.1) 48 (21.2) 6 (15.4)
36–45 261 (25.4) 55 (24.3) 10 (25.6)
46–60 441 (43.0) 83 (36.7) 23 (59.0)
Disease 0.18
De novo AML 979 (95.4) 218 (96.5) 35 (89.7)
Antecedent MDS 21 (2.0) 4 (1.8) 3 (7.7)
t-AML 26 (2.5) 4 (1.8) 1 (2.6)
Cytogenetic risk group (MRC) < 0.001
Not assessable 2 (0.2) 1 (0.4) 0 (0.0)
Favorable 317 (30.9) 71 (31.4) 0 (0.0)
Intermediate 434 (42.3) 60 (26.5) 6 (15.4)
Adverse 273 (26.6) 94 (41.6) 33 (84.6)
Monosomal karyotype (MK) < 0.001
Not assessable 1 (0.1) 0 (0.0) 0 (0.0)
MK- 919 (89.6) 169 (74.8) 12 (30.8)
MK1 31 (3.0) 16 (7.1) 1 (2.6)
MK2 14 (1.4) 7 (3.1) 1 (2.6)
MK3 60 (5.8) 34 (15.0) 25 (64.1)
Missing 1 (0.1) 0 (0.0) 0 (0.0)
Number of subclones
1 193 (85.4)
2 25 (11.1)
3 8 (3.5)
WHO performance status 0.80
0 408 (39.8) 96 (42.5) 16 (41.0)
1 461 (44.9) 103 (45.6) 17 (43.6)
2–4 155 (15.1) 27 (11.9) 6 (15.4)
Missing 2 (0.2) 0 (0.0) 0 (0.0)
WBC (109/L) 0.16
< 25 612 (59.6) 150 (66.4) 29 (74.4)
≥ 25 and < 100 308 (30.0) 55 (24.3) 8 (20.5)
≥ 100 105 (10.2) 21 (9.3) 2 (5.1)
Missing 1 (0.1) 0 (0.0) 0 (0.0)
Donor availability in patients who reached a CR/CRi (N = 919) 0.70
No 449 (61.0) 97 (62.2) 16 (59.3)
Yes 251 (34.1) 48 (30.8) 11 (40.7)
Missing 36 (4.9) 11 (7.1) 0 (0.0)

DNR daunorubicin,MTZ mitoxantrone, IDA idarubicin, SDAC standard-dose cytarabine, HiDAC high-dose cytarabine,WBC white blood cells, NA not
applicable
a No molecular data were available for patients included in the AML-10 trial
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Statistical analyses

The duration of OS was calculated from the date of random-
ization until death. Disease-free survival (DFS) was calculated
as the time fromCR/CRi until the first relapse or death, which-
ever occurred first or as the time from allo-HSCTuntil the first
relapse or death, whichever occurred first. The follow-up of
patients still alive and in first CR/CRi, was censored at the last
date to be alive.

The Kaplan-Meier method was used to estimate OS and
DFS rates [29]. Confidence intervals for the 5-year OS and
DFS rates were obtained using the normal approximation of
the distribution of log(− log(survival)) and the Greenwood
variance formula [30]. The confidence interval of the median
OS and DFS was estimated using the Brookmeyer and
Crowley method [31]. Cox model stratified by protocol was
used to compare OS and DFS between groups [32]. In order to
investigate whether clonal heterogeneity provided additional
prognostic information when taking known prognostic factors
into account, a Cox model stratified by protocol and adjusted
for known prognostic factors was used. The predictive value
of clonal heterogeneity for OS and DFS was tested based on
the interaction term in a Cox model.

Cumulative incidence of relapse and of death without relapse
from the date of CR/CRi was estimated using theAalen-Johansen

estimator [33]. Confidence intervals of the 5-year cumulative in-
cidence rates were estimated using a Greenwood-like variance
estimator [34]. A proportional subdistribution hazard Fine-Gray
model stratified by protocol was used to compare the incidence of
relapse and death without relapse between groups [35].

All tests were performed at a two-sided significance level of
0.05. SAS 9.4 (SAS Institute Inc., Cary, NC) was used for all
statistical analyses.

