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Abstract
Background: Pseudomonas aeruginosa (PS) infection results 
in severe morbidity and mortality, especially in immune-de-
ficient populations. Aerobic exercise (AE) modulates the im-
mune system, but its effects on the outcomes of pulmonary 

PS infection in elderly mice are unknown. Methods: BALB/c 
mice (24 weeks old) were randomized to sedentary, exercise 
(EX), PS, and PS + EX groups for the acute experimental set-
ting, and PS and PS + EX groups for the chronic setting. Low-
intensity AE was performed for 5 weeks, 60 min/day; 24 h 
after the final AE session, mice were inoculated with 5 × 104 
colony-forming units (CFU) of PS, and 24 h and 14 days after 
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PS inoculation, mice were studied. Results: AE inhibited PS 
colonization (p < 0.001) and lung inflammation (total cells, 
neutrophils, lymphocytes [p < 0.01] in bronchoalveolar la-
vage [BAL]), with significant differences in BAL levels of IL-1β 
(p < 0.001), IL-6 (p < 0.01), CXCL1 (p < 0.001), and TNF-α (p < 
0.001), as well as parenchymal neutrophils (p < 0.001). AE in-
creased BAL levels of IL-10 and parenchymal (p < 0.001) and 
epithelial (p < 0.001) IL-10 expression, while epithelial (p < 
0.001) and parenchymal (p < 0.001) NF-κB expression was 
decreased. AE diminished pulmonary lipid peroxidation (p < 
0.001) and increased glutathione peroxidase (p < 0.01). Pre-
incubation of BEAS-2B with IL-10 inhibited PS-induced epi-
thelial cell expression of TNF-α (p < 0.05), CD40 (p < 0.01), and 
dichlorodihydrofluorescein diacetate (p < 0.05). Conclu-
sions: AE inhibits PS-induced lung inflammation and bacte-
rial colonization in elderly mice, involving IL-10/NF-κB, and 
redox signaling. © 2018 S. Karger AG, Basel

Introduction

Pseudomonas aeruginosa (PS) is the second most com-
mon bacterial cause of both hospital-acquired pneumo-
nia and ventilator-associated pneumonia in the US and 
worldwide [1]. The incidence of PS-induced pneumonia 
increases with advancing age [2], as does its associated 
mortality [3]. This combination makes it a particularly 
problematic disease in the elderly. In addition, pneumo-
nia caused by PS can also lead to the fatal acute respira-
tory distress syndrome (ARDS). During the first 24 h after 
infection, PS induces an intense, early proinflammatory 
innate immune response, largely characterized by neu-
trophil infiltration and activation followed by mobiliza-
tion and directed infiltration of neutrophils into the lungs 
[4]. Immune senescence, which occurs with advancing 
age, may contribute to the elderly’s increased susceptibil-
ity to PS infections [5].

Exercise intensity and duration, the general level of 
physical fitness, as well as age can directly influence the 
immune system [6]. Upon bacterial challenge, sedentary, 
elderly people (age >65 years) and elderly mice (age >18 
months) tend to respond with an impaired immune re-
sponse [7, 8]. In contrast, a decreased bacterial infection 
rate among physically fit, elderly individuals has been 
linked to a more competent immune response [9]. For 
example, moderate aerobic exercise (AE) appears to stim-
ulate a Th1-type cytokine response (IL-2 and IL-12), 
which may enhance the clearance of pathogens [8, 10]. 
Likewise, elderly mice that performed moderate AE dem-

onstrated increased antigen-specific IL-2 and IFN-γ pro-
duction in response to LPS challenge [6, 11, 12]. More-
over, cross-sectional studies indicate that compared to 
untrained elderly, fit elderly people retain immune func-
tion and even demonstrate an enhanced immune re-
sponse to vaccination [6]. Thus, it is proposed in this 
study that AE can shift a sedentary, elderly, Th2-type 
dominant immune response towards a more balanced, 
competent, bacterial-fighting, Th1-type immune re-
sponse. Taken together, the link between AE and im-
proved immune function in the elderly appears to be re-
lated to the boost in the Th1-type immune response, 
which occurs as a result of physical training.

