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SUMMARY

Complex traits, including migraine, often aggregate in families, but the underlying genetic 

architecture behind this is not well understood. The aggregation could be explained by rare, 

penetrant variants that segregate according to Mendelian inheritance or by the sufficient polygenic 

accumulation of common variants, each with an individually small effect, or a combination of the 

two hypotheses. In 8,319 individuals across 1,589 migraine families we calculated migraine 

polygenic risk scores (PRS) and found a significantly higher common variant burden in familial 

cases (n=5,317, OR=1.76, 95%CI=1.71–1.81, P=1.7×10−109) compared to population cases from 

the FINRISK cohort (n=1,101, OR=1.32, 95%CI=1.25–1.38, P=7.2×10−17). The PRS explained 

1.6% of the phenotypic variance in the population cases and 3.5% in the familial cases (including 

2.9% for migraine without aura, 5.5% for migraine with typical aura, and 8.2% for hemiplegic 

migraine). The results demonstrate a significant contribution of common polygenic variation to the 

familial aggregation of migraine.

INTRODUCTION

Familial aggregation in chronic diseases is well known but its background is not well 

understood (Agarwala et al., 2013). One hypothesis has been based on the Mendelian 

viewpoint that segregating, highly penetrant variants would strongly contribute to the 

familial nature of the disease. Linkage studies have had modest success in identifying highly 

penetrant disease variants; on the other hand, the numerous established genetic loci from 

genome-wide association studies (GWAS) rarely co-reside within linkage peaks. So far, 
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most of the whole-exome sequencing (WES) and whole-genome sequencing (WGS) studies 

have been underpowered to shed light on the question of why common diseases aggregate in 

families. Studies in familial dyslipidemias have shed some light on this, by demonstrating 

that both rare (penetrant) and common (less penetrant) variants have been associated to 

specific lipid traits (Khera et al., 2017a; Ripatti et al., 2016).

Migraine is an example of a common disease that can aggregate in families (Stewart et al., 

1997). It is one of the most common brain disorders worldwide, affecting approximately 15–

20% of the adult population in developed countries (Global Burden of Disease Study 2013 

Collaborators, 2015). Therefore migraine studies may facilitate collection of the large 

sample sizes required to reveal some of the mechanisms of familial aggregation.

One third of migraine patients experience additional neurological symptoms during attacks, 

called aura (migraine with aura, MA, ICHD-3 code: 1.2). These can occur in rare forms 

called hemiplegic migraine (HM, ICHD-3 code: 1.2.3), typically accompanied by severe 

symptoms of motor weakness that can be either familial (FHM, ICHD-3 code: 1.2.3.1) or 

sporadic (SHM, ICHD-3 code: 1.2.3.2). Alternatively, the more common form is usually 

accompanied by a visual aura, called migraine with typical aura (ICHD-3 code: 1.2.1). 

Migraine that occurs without any aura symptoms is the most common subtype and is called 

migraine without aura (MO, ICHD-3 code: 1.1). Each subtype is diagnosed according to the 

third edition of the International Classification of Headache Disorders (ICHD-3) criteria 

(Headache Classification Committee of the International Headache Society (IHS), 2013).

A Mendelian inheritance model in familial migraine has been supported by mutations in 

three ion-transporter genes (CACNA1A (Ophoff et al., 1996), ATP1A2 (De Fusco et al., 

2003), and SCN1A (Dichgans et al., 2005)) identified by linkage studies and positional 

cloning of FHM families. However, mutations in these genes explain only a fraction of 

FHM/SHM cases (Thomsen et al., 2007, 2008) and none of the more common forms of 

migraine. Even in FHM these mutations vary in their penetrance, therefore, it is unlikely that 

penetrant mutations would entirely explain the observation that migraine is enriched in some 

families. Linkage studies in common forms of migraine have suggested several loci but no 

specific genes have been identified (Chasman et al., 2016).

The polygenic nature of migraine is well documented by GWAS that have identified over 40 

loci associated to common forms of migraine (Anttila et al., 2010, 2013; Chasman et al., 

2011; Freilinger et al., 2012; Gormley et al., 2016). Basic understanding of differences in the 

pathophysiology of these common forms (MA and MO) is limited. GWAS have identified 

many more common variant loci in MO than in MA (Anttila et al., 2010, 2013; Chasman et 

al., 2011; Freilinger et al., 2012; Gormley et al., 2016), likely due to the larger sample sizes 

collected for MO, but clear differences in prevalence (MA = 5%, MO = 12%) could instead 

point towards differences in the genetic architecture and heterogeneity of these diseases.

We hypothesize that in addition to some rare, highly penetrant variants, accumulation of 

common variants with small individual effect sizes contribute to the familial forms of 

migraine. To study this, we constructed a polygenic risk score (PRS) from the most recent 

migraine GWAS consisting of approximately 59,000 cases and 316,000 controls after 
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excluding all Finnish samples (Gormley et al., 2016). We then investigated the contribution 

of common polygenic and rare variation to migraine in our large migraine family cohort 

consisting of 1,589 families from Finland totaling 8,319 individuals, including 540 HM, 

2,420 migraine with typical aura, 2,357 MO, and 3,002 family members with no migraine. 

We observed an overall increased PRS in familial migraine cases compared to population-

based cases and controls and clear differences of the common variant load across different 

migraine subtypes.

RESULTS

In this study, we assessed the contribution of migraine-associated common genetic variation 

to a range of migraine subtypes in a collection of 1,589 families from Finland (Table S1 and 

Figure S1). We calculated the PRS for all 8,319 family members and 14,470 individuals 

from the FINRISK population cohort by combining each individual’s genotypes with 

association summary statistics from a previously reported migraine GWAS 

(STAR★METHODS). The distributions of the PRS observed in each sample are shown in 

Figure 1. We then used the migraine PRS to assess the relative polygenic load contributing 

to both prevalent subtypes of migraine (migraine without aura and migraine with typical 

aura), to the rare subtype (HM), and to other available subtypes (Table 1).

