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Abstract: Danger patterns on microbes or damaged host cells bind and activate C1, inducing 

innate immune responses and clearance through the complement cascade. How these patterns 

trigger complement initiation remains elusive. Here, we present cryo-EM analyses of C1 bound 

to monoclonal antibodies in which we observed heterogeneous structures of single and clustered 

C1-IgG1 hexamer complexes. Distinct C1q binding sites are observed on the two Fc-CH2 

domains of each IgG molecule. These are consistent with known interactions and also reveal 

additional interactions, which are supported by functional IgG1-mutant analysis. Upon antibody 

binding, the C1q arms condense, inducing rearrangements of the C1r2s2 proteases and tilting 

C1q’s cone-shaped stalk. The data suggest that C1r may activate C1s within single, strained C1 

complexes or between neighboring C1 complexes on surfaces.  

 

One Sentence Summary: Cryo-EM structures of C1 bound to antibodies suggest mechanisms 

for how danger patterns on cell membranes trigger an immune response. 

 

Main Text: The complement system is part of our innate immune system. The classical 

complement pathway is triggered by activation of the C1 initiation complex upon binding to cell 

surfaces. C1, or C1qr2s2, consists of four proteases, C1r and C1s, that associate with C1q, which 

contains antibody-binding sites. The homologous serine proteases C1r and C1s each consist of 

six domains (Fig. S1A). C1q comprises 18 polypeptide chains; three chains of C1q A, B and C 

trimerize to form six collagen-like triple helices connected to six globular (trimeric) ligand-

recognition (gC1q) modules (Fig. S1B) (1). Binding of C1 through its gC1q modules to 

mediators of inflammation, such as IgG or IgM antibodies (Fig. S1C,D), on cell surfaces 

activates the associated proteases and initiates the proteolytic cascade of complement (2–4). 
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Previously, we demonstrated that IgG molecules, bound to their cognate antigens on liposomes 

or cell membranes, oligomerize through interactions between their Fc regions and form 

hexameric, high avidity, C1-binding structure reminiscent of multimeric IgM antibodies (Fig. 

S1D) (5). Mutagenesis studies (6–8) showed that amino-acid residues in IgG1 important for 

direct C1 binding are situated in the CH2 domains near the Fab-Fc hinge at the periphery of 

these Fc-platforms (Fig. S1C). In C1q, globular head residues of predominantly C1q B mediate 

IgG binding (4, 9, 10). However, the molecular sequence of events leading to C1 activation by 

IgG hexamers remains poorly understood (11). Here, we used IgG monoclonal antibodies (mAb) 

oligomerized through antigen-binding on liposomes or preformed antibody-complexes in 

solution and applied tomography and single-particle cryo-electron microscopy (EM) to resolve 

the mechanisms of C1 binding and activation. 

Liposomes carrying di-nitrophenyl (DNP) haptens were incubated with an anti-DNP chimeric 

IgG1 mAb and C1 to allow extensive formation of surface-bound C1-IgG1 complexes (Fig. 1A). 

Tomograms showed marked structural variations in C1 binding to antibodies on these liposomes 

(Fig. 1A, Fig S2A,B). Alignment and classification of single membrane-bound C1-IgG1 

complexes (Fig. 1B) yielded a reconstruction at ~25-Å resolution (Fig. S2C,D). Focused 

alignment and classification on the Fc-C1 complex (excluding the membrane and Fab domains; 

Fig. S2B,E) revealed six densities corresponding to gC1q domains binding an Fc-platform 

formed by six IgG1 molecules, a rhomboidal platform accounting for bound C1r2s2 proteases and 

a protruding C1q-collagen stalk on top (Fig. 1C), consistent with a previous reconstruction 

obtained with a goat polyclonal anti-DNP antibody at ~65-Å resolution (5). Analysis of sub-

volumes of C1-IgG1 complexes revealed persistent density for neighboring C1 complexes (Fig. 

1D, Fig. S2E), as previously observed using normal human serum (12). Distances between 
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nearest neighbors varied from approx. 11-40 nm center-to-center, with a peak at 23 nm (Fig. 

S2F), reflecting a variation of arrangements of neighboring complexes. The C1 complexes are 

not evenly distributed across the surfaces of the liposomes, suggesting that there is preference for 

the complexes to associate, rather than occupy all available liposome surface (Fig. 1A, S2A). 

Soluble C1-IgG16 complexes of 1.7 MDa were obtained (Fig. S3A,B) by incubating C1, with 

catalytically inactive proteases C1r (S654A) and C1s (S632A), with a human IgG1 mAb 

containing three mutations that drive the formation of IgG hexamers in solution (i.e. IgG1-

E345R, E430G and S440Y) (5, 13, 14). Classification and averaging of single-particle densities 

yielded separate classes with four, five or six gC1q domains in contact with the Fc platforms 

(Fig. 2A,B, Fig. S4C). One class containing ~79,000 particles with six gC1q domains bound to 

the Fc platform yielded a map at 10-Å resolution (Fig. S4D), resulting in an overall structure 32 

nm high and 25 nm wide that is consistent with densities observed in tomography (Fig. S5). The 

reconstruction reveals densities for all C1q collagen-like triple helices and gC1q modules, C1r 

and C1s proteases and IgG1-Fc regions (Fig. 2C,D). 