Results

Patients

In the AML-10 trial, 2157 patients were randomized to receive
DNR, MTX, or IDA between November 1993 and December
1999. The current analyses were performed in a subgroup of
685 patients with an abnormal karyotype (see supplemental Fig.
A1 for a detailed flow chart): 556 of them had a single cytogenet-
ically abnormal clone (no subclones), 109 at least one defined
subclone, and 20 a CP (Table 1). In the AML-12 trial, 1942 pa-
tients were randomized between HiDAC and SDAC from
September 1999 to January 2008. The current analyses were per-
formed in a subgroup of 606 patients with an abnormal karyotype:
470 of themhad no subclones, 117 at least 1 defined subclone, and
19 a CP. Interestingly, patients with successful cytogenetic assess-
ment had better OS than those without (supplemental Table A2).
Median follow-up for the 1291 patients included in the current
analyses was 10.7 years (95% CI 10.1–11.4 years).

The median number of analyzed metaphases was 20 both
among patients with subclones (interquartile range (IQR) 15–
22, range 2–76) as well as those without subclones (IQR 17–
26, range 3–89). All patients with a composite karyotype (n =
39) were older than 25 years, and 84.6% had adverse MRC
cytogenetic features. Patients with defined subclone(s) had an
adverse cytogenetic profile more often than those without de-
fined subclones (42 versus 27%, P < 0.001). Among patients
with defined subclone(s) (n = 226), 193 had 1 subclone, 25
had 2 subclones, and 8 had 3 subclones. Ancestral patterns of
clonal evolution among patients with only related clones are
depicted in Fig. 1. Briefly, among patients with 1 subclone, the
linear (a sideline with cytogenetic abnormalities present in the
stemline and additional cytogenetic abnormalities) pattern
was more frequently observed as compared to the branched
pattern (two or more sidelines with some of the cytogenetic
abnormalities in common, but different additional cytogenetic
abnormalities) (170 linear versus 11 branched), while in pa-
tients with 2 or 3 subclones, the branched pattern was more
frequently observed (5 linear versus 22 branched). In 12 pa-
tients with 1 subclone, 2 unrelated clones were observed. In 5
patients with 2 or 3 subclones, both related and unrelated
clones were present. For 1 patient with 4 subclones, the pattern
could not be defined based on the available information.

a

c

b

Fig. 1 Presumed ancestral trees of related subclones (see text for more
information). a Pattern with one subclone; the left pattern is linear and the
right is branched. b Pattern with two subclones; the left pattern is linear
and the other three patterns are branched. c Pattern with three subclones;
the left pattern is linear and the other two patterns are branched
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Impact of clonal heterogeneity on patients’ outcomes

In the present analysis of cytogenetic abnormal AML patients,
those with no subclones and those with defined subclones had a
similar OS from randomization, a similar probability of achiev-
ing a CR/CRi, and a similar relapse incidence and DFS from CR
(Table 2). Further, in comparison to patients with no subclones,
those with a CP had a similar probability of achieving a CR/CRi
but a higher incidence of relapse (HR= 1.93, 95%CI 1.17–3.19),
shorter DFS from CR/CRi (HR= 2.09, 95% CI 1.38–3.15), and
shorter OS (HR= 1.58, 95% CI 1.11–2.26) (Table 2 and Fig. 2).
Importantly, the impact of harboring defined subclones or a CP
on OS was similar in all MRC cytogenetic groups (test for inter-
action in the Cox model P = 0.28).

In themultivariate analysis, the relative prognostic importance
of cytogenetic clonal heterogeneity was no longer significant,
neither for relapse incidence (P = 0.78), DFS from CR
(P = 0.62), or OS (P = 0.58) (Table 3). This was mainly due to
the inclusion of the cytogenetic risk group in the models, which
was strongly associated with clonal heterogeneity status, and had
a strong prognostic importance.

In a sensitivity analysis, using the same population of patients
with adverse/intermediate cytogenetic features only and includ-
ing the same covariates [age modeled as a continuous variable
using one linear term, disease (de novo AML versus antecedent

MDS versus t-AML), cytogenetic risk group, and clonal hetero-
geneity] as in the analysis of the SAL group [23], the relative
prognostic importance of clonal heterogeneity status regarding
OSwas not significant (overall comparison P = 0.37, HR= 1.15,
95% CI 0.94–1.40 for the presence of defined subclones versus
no subclones; HR= 0.97, 95% CI 0.68–1.40 for CP versus no
subclones).

