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Abstract

Breast cancer risk variants identified in genome-wide association studies explain only a small
fraction of familial relative risk, and genes responsible for these associations remain largely
unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide
association study evaluating associations of genetically predicted gene expression with breast
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cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the
Genotype-Tissue Expression Project to establish genetic models to predict gene expression in
breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the
8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected
threshold of P< 5.82x10-6, including 14 genes at loci not yet reported for breast cancer. We
silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony forming
efficiency. Our study provides new insights into breast cancer genetics and biology.

Keywords
eQTL; genetics; breast cancer; gene expression; GWAS; susceptibility

Breast cancer is the most common malignancy among women in many countries®. Genetic
factors play an important role in its etiology. Since 2007, genome-wide association studies
(GWAS) have identified approximately 170 genetic loci harboring common, low-penetrance
variants for breast cancer8-13, but these variants explain less than 20% of familial relative
risk’. Most disease-associated risk variants identified by GWAS are located in non-protein
coding regions and are not in linkage disequilibrium (LD) with any nonsynonymous coding
single nucleotide polymorphisms (SNPs)14. Many of these susceptibility variants are located
in gene regulatory elements®16, and it has been hypothesized that many GWAS-identified
associations may be driven by the regulatory function of risk variants on the expression of
nearby genes. For breast cancer, recent studies have already shown that GWAS-identified
associations at more than 15 loci are likely due to the effect of risk variants at these loci on
regulating the expression of either nearby or more distal genes’%10.13.17-22 However, for
the large majority of the GWAS-identified breast cancer risk loci, the genes responsible for
the associations remain unknown.

Several studies have reported that regulatory variants may account for a large proportion of
disease heritability not yet discovered through GWAS23-25, Many of these variants may have
a small effect size, and thus are difficult to identify in individual SNP-based GWAS, even
with a large sample size. Applying gene-based approaches that aggregate the effects of
multiple variants into a single testing unit may increase study power to identify novel
disease-associated loci. Transcriptome-wide association studies (TWAS) systematically
investigate the association of genetically predicted gene expression with disease risk,
providing an effective approach to identify novel susceptibility genes?6-2°, Recently,
Hoffman et al performed a TWAS including 15,440 cases and 31,159 controls and reported
significant associations for five genes with breast cancer risk30. However, the sample size of
that study was relatively small and several reported associations were not significant after
Bonferroni correction. Herein, we report results from a larger TWAS of breast cancer that
used the MetaXcan method?6 to analyze summary statistics data from 122,977 cases and
105,974 controls of European descent from the Breast Cancer Association Consortium
(BCAC).
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Results

Gene expression prediction models

The study design is shown in Supplementary Figure 1. We used transcriptome and
genotyping data from 67 women of European descent included in the Genotype-Tissue
Expression (GTEX) project to build genetic models to predict RNA expression levels for
each gene expressed in normal breast tissues, by applying the elastic net method (a=0.5)
with ten-fold cross-validation. Genetically regulated expression was estimated using variants
within a 2 MB window flanking the respective gene boundaries, inclusive. SNPs with a
minor allele frequency of at least 0.05 and included in the HapMap Phase 2 were used for
model building. Of the models built for 12,696 genes, 9,109 showed a prediction
performance (R2) of at least 0.01 (=10% correlation between predicted and observed
expression). For genes for which the expression could not be predicted well using this
approach, we built models using only SNPs located in the promoter or enhancer regions, as
predicted using three breast cell lines in the Roadmap Epigenomics Project/Encyclopedia of
DNA Elements Project. This approach leverages information from functional genomics and
reduces the number of variants for variable selection, therefore potentially improving
statistical power. This enabled us to build genetic models for additional 3,715 genes with
R2>0.01. Supplementary Table 1 provides detailed information regarding the performance
threshold and types of models built. Overall, genes that were predicted with R2=0.01 in
GTEXx data were also predicted well in The Cancer Genome Atlas (TCGA) tumor-adjacent
normal tissue data (correlation coefficient of 0.55 for R2 in two datasets; Supplementary
Figure 2). Based on model performance in GTEx and TCGA, we prioritized 8,597 genes for
analyses of the associations between predicted gene expression and breast cancer risk using
the following criteria: 1) genes with a model prediction R2=0.01 in the GTEX set (10%
correlation) and a Spearman’s correlation coefficient of 0.1 in the external validation
experiment, 2) genes with a prediction R2=0.09 (30% correlation) in the GTEXx set
regardless of their performance in the TCGA set, 3) genes with a prediction R2=0.01 in the
GTEX set (10% correlation) that could not be evaluated in the TCGA set because of a lack of
data.