Common polygenic load is enriched across migraine subtypes

Compared to 13,369 FINRISK population-based controls, we found that the burden of 

common migraine-associated variation, measured via the PRS, was enriched across all of the 

migraine subtypes in the family collection, including rare forms of the disease. Using a 

logistic mixed model (adjusted for sex, age, and genetic relatedness) to test for association 

between the PRS as a continuous variable and each of the migraine subtypes we found that 

the PRS was associated with all migraine cases combined (n = 5,317, OR = 1.76, 95% CI = 

1.71–1.81, P = 1.7×10−109, Table 1 and Figure 2). We found the lowest enrichment for MO 

(n = 2,357, OR = 1.57, 95% CI = 1.51–1.63, P = 1.1×10−48), compared to significantly 

higher enrichment for migraine with typical aura (n = 2,420, OR = 1.85, 95% CI = 1.79–

1.91, P = 1.4×10−86) and HM (n = 540, OR = 1.96, 95% CI = 1.86–2.07, P = 8.7×10−36). 

From additional analyses using only cases to compare between migraine subtypes, there was 

no significant difference in common variant burden between the migraine with aura 

subtypes, HM and migraine with typical aura (OR = 1.09, 95% CI = 0.99–1.19, P = 0.09), 

but both showed significantly higher enrichment compared to MO (OR = 1.28, 95% CI = 

1.17–1.38, P = 3.8×10−6, and OR = 1.17, 95% CI = 1.11–1.23, P = 7.3×10−7, respectively, 

Table S2).

Investigating migraine with aura subtypes

We next looked at the four deeper-level subtypes of MA according to the ICHD-3 criteria. 

Two are subtypes of migraine with typical aura (ICHD-3 code: 1.2.1) called typical aura 

with headache (ICHD-3 code: 1.2.1.1) and typical aura without headache (ICHD-3 code: 

1.2.1.2), and the other two are subtypes of HM, called FHM and SHM, where FHM is 

defined as those HM cases with at least one first- or second-degree relative that has also 

been diagnosed with HM (Table 1). We investigated if these sub-subtypes were any different 
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in terms of their polygenic burden. We found that there was no significant difference 

between FHM and SHM (OR = 0.94, 95% CI = 0.72–1.16, P = 0.58, Table S2 and Figure 

S2). However, for migraine with typical aura we found that typical aura with headache cases 

had significantly higher polygenic burden than typical aura without headache (OR = 1.85, 

95% CI = 1.45–2.36, P = 6.3×10−7, Table S2 and Figure S2). In fact, the PRS burden in 

cases of typical aura without headache was observed to be equivalently as low as the 

FINRISK population controls (n = 70, OR = 0.85, 95% CI = 0.62 – 1.17, P = 0.20, Figure 

S2).

Variance explained by the PRS in familial and population-based cases

To quantify how much the common variation currently captured by the PRS contributes to 

migraine phenotypes, we calculated the variance explained by the PRS using a model with 

the PRS included compared to a model without the PRS. While we chose a P-value 

threshold of P < 0.1 for the PRS used throughout this study, we also calculated the variance 

explained across a range of different migraine GWAS P-value thresholds to confirm that the 

results would not be qualitatively different if we had chosen a higher P-value threshold that 

explained more of the variance (Figure S3 and Table S3). For the general category of any 

migraine, we found that the variance explained by the PRS (P < 0.1 threshold) in the familial 

cases was 3.5%. This finding was compared to only 1.6% variance explained by the same 

PRS in the FINRISK population cases. Additionally, for the migraine subtypes, the lowest 

variance explained by the PRS was 2.9% for migraine without aura (MO), 5.5% for migraine 

with typical aura, and 8.2% for hemiplegic migraine (HM).

Increased risk between upper and lower PRS quartiles

To quantify the effect for individuals carrying the highest burden of risk alleles relative to 

the FINRISK population distribution, we separated individuals from the family collection 

into population-level quartiles of the PRS. We used the FINRISK population sample to 

calculate the cut-off values for individuals in the upper and lower quartiles of PRS and tested 

for enrichment between individuals in the highest and lowest quartiles of the distribution 

(Table S4). Again, we observed the lowest enrichment in the MO subtype, where the mean 

PRS was estimated to be 2.2 times significantly higher than the mean PRS of the FINRISK 

population controls (OR = 2.2, 95% CI = 2.03–2.37, P = 1.4×10−19). The enrichment for 

migraine with typical aura was even higher, with mean PRS that was 3.0 times larger than 

the population mean (OR = 3.02, 95% CI = 2.85–3.20, P = 9.0×10−35). As before, in HM we 

observed the highest enrichment of common variation, with mean PRS that was 3.8 times 

significantly higher than the population mean (OR = 3.84, 95% CI = 3.52–4.15, P = 
2.5×10−17).

Comparing familial cases to population cases identified from the national health-registry

We observed that common variant burden measured via the PRS was higher in familial cases 

of any migraine subtype (n = 5,317) compared to population-based cases (n = 1,101) 

identified from FINRISK via health-registry data (OR = 1.26, 95% CI = 1.18–1.34, P = 

3.2×10−8, Table S5). Splitting this result by subtype, we found that the PRS in familial MO 

was modestly enriched compared to the population-based cases (OR = 1.13, 95% CI = 1.04–

1.22, P = 0.0075), whereas migraine with typical aura and HM both showed higher 
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enrichment (OR = 1.31, 95% CI = 1.22–1.40, P = 4.6×10−9, and OR = 1.51, 95% CI = 1.37–

1.64, P = 1.2×10−9 respectively).

We confirmed that the FINRISK sample was representative of other population-based 

migraine samples by also estimating enrichment of the PRS in population cases from four 

other migraine case-control studies that were included in the original GWAS of migraine 

(Gormley et al., 2016), including the Young Finns (OR = 1.21, 95% CI = 1.08–1.36, P = 

8.7×10−4), Swedish Twins (OR = 1.24, 95% CI = 1.17–1.32, P = 1.8×10−11), Northern 

Finland Birth Cohort (OR = 1.20, 95% CI = 1.10–1.29, P = 1.1×10−5), and Health 2000 (OR 

= 1.40, 95% CI = 1.18–1.29, P = 1.6×10−4). These effect-sizes were in line with the 

enrichment found for the FINRISK population cases when comparing the PRS between 

cases and controls (OR = 1.32, 95% CI = 1.25–1.38, P = 7.2×10−17) and all population-

based studies showed lower enrichment for the PRS than in the familial migraine cases 

(Figure S4).

