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Abstract

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by

which alcohol consumption impact blood pressure (BP) regulation remains unknown. We

hypothesized that a genome-wide association study accounting for gene-alcohol consump-

tion interaction for BP might identify additional BP loci and contribute to the understanding of

alcohol-related BP regulation. We conducted a large two-stage investigation incorporating

joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption

interactions. In Stage 1, genome-wide discovery meta-analyses in�131K individuals across

several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of associa-

tion (P < 1.0 x 10−5). In Stage 2, these SNVs were tested for independent external replication

in�440K individuals across multiple ancestries. We identified and replicated (at Bonferroni

correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported

BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analy-

ses (P < 5.0 x 10−8). For African ancestry samples, we detected 18 potentially novel BP loci

(P < 5.0 x 10−8) in Stage 1 that warrant further replication. Additionally, correlated meta-anal-

ysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1,

GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alco-

hol consumption. These findings provide insights into the role of alcohol consumption in the

genetic architecture of hypertension.

Introduction

Hypertension is a major risk factor for cardiovascular disease (CVD)[1], which in 2015 alone

was estimated to cause about 10.7 million deaths worldwide[2]. The prevalence of hyperten-

sion in the US is ~46% for those of African ancestry compared to ~33% for European ancestry

and ~30% for Hispanic ancestry[3] based on previous blood pressure (BP) guidelines (The

Seventh Report of the Joint National Committee on Prevention)[4]. Recently, based on the

2017 American College of Cardiology/ American Heart Association high BP guideline, the

overall prevalence of hypertension among US adults is estimated at 45.6%[5]. Blood pressure

levels are influenced by alcohol consumption independently of adiposity, sodium intake,

smoking and socio-economic status[6]. Alcohol shows a dose-dependent effect on systolic BP

(SBP) after adjusting for environmental confounders[7].

Genome-wide association studies (GWAS) have identified more than 400 single nucleotide

variants (SNVs) for BP[8–14] and about 30 SNVs for alcohol consumption[15–17]. However, few

studies have explored SNV-alcohol interactions in relation to BP[18, 19], in part due to the large

sample sizes required to obtain adequate power[18, 20]. SNVs, which effect differ by level of alco-

hol consumption, can harbor modest marginal effects and might therefore be missed by standard

marginal effects association screening. As previously demonstrated, a joint test of main genetic

effect and gene-environmental interaction can have higher power[21] to identify such variants.

Within the CHARGE Gene-Lifestyle Interactions Working Group[22, 23], we studied a

total of 571,652 adults across multiple ancestries to identify variants associated with SBP,

diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP). We tested a

model that included a joint model of SNV main effect on BP and SNV-alcohol consumption

interaction, in each ancestry and across ancestries. Alcohol consumption was defined by
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two categories: (I) as current drinking (yes/no), and (II) in the subset of drinkers, as light/

heavy drinking (1–7 drinks/week or �8 drinks/week). Individual cohort results were meta-

analyzed using a modified version of METAL applicable to the statistics summary results

accounting for interactions[24]. We also performed multi-trait correlated meta-analyses

[25, 26] in participants of European ancestry using the joint model P-values from each

meta-analysis of all four BP traits.

Results

Genetic associations for BP identified via gene-alcohol interaction

The overall description of the CHARGE Gene-Lifestyle Interactions Working Group was previ-

ously reported[22, 23]. We studied the joint model of SNV main effect and SNV-alcohol con-

sumption interaction for BP in a two-stage study design, as depicted in S1 Fig. GWAS discovery

(Stage 1), was conducted in each of 47 multi-ancestry cohorts including a total of 130,828 indi-

viduals of African ancestry (N = 21,417), Asian ancestry (N = 9,838), Brazilian (4,415), Euro-

pean ancestry (N = 91,102), and Hispanic ancestry (N = 4,056) (S1–S4 Tables and S1 Note). A

total of 3,514 SNVs (245 loci) attained P< 1.0 x 10−5 in Stage 1 meta-analyses (for at least one

combination of BP trait and alcohol consumption status in one ancestry or multi-ancestries).

We considered a locus to be independent, if our lead variant (i.e., most significant) was in low

linkage disequilibrium (LD, r2� 0.2) and at least 500 kb away from any variant associated with

BP in previous GWAS (P� 5.0 x 10−8). The meta-analysis distributions of–log10 P-values of

observed versus–log10 P-values expected (QQ plots) are shown in S2 and S3 Figs.

The 3,514 SNVs were taken forward to replication, Stage 2, which included 440,824 individ-

uals from 68 cohorts of African ancestry (N = 5,041), Asian ancestry (N = 141,026), European

ancestry (N = 281,380), and Hispanic ancestry (N = 13,377, S5–S8 Tables and S1 Note). We

identified and replicated (Stage 2, at Bonferroni correction P< 0.0002) five novel BP loci in

European ancestry, four loci on 8p23.1 and one locus (FTO) on 16q12.2, which included 380

SNVs in 21 genes. These findings achieved genome-wide statistical significance (P< 5.0 x

10−8) in Stage 1 and Stage 2 combined meta-analyses. Tables 1 and 2 show the most significant

SNVs per BP trait, per alcohol consumption and gene for European ancestry participants. The

loci containing novel BP associations at 8p23.1 were detected for all four BP traits in current

drinkers and in light/heavy drinkers. The regional association plots on chromosomes 8p23

and 16q12 in European ancestry are shown in S4 and S5 Figs. For African ancestry, 18 poten-

tially novel BP loci were found in discovery (P� 5.0 x 10−8), but without replication (Table 3).

Further, we performed combined meta-analyses of Stage 1 and Stage 2 across all ancestries,

which reproduced our European ancestry findings (P� 5.0 x 10−8, Table 4 and S9 Table). We

also identified and replicated 49 previously reported BP loci (2,159 SNVs in 109 genes) for

European ancestry participants (S10 Table). For African Ancestry, and multi-ancestry analy-

ses, additional reported BP loci were significant (P< 5.0 x 10−8) in Stage 1 and Stage 2 com-

bined meta-analyses (S11 and S12 Tables). Manhattan plots for BP trait and alcohol

consumption status are shown in S6–S15 Figs, for Stage 1 and Stage 2 combined meta-analyses

of European, African and Asian ancestries.

Finally, we leveraged the added power of correlated meta-analysis[25, 26] for BP traits to

detect additional variants. We performed correlated meta-analysis on P-values from METAL-

meta-analysis[24] of DBP, SBP, MAP and PP traits separately for current drinkers and light/

heavy drinkers in Stage 1 European ancestry cohorts. A variant was considered pleiotropic if

the P- METAL-meta reached P� 0.0001 in two or more BP traits and the correlated meta-

analysis P-value was P� 5.0 x 10−8[27]. We identified eight novel BP loci (11 genes, Table 5),
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the above five novel loci (14 genes, Tables 1 and 2), and the 22 previously reported BP loci (49

genes).

Gene transcription regulation

HaploReg[28, 29], RegulomeDB[30, 31], GTEx[32], GWAS3D[33], and GRASP[34] provided

evidence that several SNVs on 8p23.1 have regulatory features (S13 and S14 Tables). From the

analyses with GTEx, a total of 227 (56 novel and 171 BP-known S14 Tables) SNVs had tissue

Table 1. Novel SNVs/Genes associated with BP traits in European ancestry.

Stage 1 (S1) Stage 2 (S2) S1 & S2

SNV Chr Position Gene Near Gene Role A1/2 Frq1 Trait Drink b_M b_I P-Value b_M b_I P-Value P-Meta

rs2979172 8 8452998 LOC107986913 SGK223 C/G 0.48 PP LHD 0.24 0.25 7.59 x 10−6 0.32 -0.20 5.13 X 10−6 6.17 X 10−10

rs2921064 8 8459127 LOC107986913 SGK223 T/C 0.45 PP CURD 0.19 0.10 7.76 X 10−6 0.24 -0.02 3.63 X 10−9 2.69 x 10−14

rs2979181 8 8465578 LOC107986913 SGK223 A/T 0.52 SBP CURD -0.25 -0.23 9.33 x 10−8 -0.35 0.01 1.15 x 10−10 7.41 x 10−18

rs2979181 8 8465578 LOC107986913 SGK223 A/T 0.52 SBP LHD -0.47 -0.14 5.37 x 10−7 -0.42 0.16 4.79 x 10−5 3.98 x 10−11

rs2980755 8 8506173 LOC105379224 SGK223 A/G 0.55 PP LHD -0.28 -0.20 4.17 x 10−6 -0.32 0.17 4.90 x 10−6 1.35 x 10−10

rs2980755 8 8506173 LOC105379224 SGK223 A/G 0.55 SBP LHD -0.49 -0.20 2.63 x 10−7 -0.42 0.12 5.25 x 10−5 2.51 x 10−11

rs13270194 8 8520592 LOC105379224 SGK223 T/C 0.51 SBP CURD -0.26 -0.24 2.46 x 10−8 -0.42 0.05 1.23 x 10−12 2.34 x 10−20

rs6995407 8 8527137 LOC105379224 SGK223 C/G 0.51 PP CURD -0.16 -0.15 7.59 x 10−7 -0.25 0.02 2.34 x 10−10 2.34 x 10−16

rs453301 8 9172877 LOC102724880 PPP1R3B T/G 0.51 SBP CURD -0.17 -0.33 1.59 x 10−6 -0.27 -0.08 8.13 x 10−10 1.23 x 10−15

rs11774915 8 9331252 LOC157273 Intron T/C 0.33 SBP CURD 0.45 0.01 1.02 x 10−7 0.35 -0.05 7.94 x 10−8 8.91 x 10−15

rs6601302 8 9381948 LOC105379231 LOC157273 Intron T/G 0.24 SBP CURD 0.35 0.17 7.94 x 10−7 0.20 0.06 7.59 x 10−5 2.57 x 10−10

rs35231275 8 9762399 TNKS Intron A/T 0.31 PP CURD -0.38 0.03 1.26 x 10−6 -0.05 -0.12 3.31 x 10−4 1.35 x 10−8

rs1976671 8 9822124 TNKS A/G 0.62 SBP CURD -0.21 -0.31 4.68 x 10−8 -0.37 -0.02 2.24 x 10−10 7.24 x 10−18