Given the susceptibility of the elderly to bacterial 
pneumonia and the ability of moderate AE to modulate 
the immune system [12–16], the present study hypothe-
sized that in PS-induced lung infection in elderly mice, 
low-intensity AE (running at 50% maximum speed for 60 
min, 5 days a week for 5 weeks) increases bacterial clear-
ance accompanied by attenuation of the proinflamma-
tory cytokine and oxidative stress responses.

Materials and Methods

Ethical Approval
This study was approved by the local animal ethics committee 

(protocol 375/13). Experiments were carried out in accordance 
with the Declaration of Helsinki in its revised version of 1975 and 
its amendments of 1983, 1989, and 1996. Animals did not present 
any alterations in health status, which was monitored 1 week be-
fore and during physical training sessions. No mouse died due to 
training or infection.

Animals and Experimental Groups
Mice were housed under specific pathogen-free conditions on 

a 12-h light/dark cycle with free access to food and water. Male el-
derly BALB/c mice (n = 120; 24 weeks old) were divided into sed-
entary (control; n = 2 × 10), exercise-only (EX; n = 2 × 10), PS-
only (PS; n = 2 × 10) and PS + EX (n = 2 × 10) for the acute ex-
perimental setting (evaluation 24 h after PS administration) and 
PS (n = 2 × 10) and PS + EX (n = 2 × 10) for the chronic experi-
mental setting (evaluation 14 days after PS administration). Adap-
tation to treadmill training was performed as previously described 
[17–20]. Following 3 days of adaptation (15 min/day, 25° incline, 
0.2 km/h), animals were submitted to a physical test (beginning at 
0.2 km/h, increasing 0.1 km/h every 2.5 min) until animals were 
exhausted. Exhaustion was defined as failure to run following 10 
gentle, mechanical stimuli [17–20]. Low-intensity AE, defined as 
50% maximal speed attained on the treadmill during the first phys-
ical test, was performed 4×/week by mice in the EX and PS + EX 
groups for 5 weeks, 60 min/day. Twenty-four hours before eutha-
nasia, the final physical test was performed [17–20]. For a complete 
schematic illustration of the exercise and injury protocol, see Fig-
ure 1. For chronic settings, subgroups of PS (n = 2 × 10) and PS + 
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EX subgroups (n = 2 × 10) were maintained for 2 weeks following 
the administration of PS. Mice in both groups were kept sedentary 
during this period; 14 days later, mice were euthanized, and CFU 
were assessed. The experimental protocol is described in Figure 1.

PS Administration and Culture for Colony Counting
PS (ATCC 9027) was grown and maintained on nutrient agar 

(Difco 0003) at 4  ° C and identified by classic biochemical methods. 
PS (5 × 104 CFU) were diluted in 50 μL of phosphate-buffered sa-
line (PBS) and administered intratracheally. Animals were anes-
thetized by intraperitoneal injection of ketamine (100 mg/kg) and 
xylazine (10 mg/kg) 24 h and 2 weeks after PS inoculation. Under 
anesthesia animals were euthanized, the right lungs were surgi-
cally removed and subjected to maceration using a tissue lyser 
(Roche). A 100-µL solution of the mash was inoculated (1: 10 v/v) 
and distributed onto a Difco nutrient agar medium with a sterile 
glass loop. The plates were incubated at 37  ° C in a bacteriological 
incubator, and readings were taken after 24 and 48 h, respectively, 
for colony counting. All colonies were stained by the Gram meth-
od and confirmed in the selective Rugai medium.