To ensure that the increased enrichment of the PRS in familial cases compared to population 

cases was not due to some systematic bias between the FINRISK and Finnish Migraine 

Families sample, we also calculated two additional PRS scores, this time based on single-

nucleotide polymorphism (SNP) weights taken from GWAS of Intelligence Quotient (IQ) 

(Sniekers et al., 2017) and Schizophrenia (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). As expected, we found no difference in enrichment of these 

two PRS scores when comparing migraine cases and controls from either the FINRISK 

population sample or the Finnish Migraine Family sample (Figure S5).

We additionally found that migraine individuals within the family collection who had self-

reported use of triptan medication had on average higher common variant burden compared 

with individuals who did not report use of triptans (OR = 1.12, 95% CI =1.06–1.19, P = 

5.7×10−4), Table S6). Among the FINRISK population cases, we did not observe any 

difference in PRS when comparing cases that were either triptan users (defined as 

purchasing triptans at least twice) or individuals who had visited a migraine outpatient clinic 

(OR = 1.06, 95% CI = 0.86–1.26, P = 0.56). However, individuals that had both visited a 

specialist outpatient clinic and used triptans had significantly higher PRS enrichment (n = 

131, OR = 1.70, 95% CI = 1.53–1.88, P = 3.9×10−9). In fact, this was similar enrichment to 

the PRS profile observed in the familial migraine cases (n = 5,317, OR = 1.76, 95% CI = 

1.71–1.81, P = 1.7×10−109, Figure S6).

Migraine-associated alleles are over-transmitted to affected offspring

As an additional method for investigating the contribution of polygenic load that is robust to 

relatedness in a family sample, we used the polygenic transmission disequilibrium test 

(pTDT, STAR★METHODS). Here we extracted nuclear trios from the family collection for 

four phenotypes (any migraine, MO, migraine with typical aura, and HM) and tested 

separately whether common migraine-associated alleles (as measured by the PRS) were 

disproportionately over-transmitted from parents to both affected and unaffected offspring. 

In support of the results from the mixed model, we found that affected offspring received a 

significantly higher transmission of common polygenic load from their parents than would 

be expected by chance alone (Figure 3). The over-transmission was observed in every 
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migraine phenotype; any migraine, (n = 1,486 trios, P = 1.7×10−13, pTDT deviation = 0.16, 

95% CI = 0.12 – 0.20), MO (n = 727 trios, P = 4.9×10−4, pTDT deviation = 0.10, 95%CI = 

0.046 – 0.163), migraine with typical aura (n = 571 trios, P = 1.5×10−6, pTDT deviation = 

0.17, 95%CI = 0.10 – 0.24), and HM (n = 188 trios, P = 3.7×10−7, pTDT deviation = 0.33, 

95%CI = 0.21 – 0.45), see Table S7. As expected, no over-transmission was observed for 

unaffected offspring (n = 734 trios, P>0.05). While the observed over-transmission of the 

PRS was higher for migraine with typical aura and HM compared to MO (consistent with 

the association results from the mixed-model above), the difference was not significant 

between migraine groups.

Contribution of Mendelian variants and polygenic load to FHM

We examined the relative contribution of known pathogenic variants (STAR★METHODS) 

and polygenic load to FHM, using a subset of 74 families where familial aggregation of 

cases had been confirmed. From sequencing data on 101 FHM cases from 45 of these 

families, we have identified four families that carried a pathogenic, rare mutation in one of 

the three known FHM genes (Hiekkala et al., 2018; Kaunisto et al., 2004). Therefore out of 

the 45 sequenced families, 8.9% (4/45) could be potentially explained by a rare pathogenic 

mutation in one of the known FHM genes (Table 2 and Table S8). We have found no likely 

pathogenic mutations in these genes for any of the 201 (of 343) SHM individuals that were 

sequenced (Hiekkala et al., 2018). We next investigated what proportion of cases from each 

migraine subtype was found in the extreme tails of the distribution of polygenic risk from 

the FINRISK population. The expected proportion of individuals in the upper quartile of risk 

is 25%, which was approximately what we observed for individuals with no migraine 

(26.7%), but found large deviations from expectation for the other phenotypes, including 

MO (36.2%), migraine with typical aura (41.4%), and HM (43.0%). Furthermore, of the 197 

FHM cases from 74 families, 80 of these cases (40.6%) were in the highest quartile of 

polygenic risk (Table 2 and Figure S7).

To assess the polygenic burden per family, we inspected the distribution of the median PRS 

from each of the 74 families with confirmed FHM cases (Figure S8). We found that over 

44% of FHM families (33 out of 74) carried a common variant burden that was in the 

highest quartile of population risk. Additionally, only five of these 74 FHM families (6.8%) 

were found to be in the lowest quartile of population risk. Interestingly, the four apparently 

Mendelian families that carry a pathogenic rare mutation were not among the five families in 

the lowest quartile of risk and were instead spread across the distribution (in fact two 

families were in the highest PRS quartile, Figure S8), potentially indicating that other 

genetic and/or environmental factors also play a role in these families.

Relationship between age of onset and polygenic load

For a subset of individuals (n = 4,930) in the family collection we had information on age of 

onset of the migraine headache. We used this information to assess whether polygenic load 

was associated with age of onset. We grouped these 4,930 individuals with onset data into 

age of onset bins (0 to 10 years old [n = 1,295], over 10 to 15 years old [n = 1,402], over 15 

to 20 years old [n = 990], and over 20 years old [n = 1,243]) and estimated whether the mean 

PRS in each bin was significantly different (Figure 4). Additionally, data from all cases 
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(n=5,317) was available on whether onset of headaches occurred before or after 20 years 

old, so we compared the PRS between these two groups using a logistic mixed model. We 

found that the mean PRS was significantly higher in migraine cases where headache onset 

occurred before 20 years of age compared to individuals with later onset (OR = 1.11, 95% 

CI = 1.05–1.18, P = 8.2×10−4, Table S6).