rs55868514 8 9822890 TNKS T/C 0.38 DBP CURD 0.20 0.09 1.32 x 10−6 0.17 0.01 1.20 x 10−7 1.70 x 10−13

rs483916 8 9936091 MIR124-1 A/C 0.47 DBP CURD 0.25 0.01 1.18 x 10−6 0.04 0.14 1.29 x 10−6 5.89 x 10−12

rs483916 8 9936091 MIR124-1 A/C 0.47 PP CURD 0.20 0.09 7.94 x 10−6 0.16 0.03 4.68 x 10−12 6.61 x 10−17

rs483916 8 9936091 MIR124-1 A/C 0.47 SBP CURD 0.38 0.17 1.05 x 10−9 0.21 0.16 3.24 x 10−11 3.31 x 10−20

rs615632 8 9938811 MIR124-1 T/C 0.53 SBP LHD -0.50 -0.30 7.41 x 10−9 -0.40 0.09 1.07 x 10−4 3.63 x 10−12

rs9650622 8 9946782 LOC105379235 MIR124-1 T/G 0.53 DBP CURD -0.24 -0.01 4.07 x 10−6 -0.12 -0.07 1.10 x 10−7 4.27 x 10−13

rs56243511 8 9948185 LOC105379235 MIR124-1 T/C 0.47 SBP CURD 0.37 0.11 2.57 x 10−8 0.27 0.14 1.91 x 10−13 1.74 x 10−21

rs656319 8 9956901 LOC105379235 MIR124-1 A/G 0.45 MAP LHD 0.29 0.20 1.29 x 10−6 0.24 0.06 6.03 x 10−5 7.59 x 10−11

rs656319 8 9956901 LOC105379235 MIR124-1 A/G 0.45 SBP LHD 0.39 0.35 8.71 x 10−7 0.43 0.01 1.62 x 10−6 1.59 x 10−12

rs11786677 8 10406750 MSRA Intron A/G 0.58 SBP CURD -0.25 -0.22 2.57 x 10−7 -0.40 0.03 1.35 x 10−42 5.62 x 10−49

rs2062331 8 10122482 MSRA Intron A/G 0.54 DBP CURD -0.18 -0.15 2.00 x 10−8 -0.18 0.00 7.59 x 10−8 5.01 x 10−15

rs11993089 8 10152442 MSRA Intron T/G 0.42 PP CURD 0.24 0.05 5.25 x 10−6 0.32 -0.13 4.68 x 10−18 6.17 x 10−23

rs7832708 8 10332530 MSRA Intron T/C 0.49 SBP LHD 0.55 0.07 2.19 x 10−8 0.42 -0.09 2.19 x 10−5 5.89 x 10−13

rs4841409 8 10658864 RP1L1 A/G 0.44 MAP CURD 0.18 0.14 7.59 x 10−7 0.27 -0.12 9.77 x 10−6 5.13 x 10−11

rs4841409 8 10658864 RP1L1 A/G 0.44 MAP LHD 0.37 -0.14 6.03 x 10−6 0.36 -0.19 2.14 x 10−6 6.46 x 10−12

rs4841409 8 10658864 RP1L1 A/G 0.44 SBP CURD 0.23 0.25 1.91 x 10−7 0.32 0.12 9.55 x 10−16 4.90 x 10−23

rs10096777 8 10660990 RP1L1 A/G 0.56 SBP LHD -0.52 0.10 1.55 x 10−6 -0.60 0.39 2.88 x 10−8 3.80 x 10−14

rs7814795 8 10661775 MIR4286 T/C 0.55 MAP CURD -0.18 -0.14 7.59 x 10−7 -0.22 0.08 1.45 x 10−4 9.77 x 10−10

rs7814795 8 10661775 MIR4286 T/C 0.55 SBP CURD -0.22 -0.26 1.78 x 10−7 -0.2 -0.15 2.29 x 10−14 1.48 x 10−21

rs7814795 8 10661775 MIR4286 T/C 0.55 SBP LHD -0.50 0.06 2.04 x 10−6 -0.59 0.38 3.80 x 10−8 7.76 x 10−14

The most significantly associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status. Abbreviations: SNV, single nucleotide variant; Chr,

chromosome; Position, Gene, and Role in dbSNP build 150 (hg38); Role: Intronic, Non-coding transcript (NCT) or intergenic (blank space) SNV; Near gene reflects

genes at up to +/-500 kb and related to BP / alcohol; A1/2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Trait, SBP: Systolic BP, DBP: Diastolic BP,

MAP: Mean Arterial Pressure, PP: Pulse Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no), LHD, Light(1–7 drinks/week) or heavy (�8 drinks/

week) drinker; Stage 1, Discovery cohorts; Stage 2, Replication cohorts; S1 & S2,Combined Discovery and Replication; b_M, beta coefficient of SNV; b_I: SNV�E is

SNV-alcohol interaction effect; P-Value: modified-interaction METAL P-Value; P-Meta, modified-interaction METAL P-Value of Meta-analysis in combined Stage 1

and Stage 2.

https://doi.org/10.1371/journal.pone.0198166.t001
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specific eQTL results. Seven out of 56 novel SNVs were associated with eQTLs that have

expression in brain, thyroid, and/or blood. From 171 BP-known SNVs, 44 were significantly

associated with eQTLs with expression in adipose, artery, esophagus, lung, pancreas, thyroid

and/or fibroblasts. In addition, GWAS3D analyses suggested trans-regulation features for our

BP candidate SNVs. It identified 215 SNVs with long-range interactions.

BP genes show enrichment for alcohol and cardiovascular disease

We used GeneGO[35] and Literature Lab[36] to perform enrichment analyses for the full set

of novel and reported (179 BP candidate) genes identified from our analyses. Literature Lab,

based on 106,967 abstracts for “Drinking” Physiology from MeSH (Medical Subject Headings),

identified enrichment (P< 0.00001) related to ALDH2 (known to be associated with alcohol

Table 2. Novel SNVs/Genes associated with BP traits in European ancestry.

Stage 1 (S1) Stage 2 (S2) S1 & S2

SNV Chr Position Gene Near Gene Role A1/2 Frq1 Trait Drink b_M b_I P-Value b_M b_I P-Value P-Meta

rs28680211 8 10661935 MIR4286 A/T 0.55 MAP LHD -0.36 0.13 7.76 x 10−6 -0.35 0.19 3.98 x 10−6 1.59 x 10−11

rs13276026 8 10752445 LOC102723313 SOX7 Intron A/G 0.56 SBP CURD -0.23 -0.23 5.62 x 10−7 -0.26 -0.19 2.29 x 10−15 3.98 x 10−22

rs7814757 8 10817678 PINX1 Intron T/C 0.40 SBP CURD 0.24 0.22 7.94 x 10−7 0.21 0.26 8.71 x 10−16 2.63 x 10−22

rs4841465 8 10962344 XKR6 Intron T/C 0.52 SBP CURD -0.21 -0.27 6.17 x 10−7 -0.21 -0.21 6.03 x 10−14 1.41 x 10−20

rs4841465 8 10962344 XKR6 Intron T/C 0.52 SBP LHD -0.51 -0.10 3.89 x 10−7 -0.43 0.04 4.07 x 10−6 1.23 x 10−12

rs9969423 8 11398066 FAM167A-AS1 C8orf12 Intron A/C 0.50 SBP CURD 0.21 0.2 3.98 X 10−6 0.29 0.01 1.20 x 10−7 5.37 x 10−13

rs9969423 8 11398066 FAM167A-AS1 C8orf12 Intron A/C 0.50 SBP LHD 0.52 -0.09 4.90 X 10−6 0.38 -0.07 1.95 X 10−4 8.13 X 10−10

rs12156009 8 11427710 FAM167A C8orf12 Intron A/C 0.51 SBP CURD 0.29 0.21 1.66 X 10−7 0.17 0.10 1.02 X 10−5 5.37 X 10−12

rs13255193 8 11451683 FAM167A FAM167A Intron T/C 0.46 SBP LHD 0.53 -0.11 6.76 X 10−7 0.36 -0.11 7.76 X 10−4 6.17 X 10−10

rs6983727 8 11558303 BLK Intron T/C 0.48 PP CURD -0.15 -0.15 4.68 X 10−6 -0.17 -0.08 1.66 X 10−10 5.89 X 10−16

rs6983727 8 11558303 BLK Intron T/C 0.48 PP LHD -0.24 -0.25 5.89 X 10−6 -0.26 0.07 6.03 X 10−5 1.74 X 10−9

rs6983727 8 11558303 BLK Intron T/C 0.48 SBP LHD -0.47 -0.17 4.27 X 10−7 -0.34 0.00 1.55 X 10−4 1 X 10−10

rs34190028 8 11559641 BLK Intron T/G 0.48 SBP CURD -0.16 -0.31 5.13 X 10−7 -0.36 -0.04 3.47 X 10−13 1.26 X 10−19

rs899366 8 11572976 LINC00208 A/G 0.33 MAP CURD 0.15 0.18 3.39 X 10−6 0.28 0.00 3.47 X 10−79 1.51 X 10−82

rs7464263 8 11576667 LINC00208 NCT A/T 0.48 SBP LHD 0.48 0.24 6.03 X 10−8 0.41 -0.08 3.72 X 10−5 4.37 X 10−12

rs1478894 8 11591245 LINC00208 T/C 0.36 SBP CURD 0.33 0.21 1.00 X 10−8 0.24 0.16 3.31 X 10−11 2.51 X 10−19

rs4841569 8 11594668 LINC00208 A/G 0.42 PP CURD -0.10 -0.28 1.95 X 10−7 -0.07 -0.18 1.23 X 10−10 4.17 X 10−17

rs4841569 8 11594668 LINC00208 A/G 0.42 PP LHD -0.27 -0.44 2.88 X 10−8 -0.28 0.08 2.40 X 10−5 4.79 X 10−11

rs17807624 8 11605506 LINC00208 T/C 0.35 DBP CURD 0.11 0.20 5.37 X 10−6 0.14 0.05 8.13 X 10−8 6.03 X 10−13

rs17807624 8 11605506 LINC00208 T/C 0.35 MAP LHD 0.45 -0.22 5.13 X 10−7 0.32 -0.16 6.03 X 10−5 2.57 X 10−11

rs13280442 8 11610048 LOC105379242 LINC00208 C/G 0.55 MAP CURD 0.23 0.11 1.29 X 10−6 0.28 -0.17 4.90 X 10−4 1.62 X 10−8

rs13280442 8 11610048 LOC105379242 LINC00208 C/G 0.55 MAP LHD 0.40 -0.11 3.39 X 10−6 0.28 -0.01 5.25 X 10−5 1.38 X 10−10

rs13280442 8 11610048 LOC105379242 LINC00208 C/G 0.55 SBP CURD 0.30 0.24 8.32 X 10−8 0.48 -0.03 1.91 X 10−16 9.12 X 10−24