Functional Measurement of Lung Mechanics
Lung mechanics were determined in anesthetized mice using a 

volumetric ventilator (MV215; Montevideo, Uruguay). Briefly, 
mice were anesthetized with a ketamine-xylazine mixture (100 
mg/kg-10 mg/kg), tracheotomized, and subjected to conventional 
ventilation with a quasi-sinusoidal flow pattern with a tidal volume 
of 10 mL/kg of mouse body weight, a frequency of 100 breaths/
min, and a positive end expiratory pressure of 2 cm H2O. Flow and 
pressure signals from the transducers were analogically low-pass 
filtered (8 poles, 32 Hz; Butterworth) and were sampled at a rate of 
100 Hz (PCI-6036; National Instruments) through custom moni-
toring and recording application (LabView). Lung resistance and 
elastance were computed from the signals recorded during me-
chanical ventilation. In the first step, the volume signal (V) was 
computed by digital integration of the flow signal (V′). Secondly, 
the tracheal pressure (Ptr) signal was corrected by subtracting the 
pressure drop (Pcan) caused by the nonlinear resistance of the in-
tubation cannula, which had been previously calibrated and char-
acterized (Pcan = K1V′ + K2|V′|V′, where K1 and K2 are the linear 
and nonlinear parameters of the Rohrer model). In a subsequent 
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elderly micePre-

physical
test
d0

Week 1

AE AE AE AE AE
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Fig. 1. The effect of Pseudomonas (PS) and aerobic exercise (AE) 
on the acute respiratory distress syndrome; 120 male BALB/c el-
derly mice (24 weeks old) were randomized to the following 
groups: sedentary controls (control), exercise only (EX), Pseudo-
monas only (PS), and PS + EX for the acute experimental setting, 
and PS and PS + EX for the chronic experimental setting. n = 2 × 
10/group. Following 3 days of adaptation (15 min/day, 25° incline, 
0.2 km/h), animals were submitted to a physical test (beginning at 

0.2 km/h, increasing 0.1 km/h every 2.5 min) until animals were 
exhausted. Low intensity AE was performed for 5 weeks, 60 min/
day. Twenty-four hours after the final physical test session, an in-
tratracheal inoculation (i.t.) of 5 × 104 colony forming units (CFU) 
of PS was administered. Inflammatory parameters were measured 
24 h after inoculation. Physical tests were performed before and 
after AE in all groups. Additionally, 2 groups, PS and PS + EX, were 
evaluated for CFU 2 weeks after PS inoculation.
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step, effective lung resistance (RL) and elastance (EL) were com-
puted by linear regression fitting of the recorded signals Ptr, V′, and 
V to the conventional respiratory mechanics model Ptr = Po + EL × 
V + RL × V′, where Po is a parameter to account for the external 
positive end-expiratory pressure applied by the ventilator. For 
each animal, RL and EL were computed from data obtained during 
5 breathing cycles [21, 22].

Bronchoalveolar Lavage 
Following the measurement of lung mechanics, still under an-

esthesia and cannulated, the lungs were washed 3× using 0.5 mL 
of PBS through the tracheal cannula to collect bronchoalveolar 
lavage (BAL). Total cell counts were obtained in the BAL samples 
using a hematocytometer (Neubauer chamber). For differential 
cell counts, cytospins were prepared by centrifugation at 900 rpm 
for 5 min and stained using Diff-Quik (Medion Diagnostics, Dü-
digen, Switzerland). The cells were quantified according to the 
standard morphological criteria. The BAL cellularity data were ex-
pressed as cells/mL–1 [17–20].

ELISA Measurements
The levels of IL-1β, IL-6, CXCL1, TNF-α, and IL-10 were mea-

sured in BAL supernatant by using commercially available ELISA 
kits according to the manufacturer’s instructions: IL-1β (#43601; 
BioLegend), IL-6 (#431301; BioLegend), CXCL1 (#DY453; R&D), 
TNF-α (#430901; BioLegend), IL-10 (#431411; BioLegend).

Quantitative Histological Analysis
Paraffin sections (5 μm) were placed on slides and stained with 

hematoxylin and eosin to quantify the number of neutrophils in the 
lung parenchyma. Fifteen random parenchymal fields of each slide 
were imaged at a ×400 magnification using an Olympus BX40 mi-
croscope and CellSens software. Neutrophils in the lung parenchy-
ma were counted using Image Pro-Plus 4.0 software [17] according 
to the standard morphological criteria. Results were expressed as the 
number of neutrophils per square millimeter of parenchymal tissue.

