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Abstract

Breast cancer risk variants identified in genome-wide association studies explain only a small 

fraction of familial relative risk, and genes responsible for these associations remain largely 

unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide 

association study evaluating associations of genetically predicted gene expression with breast 
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cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the 

Genotype-Tissue Expression Project to establish genetic models to predict gene expression in 

breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 

8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected 

threshold of P < 5.82×10−6, including 14 genes at loci not yet reported for breast cancer. We 

silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony forming 

efficiency. Our study provides new insights into breast cancer genetics and biology.
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Breast cancer is the most common malignancy among women in many countries1. Genetic 

factors play an important role in its etiology. Since 2007, genome-wide association studies 

(GWAS) have identified approximately 170 genetic loci harboring common, low-penetrance 

variants for breast cancer6–13, but these variants explain less than 20% of familial relative 

risk7. Most disease-associated risk variants identified by GWAS are located in non-protein 

coding regions and are not in linkage disequilibrium (LD) with any nonsynonymous coding 

single nucleotide polymorphisms (SNPs)14. Many of these susceptibility variants are located 

in gene regulatory elements15,16, and it has been hypothesized that many GWAS-identified 

associations may be driven by the regulatory function of risk variants on the expression of 

nearby genes. For breast cancer, recent studies have already shown that GWAS-identified 

associations at more than 15 loci are likely due to the effect of risk variants at these loci on 

regulating the expression of either nearby or more distal genes7,9,10,13,17–22. However, for 

the large majority of the GWAS-identified breast cancer risk loci, the genes responsible for 

the associations remain unknown.

Several studies have reported that regulatory variants may account for a large proportion of 

disease heritability not yet discovered through GWAS23–25. Many of these variants may have 

a small effect size, and thus are difficult to identify in individual SNP-based GWAS, even 

with a large sample size. Applying gene-based approaches that aggregate the effects of 

multiple variants into a single testing unit may increase study power to identify novel 

disease-associated loci. Transcriptome-wide association studies (TWAS) systematically 

investigate the association of genetically predicted gene expression with disease risk, 

providing an effective approach to identify novel susceptibility genes26–29. Recently, 

Hoffman et al performed a TWAS including 15,440 cases and 31,159 controls and reported 

significant associations for five genes with breast cancer risk30. However, the sample size of 

that study was relatively small and several reported associations were not significant after 

Bonferroni correction. Herein, we report results from a larger TWAS of breast cancer that 

used the MetaXcan method26 to analyze summary statistics data from 122,977 cases and 

105,974 controls of European descent from the Breast Cancer Association Consortium 

(BCAC).
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Results

Gene expression prediction models

The study design is shown in Supplementary Figure 1. We used transcriptome and 

genotyping data from 67 women of European descent included in the Genotype-Tissue 

Expression (GTEx) project to build genetic models to predict RNA expression levels for 

each gene expressed in normal breast tissues, by applying the elastic net method (α=0.5) 

with ten-fold cross-validation. Genetically regulated expression was estimated using variants 

within a 2 MB window flanking the respective gene boundaries, inclusive. SNPs with a 

minor allele frequency of at least 0.05 and included in the HapMap Phase 2 were used for 

model building. Of the models built for 12,696 genes, 9,109 showed a prediction 

performance (R2) of at least 0.01 (≥10% correlation between predicted and observed 

expression). For genes for which the expression could not be predicted well using this 

approach, we built models using only SNPs located in the promoter or enhancer regions, as 

predicted using three breast cell lines in the Roadmap Epigenomics Project/Encyclopedia of 

DNA Elements Project. This approach leverages information from functional genomics and 

reduces the number of variants for variable selection, therefore potentially improving 

statistical power. This enabled us to build genetic models for additional 3,715 genes with 

R2≥0.01. Supplementary Table 1 provides detailed information regarding the performance 

threshold and types of models built. Overall, genes that were predicted with R2≥0.01 in 

GTEx data were also predicted well in The Cancer Genome Atlas (TCGA) tumor-adjacent 

normal tissue data (correlation coefficient of 0.55 for R2 in two datasets; Supplementary 

Figure 2). Based on model performance in GTEx and TCGA, we prioritized 8,597 genes for 

analyses of the associations between predicted gene expression and breast cancer risk using 

the following criteria: 1) genes with a model prediction R2≥0.01 in the GTEx set (10% 

correlation) and a Spearman’s correlation coefficient of ≥0.1 in the external validation 

experiment, 2) genes with a prediction R2≥0.09 (30% correlation) in the GTEx set 

regardless of their performance in the TCGA set, 3) genes with a prediction R2≥0.01 in the 

GTEx set (10% correlation) that could not be evaluated in the TCGA set because of a lack of 

data.

Associations of predicted expression with breast cancer

Using the MetaXcan method26, we performed association analyses to evaluate predicted 

gene expression and breast cancer risk using the meta-analysis summary statistics of SNPs 

generated for 122,977 cases and 105,974 controls of European ancestry included in BCAC. 