rs13280442 8 11610048 LOC105379242 LINC00208 C/G 0.55 SBP LHD 0.57 0.10 1.38 X 10−7 0.50 -0.10 4.68 X 10−7 5.01 X 10−14

rs13250871 8 11610254 LOC105379242 LINC00208 A/G 0.4 PP CURD -0.10 -0.27 8.51 X 10−7 -0.21 -0.10 2.63 X 10−17 1.91 X 10−23

rs13250871 8 11610254 LOC105379242 LINC00208 A/G 0.39 PP LHD -0.24 -0.49 7.59 X 10−8 -0.29 0.10 2.69 X 10−5 2.14 X 10−10

rs36038176 8 11752486 GATA4 Intron T/C 0.28 SBP CURD -0.21 -0.29 1.07 X 10−6 -0.39 0.15 3.89 X 10−5 3.24 X 10−10

rs55872725 16 53775211 FTO Intron T/C 0.41 SBP CURD 0.69 -0.31 3.39 X 10−9 0.36 -0.16 2.14 X 10−5 2.40 X 10−13

rs7185735 16 53788739 FTO Intron A/G 0.59 PP CURD -0.36 0.07 6.31 X 10−8 -0.25 0.14 3.31 X 10−4 2.09 X 10−10

The most significantly associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status. Abbreviations: SNV, single nucleotide variant; Chr,

chromosome; Position, Gene, and Role in dbSNP build 150 (hg38); Role: Intronic, Non-coding transcript (NCT) or intergenic (blank space) SNV; Near gene reflects

genes at up to +/-500 kb and related to BP / alcohol; A1/2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Trait, SBP: Systolic BP, DBP: Diastolic BP,

MAP: Mean Arterial Pressure, PP: Pulse Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no), LHD, Light(1–7 drinks/week) or heavy (�8 drinks/

week) drinker; Stage 1, Discovery cohorts; Stage 2, Replication cohorts; S1 & S2,Combined Discovery and Replication; b_M, beta coefficient of SNV; b_I: SNV�E is

SNV-alcohol interaction effect; P-Value: modified-interaction METAL P-Value; P-Meta, modified-interaction METAL P-Value of Meta-analysis in combined Stage 1

and Stage 2.

https://doi.org/10.1371/journal.pone.0198166.t002
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dependence)[15] and several other genes, including our novel finding for ERCC6, CATSPER2,

GABRB1 and GATA4. The main contributor for “Angiotensin II” (P< 0.00001) was AGT and

ACE for “Hypertension” (P = 0.0002). AGT and ACE are part of Renin-Angiotensin System path-

way (KEGG, map04614), involved in BP homeostasis, fluid-electrolyte balance, and essential

hypertension[37, 38].

Our results were significantly enriched for cardiovascular disease-related biological func-

tions. For example, “Cardiovascular Diseases” (P = 0.0034) enriched with genes AGT, NPPA,

ACE, NOS3, ADRB1, MTHFR, FBN1 and GATA4. “Heart Failure” (P = 0.0003) and “Cardio-

megaly” (P = 0.0003); from Pathological Conditions: “Hypertrophy” (P = 0.0001); from Anat-

omy MeSH: “Heart” (P = 0.0001), “Cardiovascular System” (P = 0.0002) and “Aorta”

(P = 0.0002); and from domain Tissue Type MeSH: “Myocardium” (P = 0.0008) enriched with

NPPA, GATA4, AGT, ADRB1, NOS3, ACE and KCNJ11. GeneGO identified an additional term

“Cardiac Arrhythmias” (P-FDR = 3.2 x 10−20).

Protein-protein interactions and pathways enriched for BP genes

The protein-protein interactions (PPI) analyses showed that several novel gene proteins are

important hubs in interaction with many other proteins. For example, MAPKAPK2 (1q32.1,

Table 5) interacts among others with BAG2, LISP1 and ELAVL1. ELAVL1 interacts also with

Table 3. Potential novel SNVs/Genes associated with BP traits in African ancestry.

Stage 1 (S1) Stage 2 (S2) S1 & S2

SNV Chr Position Gene Near Gene Role A1/2 Frq1 Trait Drink b_M b_I P-Value b_M b_I P-Value P-Meta

rs80158983 6 65489746 EYS EYS intron T/C 0.02 SBP CURD 3.53 -10.05 1.29 x 10−8 0.95 -3.08 8.32 x 10−1 6.92 x 10−9

rs76987554 6 133759717 TARID MGC34034, SGK1 intron T/C 0.09 SBP CURD -2.45 0.80 2.19 x 10−8 -1.48 -0.42 2.09 x 10−1 1.86 x 10−9

rs79505281 8 35841899 UNC5D A/C 0.02 PP CURD -5.66 1.26 6.03 x 10−7 1.50 -6.67 2.82 x 10−3 3.24 x 10−9

rs115888294 8 94105161 CDH17 T/C 0.93 PP CURD -1.18 -0.55 1.59 x 10−7 -0.71 -0.84 2.19 x 10−1 1.29 x 10−8

rs73655199 9 98145201 CORO2A GABBR2 intron A/G 0.01 PP CURD -5.09 -0.13 3.16 x 10−9 -0.45 -2.71 2.95 x 10−1 1.41 x 10−9

rs4253197 10 49473111 ERCC6 CHAT intron A/G 0.89 PP CURD 0.66 0.67 6.61 x 10−7 -0.80 2.57 3.63 x 10−2 4.90 x 10−8

rs11200509 10 122256927 TACC2 C/G 0.17 PP LHD -0.27 -4.05 6.76 x 10−9 1.72 -2.92 1.45 x 10−1 1.00 x 10−8

rs10741534 11 11233360 GALNT18 T/C 0.09 SBP CURD 2.34 -3.76 8.32 x 10−8 0.94 -2.76 2.29 x 10−1 1.18 x 10−8

rs139077481 11 107579224 ELMOD1 T/C 0.99 PP CURD -3.18 10.41 1.32 x 10−7 -0.81 4.67 3.47 x 10−1 3.39 x 10−8

rs140520944 18 29508647 LOC105372045 MIR302F T/G 0.02 PP CURD -0.49 -4.83 1 x 10−12 1.94 -3.30 6.03 x 10−1 4.07 x 10−13

rs142673685 19 31669942 LOC105372361 THEG5 T/C 0.01 PP CURD -3.04 -2.20 5.01 x 10−8 -2.92 2.29 4.47 x 10−1 3.63 x 10−8

Stage 1 (S1) No Stage 2 (S2)

SNV Chr Position Gene Near Gene Role A1/2 Frq1 Trait Drink b_M b_I P-Value

rs9862344 3 178283140 LOC105374235 KCNMB2, KCNMB2-IT1 T/C 0.02 SBP CURD 3.53 -10.05 1.29 x 10−8

rs73884351 3 178287933 LOC105374235 KCNMB2, KCNMB2-IT1 T/C 0.09 SBP CURD -2.45 0.80 2.19 x 10−8

rs145429126 4 47000363 GABRB1 GABRA4 intron A/C 0.02 PP CURD -5.66 1.26 6.03 x 10−7

rs61494734 9 29196976 LINGO2 intron T/C 0.93 PP CURD -1.18 -0.55 1.59 x 10−7

rs201383951 10 119468517 GRK5 BAG3 A/G 0.01 PP CURD -5.09 -0.13 3.16 x 10−9

rs186331780 12 61317029 LOC105369793 FAM19A2 A/G 0.89 PP CURD 0.66 0.67 6.61 x 10−7

rs187888844 13 67705907 LOC105370250 PCDH9 C/G 0.17 PP LHD -0.27 -4.05 6.76 x 10−9

rs116464496 13 105934773 LINC00343 T/C 0.09 SBP CURD 2.34 -3.76 8.32 x 10−8

The most significantly associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status. Abbreviations: SNV, single nucleotide variant; Chr,

chromosome; Position, Gene, and Role in dbSNP build 150 (hg38); Role: Intronic or intergenic (blank space) SNV; Near gene reflects genes at up to +/-500 kb and

related to BP / alcohol; A1/2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Trait, SBP: Systolic BP, DBP: Diastolic BP, MAP: Mean Arterial Pressure,

PP: Pulse Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no), LHD, Light(1–7 drinks/week) or heavy (�8 drinks/week) drinker; Stage 1,

Discovery cohorts; Stage 2, Replication cohorts; S1 & S2,Combined Discovery and Replication; b_M, beta coefficient of SNV; b_I: SNV�E is SNV-alcohol interaction

effect; P-Value: modified-interaction METAL P-Value; P-Meta, modified-interaction METAL P-Value of Meta-analysis in combined Stage 1 and Stage 2

https://doi.org/10.1371/journal.pone.0198166.t003
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novel XKR6 from 8p23.1 (S16 Fig). Of the novel genes GRK5, MAPKAPK2, BLK, EFEMP2 and

ERCC6 ranked the highest in protein-protein interconnectivity (degree), while MAPKAPK2,

PINX1, EFEMP2, FAM167A and GRK5 were ranked the highest for important interconnec-

tions based on PageRank algorithm. Further, we entered the gene labels of the combined PPI

network into the GeneGo software and found enrichment for Cytoskeleton Remodeling/TGF/
Wnt (P-FDR = 1.7 x 10−17), among other pathways.

Discussion

This is the first large-scale study to systematically evaluate the role of joint effect of main gene

and gene-alcohol interaction on BP in a very large meta-analysis across multiple ancestries.