Quantitative Immunohistochemistry of IL-10 and NF-κB
After BAL and blood collection (1 mL), lungs were removed 

and submitted to routine histology. Paraffin sections of lung tissue 
were processed for standard immunohistochemical (IHC) staining 
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Fig. 2. Exercise and lung function were tested in sedentary controls 
(a), Pseudomonas-only (PS; b), exercise-only (EX; c), and PS + EX 
groups (d). Maximum velocity (Max) was assessed before (Pre) 
and after (Post) exercise in all mice (n = 2 × 10/group). Animals 
were submitted to a physical test (beginning at 0.2 km/h, increas-

ing 0.1 km/h every 2.5 min) until animals were exhausted. Exhaus-
tion was defined as failure to run following 10 gentle, mechanical 
stimuli. **** p < 0.0001. e, f Pulmonary elastance (Ers; e) and re-
sistance (Rrs; f) were measured, and exercise led to a decrease in 
both in PS and PS + EX groups. * p < 0.05, ** p < 0.01, *** p < 0.001.
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using the streptavidin-biotin method and goat polyclonal anti-
mouse IL-10 (sc-1783; diluted 1: 500) and goat polyclonal anti-
mouse NF-κB (sc-109-G; diluted 1: 800) (Santa Cruz Biotechnol-
ogy, CA, USA). An ABC Vectastain kit (Vector Elite PK-6105; 
Vector Laboratories, CA, USA) was used as secondary antibody. 
Positive reactions were visualized as brown staining following 
treatment with 3,3-diaminobenzidine (Sigma Chemical Company, 
St. Louis, MO, USA). Sections were counterstained with Harris 
hematoxylin solution (Merck, Darmstadt, Germany). IHC images 
(5 airways and 15 parenchymal fields) from each slide of each 
mouse from all experimental groups were taken using an Olympus 
BX40 microscope at ×400 magnification and CellSens software. 
The percent epithelial area positive for IL-10 and NF-κB as well as 
the number of positive cells per square millimeter of parenchymal 
tissue were presented as previously described [17–19].

Oxidative Stress Evaluations
Superoxide dismutase activity was assessed spectrophotomet-

rically in lung homogenates by means of inhibition of pyrogallol 
autooxidation at 420 nm [23]. Enzyme activity was reported as U/
mg protein (data not shown). Catalase concentration was mea-
sured by monitoring the decrease in H2O2 concentration at 240 
nm, and the results are reported as pmol of H2O2/mg protein (data 
not shown) [24]. Glutathione peroxidase (GPx) activity was deter-
mined by monitoring NADPH oxidation spectrophotometrically 
at 340 nm, and the results are reported as nmol/min/mg protein 
[25]. Lipid peroxidation was measured by the tert-butyl hydroper-
oxide-initiated chemiluminescence assay, as previously described 
[26]. The supernatants were diluted in 140 mmol/L KCl and 20 
mmol/L phosphate buffer, pH 7.4, and added to glass tubes, which 
were placed in scintillation vials; 3 mmol/L tert-butyl hydroperox-
ide were added and chemiluminescence was determined as the 
maximum level of emission.

In vitro Epithelial Response Assay and Flow Cytometry
Since AE training modulates immune responses in the airway 

epithelium, particularly by increased IL-10 release [18], we tested 
the hypothesis that IL-10 can inhibit PS-induced epithelial activa-
tion. Thus, to evaluate the role of epithelial cells in the anti-inflam-
matory effects of IL-10 mediated by exercise, we have cultivated 
human epithelial cells (BEAS-2B; 5 × 104/2 mL medium) and pre-
incubated the cells with human recombinant IL-10 (10 ng/mL) for 
1 h prior to incubation with 1 × 104 CFU/mL of medium. The cells 
were washed with PBS and resuspended in FACS buffer. The acti-
vation of BEAS-2B cells was performed through flow cytometry 

(Accuri C6; BD Biosciences, USA), and BEAS-2B cell expression 
of the following markers was determined: TNF-α (Pe; BD Biosci-
ences, USA), CD40 (Pe; BD Biosciences, USA), and dichlorodihy-
drofluorescein diacetate (DCFH). The Cytofix/CytopermTM kit 
from BD Biosciences was used for intracellular TNF-α staining.