Imposing six-fold symmetry on the IgG1 platform bound to gC1q yielded a density map at 7.3-Å 

resolution (Fig. 3A, Fig. S4D). Crystal structures of Fc CH2 and CH3 domains (pdb-code 1HZH) 

(15) and gC1q (1PK6) (16) were modeled in this density map (Fig. 3A). In the resulting model, 

each gC1q domain contacts peripheral areas on both CH2 and CH2’ domains of an IgG-Fc 

dimeric segment, burying ~540 Å2 surface area (Fig. S6A). The Fc segments adopt an open 

conformation, characterized by a long distance of 31 Å between Pro329 and Pro329’ of the CH2 

domains (Fig. S6B). This contrasts with observations of closed conformations in many crystal 

structures of Fc domains with Pro329-Pro329’ distances of ~12-19 Å, but resembles that of full-

length IgG1-b12 (1HZH) (15) and deglycosylated Fc fragments of human IgG4 (4D2N) (17), 
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both of which exhibit a six-fold (crystal) packing of their Fc portions, that have Pro329-Pro329’ 

distances of 24 and 29 Å, respectively. Densities are present for N-linked glycans at Asn297 and 

Asn297’ (Fig. 3A). However, no direct contact is observed between the glycans and gC1q, 

supporting the idea that glycosylation affects C1 binding through IgG hexamerization (13). 

Fitting of hetero-trimeric gC1q to the density yielded similar correlation coefficients for three 

possible A-B-C domain orientations, with a marginally higher score for chains B and C facing 

the antibodies, consistent with mutation data that has identified chains B and C harboring the 

antibody-binding sites (9).  

The Fc-gC1q structure identified distinct C1q-binding sites on the two Fc-CH2 domains of an 

IgG1. The observed binding sites are corroborated by extensive mutagenesis, which shows that 

both previously established amino acid contacts and contacts newly identified in our structure 

modulate complement activation (Fig. 3B,C; Fig. S6C)(6–8, 18). Mutations were introduced in 

the CD20 mAb IgG1-7D8 and the impact on complement-dependent cytotoxicity (CDC) of 

CD20-expressing Raji cells was assessed (Fig. 3C, Table S1). The first binding site is formed by 

loop FG (residues 325–331) of Fc CH2, known to be involved in binding both C1q and Fcg-

receptors (18–20). Critical residues Pro329-Ala330-Pro331 (3, 6, 18) form the tip of the FG loop 

with Pro329 making contact with hydrophobic C1q-B residue Phe178 (Fig. 3B). IgG1 CH2 

residue Lys322 (21) provides additional charged interactions with C1q-C residue Asp195 (Fig. 

3B). Mutation of Ala327 into a positively charged lysine decreased CDC, whereas the mutation 

Ala327Gly enhanced CDC (Fig. 3C). Consistent with previous observations, variant 

Lys326Ala/Glu333Ala stimulated CDC (6). The secondary binding site consists of loop BC (res. 

266-272) and loop DE (res. 294-300) of CH2’, which form a negatively charged patch that 

interacts with C1q-B residues Arg114 and Arg129 (Fig. 3B) (4, 22). Introducing a positive 
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charge at residues Glu269, Glu294 or Tyr300 abolished CDC (Fig. 3C). In contrast, the mutation 

Tyr300Asp enhanced CDC (Fig. 3C). Mutations Asn297Gln and Ser298Lys decreased CDC, 

likely due to absence of glycosylation. Furthermore, Fab-Fc hinge region residues Glu233, 

Leu234, Leu235, Gly236 and Gly237, contributed to C1q binding and CDC (Fig. S6C). Alanine 

substitutions of these residues decreased CDC, whereas Gly236Asp enhanced CDC, suggesting a 

possible charge interaction with C1q-B Arg150. The Fab regions themselves are positioned 

flexibly below the Fc platform, as is apparent in the tomography reconstructions (Fig. 1B,C, Fig. 

S5), and appear not to contribute directly to C1q binding and CDC. 

We fitted structural models of C1q, C1r and C1s into the density reconstruction of C1-IgG16 

(Fig. 4, Fig. S7). On top of the C1 structure, the six C1q-A, B and C collagen-like triple helices 

form a stalk that adopts a continuous, hollow cone-shaped structure, which is tilted by 15° from 

the vertical axis. Six triple helices emerge from the stalk, extend downwards (with an irregular 

small right-handed supercoil) and connect to the gC1q modules that bind the IgG1-Fc hexamer 

platform. In particular, the collagen-like helices 3 and 6 display a marked bending (Fig. 4A). 

Density positioned in between the collagen-like helices is consistent with previously proposed 

binding of N-terminal domains of C1r2C1s2 between the C1q arms, with arms 2, 3, 5 and 6 

contacting C1r and arms 1 and 4 contacting C1s molecules (23–25) (Fig. 4B). Using crystal 

structures of C1r and C1s (25–28), and their homologs MASP1 and MASP2 (29, 30), domains 

CUB1-EGF-CUB2-CCP1 of both C1r and C1s (Fig. S1A) were modeled into the densities (Fig. 

S7). No density is observed for the CCP2-SP domains of either C1r or C1s in the 10-Å resolution 

single-particle reconstruction, indicating flexible arrangements for these parts. However, density 

obtained for CCP1 domains allows completion of the model by superposition of CCP1-CCP2-SP 

crystal structures onto CCP1 of C1r and C1s (Fig. 4C, Fig. S1A). This results in a model in 
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which C1r CCP1 orients CCP2-SP to curve around the C1q collagen-like helix towards C1s and 

in which C1s CCP1-CCP2-SP sticks outwards, consistent with their proteolytic functions in the 

complement cascade (Fig. 4C Fig. S7D). 

The observed arrangement of the C1r and C1s hetero-tetramer differs from predictions based on 

a tetrameric C1s arrangement (25, 31) The CUB2 domains of C1r and C1s are rotated and the 

C1r-C1s dimers are shifted along each other, shortening the contact sites of C1q-collagen helices 

2 and 5 from 14 (31) to 11 nm in C1-IgG16 (Fig. S7A-C). The arrangement of the C1q arms, 

induced upon binding the Fc hexamer, is also indicative of a compaction. The gC1q domains in 

unbound C1 are spread apart up to 30-35 nm (31). Bending of the collagen-like helices of arms 3 

and 6, which embrace C1r2s2 in the longest dimension, and incomplete binding of the gC1q 

heads (on arms 5 and 6) to Fc platforms support the notion of a surface-induced conformational 

change.  