Table 4. Novel SNVs/Genes associated with BP traits in Multi-ancestry meta-analysis in combined Stage 1 and Stage 2.

Stage 1 and Stage 2

SNV Chr Position Gene Near Gene Role A1/2 Frq1 Ancestry Trait Drink b_M b_I P-Meta N

rs10092965 8 8515975 LOC105379224 SGK223 A/G 0.53 EA, HA DBP CURD -0.19 0.01 1.74 x 10−12 373,915

rs7823056 8 8525195 LOC105379224 SGK223 A/G 0.5 AA, EA PP LHD -0.31 0.10 3.31 x 10−11 161,080

rs7823056 8 8525195 LOC105379224 SGK223 A/G 0.41 AA, EA SBP LHD -0.44 0.11 1.38 x 10−11 214,814

rs453301 8 9172877 LOC102724880 PPP1R3B T/G 0.5 EA, HA DBP CURD -0.13 -0.07 4.90 x 10−12 365,537

rs10503387 8 9293015 LOC157273 T/C 0.37 AA, EA SBP CURD 0.32 0.03 1.07 x 10−14 381,431

rs11781008 8 9295729 LOC157273 T/G 0.37 EA, HA DBP CURD 0.13 0.07 1.05 x 10−11 373,915

rs4383974 8 9761838 TNKS intron C/G 0.7 AA, EA SBP CURD -0.28 -0.08 2.04 x 10−13 381,431

rs9286060 8 9795635 TNKS A/C 0.38 AA, EA DBP CURD 0.21 -0.02 2.29 x 10−13 371,053

rs34919878 8 10241994 MSRA intron A/G 0.41 EA, HA DBP CURD -0.18 -0.05 5.75 x 10−17 365,537

rs4841294 8 10247558 MSRA intron A/C 0.43 AA, EA SBP LHD -0.40 0.01 2.69 x 10−10 166,956

rs17693945 8 10248500 MSRA intron T/C 0.41 AA, EA MAP LHD -0.30 0.08 1.51 x 10−9 166,054

rs13276026 8 10752445 LOC102723313 PINX1 intron A/G 0.55 EA, HA DBP CURD -0.11 -0.10 4.47 x 10−14 373,915

rs13276026 8 10752445 LOC102723313 PINX1 intron A/G 0.55 EA, HA MAP CURD -0.15 -0.03 4.68 x 10−9 373,911

rs13276026 8 10752445 LOC102723313 PINX1 intron A/G 0.55 EA, HA SBP CURD -0.22 -0.24 3.89 x 10−23 373,919

rs4551304 8 10807559 PINX1 intron A/G 0.4 EA, HA DBP CURD 0.10 0.12 1.70 x 10−14 373,915

rs4551304 8 10807559 PINX1 intron A/G 0.4 EA, HA MAP CURD 0.15 0.03 2.24 x 10−8 373,911

rs9969436 8 10985149 XKR6 intron T/G 0.47 AA, EA MAP LHD 0.28 -0.01 3.09 x 10−9 165,894

rs2409784 8 11539347 BLK intron A/C 0.51 EA, HA DBP CURD -0.11 -0.09 5.62 x 10−12 374,975

rs2244894 8 11591150 LINC00208 C/G 0.44 ASA, EA PP CURD -0.07 -0.19 3.24 x 10−15 493,402

rs13249843 8 11601509 LINC00208 T/G 0.33 EA, HA DBP CURD 0.18 0.04 2.51 x 10−15 398,330

rs3735814 8 11749887 GATA4 intron A/G 0.52 EA, HA SBP CURD 0.09 0.22 2.14 x 10−10 373,919

rs9928094 16 53765993 FTO intron A/G 0.63 ASA, EA PP CURD -0.33 0.19 2.63 x 10−15 499,179

rs62033406 16 53790314 FTO intron A/G 0.55 ASA, EA MAP CURD -0.22 0.12 3.31 x 10−8 511,074

The most significantly associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status. Abbreviations: SNV, single nucleotide variant; Chr,

chromosome; Position, Gene, and Role, in dbSNP build 150 (hg38) annotation; Role: Intronic or intergenic (blank space) SNV; Near gene reflects genes at up to +/-500

kb and related to BP / alcohol; A1/2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Trait, SBP: Systolic BP, DBP: Diastolic BP, MAP: Mean Arterial

Pressure, PP: Pulse Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no), LHD, Light(1–7 drinks/week) or heavy (�8 drinks/week) drinker; Stage 1

and Stage 2, Combined Discovery and Replication; b_M, beta coefficient of SNV; b_I: SNV�E is SNV-alcohol interaction effect; P-Meta, modified-interaction METAL

P-Value of Meta-analysis in combined Stage 1 and Stage 2; N, Number of individuals.

https://doi.org/10.1371/journal.pone.0198166.t004
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Table 5. Novel SNVs/Genes associated with BP traits from correlated meta-analysis in European ancestry in Stage 1.

Associations NOT Present in Tables 1 and 2, in Current Drinkers

SNV Chr Position Gene Near Gene Role Frq1 P-Correlated Meta P-DBP P-SBP P-MAP P-PP N

rs200124401 1 83336112 LOC107985037 TTLL7 intron 0.70 4.29 x 10−8 1.82 x 10−5 1.86 x 10−6 1.20 x 10−6 4.68 x 10−4 89,035

rs3813963 1 206648224 DYRK3 DYRK3, IL10 Synon 0.99 2.95 x 10−8 1.66 x 10−4 8.32 x 10−8 8.13 x 10−7 3.72 x 10−4 39,497

rs80169249 1 206683281 LOC105372875 MAPKAPK2 0.99 3.52 x 10−8 2.45 x 10−4 7.41 x 10−8 1.00 x 10−6 3.39 x 10−4 39,497

rs185597356 4 161336738 FSTL5 FSTL5 0.99 1.77 x 10−8 7.24 x 10−7 8.71 x 10−7 4.37 x 10−8 1.00 x 10−2 55,056

rs77779142 11 65832185 SNX32 SNX32 0.84 3.89 x 10−8 8.32 x 10−5 1.12 x 10−6 2.88 x 10−6 7.08 x 10−5 90,689

rs11227333 11 65874946 EFEMP2 EFEMP2 0.80 2.34 x 10−8 3.24 x 10−5 5.89 x 10−7 1.15 x 10−6 2.00 x 10−4 86,262

rs201407003 11 65894964 FOSL1 FOSL1, MALAT1 intron 0.85 1.76 x 10−8 2.09 x 10−5 6.31 x 10−7 7.94 x 10−7 2.04 x 10−4 86,262

Associations Present in Tables 1 and 2, in Current Drinkers

SNV Chr Position Gene Near Gene Role Frq1 P-Correlated Meta P-DBP P-SBP P-MAP P-PP N

rs2980755 8 8506173 LOC107986913 SGK223 0.55 4.59 x 10−9 5.13 x 10−4 4.27 x 10−8 1.74 x 10−6 1.15 x 10−6 90,691

rs13270194 8 8520592 LOC105379224 CLDN23 0.51 1.59 x 10−9 2.14 x 10−4 2.45 x 10−8 8.13 x 10−7 8.51 x 10−7 90,691

rs1976671 8 9822124 TNKS TNKS 0.62 2.01 x 10−9 1.58 x 10−6 4.68 x 10−8 3.02 x 10−8 1.26 x 10−3 90,691

rs483916 8 9936091 MIR124-1 MIR124-1 0.47 1.55 x 10−11 1.17 x 10−6 1.05 x 10−9 3.55 x 10−9 7.94 x 10−6 90,691

rs2062331 8 10122482 MSRA MSRA intron 0.54 5.49 x 10−13 2.00 x 10−8 1.70 x 10−10 1.20 x 10−10 1.32 x 10−5 90,691

rs10096777 8 10660990 RP1L1 RP1L1 0.44 7.58 x 10−9 9.77 x 10−5 1.91 x 10−7 9.55 x 10−7 1.51 x 10−5 90,691

rs7814795 8 10661775 MIR4286 MIR4286 0.45 6.86 x 10−9 7.76 x 10−5 1.78 x 10−7 7.59 x 10−7 2.00 x 10−5 90,691

rs13276026 8 10752445 LOC102723313 SOX7 intron 0.44 4.79 x 10−8 1.38 x 10−4 5.62 x 10−7 1.58 x 10−6 1.91 x 10−4 90,691

rs12156009 8 11427710 FAM167A FAM167A intron 0.51 9.49 x 10−9 1.82 x 10−4 1.66 x 10−7 1.32 x 10−6 1.07 x 10−5 90,691

rs1478894 8 11591245 LINC00208 LINC00208 0.64 3.69 x 10−10 1.66 x 10−5 1.00 x 10−8 8.51 x 10−8 8.32 x 10−6 90,691

rs13280442 8 11610048 LOC105379242 GATA4 0.45 5.23 x 10−9 1.86 x 10−4 8.32 x 10−8 1.29 x 10−6 4.47 x 10−6 90,691

rs9937521 16 53765384 FTO FTO intron 0.61 2.89 x 10−10 8.13 x 10−5 4.68 x 10−9 6.46 x 10−7 2.04 x 10−7 90,691

Associations NOT Present in Tables 1 and 2, in Light / Heavy Drinkers

SNV Chr Position Gene Near Gene Role Frq1 P-Correlated Meta P-DBP P-SBP P-MAP P-PP N

rs117519896 15 43645473 CATSPER2 CATSPER2 intron 0.98 8.25 x 10−9 7.76 x 10−5 2.88 x 10−7 9.77 x 10−7 2.75 x 10−5 13,141

rs2957398 17 53625691 LOC107984982 LOC107984982 0.29 1.11 x 10−8 8.91 x 10−5 1.23 x 10−7 2.69 x 10−6 3.80 x 10−5 54,785

rs146091319 18 71962177 LOC102725148 LOC102725148 0.99 1.50 x 10−8 1.26 x 10−3 1.74 x 10−8 3.39 x 10−6 1.26 x 10−5 26,187

rs111700101 19 11433340 CCDC151 CCDC151 intron 0.94 2.78 x 10−8 3.80 x 10−6 8.13 x 10−7 3.80 x 10−7 3.55 x 10−3 37,996