Statistical Analysis
Statistical analysis and graphs were performed using GraphPad 

Prism 5.0. Nonparametric data were expressed as box-whisker 
plots showing ranges, medians, and quartile distributions, while 
parametric data were expressed as bars and error bars representing 
means ± SE. Comparisons between groups were carried out by 
one-way analysis of variance (ANOVA) multiple-comparison test, 
followed by the Holm-Sidak method for parametric data and by 
ANOVA on ranks followed by the Dunn test for nonparametric 
data. Differences were considered significant at p < 0.05.

Results

AE Improves Physical Capacity in PS- and  
Non-PS-Administered Mice
A physical test before and after the AE protocol was 

performed in all groups. Maximum velocity (km/h) in-
creased significantly in all animals who performed the 
5-week AE protocol (p < 0.0001; Fig. 2a–d).

AE Fails to Prevent Impaired Lung Mechanics 
Induced by PS
In the non-PS-administered group, AE slightly reduced 

both elastance (Ers) and resistance (Rrs) (p < 0.05). PS ad-
ministration resulted in significant reductions Ers and Rrs 
(p < 0.001), which was not inhibited by AE, but specifi-
cally Ers was even impaired by AE (p < 0.05) (Fig. 2e, f).

AE Inhibits PS Colonization
A significant PS colonization was not observed in the 

acute experimental setting (Fig. 3a). AE significantly in-
hibited PS colonization in the chronic experimental set-
ting (14 days after PS inoculation) (p < 0.001; Fig. 3b).
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Fig. 3. CFU levels in Pseudomonas-only 
(PS) and PS + exercise (EX) in the lung 24 
h (acute; a) and 2 weeks after PS inocula-
tion (chronic; b). n = 2 × 10/group. ** p < 
0.01.

http://dx.doi.org/10.1159%2F000488953


Stravinskas Durigon et al.J Innate Immun 2018;10:279–290284
DOI: 10.1159/000488953

AE Inhibits Pulmonary Inflammation
AE significantly inhibited the accumulation of total 

cells (p < 0.01; Fig. 4a), neutrophils (p < 0.001; Fig. 4b), 
and lymphocytes (p < 0.001; Fig.  4c) in BAL. Interest-
ingly, not only inflammatory cells decreased, AE also sig-
nificantly reduced the levels of proinflammatory cyto-
kines IL-1β (p < 0.001; Fig. 4d), IL-6 (p < 0.05; Fig. 4e), 
CXCL1 (p < 0.001; Fig. 4f), and TNF-α (p < 0.001; Fig. 4g), 
while increased levels of the anti-inflammatory cytokine 
IL-10 were observed in EX (p < 0.001; Fig. 4h) and PS + 
EX (p < 0.001; Fig. 4h) groups. In addition, quantitative 
histological analysis revealed that PS administration sig-
nificantly increased neutrophil accumulation in the lung 
parenchyma compared with control, EX, and PS + EX 

groups (p < 0.001; Fig. 5a–e), which was reduced by AE 
(p < 0.001; Fig. 5a–e).