Higher PRS is associated with higher rate of clinical diagnostic symptoms

We used nine diagnostic criteria for migraine (attack length > 4 hours, unilaterality, 

pulsation, moderate/severe intensity, aggravation by physical exercise, nausea, vomiting, 

phonophobia, and photophobia, Figure S9) to test if the PRS was specifically associated 

with any of these individual criteria. As these data were obtained from some family 

members by questionnaire, only strict yes answers were interpreted as cases, whereas 

missing answers were interpreted as no-answers. We found that increased PRS predicted a 

higher rate of 8 out of 9 diagnostic symptoms (Table S9), with severity of headache showing 

the largest effect size (OR = 1.29, 95% CI = 1.20–1.39, P = 1.1×10−7). Also strongly 

associated were ‘attack length greater than 4 hours’ (OR = 1.23, 95% CI = 1.16–1.29, P = 

4.7×10−9) and photophobia (OR = 1.23, 95% CI = 1.14–1.32, P = 5.8×10−6). Notably, the 

only diagnostic criteria not associated with the polygenic risk score was headache pulsation 

(OR = 1.04, 95% CI = 0.98–1.10, P = 0.17).

DISCUSSION

Our results show that common polygenic variation, as measured via the PRS, significantly 

contributes to the familial aggregation of migraine. PRS enrichment in families was 

observed in both common and rare subtypes of familial migraine compared to both 

population controls and to population cases of migraine. There were relatively large 

differences in the PRS burden observed between different migraine sub-categories. The 

polygenic burden was higher for MA compared to those individuals that do not suffer any 

migraine aura symptoms. Our results confirm that common variants identified by GWAS in 

populations play a considerable role in rare forms of migraine with aura (both FHM and 

SHM) and suggest that a large proportion of the disease risk in HM cases can be 

significantly explained by common polygenic variation, rather than solely by highly 

penetrant, rare variation.

In interpreting these results, we have also considered the possibility (particularly related to 

the familial cases) that the common variation encapsulated by the PRS could merely be 

tagging rare variants of large effect that are segregating with cases in the families. However, 

this is highly unlikely, as these so-called “synthetic associations” by rare variants have been 

shown to not explain most of the loci found by GWAS (Wray et al., 2011). Therefore we 

would expect that vast majority of genomic associations captured by the PRS are tagging 

only causal common variation.

We showed that the proportion of variance explained by the PRS was higher in the familial 

cases (3.5%) compared with only 1.6% in the population-based cases. These findings are in 

line with emerging evidence from other complex traits, where familial forms of disease that 

were once thought to be mostly explained by rare variants have been found to also have a 
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strong contribution from common variation. Recent examples include familial forms of 

dyslipidemia (Ripatti et al., 2016) and Alzheimer’s disease (Tosto et al., 2017), and the 

observation for type 2 diabetes that rare variants of large effect explain only a small amount 

of disease heritability (Jun et al., 2018). Further support for the important contribution of 

common variation to disease risk comes from recent work on coronary artery disease (CAD) 

where it was shown that for some individuals, their common variant load contributes 

equivalent risk to that of a rare, monogenic variant of large effect (Khera et al., 2017b). It 

may be noted, however, that the proportion of variance explained so far by PRSs for 

migraine and other complex diseases is still small (typically less than 10%). For example, in 

Schizophrenia, a similar approach explains 3.4% of the variance on the liability scale using 

only genome-wide significant variants, which then rises to 7.0% of the variance when 

including more variants (PRS P-value threshold < 0.05) (Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014). Similarly, in a recent GWAS of amyotrophic 

lateral sclerosis (ALS), genome-wide significant variants captured 0.2% of the SNP-

heritability, rising to 8.3% when including all common variants (van Rheenen et al., 2016). 

Even for traits such as inflammatory bowel disease (IBD) where GWAS have successfully 

been able to identify over 200 significant loci, the total variance explained to date by all 

common variation remains low for IBD and its subtypes; 13.1% for Crohn’s disease and 

8.2% for ulcerative colitis (Liu et al., 2015). However, the predictive power of PRS will 

improve with increasing GWAS sample sizes as the effect sizes (the weights used in the 

PRS) of common variants can be more reliably estimated. For migraine, based on the most 

recent GWAS sample size, the total SNP-heritability (i.e. from common, additive variation) 

was estimated previously by LD-Score regression to be 14.6% (Gormley et al., 2016). This 

sets an upper limit on the maximum variance we can currently explain with common 

variation; therefore with the PRS results that we present here we are capturing around one 

quarter of the possible phenotypic variance. Future studies using a PRS based on weights 

from a larger GWAS sample should be able to capture even more of the phenotypic variance.

In addition to showing that familial cases of migraine have higher polygenic burden on 

average compared to population controls, we also showed, using the pTDT approach, that 

offspring with migraine have inherited a higher burden of common polygenic variation 

associated with migraine than would be expected by chance alone. Together, these two 

methods produce results that are robust to genetic relatedness of individuals within the 

sample. Therefore, we have validated by two independent statistical methods (mixed-model 

and pTDT) our result that common polygenic variation associated with migraine 

significantly contributes to the familial aggregation of both prevalent and rare subtypes of 

migraine.

The National Health Register system provides data from every hospital- and out-patient visit 

and every prescription drug purchase of every citizen. This data was used to sub-categorize 

migraine cases in the population-based FINRISK sample. In addition to the formal ICD-

code based migraine subtype definition, the registries enabled us to sub-categorize patients 

based on their use of the health care system. While a large fraction of migraine patients in 

the Finnish health care system are treated in primary care, the more complicated patients 

tend to be referred to secondary and tertiary treatment units, like hospital neurology 

outpatient clinics. Interestingly, migraine cases that had visited a specialist outpatient clinic 
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and additionally had purchased triptans had the highest PRS, which was as high as the mean 

value of familial migraine cases ascertained from the clinics. This finding is consistent with 

recent observations in other traits, for example hyperlipidemias, where familial dyslipidemic 

cases were observed to have similarly high PRS compared to hyperlipidemia cases in the 

FINRISK population cohort (Ripatti et al., 2016). These findings suggest that severe cases 

identified from a population cohort, in terms of their polygenic profile, can be genetically 

similar to familial cases, and that familial aggregation might just be a reflection of a 

cumulative effect of many common variants.