The affinity of gC1q modules for single IgG antibody molecules is very low. For IgG antibody 

molecules to form a recognition pattern therefore requires their clustering or aggregation, 

allowing the formation of a multivalent complex with C1. IgM molecules are already 

multivalent, but require their occluded C1 binding sites to be revealed upon interacting with 

surface antigen. Here we show that the multivalent binding of C1 to IgG hexamers results in 

compaction of C1q arms, which rearranges the N-terminal (CUB1-EGF-CUB2) platform of the 

C1r2s2 proteases, that may allow the catalytic SP domain of the C1r CCP1-CCP2-SP arm to 

reach the scissile loop in C1s CCP1-CCP2-SP. Alternatively, the extended conformations of the 

CCP1-CCP2-SP domains may allow inter-complex proteolysis induced by neighboring 

complexes. This is consistent with the C1-antibody complexes that form on crowded surfaces, as 

observed in tomograms of IgG mAb hexamers bound to liposomes. Intercomplex activation has 
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been proposed for MBL-MASP22 complexes of the lectin-binding complement pathway, in 

which MASP1 proteases present in separate MBL-MASP12 complexes mediate activation (31, 

32). Direct binding of C1 to ubiquitous and fluid ligands in a membrane, such as 

phosphatidylserines on apoptotic cells, would likely not induce compaction of the C1q arms and 

activation may depend on intercomplex proteolysis of surface-bound C1 complexes. Our data 

suggest that danger pattern recognition by C1 may lead to proteolysis and activation within an 

isolated complex through a conformational change as suggested by an observed bending of C1q 

arms and the arrangement of proteases. Close interactions observed between separate C1-IgG 

complexes however suggest that proteolysis may also result from intercomplex activation.  
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Fig. 1. C1-mAb complexes observed on liposomes by tomography.  

(A) A 10 nm-thick slice through a dual-axis tomogram showing C1 complexes (arrows) bound to 

surface-associated antibody complexes. Scale bar indicates 20 nm. (B) Reconstruction of a single 

C1-IgG1 complex shown from the top (left) and side (right) at 25 Å resolution. (C) Focused 

alignment and classification of the complexes excluding the membrane and Fab regions (see also 

Fig. S2E for masks used in focused reconstructions) revealed density from the C1r2s2 platform 

extending out either side of the C1q stalk. (D) Neighboring C1-mAb complexes from larger sub-

volumes showing a common spacing of 23 nm between complexes, as measured from centers of 
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IgG1 platforms. All volumes were filtered to 25 nm resolution, masked and disconnected 

densities with volumes less than 5 nm3 were removed for clarity. 
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Fig. 2. Soluble C1-IgG16 complexes display heterogeneous structures. 

 (A) Representative 2D class averages. Colored boxes indicate three classes corresponding to 

main 3D classes, as shown below. Scale bar represents 25 nm. (B) Main 3D classes after focused 

3D classification and 3D refinement, showing the ‘bottom platform’ segment of the 

reconstructions indicating heterogeneities (highlighted by arrows). Percentage of particles in 

each class are indicated. Particle colors correspond to the color of the boxes in panel A. (C) 3D 

reconstructions after post-processing of the major class, showing two side views (left and 

middle). Densities have been coloured indicating density for C1q (yellow; with collagen arms 
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and gC1q units numbered 1 through 6), C1r and C1s (blue and magenta, resp.) and IgG1-Fc 

regions (pink). (D) Top and side views of the bottom platform after six-fold averaging (right top 

and bottom, respectively). 
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Fig. 3. Fc-gC1q interactions in C1-IgG16.  

(A) Structural models of Fc regions (magenta) and gC1q headpieces (orange) fitted into the 

density, top and side view of the Fc-gC1q hexamer (left) and zoom in of a gC1q trimeric with 

C1q-A, B and C domains (red, blue, orange resp.) and an Fc dimer with CH2-CH3 and CH2’-

CH3’ (right), with Fc glycans shown in green. (B) gC1q-Fc interaction site 1 and site 2 are 

shown indicated by boxes, with interacting loops FG (site 1), and BC and DE (site 2) labelled 

(left). Zoom in of interaction sites 1 and 2 (right) with key interacting residues shown in stick 

representation and labelled. (C) Complement dependent cytotoxicity assays of Raji cells 
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opsonized with wild-type (WT) and mutated CD20 mAb IgG1-7D8 (n=3) exposed to C1q-

deficient serum to which a titration of 1 ng/mL to 60 µg/mL C1q was added. Cell lysis was 

assessed by flow cytometry using propidium iodide staining. Bars show the average area under 

the curve (AUC) for this dose response normalized against the AUC obtained with the unmutated 

WT IgG1-7D8 set to 100% NO AB: control reactions without IgG1 added. 
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Fig. 4. Structural model of C1 fitted into C1-IgG16 density. 

(A) Model for C1q-A, B and C hexamer indicating collagen-like segments forming a N-terminal 

stalk region, six collagen-like triple helices and C-terminal trimeric gC1q modules. Shown are 

top and side views (left and middle) of C1q and side, sliced-through top and bottom view (3rd 

column left to right) of the C1q stalk region. Numbering of each C1q arm as in Fig. 2. (B) Model 

for C1r and C1s hetero-tetramer showing C1r CUB1-EGF-CUB2 (blue) and C1s CUB1-EGF-

CUB2-CCP1 domains (cyan). Shown are top view (left) and side view at lower contour level 
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(top right), with the latter  revealing density for the CCP1 domain of C1r. A cartoon 

representation of the domain arrangement is shown for clarity (bottom right). (C) Overall C1-

IgG16 models in density. CCP2-SP domains lacking density have been added, using orientations 

derived from crystal structures.  
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Materials and Methods  

Expression and Purification of the Proteins 

Plasma-purified human C1q was purchased from Complement Technology, Inc. (Tyler, TX, 

USA). IgG1-RGY variant (E345R, E430G, and S440Y), IgG1-b12 and IgG1-7D8 were 

described previously (5, 15, 33). IgG1-DNP consisted of the murine variable domain of 

antibody G2a2 fused to a human IgG1 constant domain (34). IgG1-DNP and IgG1-7D8 

antibody variants were created by gene synthesis of codon optimized open reading frames 

(Geneart Thermo Scientific, Regensburg, Germany), subcloned into pcDNA3.3-derived 

expression vectors. All antibodies were expressed, purified and characterized as described 

(14). C1q-depleted serum was obtained from Quidel (San Diego, CA). 