AE Increases IL-10 and Reduces NF-κB Expression by 
Parenchymal Leukocytes and Airway Epithelium
In accordance with ELISA data from BAL superna-

tant (Fig. 4h), IHC analysis of the anti-inflammatory cy-
tokine IL-10 showed increased expression by parenchy-
mal leukocytes (p < 0.001) and airway epithelium (p < 
0.001) in mice subjected to exercise (Fig. 5f–k). In addi-
tion, AE significantly inhibited PS-induced NF-κB ex-
pression by parenchymal leukocytes (p < 0.001) and air-
way epithelium (p < 0.001) in mice subjected to exercise 
(Fig. 5l–q).
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Fig. 4. Cell count and cytokine levels of bronchial alveolar lavage (BAL). Total and differential cell counts and  
ELISA were performed on BAL fluid isolated from sedentary controls (controls), exercise-only (EX), Pseudomonas-
only (PS), and PS +  EX groups. n = 2 × 10/group. Total cells (a), neutrophils (b), lymphocytes (c), and the levels of 
IL-1β (d), IL-6 (e), CXCL1 (f), TNF-α (g), and IL-10 (h) were assessed. * p < 0.05, ** p < 0.01, *** p < 0.001.
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AE Positively Modulates the Oxidant/Antioxidant 
Imbalance
AE significantly increased GPx levels in PS-adminis-

tered mice compared to control (p < 0.01; Fig. 6a) and EX 
groups (p < 0.05; Fig. 6a). AE also inhibited lipid peroxi-
dation measured by the tert-butyl hydroperoxide-initiat-

ed chemiluminescence assay, as previously described [23] 
(Fig. 6b). More specifically, AE reduced lipid peroxida-
tion compared to control (p < 0.05) and PS (p < 0.01) 
groups, displaying a direct antioxidant effect on PS-in-
duced redox imbalance.
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tified (e). Representative IL-10 staining of control (f), PS (g), EX 

(h), and PS + EX (i) is shown. Parenchymal IL-10+ cells (j) and 
percent of IL-10+ airway epithelial cells were quantified (k). Rep-
resentative NF-κB staining of control (l), PS (m), EX (n), and PS 
+ EX (o) is depicted. Epithelial (p) and parenchymal NF-κB+ cells 
were quantified (q). * p < 0.05, and *** p < 0.001.

(Figure continued on next page.)
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IL-10 Inhibited Airway Epithelial Activation
Since part of the anti-inflammatory effects of AE have 

been attributed to exercise-induced IL-10 in epithelial 
cells [18], a translational approach was used using human 
airway epithelial cells BEAS-2B. The cells were pre-incu-
bated with IL-10 followed by incubation with PS. The re-
sults showed that pre-incubation with IL-10 resulted in 
reduced TNF-α (p < 0.05; Fig. 7a), CD40 (p < 0.01; Fig. 7b), 
and DCFH (p < 0.05; Fig. 7c) expression induced by PS.

Discussion

ARDS is a critical illness characterized by acute lung 
injury, leading to pulmonary permeability, edema, and 
respiratory failure [27]. There is no specific therapy, and 
mortality remains high [28]. The cause of death in pa-
tients with ARDS is often due to the underlying causes of 
ARDS [29]. Sepsis caused by nosocomial lung infections 
is the most common cause of death among patients who 
succumb later in their clinical course [30]. A multicenter 
cohort study comprised of 1,113 ARDS patients who were 
followed for 15 months found that older patients appear 
to be at an increased risk for death due to ARDS [31]. Pa-
tient mortality ranged from 24% for patients between 15 

and 19 years of age up to 60% among patients older than 
85 years. While age seems to be a more accurate predictor 
of ARDS survival, it has also been suggested that obesity 
may increase the mortality rate of ARDS patients, though 
evidence is conflicting [32–34].

Exercise is proven to slow down the lung function de-
cline in chronic obstructive pulmonary disease (COPD) 
[35], and decrease inflammation in allergic asthma [36–
38]. Early mobilization of critically ill ARDS patients has 
been shown to attenuate skeletal muscle wasting [39] and 
likely reduces inflammation [40] as well. Although elder-
ly patients are at higher risk for death due to sepsis during 
ARDS, whether low-intensity AE (AE) protects against 
PS-mediated inflammation in the elderly has not been 
studied to date. Taken together, this study is the first to 
investigate whether low-intensity AE attenuates the ini-
tial inflammatory response to PS in elderly mice.