Furthermore, we attempted to characterize the proportion of FHM cases that could be 

explained by rare pathogenic variants in the three known FHM genes. We identified only 

four out of 45 sequenced FHM families (8.9%) with cases that carried one of these variants, 

and 0 out of 201 sequenced SHM individuals (Hiekkala et al., 2018). While it is possible 

that more pathogenic, rare variants for FHM are yet to be discovered, it is striking that so 

few known variants could be identified in our large family collection (n = 302 sequenced 

HM cases from 1,589 families). Together, with the observation of significant polygenic 

burden also seen in individuals with FHM and SHM (including over 40% of FHM cases 

from 74 families that were in the highest quartile of population polygenic risk), it is likely 

that a large proportion of the risk for these rare migraine phenotypes are explained by a 

higher burden of common polygenic variation, with HM falling on the high end of a 

spectrum of disease liability, possibly in some instances combined with rare variants of 

larger effect.

In the more prevalent forms of MA, we found that there was a significant difference in 

common polygenic burden between the migraine with typical aura subtypes - typical aura 

with headache (ICHD-3 code: 1.2.1.1) and typical aura without headache (ICHD-3 code: 

1.2.1.2). While the typical aura with headache group showed a similarly high polygenic 

burden compared with the more rare forms of MA (i.e. both FHM and SHM), and was not 

significantly different from these groups, we observed that the typical aura without headache 

group looked very different and carried a substantially lower common polygenic burden 

relative to the other MA subtypes. The contribution of the PRS (in terms of effect size) to 

this migraine phenotype was in fact no different than controls from the population (Figure 

S2). As such, one might speculate that much of the common variation captured by the PRS 

is influencing genes involved in the etiology of the pain characteristics of migraine rather 

than the aura features, but more investigations are needed to determine this.

Interestingly, in the family sample, migraine cases who experienced earlier age of onset of 

headaches tended to carry a higher polygenic burden of common migraine risk alleles on 

average. This association was observed for all migraine types and is consistent with similar 

findings in other complex disorders (Tosto et al., 2017), as well as previous hypotheses that 

suggest that migraines that have earlier onset (before 15 – 20 years old) have a higher 

genetic burden compared to migraines that begin later in life, where some combination of 

genetic plus environmental factors (e.g. stress, diet, medications, general health, and other 

stimulants) may play a larger role.
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Finally, when looking at nine diagnostic symptoms of migraine, we found that higher 

polygenic risk scores were associated with an increased risk for eight out of nine symptoms. 

The only symptom not associated with higher polygenic load was headache pulsation. While 

it is not unusual for a polygenic risk score based on migraine-associated variation to be 

associated with the diagnostic symptoms of migraine, the consistency of the associations and 

direction of effect across these symptoms suggest that migraine severity is positively 

correlated with higher burden of common polygenic variation. In addition to these diagnostic 

symptoms, we also found that migraine cases that had received treatment with triptan 

medication, both in the family sample and the population cohort, were associated with 

higher polygenic load. This again points to a higher polygenic load for individuals that are 

more likely to suffer from more disabling migraines since they have sought out specialist 

treatment.

In conclusion, our study supports the hypothesis that migraine subtypes are genetically 

heterogeneous diseases, and that regardless of whether they are common (i.e. MO and 

migraine with typical aura) or rare subtypes (i.e. FHM and SHM), common polygenic 

variation significantly contributes to the aggregation of the disease in families.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Aarno Palotie (aarno.palotie@helsinki.fi).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts

Finnish Migraine Families collection: The families were collected over a period of 25 

years from six headache clinics in Finland (Helsinki, Turku, Jyväskylä, Tampere, Kemi, and 

Kuopio) and through advertisements on the national migraine patient organization web page 

(www.migreeni.org). Geographically, family members are represented from across the entire 

country. The current collection consists of 1,589 families, which included a complete range 

of pedigree sizes from small to large (e.g. 1,023 families had 1–4 related individuals and 566 

families had 5+ related individuals, see Table S1 and Figure S1). It should be noted here that 

455 individuals in the sample were single probands (i.e. unrelated cases without available 

affected relatives for analysis) but since they were ascertained in the same way as the other 

migraine families we have included them. Currently, the collection consists of 8,319 family 

members, of whom 5,317 have a migraine diagnosis based on the third edition of the 

established International Classification for Headache Disorders (ICHD-3) criteria (Headache 

Classification Committee of the International Headache Society (IHS), 2013). In about 50% 

of these affected individuals, the migraine attack is preceded by an aura phase. Another 

3,002 family members were classified as having no migraines, including 1,557 individuals 

with no headache, 427 individuals with headache, 755 individuals with probable migraine, 

and 263 individuals with unknown diagnosis.
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Migraine phenotype data was collected with a combination of individual interviews and an 

extensively validated Finnish Migraine Specific Questionnaire for Family Studies (FMSQFS 

(Kallela et al., 2001)). All participants were also asked to donate a blood sample. Over 200 

variables were recorded, including information on the ICHD-3 symptoms, typical attack 

features, age of onset, other diseases, place of birth, etc. For the index patient in each family 

a neurologist performed a physical examination and sometimes other family members were 

examined as well. In all cases where the diagnosis was not clear from the questionnaire, a 

neurologist specialized in headache disorders interviewed the study subject. A summary of 

the sample characteristics of this collection is shown in Table 1 and Table S10.