Associations of predicted expression with breast cancer

Using the MetaXcan method?5, we performed association analyses to evaluate predicted
gene expression and breast cancer risk using the meta-analysis summary statistics of SNPs
generated for 122,977 cases and 105,974 controls of European ancestry included in BCAC.
For the majority of the tested genes, most of the SNPs selected for prediction models were
used for the association analyses (e.g., 280% predicting SNPs used for 95.6% of the tested
genes). Lambda 1,000 (A4 ggp), a standardized estimate of the genomic inflation scaling to a
study of 1,000 cases and 1,000 controls, was 1.004 in our study (Quantile-quantile (QQ) plot
presented in Supplementary Figure 3 (a)). Of the 8,597 genes evaluated, we identified 179
whose predicted expression was associated with breast cancer risk at A<1.05x10-3, a FDR-
corrected significance level (Figure 1, Supplementary Table 2). Of these, 48 showed a
significant association at the Bonferroni-corrected threshold of A<5.82x10-6 (Figure 1,
Tables 1-3), including 14 genes located at 11 loci that are 500 kb away from any risk variant
identified in previous GWAS (Table 1). An association between lower predicted expression
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and increased breast cancer risk was detected for LRRC3B (3p24.1), SPATA18(4912), UBD
(6p22.1), MIR31HG (9p21.3), RIC8A (11p15.5), B3GNT1 (11913.2), GALNTI16(14q24.1)
and MAN2CI1 and CTD-2323K18.1 (15924.2). Conversely, an association between higher
predicted expression and increased breast cancer risk was identified for ZSW/IM5 (1p34.1),
KLHDC10(7932.2), RP11-867G23.10(11q13.2), RP11-218M22.1 (12p13.33) and
PLEKHDI (14g24.1). The remaining 34 associated genes are located at known breast cancer
susceptibility loci (Tables 2-3). Among them, 23 have not yet been implicated as genes
responsible for association signals identified at these loci through expression quantitative
trait loci (eQTL) and/or functional studies, and do not harbor GWAS or fine-mapping
identified risk variants (Table 2), while the other eleven (KLHDC7A!, ALS2CR121,
CASP&L32, ATG1(P, SNX323, STXBPA435 | ZNF4048, ATP6APILS, RMNDIAT,
L3MBTL3, and RCCD110) had been reported as potential causal genes at breast cancer
susceptibility loci or harbor GWAS or fine-mapping identified risk variants (Table 3). Except
for RP11-7306.3and L3MBTL3, there was no evidence of heterogeneity (12<0.2) across
the iCOGS, OncoArray, and GWAS datasets included in our analyses (Supplementary Table
3). Overall, we identified 37 novel susceptibility genes for breast cancer and confirmed
eleven genes known to potentially play a role in breast cancer susceptibility.

To determine whether the associations between predicted gene expression and breast cancer
risk were independent of GWAS-identified association signals, we performed conditional
analyses adjusting for the GWAS-identified risk SNPs closest to the TWAS-identified gene
(Supplementary Table 4)36. We found that the associations for 11 genes (LRRC3B,
SPATA18, KLHDC10, MIR31HG, RIC8A, B3GNTI1, RP11-218M22.1, MANZ2C1,
CTD-2323K18.1 (Table 1), ALK, CTD-3051D23.1 (Table 2)) remained statistically
significant at P<5.82x10-6 (Tables 1-3). This suggests the expression of these genes may be
associated with breast cancer risk independent of the GWAS-identified risk variant(s). For
nine of the genes (SPATA18, KLHDC10, MIR31HG, RIC8A, RP11-218M22.1, MANZ2CI,
CTD-2323K18.1 (Table 1), ALK, and CTD-3051D23.1 (Table 2)), the significance of the
association remained essentially unchanged, suggesting these associations may be entirely
independent of GWAS-identified association signals.

Of the 131 genes showing an association at 5.82x10-6 < P£<1.05x10-3 (significant after
FDR-correction but not Bonferroni-correction), 38 are located at GWAS-identified risk loci
(Table 4). Except for RP11-400F19.8, there was no evidence of heterogeneity in TWAS
association (12<0.2) across the iCOGS, OncoArray, and GWAS studies (Supplementary
Table 3). After adjusting for the risk SNPs, associations for MTHFDIL, PVT1, RP11-
123K19.1, FES, RP11-400F19.8, CTD-2538G9.5, and CTD-3216D2.5 remained significant
at p<1.05%10-3, again suggesting that the association of these genes with breast cancer risk
may be independent of the GWAS-identified association signals (Table 4).

For 41 of the 48 associated genes that reached the Bonferroni-corrected significant level, we
obtained individual-level data from subjects included in the iCOGS (nh=84,740) and
OncoArray (n=112,133) datasets, which was 86% of the subjects included in the analysis
using summary statistics (Supplementary Table 5). The results from the analysis using
individual-level data were very similar to those described above using MetaXcan analyses
(Pearson correlation of z-scores was 0.991 for iCOGS data and 0.994 for OncoArray data),
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although not all associations reached the Bonferroni-corrected significant level, possibly due
to a smaller sample size (Supplementary Table 5). Conditional analyses using individual
level data also revealed consistent results compared with analyses using summary data. We
found that for several genes within the same genomic region, their predicted expression was
correlated with each other (Tables 1-3). The associations between predicted expression of
PLEKHDI and ZSWIM5 and breast cancer risk were largely influenced by their
corresponding closest risk variants identified in GWAS, although these risk variants are
>500 kb away from these genes (Table 1). There were significant correlation of rs999737
and rs1707302 with genetically predicted expression of PLEKHDI (r = —0.47 in OncoArray
dataset and —0.48 in iCOGS dataset) and ZSW/M5 (r = 0.50 in OncoArray dataset and 0.51
in iCOGS dataset), respectively.