For the majority of the tested genes, most of the SNPs selected for prediction models were 

used for the association analyses (e.g., ≥80% predicting SNPs used for 95.6% of the tested 

genes). Lambda 1,000 (λ1,000), a standardized estimate of the genomic inflation scaling to a 

study of 1,000 cases and 1,000 controls, was 1.004 in our study (Quantile-quantile (QQ) plot 

presented in Supplementary Figure 3 (a)). Of the 8,597 genes evaluated, we identified 179 

whose predicted expression was associated with breast cancer risk at P<1.05×10−3, a FDR-

corrected significance level (Figure 1, Supplementary Table 2). Of these, 48 showed a 

significant association at the Bonferroni-corrected threshold of P≤5.82×10−6 (Figure 1, 

Tables 1–3), including 14 genes located at 11 loci that are 500 kb away from any risk variant 

identified in previous GWAS (Table 1). An association between lower predicted expression 
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and increased breast cancer risk was detected for LRRC3B (3p24.1), SPATA18 (4q12), UBD 
(6p22.1), MIR31HG (9p21.3), RIC8A (11p15.5), B3GNT1 (11q13.2), GALNT16 (14q24.1) 

and MAN2C1 and CTD-2323K18.1 (15q24.2). Conversely, an association between higher 

predicted expression and increased breast cancer risk was identified for ZSWIM5 (1p34.1), 

KLHDC10 (7q32.2), RP11–867G23.10 (11q13.2), RP11–218M22.1 (12p13.33) and 

PLEKHD1 (14q24.1). The remaining 34 associated genes are located at known breast cancer 

susceptibility loci (Tables 2–3). Among them, 23 have not yet been implicated as genes 

responsible for association signals identified at these loci through expression quantitative 

trait loci (eQTL) and/or functional studies, and do not harbor GWAS or fine-mapping 

identified risk variants (Table 2), while the other eleven (KLHDC7A7, ALS2CR1231, 

CASP831,32, ATG109, SNX3233, STXBP434,35 , ZNF4048, ATP6AP1L9, RMND117, 

L3MBTL36, and RCCD110) had been reported as potential causal genes at breast cancer 

susceptibility loci or harbor GWAS or fine-mapping identified risk variants (Table 3). Except 

for RP11–73O6.3 and L3MBTL3, there was no evidence of heterogeneity (I2<0.2) across 

the iCOGS, OncoArray, and GWAS datasets included in our analyses (Supplementary Table 

3). Overall, we identified 37 novel susceptibility genes for breast cancer and confirmed 

eleven genes known to potentially play a role in breast cancer susceptibility.

To determine whether the associations between predicted gene expression and breast cancer 

risk were independent of GWAS-identified association signals, we performed conditional 

analyses adjusting for the GWAS-identified risk SNPs closest to the TWAS-identified gene 

(Supplementary Table 4)36. We found that the associations for 11 genes (LRRC3B, 

SPATA18, KLHDC10, MIR31HG, RIC8A, B3GNT1, RP11–218M22.1, MAN2C1, 

CTD-2323K18.1 (Table 1), ALK, CTD-3051D23.1 (Table 2)) remained statistically 

significant at P<5.82×10−6 (Tables 1–3). This suggests the expression of these genes may be 

associated with breast cancer risk independent of the GWAS-identified risk variant(s). For 

nine of the genes (SPATA18, KLHDC10, MIR31HG, RIC8A, RP11–218M22.1, MAN2C1, 

CTD-2323K18.1 (Table 1), ALK, and CTD-3051D23.1 (Table 2)), the significance of the 

association remained essentially unchanged, suggesting these associations may be entirely 

independent of GWAS-identified association signals.

Of the 131 genes showing an association at 5.82×10−6 < P <1.05×10−3 (significant after 

FDR-correction but not Bonferroni-correction), 38 are located at GWAS-identified risk loci 

(Table 4). Except for RP11–400F19.8, there was no evidence of heterogeneity in TWAS 

association (I2<0.2) across the iCOGS, OncoArray, and GWAS studies (Supplementary 

Table 3). After adjusting for the risk SNPs, associations for MTHFD1L, PVT1, RP11–
123K19.1, FES, RP11–400F19.8, CTD-2538G9.5, and CTD-3216D2.5 remained significant 

at p≤1.05×10−3, again suggesting that the association of these genes with breast cancer risk 

may be independent of the GWAS-identified association signals (Table 4).

For 41 of the 48 associated genes that reached the Bonferroni-corrected significant level, we 

obtained individual-level data from subjects included in the iCOGS (n=84,740) and 

OncoArray (n=112,133) datasets, which was 86% of the subjects included in the analysis 

using summary statistics (Supplementary Table 5). The results from the analysis using 

individual-level data were very similar to those described above using MetaXcan analyses 

(Pearson correlation of z-scores was 0.991 for iCOGS data and 0.994 for OncoArray data), 
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although not all associations reached the Bonferroni-corrected significant level, possibly due 

to a smaller sample size (Supplementary Table 5). Conditional analyses using individual 

level data also revealed consistent results compared with analyses using summary data. We 

found that for several genes within the same genomic region, their predicted expression was 

correlated with each other (Tables 1–3). The associations between predicted expression of 

PLEKHD1 and ZSWIM5 and breast cancer risk were largely influenced by their 

corresponding closest risk variants identified in GWAS, although these risk variants are 

>500 kb away from these genes (Table 1). There were significant correlation of rs999737 

and rs1707302 with genetically predicted expression of PLEKHD1 (r = −0.47 in OncoArray 

dataset and −0.48 in iCOGS dataset) and ZSWIM5 (r = 0.50 in OncoArray dataset and 0.51 

in iCOGS dataset), respectively.