Impact of clonal heterogeneity on the effects
of the type of remission-induction chemotherapy

Consistent with the original results of the AML-10 trial in-
cluding all patients [1], the effect of the type of anthracycline
used (IDA versus MTZ versus DNR) on the OS was not sig-
nificant among patients with an abnormal karyotype
(P = 0.58). The magnitude of the effect was similar according
to the clonal heterogeneity status (test for interaction
P = 0.18). Similarly, in patients who reached CR/CRi, the type
of anthracycline did not impact the DFS from CR/CRi
(P = 0.57), and there was no evidence of an impact of clonal
heterogeneity status on the magnitude of the treatment differ-
ence regarding DFS (test for interaction P = 0.20).

Among patients from the AML-12 trial, the estimate of
the difference in OS between HiDAC and SDAC was
similar as in the original analysis including all patients

Table 2 Outcomes by cytogenetic clonal heterogeneity

No subclones Subclones Composite karyotype P value

Number of patients 1026 226 39

Median OS, years (95% CI) 1.73 (1.49, 2.05) 1.46 (1.19, 2.17) 1.16 (0.78, 1.69)

5-year OS, % (95% CI) 38.0 (35.0, 41.1) 35.9 (29.6, 42.2) 16.7 (6.8, 30.3)

HR for OS 1.00 1.05 (0.88, 1.26) 1.58 (1.11, 2.26) 0.036a

Number of patients with response data 1020

CR/CRi after one/two inductions, number (%) of patients 736 (72.2) 156 (69.3) 27 (69.2) 0.64b

In patients with CR/CRi

Number of patients 736 156 27

Number (%) of patients given auto-HSCT in CR1 274 (37.2) 57 (36.5) 7 (25.9)

Number (%) of patients given allo-HSCT in CR1 203 (27.6) 42 (26.9) 9 (33.3)

5-year relapse incidence, % (95% CI) 45.8 (42.2, 49.4) 48.0 (40.0, 55.7) 66.7 (44.5, 81.6)

HR for relapse incidence 1.00 1.09 (0.84, 1.41) 1.93 (1.17, 3.19) 0.033c

5-year incidence of NRM, % (95% CI) 12.5 (10.2, 15.1) 7.1 (3.8, 12.0) 18.5 (6.3, 35.8)

HR for NRM incidence 1.00 0.47 (0.25, 0.88) 1.56 (0.71, 3.46) 0.028c

Median DFS from CR/CRi, years (95% CI) 1.59 (1.34, 2.12) 2.24 (1.24, NR) 0.73 (0.38, 1.47)

5-year DFS from CR/CRi, % (95% CI) 41.7 (38.0, 45.2) 44.9 (36.9, 52.5) 14.8 (4.7, 30.5)

HR for DFS 1.00 0.89 (0.71, 1.13) 2.09 (1.38, 3.15) 0.001a

OS overall survival, CI confidence interval,HR hazard ratio,CR complete remission, CRi complete remission with incomplete blood recovery, CR1 first
complete remission or complete remission with incomplete blood recovery, auto-HSCT autologous hematopoietic stem cell transplantation, allo-HSCT
allogeneic hematopoietic stem cell transplantation, NRM non-relapse mortality, DFS disease-free survival, NR not reached
a Cox model stratified by protocol was used
b Logistic regression model adjusted for protocol was used
c Proportional subdistribution hazard Fine-Gray model stratified by protocol was used
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[2] (HR = 0.95, 95% CI 0.77–1.17), and its magnitude
was not impacted by the clonal heterogeneity status (test
for interaction P = 0.51).

Impact of clonal heterogeneity on the effect of having
a donor on AML outcomes

Consistent with the analysis including all patients from the
two trials [1, 2], in the current analysis of patients with an
abnormal karyotype DFS from CR/CRi was significantly lon-
ger in patients with a donor (n = 310, 254 of them received an
allo-HSCT in CR1) than in those without a donor (n = 562)
(HR = 0.76, 95% CI 0.64–0.92, P = 0.004) (Fig. 3a). This was
due to a significantly lower incidence of relapse in patients
with a donor (HR = 0.59, 95% CI 0.47–0.73, P < 0.001) and
despite the higher incidence of non-relapse mortality in pa-
tients with a donor (HR = 1.75, 95% CI 1.22–2.52, P = 0.002)
compared to those without. The beneficial effect of having a

donor on DFS fromCR/CRi was not observed in patients with
favorable risk cytogenetics (HR = 0.85, 95% CI 0.58–1.25).