Associations Present in Tables 1 and 2, in Light / Heavy Drinkers

SNV Chr Position Gene Near Gene Role Frq1 P-Correlated Meta P-DBP P-SBP P-MAP P-PP N

rs34062996 8 9802688 TNKS TNKS 0.39 2.26 x 10−9 6.17 x 10−5 2.40 x 10−8 3.24 x 10−7 3.47 x 10−5 54,785

rs615632 8 9938811 MIR124-1 MIR124-1 0.47 4.18 x 10−10 1.78 x 10−5 7.41 x 10−9 8.13 x 10−8 2.34 x 10−5 54,785

rs7843924 8 10119030 MSRA MSRA intron 0.54 2.46 x 10−13 1.38 x 10−8 1.58 x 10−10 1.58 x 10−10 6.46 x 10−6 54,785

rs11250099 8 10961147 XKR6 XKR6 intron 0.48 4.13 x 10−8 1.82 x 10−4 3.98 x 10−7 2.19 x 10−6 1.62 x 10−4 54,785

rs13255193 8 11451683 FAM167A FAM167A intron 0.46 2.41 x 10−8 7.76 x 10−5 6.76 x 10−7 1.66 x 10−6 9.77 x 10−5 54,785

rs4841559 8 11559376 BLK BLK intron 0.51 4.12 x 10−8 4.79 x 10−4 4.47 x 10−7 9.55 x 10−6 1.35 x 10−5 54,785

rs4840573 8 11605721 LINC00208 LINC00208 0.60 3.94 x 10−9 1.15 x 10−3 7.76 x 10−8 7.59 x 10−6 4.57 x 10−8 53,371

rs13280442 8 11610048 LOC105379242 GATA4 0.45 6.26 x 10−9 2.40 x 10−4 1.38 x 10−7 3.39 x 10−6 2.24 x 10−6 54,785

The most significantly associated SNVs are shown per gene for correlated BP traits and alcohol status: Current drinker (yes/no), and Light (1–7 drinks/week) or heavy

(�8 drinks/ week) drinker. The “NOT Present in Tables 1 and 2” represents the associations detected using correlated meta-approach, otherwise the associations were

already presented in Tables 1 and 2 using modified-interaction METAL approach. Abbreviations: SNV, single nucleotide variant; Chr, chromosome; Position, Gene,

and Role in dbSNP build 150 (hg38); Role: Intronic, synonymous codon (Synon), or intergenic (blank space) SNV; Near gene reflects genes at up to +/-500 kb and

related to BP / alcohol; Frq1, Frequency of coded allele; P-Correlated Meta, P-Value of BP-correlated meta-analysis; P-DBP, modified-interaction METAL P-Value for

Diastolic BP; P-SBP, modified-interaction METAL P-Value for Systolic BP; P-MAP, modified-interaction METAL P-Value for Mean Arterial Pressure; P-PP, modified-

interaction METAL P-Value for Pulse Pressure; N, Number of individuals.

https://doi.org/10.1371/journal.pone.0198166.t005
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BP genes interacting with alcohol show association with alcohol

metabolism or dependence

The 8p23.1 containing novel BP associations spans ~3.3 Mb from LOC107986913-SGK223
(8,452,998 bp) to GATA4 (11,752,486 bp) (Tables 1 and 2). Chromosome 8p23.1 is a complex

region of deletions and replications, with repeated inverse structures[39, 40]. We identified

four LD blocks in 8p23.1 (Fig 1). The significant GWAS results on 8p23.1 are from European

ancestry participants in Stage 1, Stage 2 follow up, and combined Stage 1 and Stage 2 meta-

analyses. For this region, the evidence of genetic associations was identified from all four BP

traits at both current drinking and light/heavy drinking status (Tables 1 and 2). The associa-

tion on 8p23.1 found in the large European ancestry sample may also occur in other ancestries.

The genome-wide significance levels in meta-analysis of European ancestry combined with

African (5 genes), Asian (2 genes), and/or Hispanic (9 genes) ancestries have shown small

improvements in their P-values compared to European ancestry meta-analysis alone (Tables 4

and S9). For some of these associated SNVs on 8p23.1, the allele frequencies in European

ancestry are higher than in African ancestry (e.g., rs4841294: 0.44 versus 0.25, respectively),

and Hispanic Ancestry (e.g., rs34919878: 0.42 versus 0.25, respectively). These findings suggest

the presence of cross-population association patterns between European, African, and His-

panic ancestries, although they are not genome-wide significant in African and Hispanic

ancestries presumably because of small sample sizes.

Several of the genes residing on 8p23.1 have been reported for alcohol metabolism and/or

dependence. Overexpression of PINX1 was reported to be associated with alcohol-related

Fig 1. Identification of four independent LD blocks in the 8p23.1 region (~3.3MBs).

https://doi.org/10.1371/journal.pone.0198166.g001
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cirrhosis and fibrosis[41]. The transcription factor GATA4 has been reported to be associated

with alcohol dependence in several studies[42–45]. GATA4 was suggested to regulate atrial

natriuretic peptide (ANP, officially known as NPPA) modulating the amygdala’s response to

alcohol dependence[39] and is associated with BP[46]. In addition, a suggestive GWAS finding

was observed between a variant near BLK-LINC00208 with alcohol dependence[47]. The S2

Note provides a comprehensive summary of novel and neighboring genes and their potential

biological relevance.

FTO (16q12.2) variants in interaction with alcohol consumption were significant for BP in

European ancestry (Table 2) and in combined meta-analysis of European and Asian ancestries

(Table 4). FTO is involved in the regulation of thermogenesis and the control of adipocyte dif-

ferentiation into brown or white fat cells[48]. FTO variants have been associated in diverse

ancestries with obesity-related traits[49, 50], as well as alcohol consumption and alcohol

dependency[51, 52]. Frequency of alcohol consumption was suggested to modify the effect of

FTO variants on body mass index[53].

IL10 (interleukin 10, ~49 Kb upstream of rs3813963, Table 5) has been associated with

hypertension[54] and with alcoholic cirrhosis[55]. MALAT1 (ncRNA, ~390 Kb upstream of

rs201407003) is upregulated in the cerebellum, hippocampus and brain stem of alcoholics[56],

which may represent an important mechanism for alcohol actions in the central nervous

system.

It is worth to note that the allele frequencies for several potential SNVs in African ancestry

(Table 3) are low (<0.10) but they are monomorphic in Europeans, which may suggest Afri-

can-specific associations. Even though we did not have true replications for African ancestry

associations (some of them due to missing SNVs or very low sample size in Stage 2), the identi-

fied candidate loci include genes previously related to alcohol consumption and dependence

(Table 3). GABRB1[57] (4p12) and GABBR2[58] (9q22.33, 143 kb upstream of rs73655199) are

major neurotransmitters in the vertebrate brain, representing ligand-gated ion channels and

have been shown to associate with alcohol dependence. EYS (6q12) displayed association with

alcohol dependence in multi-ancestry population studies for rare[59] and common[60] vari-

ants. LINGO2 (9p21.1) was reported to be associated with age at onset of alcohol dependence

in the Collaborative Study on the Genetics of Alcoholism[16]. ERCC6 (10q11.23) participates

in DNA repair in response to oxidative stress[61]. Carriers of Arg1230Pro at ERCC6 had a

decreased risk for laryngeal cancer, strongest in heavy smokers and high alcohol consumers

[62]. CHAT (10q11.23, 136 kb downstream of rs4253197) encodes an enzyme that catalyzes

the biosynthesis of the neurotransmitter acetylcholine, and binge ethanol in adolescents was

reported to decrease CHAT expression[63]. BAG3 (10q26.11, 183 Kb downstream of

rs201383951) was also suggested to contribute to alcohol-induced neurodegenerations[64]. A

mouse study suggested that BAG3 exerts a vaso-relaxing effect through the activation of the

PI3K/Akt/eNOS signaling pathway, and may influence BP regulation[64]. A GWAS identified

association of BAG3 with dilated cardiomyopathy[65], and suggestive association with alcohol

dependence[44]. SGK1 (409 kb upstream of rs76987554) is associated with increased BP[66]

and may contribute to the mechanisms underlying behavioral response to chronic ethanol

exposure[67]. In addition, our two potential genes by alcohol interaction, TARID (rs76987554)

and CDH17 (rs115888294), have been recently reported association with BP in African ances-

try, which supports our findings[68].

Regulatory features of BP genes

Analysis of our significant BP variants for cis- transcription regulation via HaploReg[29] (S13

Table) showed that in total about 11% of variants were localized in promoter histone marks,
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55% in enhancer histone marks, 34% at DNAse hypersensitive sites, 10% located at protein

regulatory binding sites, and 88% were predicted to change regulatory protein binding motifs.

These feature findings are inflated, because several variants are in LD blocks. Several of our

variants had P-values� 5.0 x 10−8 for being eQTLs for one or more target genes. The

rs2921053 is the best eSNV regulating the transcription of SGK223 in thyroid tissue (P-

value = 1.04 x 10−67). Thyroid hormones are known to affect BP, heart and cardiovascular sys-

tem[69].

Pathways enriched for BP genes

Our findings, TNKS (Table 1), FSTL5 and MAPKAPK2 (Table 5) and many other genes from

PPI networks (S17 Fig), are part of Wnt/beta-catenin[70] signaling pathway. The TNKS forms

a complex for degrading β-catenin (CTNNB1)[70] in interaction with AXIN1, AXIN2, and gly-

cogen synthase kinase 3β (GSK-3β) (S17 and S18 Figs). The Wnt/beta-catenin pathway is

known to be involved in renal injury and fibrosis induced by hypertension[71]. In addition,

TNKS is involved in the regulation of GLUT4 trafficking in adipocytes[72]. Other findings

from correlated meta-analysis also contributed to pathways. For example, rs206648224 is

intronic to DYRK3, 37 Kb upstream of MAPKAPK2, and 119 Kb downstream of IL10. MAP-
KAPK2 is a stress-activated serine/threonine-protein kinase involved in cytokine production

especially for TNF and IL6, and phosphorylates among others LSP1, already identified in asso-

ciation with BP[9]. MAPKAPK2[73] augments and FSTL5[74] diminishes the expression of

Wnt/β-catenin signaling pathway.