INQUISIT algorithm scores

For the 48 associated genes after Bonferroni correction, we assessed their integrated 

expression quantitative trait and in silico prediction of GWAS target (INQUISIT) scores7 to 

assess whether there are other evidence beyond the scope of eQTL for supporting our 

TWAS-identified genes as candidate target genes at GWAS-identified loci. The detailed 

methodology for INQUISIT scores have been described elsewhere7. In brief, a score for 

each gene-SNP pair is calculated across categories representing potential regulatory 

mechanisms - distal or proximal gene regulation (promoter). Features contributing to the 

score are based on functionally important genomic annotations such as chromatin 

interactions, transcription factor binding, and eQTLs. Compared with evidence from eQTL 

only, INQUISIT scores incorporate additional lines of evidence, including distal regulations. 

The INQUISIT scores for our identified genes are shown in Supplementary Table 6. Except 

for UBD with a very low score in the distal regulation category (0.05), none of the genes at 

novel loci (Table 1) showed evidence to be potential target genes for GWAS-identified breast 

cancer susceptibility loci. This is interesting and within the expectation since these genes 

may represent novel association signals. There was evidence suggesting that RP11–
439A17.7, NUDT17, ANKRD34A, BTN3A2, AP006621.6, RPLP2, LRRC37A2, 

LRRC37A, KANSL1-AS1, CRHR1 and HAPLN4 listed in Table 2, and all eleven genes 

listed in Table 3, may be target genes for risk variants at these loci (Supplementary Table 6). 

For NUDT17, ANKRD34A, RPLP2, LRRC37A2, LRRC37A, KANSL1-AS1, CRHR1, 

HAPLN4, KLHDC7A, ALS2CR12, CASP8, ATG10, ATP6AP1L, L3MBTL3, RMND1, 

SNX32, RCCD1, STXBP4 and ZNF404, the INQUISIT scores were not derived only from 

eQTL data, providing orthogonal support for these genes. For these loci, the associations of 

candidate causal SNPs with breast cancer risk may be mediated through these genes. This is 

in general consistent with the findings from the conditional analyses.

Pathway enrichment analyses

Ingenuity Pathway Analysis (IPA)37 suggested potential enrichment of cancer-related 

functions for the identified protein-coding genes (Supplementary Table 7). The top canonical 

pathways identified included apoptosis related pathways (Granzyme B signaling (p=0.024) 

and cytotoxic T lymphocyte-mediated apoptosis of target cells (p=0.046)), immune system 

pathway (inflammasome pathway (p=0.030)), and tumoricidal function of hepatic natural 

killer cells (p=0.036). The identified pathways are largely consistent with previous findings 
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7. For the associated lncRNAs, pathway analysis of their highly co-expressed protein-coding 

genes also revealed potential over-representation of cancer-related functions (Supplementary 

Table 7).

In vitro assays of gene functions

To assess the function of genes whose high predicted expression were associated with 

increased breast cancer risk, we selected 13 genes for knockdown experiments in breast 

cells: ZSWIM5, KLHDC10, RP11–218M22.1 and PLEKHD1 (Table 1), UBLCP1, 

AP006621.6, RP11–467J12.4, CTD-3032H12.1 and RP11–15A1.7 (Table 2), and 

ALS2CR12, RMND1, STXBP4 and ZNF404 (Table 3). As negative controls, we selected 

B2M, ARHGDIA and ZAP70 using the criteria: 1) ≥2 MB from any known breast cancer 

risk locus; 2) not an essential gene in breast cancer38,39; and 3) not predicted to be a target 

gene in INQUISIT. In addition, as positive controls, we included PIDD1 (Table 4)7, 

NRBF220 and ABHD822, which have been functionally validated as target genes at breast 

cancer risk loci. We performed quantitative PCR (qPCR) on a panel of three ‘normal’ 

mammary epithelial and 15 breast cancer cell lines to analyze their expression levels 

(Supplementary Figure 4 and Supplementary Table 8). All 19 genes were expressed in the 

normal mammary epithelial line 184A140 and the luminal breast cancer cell lines, MCF7 

and T47D, so we used these cell lines for the proliferation assay, and MCF7 for the colony 

formation assay41. We also evaluated SNX32, ALK and BTN3A2 by qPCR, but they were 

not expressed in T47D and MCF7 cells; therefore they were not evaluated further. It was 

difficult to design siRNAs against RP11–867G23.1 and RP11–53O19.1 because they both 

have multiple transcripts with limited, GC-rich regions in common. We did not include 

RPLP2 because it is already known to be an essential gene for breast cancer survival42. 

Knockdown of the 19 tested genes was achieved by small short interfering RNA (siRNA) 

(Supplementary Table 9) and the knockdown efficiency was calculated in 184A1, MCF7 and 

T47D for each siRNA pair. Robust knockdown of the gene of interests (GOI) was validated 

by qPCR with the majority of the siRNAs (Supplementary Figure 5).