INQUISIT algorithm scores

For the 48 associated genes after Bonferroni correction, we assessed their integrated
expression quantitative trait and in silico prediction of GWAS target (INQUISIT) scores’ to
assess whether there are other evidence beyond the scope of eQTL for supporting our
TWAS-identified genes as candidate target genes at GWAS-identified loci. The detailed
methodology for INQUISIT scores have been described elsewhere’. In brief, a score for
each gene-SNP pair is calculated across categories representing potential regulatory
mechanisms - distal or proximal gene regulation (promoter). Features contributing to the
score are based on functionally important genomic annotations such as chromatin
interactions, transcription factor binding, and eQTLs. Compared with evidence from eQTL
only, INQUISIT scores incorporate additional lines of evidence, including distal regulations.
The INQUISIT scores for our identified genes are shown in Supplementary Table 6. Except
for UBD with a very low score in the distal regulation category (0.05), none of the genes at
novel loci (Table 1) showed evidence to be potential target genes for GWAS-identified breast
cancer susceptibility loci. This is interesting and within the expectation since these genes
may represent novel association signals. There was evidence suggesting that RP11-
439A17.7, NUDT17, ANKRD34A, BTN3AZ, AP006621.6, RPLPZ, LRRC37A2,
LRRC37A, KANSL1-AS1, CRHRIand HAPLNA4 listed in Table 2, and all eleven genes
listed in Table 3, may be target genes for risk variants at these loci (Supplementary Table 6).
For NUDT17, ANKRD34A, RPLP2, LRRC37A2, LRRC37A, KANSL1-ASI1, CRHRI,
HAPLN4, KLHDC7A, ALS2CR12, CASP8, ATG10, ATP6APIL, LSMBTL3, RMNDI,
SNX32, RCCD1, STXBP4and ZNF404, the INQUISIT scores were not derived only from
eQTL data, providing orthogonal support for these genes. For these loci, the associations of
candidate causal SNPs with breast cancer risk may be mediated through these genes. This is
in general consistent with the findings from the conditional analyses.

Pathway enrichment analyses

Ingenuity Pathway Analysis (IPA)37 suggested potential enrichment of cancer-related
functions for the identified protein-coding genes (Supplementary Table 7). The top canonical
pathways identified included apoptosis related pathways (Granzyme B signaling (¢=0.024)
and cytotoxic T lymphocyte-mediated apoptosis of target cells (p=0.046)), immune system
pathway (inflammasome pathway (£=0.030)), and tumoricidal function of hepatic natural
killer cells (p=0.036). The identified pathways are largely consistent with previous findings
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7. For the associated INcRNAs, pathway analysis of their highly co-expressed protein-coding
genes also revealed potential over-representation of cancer-related functions (Supplementary
Table 7).

In vitro assays of gene functions

To assess the function of genes whose high predicted expression were associated with
increased breast cancer risk, we selected 13 genes for knockdown experiments in breast
cells: ZSWIM5, KLHDCI10, RP11-218M22.1 and PLEKHDI (Table 1), UBLCP]I,
AP006621.6, RP11-467712.4, CTD-3032H12.1 and RP11-15A1.7 (Table 2), and
ALS2CR12, RMND1, STXBP4and ZNF404 (Table 3). As negative controls, we selected
B2M, ARHGDIA and ZAP70 using the criteria: 1) =2 MB from any known breast cancer
risk locus; 2) not an essential gene in breast cancer38-3; and 3) not predicted to be a target
gene in INQUISIT. In addition, as positive controls, we included P/DDI (Table 4)7,
NRBFZ0 and ABHD&?2, which have been functionally validated as target genes at breast
cancer risk loci. We performed quantitative PCR (gPCR) on a panel of three ‘normal’
mammary epithelial and 15 breast cancer cell lines to analyze their expression levels
(Supplementary Figure 4 and Supplementary Table 8). All 19 genes were expressed in the
normal mammary epithelial line 184A140 and the luminal breast cancer cell lines, MCF7
and T47D, so we used these cell lines for the proliferation assay, and MCF7 for the colony
formation assay*l. We also evaluated SNX32, ALK and BTN3AZ2by qPCR, but they were
not expressed in T47D and MCF7 cells; therefore they were not evaluated further. It was
difficult to design siRNAs against RP11-867G23.1 and RP11-53019.1 because they both
have multiple transcripts with limited, GC-rich regions in common. We did not include
RPLP2because it is already known to be an essential gene for breast cancer survival*2.
Knockdown of the 19 tested genes was achieved by small short interfering RNA (siRNA)
(Supplementary Table 9) and the knockdown efficiency was calculated in 184A1, MCF7 and
T47D for each siRNA pair. Robust knockdown of the gene of interests (GOI) was validated
by gPCR with the majority of the siRNAs (Supplementary Figure 5).