C1r (S654A) and C1s (S632A) mutants were generated using the Quikchange mutagenesis 

kit (Agilent Genomics, Santa Clara, CA) on TOPO clones inserted in pCR8 vectors (Thermo 

Fisher Scientific, Waltham, MA). All C1r and C1s constructs were sub-cloned into 

mammalian expression vectors carrying either a hexa-histidine tag or StrepII3-tag provided 

by U-Protein Express BV (U-PE), Utrecht, The Netherlands. C1r and C1s constructs were co-

expressed in N-acetylglucosaminyltransferase I (GnTI)-deficient human embryonic kidney 

293 cells that stably express Epstein-Bar virus nuclear antigen EBNA1 (HEK293-ES 

supplied by U-Protein Express BV). The supernatant was harvested on the 5th day of the 

expression, concentrated and dia-filtrated using a Quixstand system (GE Healthcare, 

Chicago, IL). C1r2s2 was purified by Ni-NTA affinity chromatography (GE Healthcare) 

followed by a size-exclusion chromatography step on a Superdex 200 column (GE 

Healthcare). C1-IgG16 complexes were prepared by mixing C1r2s2, C1q and IgG1-RGY in 

4:1:6 molar ratio. The complex was purified by gel filtration column BioSep 4000 15 ml 

column.  

 

Cell culture 
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Raji cells (human Burkitt’s lymphoma) were obtained from the American Type Culture 

Collection (ATCC no. CLL-86; Rockville, MD) and cultured according to the supplied 

instructions. Cells were routinely tested for mycoplasma contamination.  

 

Tomography sample preparation and data collection 

Liposomes were prepared from dried films of cholesterol, DMPC, DMPG and cap-DNP-PE 

(all sourced from Avanti Polar Lipids, Alabaster, AL) at a molar ratio of 100:90:10:1, 

respectively. Films were hydrated in buffer (50 mM HEPES, pH 8.0, 145 mM NaCl, and 3 

mM CaCl2) at 37°C for 4 hours and extruded through 200 nm pore filters at 45°C. 

Liposomes, IgG1-DNP, and plasma-purified human C1 complex (Complement Technology 

Inc., Tyler, TX) were mixed on ice at final concentrations of 1.3 mg/ml, 0.025 mg/ml and 

0.017 mg/ml, respectively, then brought to room temperature and allowed to equilibrate for 

approximately 30 minutes. Gold fiducials coated in bovine serum albumin (Aurion, 

Wageningen, The Netherlands) were added to the samples immediately before 3 µl of the 

mixture was applied to freshly glow-discharged Quantifoil R2/1 300 mesh holey carbon grids 

in the chamber of a Leica EM-GP plunge-freezer (Leica, Germany) set at 96% humidity and 

21°C. Grids were blotted for 1 sec and plunged into liquid ethane.  

Tomograms were collected at NeCEN (Leiden, The Netherlands) on a Titan Krios (Thermo 

Fisher Scientific) operating at 300 kV equipped with a phase plate (Thermo Fisher Scientific) 

heated to 225°C. Zero-energy-loss images were acquired using the software program FEI 

Tomography 4 (Thermo Fisher Scientific), using a GIF-Quantum LS energy filter (Gatan, 

Pleasanton, CA) with a slit width of 20 eV. A K2 Summit direct electron detector (Gatan) 

was used in counting mode at a nominal magnification of 53,000× for a pixel size of 2.69 Å 

at the sample. Tomographic tilt series were collected from ±50° in 2° increments with a dose 

rate of 0.9 electrons per Å2 per sec for a total dose of 60 electrons per Å2 per tilt axis (dual-

axis tomograms received a total dose 120 electrons per Å2). Exposures of 0.9 seconds were 

dose-fractionated into 6 movie frames per tilt angle. Before each tilt series, the Volta phase 

plate was advanced and conditioned for 5 minutes to generate an approximate phase shift of 

90°. The phase plate was also conditioned for an additional 5 s between every fifth tilt image. 

Defocus values were set to -0.3 µm after tilting and before each image acquisition, which is 

sufficient to maintain negative phase contrast up to ~19 Å (35).    

 

Tomography reconstruction and sub-volume averaging 

Raw frames were aligned using MotionCorr (36) and tomograms were reconstructed using 
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IMOD (37) after binning the aligned frames by 2 (final pixel size of 5.38 Å). Single- and 

dual-axis tomograms were processed using the same workflow for the reconstruction of each 

axis. Axes for dual-axis tomograms were combined using IMOD. The surfaces of liposomes 

were manually segmented from simultaneous iterative reconstruction technique (SIRT) 

reconstructions using Dynamo (38) and equally spaced boxes across the surface were 

extracted from weighted back-projection reconstructions for further processing. Dynamo 

tracks the orientation for each particle, and thereby allows for Fourier-space masks to be 

constructed for each sub-volume to account for missing information caused by selected tilt 

geometries (38). An initial model was generated by manually aligning 107 sub-volumes from 

the dual-axis tomograms and low pass filtered to 6 nm (Fig. S2C). White noise was added 

using EMAN2 (39) to five copies of the filtered initial model, which were then used for the 

classification and alignment of all the dual-axis sub-volumes. The best average from the dual-

axis alignments was again low pass filtered to 6 nm and four noisy copies used for the 

classification and alignment of the single-axis sub-volumes. Initial rounds of classification 

for bare or decorated membrane surfaces were performed using data further binned by 2 

(binned by 4 from the raw images) and low pass filtered, using the membrane orientation as a 

constraint on the alignment parameters (±30° maximum deviation in the sub-volume’s 

inclination from the starting orientation and full freedom to rotate in the azimuthal direction). 