To evaluate the survival and proliferation ability of cells following gene interruption, we 

used an IncuCyte to quantify cell proliferation in real time and quantified the corrected 

proliferation of cells with knocking down of GOI in comparison to that of cells with non-

target control (NTC) siRNA). As expected, knockdown of the three negative control genes 

(B2M, ARHGDIA and ZAP70) did not significantly change cell proliferation in any of the 

three cell lines (Figure 2A, Supplementary Figure 6). However, with the exception of 

UBLCP1, RMND1 and STXBP4, knockdown of all other genes (11 TWAS-identified genes 

along with two known genes, ABHD8 and NRBF2) resulted in significantly decreased cell 

proliferation in 184A1 normal breast cells, with KLHDC10, PLEKHD1, RP11–218M22.1, 
AP006621.6, ZNF404, RP11–467J12.4, CTD-3032H12.1 and STXBP4 showing a similar 

effect in one or both cancer cell lines. Down-regulation of three lncRNAs (RP11–218M22.1, 

RP11–467J12.4 and CTD-3032H12.1) resulted in significant reduction in cell proliferation 

in all three cell lines. We also evaluated the effect of inhibition of these genes on colony 

forming ability in MCF7 cells. Knockdown of the three negative control genes did not 

significantly affect colony forming efficiency (CFE). By contrast, knockdown of PIDD1, 
RP11–15A1.7, RP11–218M22.1, AP006621.6, ZNF404, RP11–467J12.4 and 
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CTD-3032H12.1 resulted in significantly decreased CFE in MCF7 cells compared to the 

NTC (Figure 2B, Supplementary Figure 7).

Discussion

This is the largest study to systematically evaluate associations of genetically predicted gene 

expression across the human transcriptome with breast cancer risk. We identified 179 genes 

showing a significant association at the FDR-corrected significance level. Of these, 48 genes 

showed an association at the Bonferroni-corrected threshold, including 14 at genomic loci 

that have not previously been implicated for breast cancer risk. Of the 34 genes located at 

known risk loci, 23 have not previously been shown to be the targets of GWAS-identified 

risk SNPs at corresponding loci and not harbor any risk SNPs. Our study provides 

substantial new information to improve the understanding of genetics and etiology for breast 

cancer.

It is possible that TWAS-identified genes may be associated with breast cancer through their 

correlation with disease causal genes. To determine the potential functional significance of 

TWAS-identified genes and provide evidence for causal inference, we knocked down 13 

genes for which high predicted levels of expression were associated with an increased breast 

cancer risk, in one normal and two breast cancer cell lines, and measured the effect on 

proliferation and CFE. Although there was some variation between cell lines, knockdown of 

11 of the 13 genes showed an effect in at least one cell line, particularly on proliferation in 

184A1 normal breast cells; the effects were strongest and most consistent for the lncRNAs, 

RP11–218M22.1, RP11–467J12.4 and CTD-3032H12.1. The observation of a more 

consistent effect in the normal breast cell line compared with the cancer cell lines is not 

surprising as cancer cell lines have increased capacity to handle gene interference through 

mutations which enhance cell survival. Rewiring of pathways and compensatory 

mechanisms is a hallmark of cancer. Knockdown of PIDD1, NRBF2 and ABHD8¸ for which 

breast cancer risk associated haplotypes have been shown to be associated with increased 

expression in reporter assays7,20,22, affected either proliferation or colony forming 

efficiency, supporting the results from this study.

Some of the genes with strong functional evidence from our study have been reported to 

have important roles in carcinogenesis. For example, RP11–467J12.4 (PR-lncRNA-1) is a 

p53-regulated lncRNA that modulates gene expression in response to DNA damage 

downstream of p5343. STXBP4 encodes Syntaxin binding protein 4, a scaffold protein that 

can stabilise and prevent degradation of an isoform of p63, a member of the p53 tumor 

suppressor family44. KLHDC10 encodes a member of the Kelch superfamily that can 

activate apoptosis signal-regulating kinase 1, contributing to oxidative stress-induced cell 

death45. Notably, another member of this superfamily, KLHDC7A, has recently been 

identified as the target gene at the 1p36 breast cancer risk locus7.

SNX32, ALK and BTN3A2 are also likely susceptibility genes for breast cancer risk. 

However, their low or absent expression in our chosen breast cell lines prevented further 

functional analysis. ALK (Anaplastic lymphoma kinase) copy number gain and 

overexpression have been reported in aggressive and metastatic breast cancers46. 
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Therapeutic targeting of ALK rearrangement has significantly improved survival in 

advanced ALK-positive lung cancer47, making it an attractive target for breast and other 

cancers. BTN3A2 is a member of the B7/butyrophilin-like group of Ig superfamily receptors 

modulating the function of T-lymphocytes. Over-expression of BTN3A2in epithelial ovarian 

cancer is associated with higher infiltrating immune cells and a better prognosis48.

Our analyses identified multiple genes with reduced expression associated with increased 

breast cancer risk. Among them, LRRC3B and CASP8 are putative tumor suppressors in 

multiple cancers, including breast cancer. Leucine-rich repeat-containing 3B (LRRC3B) is a 

putative LRR-containing transmembrane protein, which is frequently inactivated via 

promoter hypermethylation leading to inhibition of cancer cell growth, proliferation, and 

invasion49. CASP8 encodes a member of the cysteine-aspartic acid protease family, which 

play a central role in cell apoptosis. Previous studies have suggested that caspase-8 may act 

as a tumor suppressor in certain types of lung cancer and neuroblastoma, although this 

function has not yet been demonstrated in breast cancer. Notably, several large association 

studies have identified SNPs at the 2q33/CASP8 locus associated with increased breast 

cancer risk31,50. Consistent with our data, eQTL analyses showed that the risk alleles for 

breast cancer were associated with reduced CASP8 mRNA levels in both peripheral blood 

lymphocytes and normal breast tissue31.