The low-intensity exercise protocol used in this study 
resulted in an increase in exercise capacity on the tread-
mill tested after exercise in the EX group compared to 
sedentary controls. Though the effect was somewhat at-
tenuated 24 h after PS inoculation (PS + EX), an increase 
in fitness was still observed despite PS inoculation. In ad-
dition, regarding the lung functional response measured 
through analysis of lung mechanics, 24 h following PS 
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inoculation, PS alone decreased lung elastance and resis-
tance compared to controls. As a result, PS + EX showed 
even decreased elastance and resistance compared to all 
groups, indicating that low-intensity exercise could not 
inhibit lung function impairment due to PS. However, 
importantly, 2 weeks after inoculation with PS, CFU in 
the lungs were significantly decreased, suggesting that ex-
ercise may enhance pathogen clearance. This very posi-
tive effect of AE inhibiting PS colonization could happen 
due to the initial acute effects of AE, which inhibited PS-
induced exacerbation of inflammation, i.e., neutrophil 
accumulation and hyperactivation, and PS colonization, 
perhaps preserving the cleaning machinery of the lungs.

While a literature search for studies combining exer-
cise, PS, and elderly animals did not turn up any results, 
a study performed on adult (nonelderly) rats that exer-
cised daily for 4 weeks [41] showed that animals that ex-
ercised were protected against LPS-induced sepsis. Lower 
basal levels of arterial pressure, heart rate, neutrophil 
count, and creatinine levels were observed in trained mice 
compared to controls receiving only LPS [40]. Further-
more, trained mice had a higher blood cell count and 
pathologically less cardiac, hepatic, and pulmonary inju-
ries. In concordance with this study, decreased levels of 
inflammatory cells, including neutrophils and lympho-
cytes, were counted in the BAL fluid of trained mice [40–
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Fig. 6. Quantification of antioxidant enzyme and lipid peroxidation in sedentary control (control), exercise-only 
(EX), Pseudomonas-only (PS), and PS + EX groups. n = 2 × 10/group. Measurement for antioxidant activity 
(GPX) (a) and lipoperoxidation was performed by chemiluminescence reaction initiated by tert-butyl hydroper-
oxide (T-BOOH) represented as (QL) (b). * p < 0.05, ** p < 0.01.

Fig. 7. IL-10 in airway epithelial cells in face of Pseudomonas (PS) administration. BEAS-2B cells were pre-incu-
bated with IL-10 (10 ng/mL) for 1 h prior PS (1 × 104 CFU/mL) incubation. Flow cytometric analysis shows  
percentages of TNF-α+ (a), CD40+ (b), and dichlorodihydrofluorescein diacetate (DCHF)+ (c) BEAS-2B cells. 
* p < 0.05, ** p < 0.01, *** p < 0.001.
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42]. Likewise, exercise significantly decreased IL-1β, IL-6, 
CXCL1, and TNF-α [40–43]. Among these cytokines, IL-
1β, IL-6, and TNF-α, the most promising biomarkers for 
predicting mortality and morbidity [44], were decreased 
by exercise. Thus, low-intensity exercise had an impor-
tant anti-inflammatory effect in elderly mice in this mod-
el as it significantly reduced inflammatory cytokine pro-
duction 24 h following inoculation.