FINRISK population-based cohort: FINRISK is a series of population-based health 

examination surveys carried out every five years since 1972 to monitor the risk of chronic 

diseases in Finland, as detailed elsewhere (Borodulin et al., 2015). Individuals in these 

cohorts have been prospectively followed for cardiovascular events and cause-specific death 

until 31st December 2015 using annual record linkage with the Finnish National Hospital 

Discharge Register and the National Causes-of-Death Register. A total of 14,470 subjects 

from FINRISK were genotyped in five batches (Lim et al., 2014), having been randomly 

sampled from the full cohort, stratified by sex and cohort year (i.e. FINRISK 1992i.e. 

FINRISK 1997i.e. FINRISK 2002 or 2007 cohorts). A summary of the FINRISK sample 

characteristics is shown in Table 1.

Finnish National Health Registry data for population-based cases: The population-based 

migraine cases within the FINRISK cohort were identified using Finnish National Health 

Registry data by two means: 1) From a specialist outpatient registry (from 1998 onwards) if 

an individual had received a migraine diagnosis (ICD-10 code: G43 or ICD-9 code: 346) 

either during a hospital visit (hospital discharge registry) or a specialty outpatient clinic visit 

(outpatient discharge registry) or 2) From a prescription drug purchase registry (from 1995 

onwards) if an individual had been prescribed triptans at least twice (ATC codes under the 

N02CC category). This approach is likely to underreport migraine cases, particularly those 

with a sufficiently mild form of the disease so as to require neither triptan use nor visits to a 

hospital outpatient specialty clinic. Additionally, this data does not have symptom level 

information, so ICHD-3 based classification into migraine subtypes was not possible. 

Altogether 1,101 individuals fulfilling one of the above criteria were identified among a total 

of 14,470 study participants, giving a frequency of 7.6% of migraine cases.

Population-based migraine studies used for replication: We used four population-based 

genome-wide association studies for replication of our PRS enrichment in the FINRISK 

population-based sample, including Health 2000 (Heistaro, 2008), Young Finns (Raitakari et 

al., 2008), Northern Finland Birth Cohort (Sovio et al., 2007), and the Swedish Twins (Ran 

et al., 2014), see Figure S4. The sample collections have been described in more detail in the 

original publications.

METHOD DETAILS

Genotyping and Quality Control—Genotyping was performed in seven batches on 

either the Illumina® CoreExome or Illumina® PsychArray, which share the Infinium® 
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HumanCore backbone including 480,000 variants in common. Samples from the migraine 

family collection were genotyped in two batches, one on the CoreExome and one on the 

PsychArray, with cases and controls distributed across both batches. Individual samples 

from the FINRISK cohort were genotyped in five batches, all on the CoreExome. A 

summary of genotyping batches is provided in Table S11.

Before merging any batches we performed standard quality control procedures on each 

dataset individually, according to established GWAS protocols (Anderson et al., 2010). 

Briefly, we excluded markers that exhibited high ‘missingness’ rates (> 5%), low minor 

allele frequency (< 1%), or failed a test of Hardy–Weinberg equilibrium (P < 10−6). We also 

excluded individuals with high rates of heterozygosity (> 3 standard deviations from the 

mean), or a high proportion of missing genotypes (> 5%). To control for any possible 

population stratification, we merged the genotypes from individuals passing QC with 

HapMap III data from European (CEU), Asian (CHB+JPT), and African (YRI) populations. 

We then performed a principal-components analysis on this combined data and excluded any 

population outliers not clustering with the other Finnish samples. We also performed a 

second principal-components analysis within each batch to ensure that cases and/or controls 

were clustering evenly together.

We then merged genotyping batches one-by-one and repeated the QC procedures described 

above on the merged dataset. To prevent any potential batch effects in the merged data, we 

also excluded any markers that failed a test of differential missingness (P < 10−5) between 

the merged batches. Furthermore, during each round of merging, we performed a pseudo-

association analysis (using a logistic mixed-model for batches with related individuals) 

between samples from each batch to identify markers where the minor allele frequency 

deviated significantly between batches (P < 10−5). Markers with significant deviation were 

subsequently removed.

Finally, for the FINRISK samples we additionally used identity-by-descent (IBD) estimates 

to remove any closely related individuals (proportion IBD > 0.185), as the goal was to use 

them as a set of independent population controls. We further calculated kinship coefficients 

between all individuals using the software KING (Manichaikul et al., 2010) in order to 

estimate genetic relatedness and to correct or remove individuals causing clear pedigree 

errors in the family sample.

Reference panel for genotype imputation—To impute missing genotypes into the 

merged dataset (migraine families and FINRISK) we created a Finnish population-specific 

reference panel derived from sequencing data generated as part of the Sequencing Initiative 

Suomi (SISu) project (Chheda et al., 2017; Surakka et al., 2016). The reference panel 

combined low-coverage (mean depth 4.6x) WGS data and high coverage WES data 

described further below.

Finnish low-coverage (4.6x) WGS reference dataset: Sample- and variant-level quality 

control for the data was done at the Wellcome Trust Sanger Institute. Only 1,940 high 

quality unrelated individuals and polymorphic autosomal PASS SNP variants were included 

in the reference panel. Additionally, SNPs in low-complexity regions and those with Hardy-
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Weinberg equilibrium (HWE) P-value < 10−5 (n=99,191) were removed leaving a total of 

13,625,209 markers after quality control. The data was then phased using 

SHAPEIT2(Delaneau et al., 2011) with default options and effective population size of 

11,418.

Finnish WES reference dataset: From the raw WES data, variants were filtered according 

to the following criteria: 1) Multi-allelic variants were removed, 2) Genotypes with QC < 20 

were set to missing, 3) SNPs with call rate < 95% were removed, and 4) Monomorphic 

markers were removed. In addition, samples that were also in the WGS panel (n=7) were 

excluded together with individuals whose genotyping rate was < 95% (n=43). After filtering 

steps, the reference panel contained 1,540 individuals and 3,008,675 markers. The data was 

phased using SHAPEIT2(Delaneau et al., 2011) using default options and effective 

population size of 11,418.