If the aligned sub-volumes were not separated by at least 10 nm in the original tomogram, the 

sub-volume with the lower correlation score was discarded from further processing. From 

classes that were not bare membrane, sub-volumes containing C1 complexes (often mixed 

with antibody-alone sub-volumes) were manually selected and the correct orientation verified 

from individual sub-volume projections. These coordinates were used to re-extract the sub-

volumes from weighted-back projection tomograms. The sub-volumes were then subjected to 

a global orientation search again using binned and low-pass filtered data for the initial rounds 

and refined following gold-standard procedures. Sub-volumes that did not align correctly 

were again manually discarded by inspecting projections of the sub-volumes after the 

orientation determined by the alignment procedure was applied. The C1-mAb complex shape 

and the membrane provide obvious features to verify the alignment. The final stack of 

verified C1-mAb sub-volumes was then subjected to further classification using the 

ellipsoidal mask shown in Fig. S2E to generate the classes shown in Fig. S2C. A box size of 

128 pixels cubed was used for the initial alignment and classification steps of the dual-tilt 

tomograms. For the focussed alignment and classification shown in Fig. 1C, particles were 

aligned using the cylindrical mask shown in Fig. S2E and a box size of 84 pixels. A box size 
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of 168 was used to investigate the neighboring C1-mAb complexes using a biased ellipsoid 

mask that fitted three mAb-C1 complexes in a line (Fig. S2E). The nearest neighbor distances 

were determined by computing the distance between aligned sub-volumes within each 

tomogram. The x-, y- and z-shifts were added to the original coordinates of the sub-volume to 

calculate the C1 complex centre. The center-to-center distance for all particles was calculated 

and the minimum pairwise value was taken as the nearest neighbour distance shown in Fig. 

S2F. The final number of sub-volumes was 564 dual-axis and 3,190 single-axis. The final 

number of particles that contributed to the average shown in Fig. 1B is 1,660. 

 

Sample preparation and data collection for single-particle cryo-EM 

A volume of 3 µl of purified C1-IgG16 at a concentration of 0.2 mg/ml was applied to freshly 

glow discharged R1.2/1.3 holey carbon grids (Quantifoil). The grids were blotted for 1 s at 

99% humidity in a Vitrobot plunge-freezer (Thermo Fisher Scientific). Cryo-EM images 

were collected at EM-square (Utrecht, The Netherlands) on a Talos Arctica (Thermo Fisher 

Scientific) operating at 200 kV equipped with a Falcon II direct detector (Thermo Fisher 

Scientific) operating in movie mode. Images were recorded manually at a nominal 

magnification of 42,000× yielding a pixel size at the specimen of 2.27 Å. Using the EPU 

software (Thermo Fisher Scientific), 3,493 micrographs were recorded. Movies were 

collected for 3 s with a total of 52 frames with a calibrated dose of 10.4 e−/ Å2 per frame, a 

total dose of ~53 e-/Å2, and at defocus values between -1.8 and -3 µm. An example 

micrograph is shown in Fig. S4A. 

 

Single Particle Analysis  

Movie stacks were aligned using MotionCorr (36). CTF parameters were defined using 

Ctffind4 (40). A total of ~282,150 particles were picked using particle-picking software from 

Relion using 2D class averages of 2500 manually picked particles (41); see Fig. S4C for a 

schematic representation of the workflow. The particles were aligned and classified 

iteratively by 2D classification according to their 2D projection views using the software 

package Relion (42). ~168,341 particles were selected from classes with top projections of 6 

gC1q domains bound to Fc platform and side views with visible collagen arms for ab initio 

3D reconstruction in Cryosparc (43). Second set of 65,768 particles were selected from 

classes with top projections of 4 or 5 gC1q domains bound to Fc platform and the remaining 

side views. From the first particle set (left column in Fig.S4C), an unbiased 3D reconstruction 

without reference and mask yielded a class with ~79,120 particles which was selected as an 
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initial model. The map was low-pass filtered and used as a reference for 3D classification on 

the gC1q-Fc platform. A soft mask in Relion around gC1q-Fc platform was generated by 

extending 3 pixels and softening the edge by further 10 pixels. Focused classification using 

this mask yielded five classes with a resolution up to 15 Å. 3D refinement of a selection of 

126,372 particles in Relion resulted in a 14 Å map. Two masks were generated using this 

map around the full C1-IgG6 complex (extended by 3 pixels and softening by 10 pixels) and 

around gC1q-Fc platform (extended by 2 pixels and softening by 20 pixels). The initial 

selected class of 79,120 particles was used for 3D refinement in Cryosparc (homogenous 

refinement option) with the 14 Å map used as a reference and the mask around full C1-IgG16 

complex. After 3D refinement in Cryosparc and postprocessing in Relion, the resolution was 

10 Å.  3D refinement applying C6 symmetry with the mask around gC1q-Fc platform and 

subsequent post-processing resulted in 7.3 Å map. The resolutions were estimated by Fourier 

shell correlation between two half maps (each calculated independently) as a function of 

resolution and using the gold-standard FSC = 0.143 criterion. For classification and 

refinement, a box size of 224 pixels was used. Particle-polishing procedure implemented in 

Relion software did not improve the resolution (data not shown). The second set of particles 

(right column in Fig.S4C) were used for 3D classsification using a mask around gC1q-Fc 

platform. 44,121 particles showing 4 gC1q domains abound to Fc platform was reconstructed 

by 3D refinement and postprocessing. 12,781 particles showing 5 gC1q domains bound to Fc 

platform was reconstructed by 3D refinement and postprocessing.  