Limitations

Despite large sample sizes in Stages 1 and 2 (�131K individuals and�440K individuals,

respectively), our novel variants (8p23 and 16q12) are common in their allele frequencies. For

an analysis of gene by alcohol interactions in BP, even larger sample sizes are required to have

sufficient power for detecting (and replicating) variants with lower allele frequency in the

genome.

Our findings were based on a joint test of the main and interaction effects, which limits our

ability to statistically differentiate the effect of interaction from the main effect. However, there

is evidence that several of our novel and previously reported findings suggest association with

alcohol consumption and dependency.

For African ancestry, the findings were not replicated, due to low sample size in Stage 2

(�3K individuals) versus Stage 1 (�21K individuals) and because seven potential variants for

African ancestry were not available in Stage 2.

There are fewer associations of SNVs interacting with light/heavy drinkers compared to

current drinkers, which is probably due to the reduced sample size in light/heavy drinkers. We

also found an association in light/heavy drinkers which is not present in current drinkers. The

LOC105374235gene interacts with light/heavy drinkers for SBP but does not interact with cur-

rent drinkers for SBP in African ancestry (Table 3 and S10 Fig). These findings suggest that

novel loci for BP can be expected to be discovered when increasing the sample size for light/

heavy drinkers.

The two Brazilian cohorts (from discovery only) were included in the multi-ancestry meta-

analyses. However, their association results did not contribute to SNV-alcohol interactions for

BP traits, which could be in part to the relative small sample size (4,415 subjects) affecting the

power of associations in the joint gene-environmental interaction model.
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Conclusion

We identified and replicated five novel loci (380 SNVs in 21 genes) via joint test of main

genetic effect and gene-alcohol interaction, and eight novel loci (11 genes) using correlated

meta-analysis in European ancestry. We also found 18 potentially novel BP loci in discovery

(P� 5.0 x 10−8) in gene-alcohol interaction model in African ancestry participants, but with-

out replication. In addition, we identified 49 loci previously reported for BP (2,159 SNVs in

109 genes) using the joint test for interaction in European and multi-ancestries meta-analyses.

Several of these SNVs/genes are related to alcohol metabolism and dependence, have evidence

for regulatory features, and are enriched in pathways for cardiovascular disease, hypertension

and blood pressure homeostasis. Our findings provide novel insights into mechanisms of BP

regulation and may highlight new therapeutic targets.

Methods

Individuals between the ages of 18–80, who participated in the studies, provided written

informed consent and approval by their research ethics committees and/or institutional review

boards. The description of each participating study cohort is shown in S1 Note.

Phenotypes, alcohol consumption, and study cohorts

SBP (in mmHg) and diastolic BP (DBP in mmHg) were measured at resting or sitting posi-

tions by averaging up to three BP readings at the same clinical visit. To account for the reduc-

tion in BP levels due to anti-hypertensive medication use, the BP levels were adjusted by

adding 15 mm Hg to SBP and 10 mm Hg to DBP values. After adjustment, mean arterial pres-

sure (MAP) was defined as the sum of two-thirds of DBP and one-third of SBP, and pulse pres-

sure (PP) was estimated as the difference between SBP and DBP. Hypertension was defined

whether participants presented: (i) SBP� 140 mm Hg, (ii) DBP� 90 mm Hg, and/or (iii) tak-

ing anti-hypertensive medication. For quality control (QC), SE-N (i.e., inverse of the median

standard error versus the square root of the sample size) plots were produced[75]. If cohort-

specific analytical problems existed, they were corrected.

Definition of “a dose or a drink” is about 17.7 grams of ethanol, which is the amount of a

typical beverage of 12 oz. (354.882 ml) bottle or can of beer, a 5 oz. (147.868 ml) glass of wine,

or a standard 1.5 oz. (44.3603 ml) shot of 80-proof spirits, such as gin, vodka, or whiskey[76].

Alcohol consumption was defined by two categories: (I) as current drinking (yes/no), and (II)

in the subset of drinkers, as light/heavy drinking (1–7 drinks/week or�8 drinks/week).

Genotyping

Genotyping was performed using Illumina (San Diego, CA, USA) or Affymetrix (Santa Clara,

CA, USA) arrays. 1000 Genomes Imputation was implemented using MACH and Minimac,

IMPUTE2, and/or BEAGLE software, based on the cosmopolitan panel from Phase I Inte-

grated Release Version 3 Haplotypes (2010–11 data freeze, 2012-03-14 haplotypes). Dosages

from 1000 Genomes were used in 106 cohorts out of 115 Stage 1 and Stage 2 cohorts. If 1000

Genomes were not available in a cohort, dosages based on HapMap Phase II / III reference

panel (2 Stage 1 cohorts and 4 Stage 2 cohorts) or genotyped data (3 Stage 2 cohorts) were

used in the analyses. Information of study characteristics, genotyping, imputation, covariates,

and analyses are summarized for Stage 1 in S1–S4 Tables, and for Stage 2 in S5–S8 Tables.
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Interaction association analysis

Each Stage 1 and Stage 2 cohort conducted a joint statistical model analysis[24]:

EðYÞ ¼ b0 þ bGSNV þ bEE þ bGESNV � E þ bCC;

where SNV is the dosage of the genetic (G) variant, E is the alcohol consumption (current

drinker or light/heavy drinker) effect, SNV�E is SNV-alcohol interaction effect, b values are the

respective beta coefficients from regression analysis and C represents covariates (age, sex, prin-

cipal components (PCs), and other study-specific covariates). The joint model provides esti-

mates of bG and bGE, robust estimates of the corresponding standard errors (SEs) and

covariance, and P-values from the joint 2 degree-of-freedom Wald test. The SNV effect (bG) is

context-dependent and thus should not be interpreted as the “main effect”[23]. Principal com-

ponents were derived from genotyped SNVs and used for controlling population stratification

and genomic confounding effects. Each cohort decided the number of PCs to be included in

the joint statistical model analysis, as shown in S4 Table (Discovery, in Stage 1) and S8 Table

(Replication, in Stage 2). Particularly for African ancestry, it was required to include at the

least the first PC and additional PCs as appropriate.

The association analyses were implemented by programming in R or using ProbABEL[77]

for studies of unrelated individuals, or by GenABEL/MixABEL[78] or MMAP (O’Connell,

unpublished; personal communication), which account for family relatedness.

Meta-analysis and quality control

We employed a modified METAL software[24] to perform 2 degrees of freedom joint meta-

analysis, using the inverse-variance weighted fixed-effects approach. We applied multiple steps

of QC, both at cohort association analysis and at meta-analysis level, implemented with

EasyQC, an R package[75]. They included filtering of markers with imputation quality < 0.5;

with minor allele frequency < 1%; minor allele count� 10; if alleles were mismatched when

comparing the cohort’s alleles with the 1000 Genomes cosmopolitan panel; and/or if the allele

frequencies were different from those of the 1000 Genomes. In addition, a cohort participated

in the meta-analysis if it had more than 50 individuals consuming alcohol. The meta-analysis

results were reported if they had more than 5,000 individuals and if at least two studies for

each SNV contributed to the analysis. Markers with meta-heterogeneity P< 1.0 x 10−6 were

dropped. We used (double) study- and meta- level genomic control corrections to account for

population stratification accumulated across studies or due to unaccounted relatedness. Distri-

butions of–log10 P-values of observed versus–log10 P-values expected (QQ plots) are shown in

S2 and S3 Figs.

Correlated meta-analysis

The genome (millions of SNPs) are under the null hypothesis of no genotype-phenotype asso-

ciation, which is only mildly contaminated with a relatively smaller set of SNVs that are under

the alternative. The correlated meta-analysis[25, 26] performs a large sampling of genome and

produces the polychoric correlation estimator (using SAS PROC FREQ). The estimator mea-

sures the relation degree of any non-independence between scans. The correlated meta-analy-

sis corrects the inference for it, retaining the proper type I error structure. The correlated

meta-analysis[25, 26] uses the Fisher’s 1925 method by combining P-values at each location of

the genome. This technique uses the fact that for number of scans, sum of −2 ln (pi), approxi-

mately chi-square (X2) with two degrees of freedom. In the case of correlated GWAS, this sum

is no longer distributed as a simple X2. Instead, the correlated meta-analysis method[25, 26]
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uses an inverse-normal transform, Zi = θ−1 (pi) forming the N dimensional vector Z of all Zi s.

Then, the method applies the basic theorem of multidimensional statistics for the matrix D, if

Z~N(O, E) then DZ~N(O, E∑D’). In particular, when D is a 1×N vector of all 1’s, SUM(Z) = D
Z ~ N(0, SUM(∑)), whose tail probability gives the Z meta-analysis P-value. In this case, for

estimating ∑, the SNV P-values are dichotomized across the genome as (P� 0.5; P> 0.5). The

software was developed in SAS.

Bioinformatics analyses

The annotation of variants was sourced from NCBI dbSNP build 138 (hg19) during the analy-

ses and updated to dbSNP build 150 (hg38) for reporting results. Our candidate SNVs for BP

were questioned if they resided in any of regulatory marks, analyzing information from the

NCBI Entrez gene, dbSNP, Encyclopedia of DNA Elements Consortium (ENCODE) project

and the Roadmap Epigenomics Mapping Consortium (ROADMAP), as summarized by Hap-

loReg[28, 29], and RegulomeDB[30, 31].

HaploReg (v.4.1) queries were used to identify functional annotations including the chro-

matin state segmentation on the Roadmap reference epigenomes, conserved regions by GERP

and SiPhy, the experiments of DNAse hypersensitivity and ChIP-seq experiments from

ENCODE. UCSC Genome Browser and GENCODE were used for gene annotations. We cal-

culated the proximity of each variant to a gene.

RegulomeDB (v. 1.1, accessed on 06.15.2017) provided regulatory information of gene

expression via ChIP factors, DNase sensitivity, and transcription factor (TF) binding sites

from ENCODE. RegulomeDB uses the Position-Weight Matrix for TF binding, and databases

JASPAR CORE, TRANSFAC and UniPROBE[79]. RegulomeDB reported Chromatin States

from ROADMAP, eQTLs from several tissue types, DNase footprinting[80, 81], differentially

methylated regions[82], manually curated regions and validated functional SNVs.