Finally, the two reference panels (WGS and WES) were combined during imputation of the 

FINRISK and migraine family data using the software IMPUTE2 (Howie et al., 2012) and 

its option to merge reference panels (i.e. ‘-merge_ref_panels’ option). We treated all 

available haplotypes from the two reference panels as informative (i.e. set total number of 

haplotypes as 6,962 with parameters: ‘-k_hap 3882 3080’).

Imputation—Following genotyping QC, phased haplotypes were estimated for each 

individual using the program SHAPEIT2 (Delaneau et al., 2011) and its duoHMM method 

to improve accuracy by refining the estimation to haplotypes that are consistent with the 

pedigree structure. For phasing we chose an effective population size of 11,418, a window 

size of three, and 200 states for fitting the model. Missing genotypes were then imputed into 

these haplotypes using the program IMPUTE2 (Howie et al., 2012) and a manually created 

Finnish reference panel described above. We chose an effective population size of 20,000. 

While all samples (migraine family cases, controls, and FINRISK population) were imputed 

together, we split chromosomes into chunks of 3Mb with 500kb buffer to reduce the 

computation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of polygenic risk scores (PRS)—To calculate the migraine PRS, we used 

the SNP effect sizes estimated for common variants from a previously published GWAS of 

migraine in 375,000 individuals (Gormley et al., 2016). To ensure there were no overlapping 

samples from our family collection or FINRISK cohort, we excluded all samples of Finnish 

descent (i.e. four cohorts; the Finnish MA, Health 2000, NFBC, and Young Finns) from the 

original 22 cohort GWAS (Table S12). We then recalculated the SNP effect size estimates 

for migraine from the remaining 18 studies that were of other European origin (i.e. 57,471 

cases and 305,141 controls) using a fixed-effects meta-analysis. We then took the 

intersection of variants from the migraine GWAS dataset that overlapped with the imputed 

variants from our combined dataset of the migraine family collection and the FINRISK 

population. Next, we reduced the list of intersecting variants to an independent set by 

performing LD-clumping (r2 < 0.1 within 500kb from the most significant variant in each 

locus) using PLINK (Purcell et al., 2007). Finally, we chose a subset of SNPs (n = 38,872) 
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from the list of independent variants with P-values below a threshold of 0.1 in order to 

capture most of the variation influencing migraine risk while excluding the remainder of 

variants that do not show even a modest association. We then calculated the PRS for each 

individual as a sum of these alleles, weighted by the effect size estimates from the migraine 

GWAS results. Our script for calculating the PRS for any trait with GWAS data has been 

made publicly available on the website Github (see Software).

Mixed-model association analyses—To account for the high degree of relatedness 

within our family sample, we used logistic mixed-models to adjust for the genetic 

relatedness matrix (GRM) as a random effect. We calculated the GRM after filtering to a set 

of independent LD-pruned common SNPs (minor allele frequency > 5% and SNP 

missingness < 3%) using the program PLINK (Purcell et al., 2007) (parameter options: ‘--

maf 0.05 --geno 0.03 --make-rel square gz’). In addition to adjusting for the GRM as a 

random effect, we also adjusted for sex, age, age2, and age3 as fixed effects. We then tested 

if the PRS was associated with migraine phenotypes using a Wald test of one degree of 

freedom. All mixed models and Wald tests were implemented in the statistical software R 

using the GMMAT package (Chen et al., 2016). We adjusted for multiple testing using 

Bonferroni correction.

Estimation of variance explained—To estimate the variance explained by the PRS, we 

fitted a logistic mixed-model as described above, adjusted for relatedness using the GRM 

(random effect variable) and additionally adjusted for sex, age, age2, and age3 (fixed effect 

variables). We then compared the full model (including the PRS) with the null model (with 

PRS variable excluded) and estimated the variance explained using Nagelkerke’s pseudo-R2. 

We calculated the variance explained by the PRS across a range of GWAS P-value 

thresholds (Figure S3 and Table S3) and determined that while the optimal threshold for the 

most variance explained was at P < 0.5, the findings were not qualitatively different than at 

our chosen P-value threshold of P < 0.1.

Polygenic Transmission Disequilibrium Test (pTDT)—To assess polygenic burden 

of migraine risk alleles over-transmission from parents to affected offspring, we used the 

Polygenic Transmission Disequilibrium Test (pTDT) method (Weiner et al., 2017). The 

method is robust to the relatedness structure as it uses full trios within a family sample and 

calculates an expected distribution of PRS for offspring based on the average PRS of the 

parents. This expected distribution for the offspring is then used to test deviations from the 

null hypothesis in the observed mean parent PRS distribution. To calculate the expected 

distribution, we first separated the families into nuclear trios for any migraine (n = 1,486 

trios) and then further performed subset analyses for MO (ICHD-3 code: 1.1, n = 737 trios), 

migraine with typical aura (ICHD-3 code: 1.2.1, n = 571 trios), and HM (ICHD-3 code: 

1.2.3, n = 188 trios). We tested this hypothesis separately for offspring that were both cases 

and controls using a two-tailed, one-sample t-test.

Identification of known pathogenic variants—To identify any families/individuals 

that carry a known pathogenic variant, which we define as a rare, mutation contributing 

mechanistically to the disease (similar to guidelines provided elsewhere (MacArthur et al., 
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2014)), we have screened 302 (101 FHM and 201 SHM) HM patients for these mutations in 

the three known genes for FHM (CACNA1A, ATP1A2, and SCN1A). To extract a list of 

possibly pathogenic variants in these genes, the selected 302 HM patients were either WES 

(293 HM cases from 243 families) (Hiekkala et al., 2018) or Sanger-sequenced (9 FHM 

cases from one family) (Hiekkala et al., 2018; Kaunisto et al., 2004). We then filtered out 

variants that were common in gnomAD (MAF > 1% in either all populations combined, or 

in the Finnish population alone MAF > 0.1%), that were predicted to be benign, or that did 

not segregate with cases in the family collection - as described in the original publication 

(Hiekkala et al., 2018).

DATA AND SOFTWARE AVAILABILITY

A list of the software tools, datasets and sample resources used in this work are given below. 