 

Modeling C1 structure into density map 

Crystal structures were fitted into densities using the “Fit in Map” routine from Chimera (44) 

Fc CH2, CH3, CH2’ and CH3’ domains were taken from the IgG1 b12 structure (pdb-code 

1HZH) (15) and fitted independently into the density map obtained at 7.3-Å resolution. gC1q 

globular heads (1PK6) (16) were fitted in the same map in three orientations for the C1q-A, B 

and C domains and the orientation with the highest correlation coefficient (0.95) calculated 

by Chimera was selected. The serine proteases C1r and C1s were fit into the map using 

previously modelled arrangements of C1r2s2 bound to C1q (23–25) see Fig. S7A. The hetero-

dimer C1rs started from the C1s homo-dimer structure of CUB1-EGF-CUB2 (4LMF) (25). 

One C1s copy was modified into C1r CUB1-EGF-CUB2 using homology modeling 

(SWISSMODEL) (45) to generate the initial C1rs model. C1r and C1s CUB1 interactions 

with collagen (i.e. with C1q arm 3 and 1 resp.) were modeled using the orientations found in 

the crystal structure of C1s CUB1-EGF-CUB2 bound to a collagen peptide (4LOR) (25). C1r 
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CUB2 interaction with collagen of C1q arm 2 was modeled using the crystal structure of 

MASP CUB2 bound to collagen peptide (3POB) (29). This model of the C1rs hetero-dimer, 

C1r CUB1-EGF-CUB2 and C1s CUB1-EGF-CUB2, was placed into the density map 

obtained at 10-Å resolution and adjusted to fit the density (Fig. S7A). Available densities for 

C1r and C1s CCP1 domains were modeled using the C1s CUB2-CCP1 structure (4LOS) 

(25). The model of C1rs CUB1-EGF-CUB2-CCP1 heterodimer was duplicated and rotated 

by 180° to model the other half of the density and minor adjustments were made to fit the 

density. Finally, we predicted the positions for the CCP2-SP domains of C1r and C1s, for 

which no densities were observed in the map. Starting from the positions and orientations of 

CUB-CCP1 domains, the model was extended using CCP1-CCP2-SP from the structure of 

zymogen C1r (1GPZ and 1MD7) (26, 27) and zymogen C1s (4J1Y) (28), and aligning them 

according to the arrangement observed in the structure of the C1s CUB2-CCP1-CCP2 

fragment (4LOT) (25). The cross-correlation coefficient of C1-IgG16 model and the final 

map was 0.78 and gC1q-Fc and the bottom platform was 0.65 according to the scoring 

assessment tool of TEMPy (46).  

 

Complement-dependent cytotoxicity assay 

Raji cells were washed twice with PBS and subsequently re-suspended in RPMI 1640 

medium (containing 0.1% BSA and Pen/Strep). Cells were added to a 96-well plate (1E+05 

cells/well) followed by addition of mAbs at a concentration of 10 µg/mL and then incubated 

for 15 minutes (RT). Subsequently, a concentration series of 1 ng/mL to 60 ug/mL C1q 

protein (Quidel, A400) was added, and C1q-deficient serum (Quidel, A509) was added to a 

final concentration of 20% as a source of complement. After incubation for 45 minutes at 

37°C, cells were immediately placed on ice. After centrifugation, supernatant was discarded 

and cells were re-suspended in BSA-PBS containing 1 µg/mL PI. The fraction of PI (+) cells 

(100% * (PI(+) cells/total cells) was determined using an iQue Screener flow cytometer 

(Intellicyt, Albuquerque, NM). The area under the curve (AUC) of three experimental 

replicates was calculated using a log transformed concentration axis with GraphPad Prism 

7.02 and normalized relative to cell lysis measured for wild type IgG1-7D8 (WT) set at 100% 

and the nonbinding control IgG1-b12 set at 0%. AUC values were collected for IgG1-7D8 

antibody variants in two independent series of three experimental replicates.  Mean AUC 

(normalized per series) and standard deviation (SD) were determined and are presented in 

figures 3 and S6. One-way ANOVA of mean AUC was followed by Dunnett's Multiple 

Comparison Posthoc Test using GraphPad Prism 7.02. A p value <0.05 indicates that CDC 
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obtained with the mutant is different from that obtained with WT 7D8. Data is summarized in 

supplementary table S1. Without C1q added, background cell lysis by 10 µg/mL IgG1-b12 or 

IgG1-7D8 was similar.  
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Supplementary Fig. S1. Domain compositions and prior structural information. 

(A) Domain compositions of C1r and C1s, indicating the first ‘Complement C1r/C1s, Uegf, 

Bmp1’ (CUB1), epidermal growth factor-like (EGF), second CUB (CUB2), first 

complement-control-protein (CCP1), second CCP (CCP2), and serine-protease (SP) domains; 

and, composite structural model of C1s built up from overlapping crystal structures (with 

pdb-codes 4LMF, 4LOT and 4JIY, as indicated (25, 28)). Generation of a composite model 

for C1r yields a highly similar domain arrangement as that for C1s (not shown). Indicated are 

the three calcium-binding sites (by red calcium ion), scissile bond (arrow) and catalytic site 

(purple). (B) Composition of C1q, showing the hetero-trimer chains A, B and C, which form 

a collagen-like region and trimeric globular head (left). Six chain of C1q A, B and C form the 

overall C1q assembly (middle). A collagen triple helix model, (colored and labeled with as a 

hetero-trimer, mimicking the situation in C1q) and the crystal structure of gC1q (1PK6) (16). 

(C) Composition of an IgG molecule, showing light chain and variable constant domains (VL 
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and CL, resp.) and heavy chain variable, constant-1, 2 and 3 domains (VH, CH1, CH2 and 

CH3, resp.), antigen-binding fragment (Fab), Fc and hinge region. Shown are a cartoon (left) 

and crystal structure 1HZH (15). Residues involved in C1q binding are schematically shown 

by yellow dots. (D) Six-fold arrangements of IgG1 Fc domains as observed in the crystal 

packing contacts in pdb 1HZH. The hexamer is shown in black with the Fc domain of a 

single IgG molecules highlighted in red (left). Model of the Fc arrangement in a single 

pentameric IgM molecule (right) (47). 