GWAS3D[33] (accessed on 03.15.2017) was used to analyze genetic variants that may affect

regulatory elements, by integrating annotations from cell type-specific chromatin states, epige-

netic modifications, sequence motifs and cross-species conservation. The regulatory elements

are inferred from the genome-wide chromosome interaction data, chromatin marks in differ-

ent cell types measured by high-throughput chromosome conformation capture technologies

(5C, ChIA-PET and Hi-C) from ENCODE, Gene Expression Omnibus (GEO) database, pub-

lished resources and regulatory factor motifs. We gathered also evidence for eQTLs based on

GTEx (v. 7), GRASP software and special gene expression reported results[83, 84].

The importance of our novel and potential novel BP genes (Tables 1–5) were mined by

means of four methods: enrichment analysis, protein- protein interactions (PPI), analytical

gene expression cis-regulation, and analytical gene expression trans-regulation.

The GeneGO and Literature Lab of ACUMENTA software (accessed on 03.15. 2017) were

used for enrichment analysis. We tested if novel genes were significantly enriched among pre-

specified gene sets defined in pathways, or by shared roles in particular diseases or biological

processes from Gene Ontology. The GeneGO enrichment analysis consists of matching unique

gene symbols of possible targets for the "common", "similar" and "unique" sets with gene sym-

bols in functional ontologies. The probability of a random intersection between a set of gene

symbols, the size of target list with ontology entities, is estimated by P-value of a hypergeomet-

ric intersection. The lower P-value means higher relevance of the entity to the dataset, which

shows in higher rating for the entity.

Literature Lab is an interface between experimentally-derived gene lists and scientific litera-

ture in a curated vocabulary of 24,000 biological and biochemical terms. It employs statistical

and clustering analysis on over 17.5 million PubMed abstracts (from 01.01.1990 to the present)
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to identify pathways (809 pathways), diseases, compounds, cell biology and other areas of biol-

ogy and biochemistry. The analysis engine compares statistically the submitted gene set to

1,000 random gene sets generated in the analysis to identify term relationships that are associ-

ated with the gene set more than by chance alone.

The BP candidate genes were assessed via PPI of databases from Biological General Reposi-

tory for Interaction Datasets (BioGrid), Escherichia coli K-12 (EcoCyc), and Human Protein

Database (HPRD) as summarized by the National Center for Biotechnology Information

(NCBI, accessed on 02.28.2017). The gene list from PPI was evaluated using igraph package

[85]. The network was built using our programs in SAS, to a Pajek format and imported into

igraph in R language. “Google” PageRank algorithm provided the importance of genes (web-

site pages) in a network, which was implemented by igraph.

Information of data analysis tools and databases, including their website links (when avail-

able) and the corresponding literature citations, are provided in S15 Table.

Supporting information

S1 Note. Description of participating studies. Study descriptions of discovery cohorts (Stage

1) and replication cohorts (Stage 2).

(DOCX)

S2 Note. Summary of biological description for novel BP loci. Information summary of the

nearest genes for blood pressure novel loci.

(DOCX)

S1 Fig. Study design of SNV x alcohol interactions for BP. Schematic study design of the

joint model of SNV main effect and SNV-alcohol consumption interaction; Blood pressure

(BP) traits: systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse

pressure (PP); Alcohol consumption was defined by two categories: (I) as current drinking

(yes/no), and (II), in the subset of drinkers, as light/heavy drinking (1–7 drinks/week or�8

drinks/week); Meta-analysis using a modified version of METAL: Stage 1 (discovery), Stage 2

(replication) and combined Stage 1 and Stage 2; Cohorts: European ancestry (EA), African

ancestry, Asian ancestry (ASA), Hispanic ancestry (HA), Brazilian (BRA); Correlated meta-

analysis in EA for four BP traits; Number of BP loci (genes), novel and reported.

(TIF)

S2 Fig. QQ plots for BP traits for current drinkers. Meta-analysis distributions of–log10 P-

values of observed versus–log10 P-values expected (QQ plots) for current drinkers (yes/no)

European ancestry (A) and in African ancestry (B).

(TIF)

S3 Fig. QQ plots for BP traits for light/heavy drinkers. Meta-analysis distributions of–log10

P-values of observed versus–log10 P-values expected (QQ plots) for light/heavy drinkers (1–7

drinks/week or�8 drinks/week) in European ancestry (A) and in African ancestry (B).

(TIF)

S4 Fig. Regional association plots on 8p23. SNV x current drinker interaction for SBP (A),

DBP (B), MAP (C) and PP (D) in European Ancestry; four linkage disequilibrium (LD) blocks

(see also Fig 1).

(TIF)
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S5 Fig. Regional association plots on 16q12. SNV x current drinker interaction for SBP (A),

DBP (B), MAP (C) and PP (D) in European Ancestry.

(TIF)

S6 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for SBP in current

drinkers (A) and in light/heavy drinkers (B) in European ancestry. Novel loci are

highlighted in blue.

(TIF)

S7 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for DBP in current

drinkers (A) and in light/heavy drinkers (B) in European ancestry. Novel loci are

highlighted in blue.

(TIF)

S8 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for MAP in cur-

rent drinkers (A) and in light/heavy drinkers (B) in European ancestry. Novel loci are

highlighted in blue.

(TIF)

S9 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for PP in current

drinkers (A) and in light/heavy drinkers (B) in European ancestry. Novel loci are

highlighted in blue.

(TIF)

S10 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for SBP in cur-

rent drinkers (A) and in light/heavy drinkers (B) in African ancestry. Novel loci are

highlighted in blue.

(TIF)

S11 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for DBP in cur-

rent drinkers (A) and in light/heavy drinkers (B) in African ancestry.

(TIF)

S12 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for MAP in cur-

rent drinkers (A) and in light/heavy drinkers (B) in African ancestry.

(TIF)

S13 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for PP in current

drinkers (A) and in light/heavy drinkers (B) in African ancestry. Novel loci are highlighted

in blue.

(TIF)

S14 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for SBP (A) and

DBP (B) in current drinkers in Asian ancestry.

(TIF)

S15 Fig. Manhattan plots of combined Stage 1 and Stage 2 meta-analysis for MAP (A) and

PP (B) in current drinkers in Asian ancestry.

(TIF)

S16 Fig. Protein-protein interactions network. In the figure, ellipses in black represent all

novel genes; ellipses in red represent novel from EA; squares in blue represent potential novel

findings from African ancestry; and triangles in black from correlated-meta. Labeled with A

and B free-hand circles are proteins that have two connections, while labeled within C are
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proteins that have three-five connections with our findings. APP interacts with five of our BP

candidate novel genes TTLL7, SOX7, PINX1, LINGO2 and KCNMB2 (circle C).

(TIF)

S17 Fig. Protein-protein interactions between tankyrase and beta-catenin. Tankyrase (from

TNKS gene) and β-catenin (from CTNNB1 gene).

(TIF)

S18 Fig. Wnt signaling KEGG pathway. TNKS interacts with CTNNB1.

(TIF)

S1 Table. Descriptive analyses for discovery data (Stage 1) in current drinkers. Characteris-

tics of blood pressure (BP) in current drinkers (yes or no), within sub-sample of individuals

with or without anti-hypertensive (BP Lowering) medications, and in combined samples; SBP,

systolic BP; DBP, diastolic BP; MAP, mean arterial pressure; PP, pulse pressure; N, number of

individuals; mean, mean levels; SD, standard deviation of mean; Min, minimum value; Max,

maximum value; For each BP trait (SBP, DBP, MAP, and PP), the extreme BP values were win-

sorised if a BP value was greater than 6 SD, above or below the mean, setting the BP value

exactly at 6 SDs from the mean.

(XLSX)

S2 Table. Descriptive analyses for discovery data (Stage 1) in light/heavy drinkers. Charac-

teristics of blood pressure (BP) in light/heavy drinkers (1–7 drinks/week or�8 drinks/week),

within sub-sample of individuals with or without anti-hypertensive (BP Lowering) medica-

tions, and in combined samples; SBP, systolic BP; DBP, diastolic BP; MAP, mean arterial pres-

sure; PP, pulse pressure; N, number of individuals; mean, mean levels; SD, standard deviation

of mean; Min, minimum value; Max, maximum value; For each BP trait (SBP, DBP, MAP, and

PP), the extreme BP values were winsorised if a BP value was greater than 6 SD, above or

below the mean, setting the BP value exactly at 6 SDs from the mean.

(XLSX)

S3 Table. Descriptive analyses for blood pressure (BP) stratified by alcohol consumption

for discovery data (Stage 1). Characteristics of systolic BP and diastolic BP, after correcting

for BP lowering medication and winsorizing observations.

(XLSX)

S4 Table. Characteristics of each study and their genotype data for discovery data (Stage

1). Study design, population-based or cohort-unrelated; Principal components used; Other

covariates entered in the model; Genotyping platforms; Genotyping calling algorithm; Quality

Control Filters; Imputation reference panel; Number of SNVs (single nucleotide variants).

(XLSX)

S5 Table. Descriptive analyses for replication data (Stage 2) in current drinkers. Character-

istics of blood pressure (BP) within current drinkers (CURD: yes or no), and in alcohol com-

bined samples; SBP, systolic BP; DBP, diastolic BP; MAP, mean arterial pressure; PP, pulse

pressure; N, number of individuals; mean, mean levels; SD, standard deviation of mean; Min,

minimum value; Max, maximum value.

(XLSX)

S6 Table. Descriptive analyses for replication data (Stage 2) in light/heavy drinkers. Char-

acteristics of blood pressure (BP) within light/heavy drinkers (LHD: 1–7 drinks/week or�8

drinks/week), and in alcohol combined samples; SBP, systolic BP; DBP, diastolic BP; MAP,

mean arterial pressure; PP, pulse pressure; N, number of individuals; mean, mean levels; SD,
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standard deviation of mean; Min, minimum value; Max, maximum value.

(XLSX)

S7 Table. Demographic statistics for replication data (Stage 2). N, Number of subjects; %

Hypertensive, defined whether participants presented: (i) SBP� 140 mm Hg, (ii) DBP� 90

mm Hg, and/or (iii) taking anti-hypertensive medication; Mean, age mean; SD, standard devi-

ation of mean; Min, minimum age; Max, maximum age.