Access to the Finnish data can be arranged through application to the National Institute for 

Health and Welfare (THL) Biobank (https://thl.fi/en/web/thl-biobank/for-researchers). The 

migraine GWAS data used in calculating the PRS weights can be obtained via application to 

the International Headache Genetics Consortium (IHGC, contact: 

Risto.Kajanne@helsinki.fi). The script we used for calculating the PRS in each cohort has 

been made available on the Github repository (see link below).

Data resources and databases—Finnish Migraine Families Study: http://

www.nationalbiobanks.fi/index.php/studies2/20-migraine-family-study

Finnish National Health Registry: https://thl.fi/fi/web/thlfi-en

FINRISK Study: http://www.nationalbiobanks.fi/index.php/studies2/7-finrisk

gnomAD browser: http://gnomad.broadinstitute.org/

HapMap data: http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html

Health 2000 Survey: http://www.nationalbiobanks.fi/index.php/studies2/8-health2000

IHGC migraine data: http://www.headachegenetics.org/content/datasets-and-cohorts

Northern Finland Birth Cohort: http://www.nationalbiobanks.fi/index.php/studies2/11-nfbc

Sequencing Initiative Suomi: http://www.sisuproject.fi/

Swedish Twin Registry: https://ki.se/en/research/the-swedish-twin-registry

Young Finns Study: http://www.nationalbiobanks.fi/index.php/studies2/23-yfs

Software—GMMAT: https://content.sph.harvard.edu/xlin/software.html#gmmat

IMPUTE2: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

KING: http://people.virginia.edu/~wc9c/KING/

PLINK: https://www.cog-genomics.org/plink2
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https://thl.fi/en/web/thl-biobank/for-researchers
http://www.nationalbiobanks.fi/index.php/studies2/20-migraine-family-study
http://www.nationalbiobanks.fi/index.php/studies2/20-migraine-family-study
https://thl.fi/fi/web/thlfi-en
http://www.nationalbiobanks.fi/index.php/studies2/7-finrisk
http://gnomad.broadinstitute.org/
http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
http://www.nationalbiobanks.fi/index.php/studies2/8-health2000
http://www.headachegenetics.org/content/datasets-and-cohorts
http://www.nationalbiobanks.fi/index.php/studies2/11-nfbc
http://www.sisuproject.fi/
https://ki.se/en/research/the-swedish-twin-registry
http://www.nationalbiobanks.fi/index.php/studies2/23-yfs
https://content.sph.harvard.edu/xlin/software.html#gmmat
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://people.virginia.edu/~wc9c/KING/
https://www.cog-genomics.org/plink2


PRS script: https://github.com/pgormley/polygenic-risk-scores

pTDT: https://github.com/ypaialex/ptdt

R: https://www.r-project.org/

SHAPEIT2: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Infinium CoreExome-24 Kit Illumina Cat# WG-331-1101

Infinium PsychArray-24 Kit Illumina Cat# WG-356-1101

Software and Algorithms

GMMAT (Chen et al., 
2016)

https://content.sph.harvard.edu/xlin/software.html#gmmat

IMPUTE2 (Howie et al., 
2012)

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

KING (Manichaikul 
et al., 2010)

http://people.virginia.edu/~wc9c/KING/

PLINK (Purcell et al., 
2007)

https://www.cog-genomics.org/plink2

PRS script Current paper https://github.com/pgormley/polygenic-risk-scores

PTDT (Weiner et 
al., 2017)

https://github.com/ypaialex/ptdt

R R Core Team https://www.r-project.org/

SHAPEIT2 (Delaneau et 
al., 2011)

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

Other

Migraine GWAS data (Gormley et 
al., 2016)

https://www.ncbi.nlm.nih.gov/pubmed/27322543

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Polygenic risk scores (PRS) implicated in familial aggregation of complex 

disease

• PRS explains more phenotypic variance in familial cases than in population 

cases

• Evidence suggests greater role for polygenic load in aggregation than rare 

variants

• Higher PRS associated with symptoms of migraine severity and earlier age of 

onset
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Figure 1. Distributions of the migraine polygenic risk scores (PRS) in the FINRISK population 
and the Finnish migraine families
For FINRISK, population controls and cases (any migraine subtype) are shown. For the 

families, family members with no migraine and familial cases (any migraine subtype) are 

shown. The vertical axis is density of individuals. SD is standard deviation. n is number of 

individuals.
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Figure 2. Enrichment of polygenic risk scores (PRS) in familial and population cases
Odds ratios (OR) given are for one standard deviation (SD) increase in PRS compared to 

13,369 FINRISK population controls and calculated using a logistic mixed-model adjusted 

for genetic relatedness, sex, and age. The PRS was calculated using weights from a 

published migraine genome-wide association study (GWAS, n = 375,000) (Gormley et al., 

2016) for an independent set of 38,872 SNPs (GWAS P-value threshold < 0.1). FINRISK 

population cases include any migraine cases identified from Finnish National Health 

Registry data. ‘Families’ are individuals from the Finnish Migraine Families collection. n is 

number of individuals. CIs are confidence intervals.
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Figure 3. Polygenic transmission disequilibrium test (pTDT) in migraine subtypes
The Finnish migraine families were subset into trios and grouped by disease status of the 

offspring, making 734 trios for offspring with no migraine and 1,486 trios for offspring with 

any migraine. Trios were further divided into migraine subtypes, including 727 trios for 

migraine without aura, 571 trios for migraine with typical aura, and 188 trios for hemiplegic 

migraine. The horizontal axis shows the pTDT deviation (and 95% confidence intervals) 

from the mean PRS that would be expected to be transmitted by the parents under the null. N 

is the number of trios. Groups with significant over-transmission are marked with ‘*’.

Gormley et al. Page 24

Neuron. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Mean polygenic risk score (PRS) stratified by age of onset of headaches in migraine 
cases
The data shows that higher PRS corresponds to earlier age of onset of migraine headache. 

Means and 95% confidence intervals (CIs) were estimated within the Finnish migraine 

families using bootstrap resampling (10,000 replicates) within each age of onset bin. n is 

number of individuals.
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