 

 
Supplementary Fig. S2. Cryo-EM tomography of C1 bound to IgG1 on liposomal 
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surfaces and image analysis workflow.  

(A) A 10.8 nm-thick slice through a single-tilt tomogram of liposomes decorated with a 

chimeric anti-DNP IgG1 monoclonal antibody and C1 complexes. The scale bar indicates 20 

nm. (B) Raw images of IgG1-C1 complexes from single-tilt tomograms after coarse 

alignment. The scale bar indicates 10 nm. (C) Sub-volume alignment and classification 

workflow. A subset of 107 sub-volumes from dual-axis tomograms were manually aligned to 

generate an initial model. The initial model was used to align and classify the dual-axis sub-

volumes. The resulting average from the dual-axis data was used to process the single-axis 

sub-volumes. Due to the extensive flexibility, all assignments into the decorated class and 

final orientation of the aligned sub-volume were manually verified. Multi-reference 

refinement using five classes (dual-tilt) and four classes (single-tilt) revealed classes showing 

flexibility of the structure and consistent presence of six IgG1-Fc and gC1q domain-

containing densities. The percentage of sub-volumes assigned to each class is shown below 

the image. From the single-axis sub-volumes, two of these classes were nearly identical and 

contained the majority of particles (54% total), which were subjected to a final alignment 

round, which yielded the density map shown in Fig. 1B. Focussed alignment and 

classification on the Fc domains and C1 complex yielded the reconstruction shown in Fig. 

1C. (D) Fourier shell correlation (FSC) curve for the complete IgG1-C1 complex showing 

FSC0.143 = 25 Å. (E) Masks used during sub-volume alignment and classification of complete 

mAb-C1 complexes (left), focussed refinement of the Fc-C1 complex (middle), and to 

investigate neighboring mAb-C1 complexes (right). (F) Histogram showing the calculated 

distances between nearest neighbour mAb-C1-IgG1 complexes.    
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Supplementary Fig. S3. Sample preparation for single-particle cryo-EM. 

(A) Gel-filtration profile of C1r2s2 purified with a Superose 6 16/60 column. A Coomassie-

stained reducing SDS-PAGE gel is shown on the right. (B) Gel-filtration profile of C1-IgG16 

purified with a BioSep 4000 column. Silver-stained reducing SDS-PAGE gel shows C1r, 

C1s, IgG1 heavy chain (IgGh) and light chain(IgGl), C1q-A, B and C chains on the right. 
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Supplementary Fig. S4. Cryo-EM single particle analysis of C1-IgG16 and single 

particle analysis workflow. 
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(A) Representative micrograph of with a pixel size of 2.27 Å and a defocus value of -2.2 µm. 

(B) Direction distribution plots of particles for non-symmetric C1-IgG16 map and C6-

symmetry imposed gC1q-Fc map. (C) Single particle reconstruction workflow. 2D 

classification, 3D classification, 3D refinement and postprocessing jobs were performed by 

Relion 2.0 except the jobs stated as “in Cryo Sparc”. The mask applied around the gC1q-Fc 

region is shown as black box. The percentages of the particles for classification jobs are 

stated below the densities. (D) Fourier-shell correlation curve of C1-IgG16 map (top) and C6-

symmetry imposed gC1q-Fc map (bottom) (E) Single-particle reconstruction of C1-IgG16 

colored by local resolution expressed in	Å (F) C6-symmetry imposed single-particle 

reconstruction of gC1q units bound to Fc-platform colored by local resolution.  
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Supplementary Fig. S5. Comparing cryo-EM tomography and single-particle 

reconstructions. 

Reconstructions derived from tomograms (blue surface; from Fig. 1C) and single-particle 

analysis (grey mesh; from Fig. 2C) aligned to show similarities in density from the side (left 

and middle) and top (right). 
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Supplementary Fig. S6. Identification of residues participating in gC1q-Fc interactions. 

(A) Surface-area representation of Fc (magenta) with binding sites on CH2 and CH2’ as 

footprint of gC1q (orange) (left). Alignment of CH2 and CH2’ in cartoon representation 

(right) (B) Fc (magenta) with a distance of 31 Å between Pro329-Pro329’ and Fc 

arrangement as observed in the IgG1- b12 crystal structure (1HZH) exhibiting Pro329-

Pro329’ distance 23.8 Å (green). (C) The Fab-Fc hinge region contributes to C1q binding. 
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IgG Fc domain in magenta, glycans in green, C1q-A, B and C domains in red, blue, and 

orange respectively. Right panel: Complement dependent cytotoxicity assays of Raji cells 

opsonized with wild-type (WT) and mutated CD20 mAb IgG1-7D8 (n=3) exposed to C1q-

deficient serum to which a titration of 1 ng/mL to 60 µg/mL C1q was added. Cell lysis was 

assessed by flow cytometry using propidium iodide staining. Bars show the average area 

under the curve (AUC) for this dose response normalized against the AUC obtained with the 

unmutated WT IgG1-7D8 set to 100%.  
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Supplementary Fig. S7. C1r and C1s arrangements. 