To evaluate the survival and proliferation ability of cells following gene interruption, we
used an IncuCyte to quantify cell proliferation in real time and quantified the corrected
proliferation of cells with knocking down of GOI in comparison to that of cells with non-
target control (NTC) siRNA). As expected, knockdown of the three negative control genes
(BZ2M, ARHGDIA and ZAP70) did not significantly change cell proliferation in any of the
three cell lines (Figure 2A, Supplementary Figure 6). However, with the exception of
UBLCP1, RMNDI and STXBP4, knockdown of all other genes (11 TWAS-identified genes
along with two known genes, ABHD8and NRBF2) resulted in significantly decreased cell
proliferation in 184A1 normal breast cells, with KLHDC10, PLEKHD1, RP11-218M22.1,
AP006621.6, ZNF404, RP11-467J12.4, CTD-3032H12.1 and STXBP4 showing a similar
effect in one or both cancer cell lines. Down-regulation of three INcRNAs (RP11-218M22.1,
RP11-467J12.4and CTD-3032H12.1)resulted in significant reduction in cell proliferation
in all three cell lines. We also evaluated the effect of inhibition of these genes on colony
forming ability in MCF7 cells. Knockdown of the three negative control genes did not
significantly affect colony forming efficiency (CFE). By contrast, knockdown of P/IDD1,
RP11-15A1.7, RP11-218M22.1, AP006621.6, ZNF404, RP11-467J12.4 and

Nat Genet. Author manuscript; available in PMC 2019 January 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wu et al. Page 7
CTD-3032H12.1 resulted in significantly decreased CFE in MCF7 cells compared to the
NTC (Figure 2B, Supplementary Figure 7).
Discussion

This is the largest study to systematically evaluate associations of genetically predicted gene
expression across the human transcriptome with breast cancer risk. We identified 179 genes
showing a significant association at the FDR-corrected significance level. Of these, 48 genes
showed an association at the Bonferroni-corrected threshold, including 14 at genomic loci
that have not previously been implicated for breast cancer risk. Of the 34 genes located at
known risk loci, 23 have not previously been shown to be the targets of GWAS-identified
risk SNPs at corresponding loci and not harbor any risk SNPs. Our study provides
substantial new information to improve the understanding of genetics and etiology for breast
cancer.

It is possible that TWAS-identified genes may be associated with breast cancer through their
correlation with disease causal genes. To determine the potential functional significance of
TWAS-identified genes and provide evidence for causal inference, we knocked down 13
genes for which high predicted levels of expression were associated with an increased breast
cancer risk, in one normal and two breast cancer cell lines, and measured the effect on
proliferation and CFE. Although there was some variation between cell lines, knockdown of
11 of the 13 genes showed an effect in at least one cell line, particularly on proliferation in
184A1 normal breast cells; the effects were strongest and most consistent for the IncRNAs,
RP11-218M22.1, RP11-467J12.4and CTD-3032H12.1. The observation of a more
consistent effect in the normal breast cell line compared with the cancer cell lines is not
surprising as cancer cell lines have increased capacity to handle gene interference through
mutations which enhance cell survival. Rewiring of pathways and compensatory
mechanisms is a hallmark of cancer. Knockdown of PIDD1, NRBF2and ABHDS, for which
breast cancer risk associated haplotypes have been shown to be associated with increased
expression in reporter assays’-2%:22, affected either proliferation or colony forming
efficiency, supporting the results from this study.

Some of the genes with strong functional evidence from our study have been reported to
have important roles in carcinogenesis. For example, RP11-467J12.4 (PR-IncRNA-1) is a
p53-regulated INcRNA that modulates gene expression in response to DNA damage
downstream of p5343. ST.XBP4 encodes Syntaxin binding protein 4, a scaffold protein that
can stabilise and prevent degradation of an isoform of p63, a member of the p53 tumor
suppressor family*4. KL HDCI0encodes a member of the Kelch superfamily that can
activate apoptosis signal-regulating kinase 1, contributing to oxidative stress-induced cell
death?®. Notably, another member of this superfamily, KLHDC7A, has recently been
identified as the target gene at the 1p36 breast cancer risk locus’.

SNX32, ALK and BTN3AZare also likely susceptibility genes for breast cancer risk.
However, their low or absent expression in our chosen breast cell lines prevented further
functional analysis. ALK (Anaplastic lymphoma kinase) copy number gain and
overexpression have been reported in aggressive and metastatic breast cancers?6.
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Therapeutic targeting of ALK rearrangement has significantly improved survival in
advanced ALK-positive lung cancer*’, making it an attractive target for breast and other
cancers. BTN3AZis a member of the B7/butyrophilin-like group of Ig superfamily receptors
modulating the function of T-lymphocytes. Over-expression of BTN3AZn epithelial ovarian
cancer is associated with higher infiltrating immune cells and a better prognosis“®.

Our analyses identified multiple genes with reduced expression associated with increased
breast cancer risk. Among them, LRRC3B and CASP8 are putative tumor suppressors in
multiple cancers, including breast cancer. Leucine-rich repeat-containing 3B (LRRC3B)is a
putative LRR-containing transmembrane protein, which is frequently inactivated via
promoter hypermethylation leading to inhibition of cancer cell growth, proliferation, and
invasion?9. CASP8encodes a member of the cysteine-aspartic acid protease family, which
play a central role in cell apoptosis. Previous studies have suggested that caspase-8 may act
as a tumor suppressor in certain types of lung cancer and neuroblastoma, although this
function has not yet been demonstrated in breast cancer. Notably, several large association
studies have identified SNPs at the 2933/ CASPE locus associated with increased breast
cancer risk31:90, Consistent with our data, eQTL analyses showed that the risk alleles for
breast cancer were associated with reduced CASP8 mRNA levels in both peripheral blood
lymphocytes and normal breast tissue3..