For seven of the genes listed in Tables 1 and 2, we found some evidence from studies using 

tumor tissues, in vitro or in vivo experiments linking them to cancer risk (Supplementary 

Table 10), although their association with breast cancer has not been demonstrated in human 

studies. For five of them, including LRRC3B, SPATA18, RIC8A, ALK and CRHR1, 

previous in vitro and in vivo experiments and human tissue studies showed a consistent 

direction of the association as demonstrated in our studies. For two other genes (UBD and 

MIR31HG), however, results from previous studies were inconsistent, reporting both 

potential promoting and inhibiting effects on breast cancer development. Future studies are 

needed to evaluate functions of these genes.

We included a large number of cases and controls, providing strong statistical power for the 

association analysis. This large sample size enabled us to identify a large number of 

candidate breast cancer susceptibility genes, much larger than the number identified in a 

TWAS study with a sample size of about 20% of ours30. The previous study included 

subjects of different races, which could affect the results as linkage disequilibrium (LD) 

patterns differ by races. Of the five genes reported in that smaller TWAS that showed a 

suggestive association with breast cancer risk, the association for the RCCD1 gene was 

replicated in our study (Table 3). The other four genes (ANKLE1, DHODH, ACAP1 and 

LRRC25) were not evaluated in our study because of unsatisfactory performance of our 

breast specific models for these genes which were built using the GTEx reference dataset 

including only female European descendants.

A substantial proportion of SNPs included in the OncoArray and iCOGS were selected from 

breast cancer GWAS and fine-mapping analyses, and thus these arrays were enriched for 

association signals with breast cancer risk. As a result, the overall λ value for the BCAC 

association analyses of individual variants is 1.26 after adjusting for population 
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stratifications (QQ plot in Supplementary Figure 3 (b))7. The λ value for the associations of 

the ~257,000 SNPs included in the gene expression prediction models of the 8,597 genes 

tested in our association analysis is 1.40 (QQ plot in Supplementary Figure 3 (c)). This 

higher λ value is perhaps expected because of a potential further enrichment of breast cancer 

associated signals in the set of SNPs selected to predict gene expression. There could be 

additional gain of power (and thus a higher λ value) in TWAS as it aggregates the effect of 

multiple SNPs to predict gene expression and use genes as the unit for association analyses. 

The lambda (λ) for our associated analyses of 8,597 genes was 1.51 (QQ plot presented in 

Supplementary Figure 3 (a)) likely due to the potential enrichment and power gain as well as 

our large sample size, and the highly polygenic nature of the disease7,51. Interestingly, high 

λ values were also found in recent large studies of other polygenic traits, such as body mass 

index (BMI) (λ = 1.99) and height (λ = 2.7)52,53. The λ1,000, a standardized estimate of the 

genomic inflation scaling to a study of 1,000 cases and 1,000 controls, is 1.004 in our study.

The statistical power of our study is very high to detect associations for genes with a 

relatively high cis-heritability (h2) (Supplementary Figure 8). For example, our study has 

80% statistical power to detect an association with breast cancer risk at P<5.82×10−6 with 

an OR of 1.07 or higher per one standard deviation increase (or decrease) in the expression 

level of genes with an h2 of 0.1 or higher. One limitation of our study is the small sample 

size for building gene expression prediction models, which may have affected the precision 

of model parameter estimates. We expect that models built with a larger sample size will 

identify additional association signals. We used samples from women of European origin in 

model building, given differences in gene expression patterns between males and females 

and in genetic architecture across ethnicities54. We also used gene expression data of tumor-

adjacent normal tissue samples from European descendants in TCGA as an external 

validation step to prioritize genes for association analyses. Given potential somatic 

alterations in tumor-adjacent normal tissues, we retained all models showing a prediction R2 

of at least 0.09 in GTEx, regardless of their performance in TCGA. Not all genes have a 

significant hereditary component in expression regulation, and thus these genes could not be 

investigated in our study. For example, previous studies have provided strong evidence to 

support a significant role of the TERT, ESR1, CCND1, IGFBP5, TET2 and MRPS30 genes 

in the etiology of breast cancer. However, expression of these genes cannot be predicted well 

using the data from female European descendants included in the GTEx and thus they were 

not included in our association analyses. Supplementary Table 11 summarizes the 

performance of prediction models and association results for breast cancer target genes 

reported previously at GWAS-identified loci.

In summary, our study has identified multiple gene candidates that can be further 

functionally characterized. The silencing experiments we performed suggest that many of 

the genes identified are likely to mediate risk of breast cancer by affecting proliferation or 

CFE, two hallmarks of cancer. Further investigation of genes identified in our study will 

provide additional insight into the biology and genetics of breast cancer.
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Methods

The key elements of the study design, statistical parameters, materials and reagents, and 

human subjects are included in the Life Sciences Reporting Summary.