(A) Crystal structures used for fitting of C1r and C1s into the density. Initial positioning of 
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each structure is shown on the left. The manual changes applied for fitting are shown by 

arrows. Final models (inside and outside the density) are shown on the right.  (B) 

Superposition of the N-terminal CUB1-EGF-CUB2 domains of C1r (blue) and C1s (cyan) in 

C1-IgG16 onto the C1s CUB1-EGF-CUB2 arrangement (beige) observed in crystal structure 

4LMF (25), indicating different orientations of CUB2 domains. (C) Comparison of C1s-C1s 

arrangements in C1-IgG16 and the tetrameric packing of C1s observed in crystal structure 

4LMF. Cartoon representations of the N-terminal CUB1-EGF-CUB2 arrangement for the 

C1r-C1s hetero-dimer in C1-IgG16 (left), with dashed line indicating the orientation of CUB2 

domains in 4LMF, arrangement of the CUB1-EGF-CUB2 of C1r-C1s-C1s-C1r in C1-IgG16 

(middle) and superposition of C1s CUB1-EGF-CUB2 stacking observed in 4LMF (right). 

Parallelograms in red solid and dashed lines indicate the effect of shifting the central C1s 

molecules by ca. 20 Å sideways. (D) Hypothetical model obtained by extending CCP2-SP 

outwards in side (left) and bottom view (right). This arrangement, that is consistent with the 

observed density, supports the catalytic SP domain C1r to reach and cleave the scissile bond 

of the adjacent C1s. (E) Modeling C1r CCP2-SP oriented inwards for putative auto-activation 

in side view (left) and bottom view (right), indicating that the observed density of C1-IgG16 

is not consistent with an intra-complex auto-activation of C1r by the opposing C1r. 

Generation of a C1r-C1r enzyme-substrate arrangement within a single C1 would require 

domain rearrangements incongruent with the observed density. Moreover, no density is 

observed in between the N-terminal protease platform and Fc platform in our data (both from 

tomography and single-particle analysis).  
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Supplementary Table S1 

Experimental series 1 

Antibody Location 
Mean 

AUC (%) 
(1) 

SD (%) 
(2) 

N 
(3) 

One way ANOVA, Dunnett's multiple 
comparisons test 

WT IgG1-7D8 Control 100.0 9.2 3 Mean 
difference 

95% CI of 
difference 

Adjusted p 
value (4) IgG1 b12 Control 0.0 5.9 3 

E233A Hinge 34.0 6.8 3 66 40.7 to 91.3 <0.0001 
E233K Hinge 1.8 4.3 3 98.2 72.9 to 123 <0.0001 
L234A Hinge 6.8 4.0 3 93.2 67.9 to 119 <0.0001 
L235A Hinge 16.9 5.0 3 83.1 57.8 to 108 <0.0001 
G236A Hinge 59.7 9.5 3 40.3 15 to 65.6 <0.0001 
G236D Hinge 153.1 14.2 3 -53.1 -78.4 to -27.8 <0.0001 
G236R Hinge 4.2 3.4 3 95.8 70.5 to 121 <0.0001 
G237A Hinge 43.4 7.4 3 56.6 31.3 to 81.9 <0.0001 
E269A Site 2 32.0 7.2 3 68 42.7 to 93.3 <0.0001 
E269K Site 2 10.7 8.5 3 89.3 64 to 115 <0.0001 
E294A Site 2 82.0 7.3 3 18 -7.25 to 43.3 0.3575 
E294K Site 2 24.1 7.9 3 75.9 50.6 to 101 <0.0001 
S298A Site 2 110.6 9.7 3 -10.6 -35.9 to 14.7 0.9629 
S298K Site 2 14.1 7.0 3 85.9 60.6 to 111 <0.0001 
Y300A Site 2 145.6 11.8 3 -45.6 -70.9 to -20.4 <0.0001 
Y300D Site 2 207.2 13.0 3 -107 -133 to -81.9 <0.0001 
Y300R Site 2 26.8 11.3 3 73.2 48 to 98.5 <0.0001 
K322A Site 1 15.4 6.9 3 84.6 59.3 to 110 <0.0001 
A327G Site 1 145.6 10.6 3 -45.6 -70.9 to -20.4 <0.0001 
A327E Site 1 100.0 9.5 3 0 -25.3 to 25.3 0.9999 
A327K Site 1 13.3 6.8 3 86.7 61.4 to 112 <0.0001 
No Ab Control 3.8 6.1 3 96.2 70.9 to 121 <0.0001 
 
 
 
 
 
Experimental series 2 
Antibody Location Mean 

AUC (%) 
(1) 

SD 
(%) (2) 

N 
(3) One way ANOVA, Dunnett's multiple 

comparisons test 

WT IgG1-7D8 Control 100.0 10.6 6 Mean 
difference 

95% CI of 
difference 

Adjusted p 
value (4) IgG1 b12 Control 0.0 4.2 6 

H268Q Site 2 75.4 7.3 3 24.6 6.39 to 42.7 0.0031 
D270A Site 2 -0.7 3.0 3 101 82.5 to 119 <0.0001 
N297Q Site 2 -0.4 2.6 3 100 82.2 to 119 <0.0001 
K322A Site 1 -0.4 2.7 3 100 82.2 to 119 <0.0001 
P329A Site 1 -2.0 2.9 3 102 83.9 to 120 <0.0001 
P331A Site 1 12.9 6.7 3 87.1 68.9 to 105 <0.0001 
L234A/L235A Hinge 3.8 4.8 3 96.2 78 to 114 <0.0001 
K326A/E333A Site 1 223.7 11.6 3 -124 -142 to -105 <0.0001 
No Ab Control -0.7 3.8 3 101 82.6 to 119 <0.0001 
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Supplementary Table 1: Area under the curve (AUC) values for CDC of Raji cells 

normalized relative to the WT IgG1-7D8, which was set at 100% lysis. CDC data were 

collected in in two independent series of three experiments, and were normalized per series 

(top panel, bottom panel). Mean area under the curve (AUC) (1), standard deviation (SD) (2), 

number of replicates (N) (3), and multiplicity adjusted p-value of statistical analysis (4) are 

shown. One-way ANOVA was followed by Dunnett's Multiple Comparison Posthoc Test 

using GraphPad Prism 7.02. A p-value <0.05 indicates that the CDC induced by a mutant was 

different from that determined for wild-type IgG1-7D8. 
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