For seven of the genes listed in Tables 1 and 2, we found some evidence from studies using
tumor tissues, /n vitroor in vivo experiments linking them to cancer risk (Supplementary
Table 10), although their association with breast cancer has not been demonstrated in human
studies. For five of them, including LRRC3B, SFATA18, RIC8A, ALK and CRHRI,
previous /n vitroand in vivo experiments and human tissue studies showed a consistent
direction of the association as demonstrated in our studies. For two other genes (UBD and
MIR31HG), however, results from previous studies were inconsistent, reporting both
potential promoting and inhibiting effects on breast cancer development. Future studies are
needed to evaluate functions of these genes.

We included a large number of cases and controls, providing strong statistical power for the
association analysis. This large sample size enabled us to identify a large number of
candidate breast cancer susceptibility genes, much larger than the number identified in a
TWAS study with a sample size of about 20% of ours3C. The previous study included
subjects of different races, which could affect the results as linkage disequilibrium (LD)
patterns differ by races. Of the five genes reported in that smaller TWAS that showed a
suggestive association with breast cancer risk, the association for the RCCD1 gene was
replicated in our study (Table 3). The other four genes (ANKLEI, DHODH, ACAPI and
LRRC25)were not evaluated in our study because of unsatisfactory performance of our
breast specific models for these genes which were built using the GTEX reference dataset
including only female European descendants.

A substantial proportion of SNPs included in the OncoArray and iCOGS were selected from
breast cancer GWAS and fine-mapping analyses, and thus these arrays were enriched for
association signals with breast cancer risk. As a result, the overall A. value for the BCAC
association analyses of individual variants is 1.26 after adjusting for population
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stratifications (QQ plot in Supplementary Figure 3 (b))”. The A value for the associations of
the ~257,000 SNPs included in the gene expression prediction models of the 8,597 genes
tested in our association analysis is 1.40 (QQ plot in Supplementary Figure 3 (c)). This
higher A value is perhaps expected because of a potential further enrichment of breast cancer
associated signals in the set of SNPs selected to predict gene expression. There could be
additional gain of power (and thus a higher A value) in TWAS as it aggregates the effect of
multiple SNPs to predict gene expression and use genes as the unit for association analyses.
The lambda (A\) for our associated analyses of 8,597 genes was 1.51 (QQ plot presented in
Supplementary Figure 3 (a)) likely due to the potential enrichment and power gain as well as
our large sample size, and the highly polygenic nature of the disease’-51. Interestingly, high
A values were also found in recent large studies of other polygenic traits, such as body mass
index (BMI) (A = 1.99) and height (A = 2.7)%253, The A gg0, a standardized estimate of the
genomic inflation scaling to a study of 1,000 cases and 1,000 controls, is 1.004 in our study.

The statistical power of our study is very high to detect associations for genes with a
relatively high cis-heritability (h2) (Supplementary Figure 8). For example, our study has
80% statistical power to detect an association with breast cancer risk at A<5.82x10-6 with
an OR of 1.07 or higher per one standard deviation increase (or decrease) in the expression
level of genes with an h2 of 0.1 or higher. One limitation of our study is the small sample
size for building gene expression prediction models, which may have affected the precision
of model parameter estimates. We expect that models built with a larger sample size will
identify additional association signals. We used samples from women of European origin in
model building, given differences in gene expression patterns between males and females
and in genetic architecture across ethnicities®*. We also used gene expression data of tumor-
adjacent normal tissue samples from European descendants in TCGA as an external
validation step to prioritize genes for association analyses. Given potential somatic
alterations in tumor-adjacent normal tissues, we retained all models showing a prediction R2
of at least 0.09 in GTEX, regardless of their performance in TCGA. Not all genes have a
significant hereditary component in expression regulation, and thus these genes could not be
investigated in our study. For example, previous studies have provided strong evidence to
support a significant role of the TERT, ESR1, CCND1, IGFBP5, TET2and MRPS30 genes
in the etiology of breast cancer. However, expression of these genes cannot be predicted well
using the data from female European descendants included in the GTEX and thus they were
not included in our association analyses. Supplementary Table 11 summarizes the
performance of prediction models and association results for breast cancer target genes
reported previously at GWAS-identified loci.

In summary, our study has identified multiple gene candidates that can be further
functionally characterized. The silencing experiments we performed suggest that many of
the genes identified are likely to mediate risk of breast cancer by affecting proliferation or
CFE, two hallmarks of cancer. Further investigation of genes identified in our study will
provide additional insight into the biology and genetics of breast cancer.
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Methods

The key elements of the study design, statistical parameters, materials and reagents, and
human subjects are included in the Life Sciences Reporting Summary.