Building of gene expression prediction models

We used transcriptome and high-density genotyping data from the Genotype-Tissue 

Expression (GTEx) study to establish prediction models for genes expressed in normal 

breast tissues. Details of the GTEx have been described elsewhere55. Genomic DNA 

samples obtained from study subjects included in the GTEx were genotyped using Illumina 

OMNI 5M or 2.5M SNP Array and RNA samples from 51 tissue sites were sequenced to 

generate transcriptome profiling data. Genotype data were processed according to the GTEx 

protocol (see URLs). SNPs with a call rate < 98%, with differential missingness between the 

two array experiments (5M/2.5M Arrays), with Hardy-Weinberg equilibrium p-value < 10−6 

(among subjects of European ancestry), or showing batch effects were excluded. One 

Klinefelter individual, three related individuals, and a chromosome 17 trisomy individual 

were also excluded. The genotype data were imputed to the Haplotype Reference 

Consortium reference panel56 using Minimac3 for imputation and SHAPEIT for 

prephasing57,58. SNPs with high imputation quality (r2 ≥ 0.8), minor allele frequency (MAF) 

≥ 0.05, and included in the HapMap Phase 2 version, were used to build expression 

prediction models. For gene expression data, we used Reads Per Kilobase per Million 

(RPKM) units from RNA-SeQC59. Genes with a median expression level of 0 RPKM across 

samples were removed, and the RPKM values of each gene were log2 transformed. We 

performed quantile normalization to bring the expression profile of each sample to the same 

scale, and performed inverse quantile normalization for each gene to map each set of 

expression values to a standard normal. We adjusted for the top ten principal components 

(PCs) derived from genotype data and the top 15 probabilistic estimation of expression 

residuals (PEER) factors to correct for batch effects and experimental confounders in model 

building60. Genetic and transcriptome data from 67 female subjects of European descent 

without a prior breast cancer diagnosis were used to build gene expression prediction models 

for this study.

We built an expression prediction model for each gene by using the elastic net method as 

implemented in the glmnet R package, with α=0.5, as recommended by Gamazon et al27. 

The genetically regulated expression for each gene was estimated by including variants 

within a 2 MB window flanking the respective gene boundaries, inclusive. Expression 

prediction models were built for protein coding genes, long non-coding RNAs (lncRNAs), 

microRNAs (miRNAs), processed transcripts, immunoglobulin genes, and T cell receptor 

genes, according to categories described in the Gencode V19 annotation file (see URLs). 

Pseudogenes were not included in the present study because of potential concerns of 

inaccurate calling61. Ten-fold cross-validation was used to validate the models internally. 

Prediction R2 values (the square of the correlation between predicted and observed 

expression) were generated to estimate the prediction performance of each of the gene 

prediction models established.
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For genes that cannot be predicted well using the above approach, we built models using 

only SNPs located in predicted promoter or enhancer regions in breast cell lines. This 

approach reduces the number of variants for model building, and thus potentially improves 

model accuracy, by increasing the ratio of sample size to effective degrees of freedom.

SNP-level annotation data in three breast cell lines, namely, Breast Myoepithelial Primary 

Cells (E027), Breast variant Human Mammary Epithelial Cells (vHMEC) (E028), and 

HMEC Mammary Epithelial Primary Cells (E119) in the Roadmap Epigenomics Project/

Encyclopedia of DNA Elements Project16, were downloaded from HaploReg (Version 4.0, 

assessed on December 6, 2016) (see URLs). SNPs in regions classified as promoters (TssA, 

TssAFlnk), enhancers (Enh, EnhG), or regions with both promoter and enhancer signatures 

(ExFlnk) according to the core 15 chromatin state model16 in at least one of the cell lines 

were retained as input SNPs for model building.

Evaluating performance of gene expression prediction models using The Cancer Genome 
Atlas (TCGA) data

To assess further the validity of the models, we performed external validation using data 

generated in tumor-adjacent normal breast tissue samples obtained from 86 European-

ancestry female breast cancer patients included in the TCGA. Genotype data were imputed 

using the same approach as described for GTEx data. Expression data were processed and 

normalized using a similar approach as described above. The predicted expression level for 

each gene was calculated using the model established using GTEx data and then compared 

with the observed level of that gene using the Spearman’s correlation.

Evaluating statistical power for association tests

We conducted a simulation analysis to assess the power of our TWAS analysis. Specifically, 

we set the number of cases and controls to be 122,977 and 105,974, respectively, and 

generated the gene expression levels from the empirical distribution of predicted gene 

expression levels in the BCAC. We calculated statistical power at P<5.82×10−6 (the 

significance level used in our TWAS) according to cis-heritability (h2) which we aim to 

capture using gene expression prediction models (R2). The results based on 1000 replicates 

are summarized in Supplementary Figure 8. Based on the power calculation, our TWAS 

analysis has 80% power to detect a minimum odds ratio of 1.11, 1.07, 1.05, 1.04, or 1.03 for 

breast cancer risk per one standard deviation increase (or decrease) in the expression level of 

a gene whose cis-heritability is 5%, 10%, 20%, 40%, or 60%, respectively.