Aging results in low-grade chronic inflammation, 
which can be damaging to cells and compromise the im-
mune response to bacteria and viruses. Exercise may be 
capable of reducing the chronic inflammation associated 
with aging [45]. Macrophages, B cells, dendritic cells, NK 
cells, and subsets of CD4+ and CD8+ lymphocytes ex-
press the anti-inflammatory Th2 cytokine IL-10. IL-10 
can inhibit costimulatory molecule expression by den-
dritic cells and regulate both innate and adaptive immune 
responses. Unlike the BALB/c strain used in this study, 
the BALB/c mouse strain is notorious for their exception-
ally elevated Th2 response to pathogens [46]. BALB/c 
mice easily clear low-dosage intranasal PS infections due 
to their aberrantly raised Th2 cytokine (IL-10) response. 
While currently no immunogerontological studies exist 
that profile changes in basal IL-10 levels in a single indi-
vidual over time, one Swedish study showed that basal 
levels of IL-10 were not different in healthy individuals 
with a median age of 40 versus 80 years [47]. However, 
the plasma immunomodulatory cytokine IL-6 as well as 
the growth factor TGF-β were significantly increased  
(p < 0.0001) in the older group [47]. These data suggest 
that, despite unchanged basal IL-10 levels among the el-
derly, chronic inflammation may render elderly individu-
als more susceptible to death by sepsis and indicate the 
importance of investigating mechanisms that lower in-
flammation. While corticosteroid treatment was found to 
have no effect on mortality outcome in ARDS, whether 
prophylactic or chronic corticosteroid use affects mortal-
ity in the context of sepsis and ARDS is unknown [48]. In 
concordance with many of our group’s previous studies, 
in this study, exercise induced IL-10 expression in the 
BAL as well as parenchymal and epithelial lung cells, and 
remained elevated for at least 24 h following inoculation 
[17, 18, 20, 37, 43, 49]. Thus, the anti-inflammatory cyto-
kine IL-10 is not only significantly elevated by exercise 
alone, levels also persist following a variety of lung injury 
models, including allergic asthma [17, 18, 20, 37, 49] and 
lung fibrosis induced by bleomycin [50, 51], COPD [52, 
53], and LPS [43, 54]. Conversely, expression of the mas-
ter inflammatory regulator NF-κB in lung parenchyma 
was attenuated by exercise. Future studies should incor-

porate time point experiments to test how long a single 
bout of exercise sustains IL-10 expression and how sus-
tained expression is influenced by various exercise proto-
cols and intensities. 

In patients with ARDS, the antioxidative system is se-
verely compromised. Oxidative stress is thought to be ini-
tiated by activated lung macrophages and the products of 
infiltrated neutrophils that signal to epithelial and endo-
thelial cells, which produce free radicals in response. 
While a variety of antioxidants has been tested to treat 
sepsis-induced ARDS in both animal models and pa-
tients, whether antioxidants are truly beneficial remains 
inconclusive [55]. Nonetheless, this study analyzed the 
ability of low-intensity exercise to modulate the oxidative 
stress response to PS, which was attenuated by exercise. 
Similar antioxidant effects in the present study were ob-
served in a model of LPS-induced acute lung injury [43, 
54], reinforcing the antioxidant capability of exercise in 
the context of pulmonary injury.

In addition, AE modulates several aspects of airway 
epithelial responses, which have been studied in asthma 
[18] and COPD [56]. In the present study, we demon-
strated for the first time that AE induces IL-10 synthesis 
by pulmonary leukocytes and airway epithelial cells in 
mice submitted to PS infection, while leukocyte and epi-
thelial NF-kB expression was reduced. Also, we demon-
strated that IL-10 incubation was able to inhibit human 
bronchial epithelial cell (BEAS-2B) hyperactivation, 
showing a functional role for exercise-derived IL-10 in 
the face of PS infection. The importance of the airway 
epithelium as first-line defense against PS is clearly dem-
onstrated and clinically relevant [57, 58]. Here, it was 
demonstrated that BEAS-2B pre-incubated with IL-10 
presented reduced expression of TNF-α, DCFH (a mark-
er of oxidative stress), as well as CD40, indicating that IL-
10 may inhibit epithelial damage induced by PS.

Taken together, this is the first study in the literature 
to provide evidence supporting the beneficial effect of 
low-intensity exercise on elderly animal’s immune re-
sponses to acute and chronic pulmonary PS infection: in-
hibition of inflammation, exacerbation of Th1 immune 
acute-phase cytokines and oxidative responses, and bac-
terial colonization, but not impaired lung mechanics.
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