Building of gene expression prediction models

We used transcriptome and high-density genotyping data from the Genotype-Tissue
Expression (GTEX) study to establish prediction models for genes expressed in normal
breast tissues. Details of the GTEx have been described elsewhere®. Genomic DNA
samples obtained from study subjects included in the GTEx were genotyped using Illumina
OMNI 5M or 2.5M SNP Array and RNA samples from 51 tissue sites were sequenced to
generate transcriptome profiling data. Genotype data were processed according to the GTEX
protocol (see URLSs). SNPs with a call rate < 98%, with differential missingness between the
two array experiments (5M/2.5M Arrays), with Hardy-Weinberg equilibrium p-value < 10-6
(among subjects of European ancestry), or showing batch effects were excluded. One
Klinefelter individual, three related individuals, and a chromosome 17 trisomy individual
were also excluded. The genotype data were imputed to the Haplotype Reference
Consortium reference panel®® using Minimac3 for imputation and SHAPEIT for
prephasing®’°8. SNPs with high imputation quality (r2 = 0.8), minor allele frequency (MAF)
= 0.05, and included in the HapMap Phase 2 version, were used to build expression
prediction models. For gene expression data, we used Reads Per Kilobase per Million
(RPKM) units from RNA-SeQC®°. Genes with a median expression level of 0 RPKM across
samples were removed, and the RPKM values of each gene were log2 transformed. We
performed quantile normalization to bring the expression profile of each sample to the same
scale, and performed inverse quantile normalization for each gene to map each set of
expression values to a standard normal. We adjusted for the top ten principal components
(PCs) derived from genotype data and the top 15 probabilistic estimation of expression
residuals (PEER) factors to correct for batch effects and experimental confounders in model
building®®. Genetic and transcriptome data from 67 female subjects of European descent
without a prior breast cancer diagnosis were used to build gene expression prediction models
for this study.

We built an expression prediction model for each gene by using the elastic net method as
implemented in the gimnet R package, with a=0.5, as recommended by Gamazon et al?’.
The genetically regulated expression for each gene was estimated by including variants
within a 2 MB window flanking the respective gene boundaries, inclusive. Expression
prediction models were built for protein coding genes, long non-coding RNAs (IncRNAsS),
microRNAs (miRNASs), processed transcripts, immunoglobulin genes, and T cell receptor
genes, according to categories described in the Gencode V19 annotation file (see URLS).
Pseudogenes were not included in the present study because of potential concerns of
inaccurate calling8l. Ten-fold cross-validation was used to validate the models internally.
Prediction R2 values (the square of the correlation between predicted and observed
expression) were generated to estimate the prediction performance of each of the gene
prediction models established.
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For genes that cannot be predicted well using the above approach, we built models using
only SNPs located in predicted promoter or enhancer regions in breast cell lines. This
approach reduces the number of variants for model building, and thus potentially improves
model accuracy, by increasing the ratio of sample size to effective degrees of freedom.

SNP-level annotation data in three breast cell lines, namely, Breast Myoepithelial Primary
Cells (E027), Breast variant Human Mammary Epithelial Cells (vHMEC) (E028), and
HMEC Mammary Epithelial Primary Cells (E119) in the Roadmap Epigenomics Project/
Encyclopedia of DNA Elements Project16, were downloaded from HaploReg (Version 4.0,
assessed on December 6, 2016) (see URLs). SNPs in regions classified as promoters (TssA,
TssAFInk), enhancers (Enh, EnhG), or regions with both promoter and enhancer signatures
(ExFInk) according to the core 15 chromatin state model8 in at least one of the cell lines
were retained as input SNPs for model building.

Evaluating performance of gene expression prediction models using The Cancer Genome
Atlas (TCGA) data

To assess further the validity of the models, we performed external validation using data
generated in tumor-adjacent normal breast tissue samples obtained from 86 European-
ancestry female breast cancer patients included in the TCGA. Genotype data were imputed
using the same approach as described for GTEx data. Expression data were processed and
normalized using a similar approach as described above. The predicted expression level for
each gene was calculated using the model established using GTEx data and then compared
with the observed level of that gene using the Spearman’s correlation.

Evaluating statistical power for association tests

Association

We conducted a simulation analysis to assess the power of our TWAS analysis. Specifically,
we set the number of cases and controls to be 122,977 and 105,974, respectively, and
generated the gene expression levels from the empirical distribution of predicted gene
expression levels in the BCAC. We calculated statistical power at A<5.82x10-6 (the
significance level used in our TWAS) according to cis-heritability (h2) which we aim to
capture using gene expression prediction models (R2). The results based on 1000 replicates
are summarized in Supplementary Figure 8. Based on the power calculation, our TWAS
analysis has 80% power to detect a minimum odds ratio of 1.11, 1.07, 1.05, 1.04, or 1.03 for
breast cancer risk per one standard deviation increase (or decrease) in the expression level of
a gene whose cis-heritability is 5%, 10%, 20%, 40%, or 60%, respectively.

analyses of predicted gene expression with breast cancer risk

We used the following criteria to select genes for the association analysis: 1) with a model
prediction R2 of = 0.01 in GTEXx and a Spearman’s correlation coefficient of = 0.1 in TCGA,
2) with a prediction R2 of = 0.09 in GTEX regardless of the performance in TCGA, 3) with a
prediction R2 of = 0.01 in GTEX but unable to be evaluated in TCGA. The second group of
genes was selected because some gene expression levels might have changed in TCGA
tumor-adjacent normal tissues, and thus it is anticipated that some genes may show low
prediction performance in TCGA data due to the influence of tumor growth%2.63_ Overall, a
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total of 8,597 genes met the criteria and were evaluated for their expression-trait
associations.