Association analyses of predicted gene expression with breast cancer risk

We used the following criteria to select genes for the association analysis: 1) with a model 

prediction R2 of ≥ 0.01 in GTEx and a Spearman’s correlation coefficient of ≥ 0.1 in TCGA, 

2) with a prediction R2 of ≥ 0.09 in GTEx regardless of the performance in TCGA, 3) with a 

prediction R2 of ≥ 0.01 in GTEx but unable to be evaluated in TCGA. The second group of 

genes was selected because some gene expression levels might have changed in TCGA 

tumor-adjacent normal tissues, and thus it is anticipated that some genes may show low 

prediction performance in TCGA data due to the influence of tumor growth62,63. Overall, a 
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total of 8,597 genes met the criteria and were evaluated for their expression-trait 

associations.

To identify novel breast cancer susceptibility loci and genes, the MetaXcan method, as 

described elsewhere, was used for the association analyses26. Briefly, the formula:

Zg ≈   ∑
l ∈ Modelg

wlg
σl
σg

 
βl

se(βl)

was used to estimate the Z-score of the association between predicted expression and breast 

cancer risk. Here wlg is the weight of SNP l for predicting the expression of gene g, βl and 

se(βl) are the GWAS association regression coefficient and its standard error for SNP l, and 

σl and σg are the estimated variances of SNP l and the predicted expression of gene g 

respectively. Therefore, the weights for predicting gene expression, GWAS summary 

statistics results, and correlations between model predicting SNPs are the input variables for 

the MetaXcan analyses. For this study we estimated correlations between SNPs included in 

the prediction models using the phase 3, 1000 Genomes Project data focusing on European 

population.

For the association analysis, we used the summary statistics data of genetic variants 

associated with breast cancer risk generated in 122,977 breast cancer patients and 105,974 

controls of European ancestry from the Breast Cancer Association Consortium (BCAC). The 

details of the BCAC have been described elsewhere7,9,13,64,65. Briefly, 46,785 breast cancer 

cases and 42,892 controls of European ancestry were genotyped using a custom Illumina 

iSelect genotyping array (iCOGS) containing ~211,155 variants. A further 61,282 cases and 

45,494 controls of European ancestry were genotyped using the OncoArray including 

570,000 SNPs (see URLs). Also included in this analysis were data from nine GWAS 

studies including 14,910 breast cancer cases and 17,588 controls of European ancestry. 

Genotype data from iCOGS, OncoArray and GWAS were imputed using the October 2014 

release of the 1000 Genomes Project data as reference. Genetic association results for breast 

cancer risk were combined using inverse variance fixed effect meta-analyses7. For our study, 

only SNPs with imputation r2 ≥ 0.3 were used. All participating BCAC studies were 

approved by their appropriate ethics review boards. Relevant ethical regulations had been 

complied. This study was approved by the BCAC Data Access Coordination Committee.

Lambda 1,000 (λ1,000) was calculated to represent a standardized estimate of the genomic 

inflation scaling to a study of 1,000 cases and 1,000 controls, using the following formula: 

λ1,000=1+(λobs-1) × (1/ncases+1/ncontrols)/(1/1,000cases+1/1,000controls)66,67. We used a 

Bonferroni corrected p threshold of 5.82×10−6 (0.05/8,597) to determine a statistically 

significant association for the primary analyses. To identify additional gene candidates at 

previously identified susceptibility loci, we also used a false discovery rate (FDR) corrected 

p threshold of 1.05×10−3 (FDR ≤ 0.05) to determine a significant association. Associated 

genes with an expression of >0.1 RPKM in less than 10 individuals in GTEx data were 

excluded as the corresponding prediction models may not be stable.
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To determine whether the predicted expression-trait associations were independent of the top 

signals identified in previous GWAS, we performed GCTA-COJO analyses developed by 

Yang et al36 to calculate association betas and standard errors of variants with breast cancer 

risk after adjusting for the index SNPs of interest. We then re-ran the MetaXcan analyses 

using the association statistics after conditioning on the index SNPs. This information was 

used to determine whether the detected expression-trait associations remained significant 

after adjusting for the index SNPs.

For 41 identified associated genes at the Bonferroni-corrected threshold, we also performed 

analyses using individual level data in iCOGS (n=84,740) and OncoArray (n=112,133) 

datasets. We generated predicted gene expression using predicting SNPs (Supplementary 

Table 12), and then assessed the association between predicted gene expression and breast 

cancer risk adjusting for study and nine principal components in iCOGS dataset, and country 

and the first ten principal components in OncoArray dataset. Conditional analyses adjusting 

for index SNPs were performed to assess potential influence of reported index SNPs on the 

association between predicted gene expression and breast cancer risk. Furthermore, we 

evaluated whether the predicted expression levels of genes within a same genomic region 

were correlated with each other by using the OncoArray data.

INQUISIT algorithm scores for TWAS-identified genes

To evaluate whether there are additional lines of evidence supporting the identified genes as 

putative target genes of GWAS identified risk SNPs beyond the scope of eQTL, we assessed 

their INQUISIT algorithm scores, which have been described elsewhere7. Briefly, this 

approach evaluates chromatin interactions between distal and proximal regulatory 

transcription-factor binding sites and the promoters at the risk regions using Hi-C data 

generated in HMECs68 and Chromatin Interaction Analysis by Paired End Tag (ChiA-PET) 

in MCF7 cells. This could detect genome-wide interactions brought about by, or associated 

with, CCCTC-binding factor (CTCF), DNA polymerase II (POL2), and Estrogen Receptor 

(ER), all involved in transcriptional regulation68. Annotation of predicted target genes used 

the Integrated Method for Predicting Enhancer Targets (IM-PET)69, the Predicting Specific 