(XLSX)

S8 Table. Characteristics of each study and their genotype data for replication data (Stage

2). Study design, population-based or cohort-unrelated; Principal components used; Other

covariates entered in the model; Genotyping platforms; Genotyping calling algorithm; Imputa-

tion reference panel; NCBI dbSNP build; Analysis software; Robust or model-based statistics;

Family studies: Method of handling relatedness.

(XLSX)

S9 Table. Novel SNVs/ genes associated with BP traits in multi-ancestry and specific-

ancestry meta-combined results. Top significant associated SNVs are shown per gene for

each trait and alcohol exposure.

(XLSX)

S10 Table. SNVs/genes associated with BP traits in European ancestry. Variants previously

reported for blood pressure (BP) in genome-wide association studies. The most significant

associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status.

Abbreviations: Nb, order number based on genes; SNV, single nucleotide variant; Chr, chro-

mosome; Position, Gene, and Role in dbSNP build 150 (hg38) annotation; Role: Intronic, mis-

sense, up-stream or downstream, or intergenic (blank space) SNV; Near gene reflects genes at

up to +/-500 kb and related to BP / alcohol; A1/2, Coded and non-coded alleles; Frq1, Fre-

quency of coded allele; Trait, SBP: Systolic BP, DBP: Diastolic BP, MAP: Mean Arterial Pres-

sure, PP: Pulse Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no),

LHD, Light(1–7 drinks/week) or heavy (�8 drinks/week) drinker; Stage 1, Discovery cohorts;

Stage 2, Replication cohorts; Stage 1 & Stage 2, Discovery and Replication combined; b_M(S.

E.), beta coefficient of SNV (standard error); b_I(S.E.): SNV�E is SNV-alcohol interaction

effect (standard error); P-Value: modified-interaction METAL P-Value; N, Number of sub-

jects; P-Meta, P-Meta, modified-interaction METAL P-Value of Meta-analysis in combined

Stage 1 and Stage 2; Het-P value, Heterogeneity P-Value. � These genes were detected also via

correlated meta-analysis.

(XLSX)

S11 Table. SNVs/genes associated with BP traits in African ancestry. Variants previously

reported for blood pressure (BP) in genome-wide association studies. The most significant

associated SNVs are shown per gene for each Blood Pressure (BP) trait and alcohol status.

Abbreviations: Nb, order number based on genes; SNV, single nucleotide variant; Chr, chro-

mosome; Position, Gene, and Role in dbSNP build 150 (hg38) annotation; Role: Intronic or

intergenic (blank space) SNV; Near gene reflects genes at up to +/-500 kb and related to BP /

alcohol; A1/2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Trait, SBP: Sys-

tolic BP, DBP: Diastolic BP, MAP: Mean Arterial Pressure, PP: Pulse Pressure; Drink: Alcohol

consumption, CURD, Current drinker (yes/no); Stage 1, Discovery cohorts; Stage 2, Replica-

tion cohorts; Stage 1 & Stage 2, Discovery and Replication combined; b_M(S.E.), beta coeffi-

cient of SNV (standard error); b_I(S.E.): SNV�E is SNV-alcohol interaction effect (standard

error); P-Value: modified-interaction METAL P-Value; N, Number of subjects; P-Meta, P-
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Meta, modified-interaction METAL P-Value of Meta-analysis in combined Stage 1 and Stage

2; Het-P value, Heterogeneity P-Value. � These genes were detected also via correlated meta-

analysis.

(XLSX)

S12 Table. SNVs/genes associated with BP traits in multi-ancestry meta-analysis in com-

bined Stage 1 and Stage 2. Variants previously reported for blood pressure (BP) in genome-

wide association studies. The most significant associated SNVs are shown per gene for each

Blood Pressure (BP) trait and alcohol status. Abbreviations: Nb, order number based on genes;

SNV, single nucleotide variant; Chr, chromosome; Position, Gene, and Role in dbSNP build

150 (hg38) annotation; Role: Intronic, missense, up-stream or downstream, or intergenic

(blank space) SNV; Near gene reflects genes at up to +/-500 kb and related to BP / alcohol; A1/

2, Coded and non-coded alleles; Frq1, Frequency of coded allele; Ancestry, EA: European

Ancestry, AA: African American Ancestry, ASA: Asian American Ancestry, HA: Hispanic

Ancestry; Trait, SBP: Systolic BP, DBP: Diastolic BP, MAP: Mean Arterial Pressure, PP: Pulse

Pressure; Drink: Alcohol consumption, CURD, Current drinker (yes/no), LHD, Light(1–7

drinks/week) or heavy (�8 drinks/week) drinker; Stage 1 and Stage 2, Combined Discovery

and Replication; b_M, beta coefficient of SNV; b_I: SNV�E is SNV-alcohol interaction effect;

P-Value, modified-interaction METAL P-Value of meta-analysis in combined Stage 1 and

Stage 2; N, Number of subjects; Het-P value, Heterogeneity P-Value.

(XLSX)

S13 Table. SNVs/genes associated with BP traits for regulatory features using HaploReg

and RegulomeDB. Association findings from European Ancestry (novel), African Ancestry

(potential) and correlated meta-analysis (novel variants). The annotation of variants was

sourced from NCBI dbSNP build 138 (hg19) during the analyses and updated to dbSNP build

150 (hg38) for reporting results. Abbreviations: Nb, order number based on SNVs; Position,

dbSNP build 150 (hg38) annotation; Variant, single nucleotide variant (SNV); Ref, reference

allele; Alt, alternative allele; AFR Freq, Freq of Ref in African ancestry; ASN Freq, Freq of Ref

in East Asian ancestry; EUR Freq, Freq of Ref in European ancestry; GERP cons and Siphy

cons, measured conserved regions. RegulomeDB scoring has classes defined as 1b, 1d and 1f:

likely to affect binding and linked to expression of a gene target, with details: 1b (eQTL + TF

binding + any motif + DNase footprint + DNase peak); 1d (eQTL + TF binding + any motif

+ DNase peak); 1f (eQTL + TF binding/DNase peak), 2a and 2b: likely to affect binding, 3a:

less likely to affect binding, 4, 5, and 6: minimal binding evidence, and 7: no data. This software

was accessed on 06.15.2017. Regulatory function measured by Promoter histone marks,

Enhancer histone marks, DNase (DNAse hypersensitivity), Proteins bound, Motifs changed.

(XLSX)

S14 Table. Novel SNVs/genes associated with BP traits for eSNV/eQTL using GTEx. Target

genes (Tissues and P-Values). Association findings from European Ancestry (novel) and cor-

related meta-analysis (novel variants). The annotation of variants was sourced from NCBI

dbSNP build 138 (hg19) during the analyses and updated to dbSNP build 150 (hg38) for

reporting results. Abbreviations: Nb, order number based on SNVs; Position, dbSNP build

150 (hg38) annotation; Variant, single nucleotide variant (SNV); Ref, reference allele; Alt,

alternative allele; AFR Freq, Freq of Ref in African ancestry; ASN Freq, Freq of Ref in East

Asian ancestry; EUR Freq, Freq of Ref in European ancestry. � RegulomeDB scoring has classes

defined as 1b, 1d and 1f: likely to affect binding and linked to expression of a gene target, with

details: 1b (eQTL + TF binding + any motif + DNase footprint + DNase peak); 1d (eQTL + TF

binding + any motif + DNase peak); 1f (eQTL + TF binding/DNase peak), 2a and 2b: likely to
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affect binding, 3a: less likely to affect binding, 4, 5, and 6: minimal binding evidence, and 7: no

data. This software was accessed on 06.15.2017. Regulatory function measured by Promoter

histone marks, Enhancer histone marks, DNase (DNAse hypersensitivity), Proteins bound,

Motifs changed.

(XLSX)

S15 Table. Data analysis tools and databases.

(DOCX)
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roux, Cholet, LeMans, Orléans and Tours), Research Institute for General Medicine (J. Cog-

neau), the general practitioners of the region and the Cross- Regional Institute for Health (C.

Born, E. Caces, M. Cailleau, N. Copin, J.G. Moreau, F. Rakotozafy, J. Tichet, S. Vol).

DHS (Diabetes Heart Study): The authors thank the investigators, staff, and participants of

the DHS for their valuable contributions.

EGCUT Estonian Genome Center—University of Tartu (Estonian Biobank): Data analyzes

were carried out in part in the High Performance Computing Center of University of Tartu.

EPIC (European Prospective Investigation into Cancer and Nutrition)-Norfolk: We thank

all EPIC participants and staff for their contribution to the study.

FENLAND (The Fenland Study): We are grateful to all the volunteers for their time and

help, and to the General Practitioners and practice staff for assistance with recruitment. We

thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiol-

ogy Field, Data and Laboratory teams. We further acknowledge support from the Medical

research council (MC_UU_12015/1).

GeneSTAR (Genetic Studies of Atherosclerosis Risk): We are very grateful to all of our par-

ticipants for their long-term involvement.

GLACIER (Gene x Lifestyle Interactions and Complex Traits Involved in Elevated Disease

Risk): We thank the participants, health professionals and data managers involved in the Väs-

terbottens Intervention Project. We are also grateful to the staff of the Northern Sweden Bio-

bank for preparing materials and to K Enqvist and T Johansson (Västerbottens County
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Caizheng Yu, Jian-Min Yuan, John C. Chambers, Philippe Froguel, Jaspal S. Kooner,

Markku Laakso, Lifelines Cohort Study, Ozren Polasek, Rainer Rauramaa, Xiao-Ou Shu,

Pim van der Harst, David R. Weir, Tangchun Wu, Claude Bouchard, Kaare Christensen,

Michele K. Evans, Sharon L. R. Kardia, Yongmei Liu, Alexandre C. Pereira, Xiaofeng Zhu,

Ervin R. Fox, Walter Palmas, Michael A. Province, Daniel Levy.

Methodology: Mary F. Feitosa, Aldi T. Kraja, Daniel I. Chasman, Yun J. Sung, Thomas W.

Winkler, Hugues Aschard, Tamar Sofer, Adolfo Correa, Tuomas O. Kilpeläinen, Jeff R.
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