To identify novel breast cancer susceptibility loci and genes, the MetaXcan method, as
described elsewhere, was used for the association analyses26. Briefly, the formula:

ok

g "5, ()
Se
I € Model, 8 L

was used to estimate the Z-score of the association between predicted expression and breast
cancer risk. Here Wi is the weight of SNP /for predicting the expression of gene g, ﬁl and

se(ﬁl) are the GWAS association regression coefficient and its standard error for SNP / and
é;and 3g are the estimated variances of SNP /and the predicted expression of gene g

respectively. Therefore, the weights for predicting gene expression, GWAS summary
statistics results, and correlations between model predicting SNPs are the input variables for
the MetaXcan analyses. For this study we estimated correlations between SNPs included in
the prediction models using the phase 3, 1000 Genomes Project data focusing on European
population.

For the association analysis, we used the summary statistics data of genetic variants
associated with breast cancer risk generated in 122,977 breast cancer patients and 105,974
controls of European ancestry from the Breast Cancer Association Consortium (BCAC). The
details of the BCAC have been described elsewhere’:9:13.64.65 Briefly, 46,785 breast cancer
cases and 42,892 controls of European ancestry were genotyped using a custom Ilumina
iSelect genotyping array (iCOGS) containing ~211,155 variants. A further 61,282 cases and
45,494 controls of European ancestry were genotyped using the OncoArray including
570,000 SNPs (see URLS). Also included in this analysis were data from nine GWAS
studies including 14,910 breast cancer cases and 17,588 controls of European ancestry.
Genotype data from iCOGS, OncoArray and GWAS were imputed using the October 2014
release of the 1000 Genomes Project data as reference. Genetic association results for breast
cancer risk were combined using inverse variance fixed effect meta-analyses’. For our study,
only SNPs with imputation r2 = 0.3 were used. All participating BCAC studies were
approved by their appropriate ethics review boards. Relevant ethical regulations had been
complied. This study was approved by the BCAC Data Access Coordination Committee.

Lambda 1,000 (A1 ggg) Was calculated to represent a standardized estimate of the genomic
inflation scaling to a study of 1,000 cases and 1,000 controls, using the following formula:
A1,000=1+(Aops-1) X (1 Mcases* 1 Meontrols)/(1/1,000¢ases+1/1,000¢0ntro1s) %667, We used a
Bonferroni corrected p threshold of 5.82x10-6 (0.05/8,597) to determine a statistically
significant association for the primary analyses. To identify additional gene candidates at
previously identified susceptibility loci, we also used a false discovery rate (FDR) corrected
pthreshold of 1.05x10-3 (FDR < 0.05) to determine a significant association. Associated
genes with an expression of >0.1 RPKM in less than 10 individuals in GTEXx data were
excluded as the corresponding prediction models may not be stable.
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To determine whether the predicted expression-trait associations were independent of the top
signals identified in previous GWAS, we performed GCTA-CQOJO analyses developed by
Yang et al36 to calculate association betas and standard errors of variants with breast cancer
risk after adjusting for the index SNPs of interest. We then re-ran the MetaXcan analyses
using the association statistics after conditioning on the index SNPs. This information was
used to determine whether the detected expression-trait associations remained significant
after adjusting for the index SNPs.

For 41 identified associated genes at the Bonferroni-corrected threshold, we also performed
analyses using individual level data in iCOGS (n=84,740) and OncoArray (n=112,133)
datasets. We generated predicted gene expression using predicting SNPs (Supplementary
Table 12), and then assessed the association between predicted gene expression and breast
cancer risk adjusting for study and nine principal components in iCOGS dataset, and country
and the first ten principal components in OncoArray dataset. Conditional analyses adjusting
for index SNPs were performed to assess potential influence of reported index SNPs on the
association between predicted gene expression and breast cancer risk. Furthermore, we
evaluated whether the predicted expression levels of genes within a same genomic region
were correlated with each other by using the OncoArray data.