Tissue Interactions of Genes and Enhancers (PreSTIGE) algorithm70, Hnisz71 and 

FANTOM72. Features contributing to the scores are based on functionally important 

genomic annotations such as chromatin interactions, transcription factor binding, and 

eQTLs. The detailed information for the INQUISIT pipeline and scoring strategy has been 

included in a previous publication7. In brief, besides assigning integral points according to 

different features, we also set up-weighting and down-weighting criteria according to breast 

cancer driver genes, topologically associated domain (TAD) boundaries, and gene 

expression levels in relevant breast cell lines. Scores in the distal regulation category range 

from 0–7, and in the promoter category from 0–4. A score of “none” represents that no 

evidence was found for regulation of the corresponding gene.

Functional enrichment analysis using Ingenuity Pathway Analysis (IPA)

We performed functional enrichment analysis for the identified protein-coding genes 

reaching Bonferroni corrected association threshold. To assess potential functionality of the 

identified lncRNAs, we examined their co-expressed protein-coding genes determined using 
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expression data of normal breast tissue of European females in GTEx. Spearman’s 

correlations between protein-coding genes and identified lncRNAs of ≥ 0.4 or ≤ −0.4 were 

used to indicate a high co-expression. Canonical pathways, top associated diseases and 

biofunctions, and top networks associated with genes of interest were estimated using IPA 

software37.

Gene expression in breast cell lines

Total RNA was isolated from 18 cell lines (Supplementary Table 8) using the RNeasy Mini 

Kit (Qiagen). cDNA was synthesized using the SuperScript III (Invitrogen) and amplified 

using the Platinum SYBR Green qPCR SuperMix-UDG cocktail (Invitrogen). Two or three 

primer pairs were used for each gene and the mRNA levels for each sample was measured in 

technical triplicates for each primer set. The primer sequences are listed in Supplementary 

Table 13. Experiments were performed using an ABI ViiA(TM) 7 System (Applied 

Biosystems), and data processing was performed using ABI QuantStudio™ Software V1.1 

(Applied Biosystems). The average of Ct from all the primer pairs for each gene was used to 

calculate ΔCт. The relative quantitation of each mRNA normalizing to that in 184A1 was 

performed using the comparative Ct method (ΔΔCт) and summarized in Supplementary 

Figure 4.

Short interfering RNA (siRNA) silencing

184A1, MCF7 and T47D cells were reverse-transfected with siRNAs targeting genes of 

interest (GOI) or a non-targeting control siRNA (consi; Shanghai Genepharma) with 

RNAiMAX (Invitrogen) according to the manufacturer’s protocol. Verification of siRNA 

knockdown of gene expression by qPCR was performed 36 hours after transfection.

Proliferation and colony formation assays

For proliferation assays, MCF7 and T47D cells were trypsinized at 16 hours post-

transfection and seeded into 24 well plates to achieve ~10% confluency. Phase-contrast 

images were collected with IncuCyte ZOOM (Essen Bioscience) for seven days. Duplicate 

samples were assessed for each GOI siRNA transfected cells along with non-target control si 

(NTCsi) treated cells in the same plate. 184A1 cells were reverse-transfected in 96 well 

plates to achieve 50% confluence at 8 hours after transfection. Two independent experiments 

were carried out for all siRNAs in all three cell lines. Each cell proliferation time-course was 

normalized to the baseline confluency and analyzed in GraphPad Prism. The area under the 

curve was calculated for each concentration (n=4) and used to calculate corrected 

proliferation (Corrected proliferation % = 100 +/− (relative proliferation in indicated siRNA 

- proliferation in NTC siRNA) / knockdown efficiency (“+” if the GOI promotes 

proliferation and “-” if it inhibits proliferation)). For each gene, results from two siRNAs in 

two independent experiments were averaged and summarized in Figure 2 and 

Supplementary Figure 6. For colony formation assays; the same number of GOI siRNA 

transfected MCF7 cells was seeded in 6 well plates at 16 hours after transfection to assay 

colony forming efficiency at two weeks. All siRNA-treated cells were seeded in duplicate. 

Colonies (defined to consist of at least 50 cells) were fixed with methanol, stained with 

crystal violet (0.5% w/v), scanned and counted using ImageJ as batch analysis by a self-

defined plug-in Macro. Correct CFE % = 100 +/− (relative CFE in indicated siRNA - CFE in 
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NTC siRNA) / knockdown efficiency (“+” if the GOI promotes CF and “-” if it inhibits CF). 

For each gene, results from two siRNAs in two independent experiments were averaged and 

summarized in Figure 2 and Supplementary Figure 7. P-values were determined by one-way 

ANOVA followed by Dunnett’s multiple comparisons test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot of association results from the breast cancer transcriptome-wide 
association study.
Results are based on 122,977 cases and 105,974 controls. The red line represents P = 5.82 × 

10−6. The blue line represents P = 1.00 × 10−3.
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Figure 2. Heat maps of proliferation and colony formation efficiency in breast cells.
(a) Proliferation efficiency. (b) colony formation efficiency. Error bars, SD (N=2). P-values 

were determined by one-way ANOVA followed by Dunnett’s multiple comparisons test: *P-

value < 0.05. NTC: non-target control.
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