Two-hundred-fifty-four patients received an allo-HSCT in
first CR. This included 203 patients with no subclones, 42
patients with defined subclones, and 9 patients with a CP.
Interestingly, the impact on DFS of having a donor versus
no donor was comparable in the 3 clonal heterogeneity groups
(test for interaction P = 0.28) (Fig. 3). This remained true even
after excluding the AML patients with favorable cytogenetic
features from the analyses (test for interaction P = 0.19).

In multivariate analysis adjusted for age and cytogenetic
risk group and stratified by protocol, clonal heterogeneity
showed no significant association (P = 0.41) with the inci-
dence of relapse after allo-HSCT (HR = 1.39, 95% CI 0.79–
2.45, for subclones versus no subclones; HR = 1.57, 95% CI
0.54–4.51, for CP versus no subclones). In contrast, in this
multivariate model, MRC cytogenetic risk group was, overall,
strongly associated (P < 0.001) with the incidence of relapse

Su
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Log-rank test stratified by protocol P=.036 

Log-rank test stratified by protocol P=.001 

a

b

Fig. 2 Overall survival (a) and
disease-free survival (DFS) from
complete remission (CR) (b)
according to cytogenetic clonal
heterogeneity. CP composite
karyotype
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after allo-HSCT (HR = 1.61, 95% CI 0.68–3.80 for interme-
diate versus favorable risk group; HR = 6.20, 95% CI 2.86–
13.43 for adverse versus favorable risk group).

Discussion

In a large study by the SAL group, the presence of cytogenetic
clonal heterogeneity, as detected by metaphase karyotyping,

has been shown to be a frequent phenomenon and to be asso-
ciated with poor prognosis among cytogenetically non-
favorable risk group AML patients [23]. That study also ob-
served that, adjusting for other known prognostic factors (in-
cluding age, disease type (de novo AML versus antecedent
MDS versus t-AML), and cytogenetic risk group (intermedi-
ate versus adverse risk)), the presence of CP (HR = 1.70, 95%
CI 1.18–2.43 for CP) but not defined subclones (HR = 1.06,
95% CI 0.74–1.53) was associated with shorter OS compared

Table 3 Multivariate analyses
Parameter Levels Hazard ratio (95% CI) P value

Relapse incidencea

Clonal heterogeneity No subclones 1.00 0.78

Subclones 1.10 (0.84, 1.44)

Composite karyotype 0.99 (0.59, 1.67)

Age (years) 15–45 1.00 0.19

46–60 1.15 (0.94, 1.40)

Cytogenetic risk group (MRC) Favorable 1.00 < 0.001

Intermediate 2.35 (1.81, 3.05)

Adverse 4.84 (3.67, 6.38)

Donor No 1.00 < 0.001

Yes 0.53 (0.42, 0.67)

DFS from CR/CRib

Clonal heterogeneity No subclones 1.00 0.62

Subclones 0.94 (0.74, 1.20)

Composite karyotype 1.19 (0.78, 1.80)

Age (years) 15–45 1.00 0.004

46–60 1.30 (1.09, 1.54)

Cytogenetic risk group (MRC) Favorable 1.00 < 0.001

Intermediate 2.16 (1.73, 2.70)

Adverse 4.13 (3.25, 5.25)

Donor No 1.00 < 0.001

Yes 0.71 (0.59, 0.85)

Overall survivalb

Clonal heterogeneity No subclones 1.00 0.58

Subclones 1.10 (0.91, 1.32)

Composite karyotype 0.96 (0.67, 1.38)

Age (years) 15–45 1.00 < 0.001

46–60 1.42 (1.23, 1.63)

Cytogenetic risk group (MRC) Favorable 1.00 < 0.001

Intermediate 2.30 (1.89, 2.80)

Adverse 3.78 (3.09, 4.63)

Disease De novo AML 1.00 0.11

sAML 1.28 (0.95, 1.73)

WHO performance status 0 1.00 < 0.001

1 1.13 (0.97, 1.32)

2–4 1.66 (1.35, 2.03)

CI confidence interval, CR complete remission, CRi complete remission with incomplete blood recovery
a Fine and Gray model including all covariates presented in the table and stratified by protocol was used
bA Cox model including all covariates presented in the table and stratified by protocol was used
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to detecting no subclones. The study also reported that
subclone formation was of greatest importance among pa-
tients with adverse risk karyotypes [23]. Here, we reanalyzed
the impact of cytogenetic clonal heterogeneity on outcomes in
an independent large sample of younger AML patients with an
abnormal karyotype. Further, we assessed how clonal hetero-
geneity modified the effects of the type of remission-induction
chemotherapy and of having a donor on AML outcomes.
Several observations have been made.