INQUISIT algorithm scores for TWAS-identified genes

To evaluate whether there are additional lines of evidence supporting the identified genes as
putative target genes of GWAS identified risk SNPs beyond the scope of eQTL, we assessed
their INQUISIT algorithm scores, which have been described elsewhere’. Briefly, this
approach evaluates chromatin interactions between distal and proximal regulatory
transcription-factor binding sites and the promoters at the risk regions using Hi-C data
generated in HMECs®8 and Chromatin Interaction Analysis by Paired End Tag (ChiA-PET)
in MCF7 cells. This could detect genome-wide interactions brought about by, or associated
with, CCCTC-binding factor (CTCF), DNA polymerase 1l (POL2), and Estrogen Receptor
(ER), all involved in transcriptional regulation®8. Annotation of predicted target genes used
the Integrated Method for Predicting Enhancer Targets (IM-PET)®9, the Predicting Specific
Tissue Interactions of Genes and Enhancers (PreSTIGE) algorithm?9, Hnisz’ and
FANTOM?2, Features contributing to the scores are based on functionally important
genomic annotations such as chromatin interactions, transcription factor binding, and
eQTLs. The detailed information for the INQUISIT pipeline and scoring strategy has been
included in a previous publication’. In brief, besides assigning integral points according to
different features, we also set up-weighting and down-weighting criteria according to breast
cancer driver genes, topologically associated domain (TAD) boundaries, and gene
expression levels in relevant breast cell lines. Scores in the distal regulation category range
from 0-7, and in the promoter category from 0-4. A score of “none” represents that no
evidence was found for regulation of the corresponding gene.

Functional enrichment analysis using Ingenuity Pathway Analysis (IPA)

We performed functional enrichment analysis for the identified protein-coding genes
reaching Bonferroni corrected association threshold. To assess potential functionality of the
identified INcRNAs, we examined their co-expressed protein-coding genes determined using
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expression data of normal breast tissue of European females in GTEx. Spearman’s
correlations between protein-coding genes and identified IncRNAs of = 0.4 or < —0.4 were
used to indicate a high co-expression. Canonical pathways, top associated diseases and
biofunctions, and top networks associated with genes of interest were estimated using IPA
software3’.

Gene expression in breast cell lines

Total RNA was isolated from 18 cell lines (Supplementary Table 8) using the RNeasy Mini
Kit (Qiagen). cDNA was synthesized using the SuperScript 111 (Invitrogen) and amplified
using the Platinum SYBR Green gPCR SuperMix-UDG cocktail (Invitrogen). Two or three
primer pairs were used for each gene and the mRNA levels for each sample was measured in
technical triplicates for each primer set. The primer sequences are listed in Supplementary
Table 13. Experiments were performed using an ABI ViiA(TM) 7 System (Applied
Biosystems), and data processing was performed using ABI QuantStudio™ Software V1.1
(Applied Biosystems). The average of Ct from all the primer pairs for each gene was used to
calculate ACr. The relative quantitation of each mRNA normalizing to that in 184A1 was
performed using the comparative Ct method (AACT) and summarized in Supplementary
Figure 4.

Short interfering RNA (siRNA) silencing

184A1, MCF7 and T47D cells were reverse-transfected with siRNAs targeting genes of
interest (GOI) or a non-targeting control siRNA (consi; Shanghai Genepharma) with
RNAIMAX (Invitrogen) according to the manufacturer’s protocol. Verification of SIRNA
knockdown of gene expression by gPCR was performed 36 hours after transfection.

Proliferation and colony formation assays

For proliferation assays, MCF7 and T47D cells were trypsinized at 16 hours post-
transfection and seeded into 24 well plates to achieve ~10% confluency. Phase-contrast
images were collected with IncuCyte ZOOM (Essen Bioscience) for seven days. Duplicate
samples were assessed for each GOI siRNA transfected cells along with non-target control si
(NTCsi) treated cells in the same plate. 184A1 cells were reverse-transfected in 96 well
plates to achieve 50% confluence at 8 hours after transfection. Two independent experiments
were carried out for all SiRNAs in all three cell lines. Each cell proliferation time-course was
normalized to the baseline confluency and analyzed in GraphPad Prism. The area under the
curve was calculated for each concentration (n=4) and used to calculate corrected
proliferation (Corrected proliferation % = 100 +/- (relative proliferation in indicated siRNA
- proliferation in NTC siRNA) / knockdown efficiency (“+” if the GOI promotes
proliferation and “-” if it inhibits proliferation)). For each gene, results from two siRNAs in
two independent experiments were averaged and summarized in Figure 2 and
Supplementary Figure 6. For colony formation assays; the same number of GOI siRNA
transfected MCF7 cells was seeded in 6 well plates at 16 hours after transfection to assay
colony forming efficiency at two weeks. All siRNA-treated cells were seeded in duplicate.
Colonies (defined to consist of at least 50 cells) were fixed with methanol, stained with
crystal violet (0.5% w/v), scanned and counted using ImageJ as batch analysis by a self-
defined plug-in Macro. Correct CFE % = 100 +/- (relative CFE in indicated siRNA - CFE in
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NTC siRNA) / knockdown efficiency (“+” if the GOI promotes CF and “-” if it inhibits CF).
For each gene, results from two siRNAs in two independent experiments were averaged and
summarized in Figure 2 and Supplementary Figure 7. P-values were determined by one-way
ANOVA followed by Dunnett’s multiple comparisons test.
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Figure 1. Manhattan plot of association results from the breast cancer transcriptome-wide
association study.
Results are based on 122,977 cases and 105,974 controls. The red line represents A= 5.82 x

1076. The blue line represents A= 1.00 x 1073,
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Figure 2. Heat maps of proliferation and colony formation efficiency in breast cells.
(a) Proliferation efficiency. (b) colony formation efficiency. Error bars, SD (N=2). P-values

were determined by one-way ANOVA followed by Dunnett’s multiple comparisons test: *~-

value < 0.05. NTC: non-target control.
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