The present study in 1291 younger AML patients with an
abnormal karyotype evidenced cytogenetic clonal heterogene-
ity in 20.5% of the patients (17.5% of patients with defined
subclones and 3.0% with CP). This percentage of patients with
clonal heterogeneity is somewhat lower compared to what has
been observed in the SAL study, where 32.8% (19.7% had
defined subclones (n = 252) and 13.1% with CP (n = 166)) of
patients with an abnormal karyotype had subclones [23]. An
explanation may be that only patients ≤ 60 years of age were
included in the present study. As also observed by the SAL

group, a linear pattern prevailed in the majority of patients with
one defined subclone [23]. However, in cases with two or three
defined subclones, the branched pattern was more common
(Fig. 1).

Patients with leukemia with defined subclones and partic-
ularly those with a CP had adverse cytogenetic features more
often than those without subclones. Further, patients with a CP
were older than patients with defined subclones and those
without subclones. With regard to outcome, CP was associat-
ed with a shorter OS and DFS from CR. This was not the case
for the presence of defined subclones. However, importantly,
in contrast to what was observed by the SAL group [23], CP
was not an independent prognostic factor in our study. The
dismal outcome of patients with a CP was explained by the
known predictors of poor prognosis including adverse risk
cytogenetic features and age. The reasons of the discrepancies
between the present and the SAL studies remain unclear.

We previously reported that in the EORTC/GIMEMA
AML-10 trial, the type of anthracycline showed no impact

a b

c d

Fig. 3 Disease-free survival (DFS) from complete remission (CR) in patients with or without a donor in all patients with an abnormal karyotype (a), in
those without (b) or with (c) defined subclones, and in those with a composite karyotype (d)
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on OS or DFS from CR/CRi among all randomized patients
[1]. Consistent with the previous analysis, in the present study
including only patients with cytogenetic abnormality, the type
of anthracycline did not show an effect on OS or DFS from
CR. This lack of a treatment difference was not impacted by
the clonal heterogeneity status.

In the EORTC/GIMEMA AML-12 trial, we demonstrated
better OS in patients younger than 46 years of age having re-
ceived HiDAC in comparison to those having received SDAC in
induction treatment [2]. This was not observed in older patients,
46–60 years of age. In the current study, including only data for
patients with cytogenetic abnormality at diagnosis, the estimate
of treatment effect was similar, as in the original trial analysis.
Furthermore, as in AML-10, this lack of treatment differencewas
not impacted by the clonal heterogeneity status.

Previous studies have demonstrated better DFS from CR/
CRi in AML patients with a donor in comparison to those
without a donor [12, 36, 37]. This is particularly the case for
younger patients and those with intermediate or adverse risk
cytogenetic features [12, 36]. In the current study, we con-
firmed a significantly longer DFS from CR/CRi (due to lower
risk of relapse) in patients with a donor in comparison to those
without. Interestingly, the impact of having a donor on the
outcome was quite consistent according to different clonal
heterogeneity status. Furthermore, adjusting for cytogenetic
risk group, clonal heterogeneity status had no impact on the
incidence of relapse after allo-HSCT. These data are different
from those of the SAL group [23], who demonstrated that
allo-HSCT was able to overcome the adverse prognosis in
AML patients with subclones, but not in patients with abnor-
mal karyotypes without subclones. However, it should be em-
phasized than only 9 of 39 CP patients received an allo-HSCT
in the current study (somewhat limiting our ability to detect a
possible benefit of allo-HSCT in this group of patients).

There are some limitations in our study including the rela-
tively small number of patients with a composite karyotype
(n = 39) and the fact that clonality was defined on the basis of
cytogenetic data only (and not also by molecular methods).

Conclusions

In conclusion, in the present study, clonal heterogeneity as de-
fined by the presence of subclones as compared to cytogenetic
abnormalities without clonal subclones did not show an effect
on patient’s outcomes. The dismal outcome in the patients with
a CP was explained by the known predictors of poor prognosis
including adverse-risk cytogenetic features and age.
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