

Programmed electrical stimulation-guided encircling cryoablation concomitant to surgical ventricular reconstruction for primary prevention of ventricular arrhythmias

Taxis, C.F.V. van; Wijnmaalen, A.P.; Klein, P.; Dekkers, O.M.; Braun, J.; Verwey, H.F.; ... ; Zeppenfeld, K.

Citation

Taxis, C. F. V. van, Wijnmaalen, A. P., Klein, P., Dekkers, O. M., Braun, J., Verwey, H. F., ... Zeppenfeld, K. (2018). Programmed electrical stimulation-guided encircling cryoablation concomitant to surgical ventricular reconstruction for primary prevention of ventricular arrhythmias. *European Journal Of Cardio-Thoracic Surgery*, 54(1), 98-105. doi:10.1093/ejcts/ezx496

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/86405

Note: To cite this publication please use the final published version (if applicable).

European Journal of Cardio-Thoracic Surgery

Programmed electrical stimulation guided encircling cryoablation concomitant to surgical ventricular reconstruction for primary prevention of ventricular arrhythmias --Manuscript Draft--

Manuscript Number:	
Full Title:	Programmed electrical stimulation guided encircling cryoablation concomitant to surgical ventricular reconstruction for primary prevention of ventricular arrhythmias
Article Type:	Original Article
Order of Authors:	Carine F van Huls van Taxis
	Adrianus P Wijnmaalen
	Patrick Klein
	Olaf M Dekkers
	Jerry Braun
	Harriette F Verweij
	Martin J Schalij
	Robert J Klautz
	Katja Zeppenfeld
Corresponding Author:	Katja Zeppenfeld LUMC Leiden,
Corresponding Author E-Mail:	k.zeppenfeld@lumc.nl
Section/Category:	Arrhythmia
Manuscript Classifications:	300.30: Congestive heart failure; 300.45: Electrophysiology - Arrhythmias; 300.75: Myocardial infarction
Author Comments:	Friedhelm Beyersdorf, MD Editor-in-Chief, European Journal of Cardio-Thoracic Surgery University Freiburg - Medical Center Department of Cardiovascular Surgery Hugstetter Str. 55 79106 Freiburg, Germany Leiden, 28-8-2017 Dear Dr. Beyersdorf,
	Herewith we would like to submit our manuscript, entitled 'Programmed electrical stimulation guided encircling cryoablation concomitant to surgical ventricular reconstruction for primary prevention of ventricular arrhythmias' for publication in European Journal of Cardio-Thoracic Surgery. There are only little data on the occurrence of ventricular arrhythmias (VA) and the potential benefit from ICDs in patients who have undergone surgical ventricular restoration (SVR) for ischemic heart failure.
	The manuscript systematically evaluated the incidence, type and timing of VA after programmed electrical stimulation (PES)-guided endocardial cryoablation concomitant to SVR in patients without previously documented VA during long-term follow-up. The rational of this approach was to target two potential VA mechanisms - scar related reentry and VA due to increased wall stress. We compared the outcome of patients without spontaneous VA, who were referred for SVR and underwent pre-operative PES prior to surgery and who received concomitant endocardial cryoablation of the scar borderzone, if inducible for aneurysm-related VA to a historical cohort of patients without spontaneous VA who did not undergo pre-

	operative PES and anti-arrhythmic surgery. We found that the majority of patients referred for SVR without previously documented VA was inducible for aneurysm related VA and that during follow-up more than one third of the patients experienced appropriate ICD therapy. No difference in VA occurrence, VA cycle length and ICD therapy was observed during long-term follow-up between patients with PES-guided concomitant cryoablation and those without preoperative evaluation and concomitant treatment. Improvement in hemodynamics and concomitant EC in inducible patients appeared not to be sufficient to prevent VAs in this patient population. Considering the favorable long term survival but high incidence of appropriate ICD therapies, other concomitant antiarrhythmic surgical approaches targeting the potential arrhythmogenic substrate need to be considered All authors have read and approved submission of the manuscripts and the manuscript has not been published or is not being considered for publication elsewhere. The authors have no conflicts of interest to report. We hope that the manuscript is suitable for publication in European Journal of Cardio- Thoracic Surgery. Looking forward to your response at your best convenience, we remain, Sincerely, K. Zeppenfeld, MD, PhD Department of Cardiology Leiden University Medical Center Email: K.Zeppenfeld@lumc.nl
Abstract:	Background Surgical ventricular reconstruction (SVR) is an effective treatment to improve left ventricular (LV) function in patients with ischemic heart failure and a LV anterior-apical aneurysm. Ventricular arrhythmia (VA) is an important cause for morbidity and mortality in these patients. Encircling cryoablation (EC) targeting the VA-substrate may therefore be required. Programmed electrical stimulation (PES) can identify patients at risk for VA. Objective The objective of this study was to evaluate the incidence and type of VA during long- term follow-up after PES-guided EC concomitant to SVR for primary prevention of VA. Methods Thirty-eight patients without spontaneous VA referred for SVR who underwent pre- operative PES were included (PES-group); 27 patients inducible for aneurysm-related VA received cryoablation (71%). A historical cohort of 39 patients without spontaneous VA, pre-operative PES and anti-arrhythmic surgery served as control group. Patients were discharged with an implantable cardioverter defibrillator (ICD). Results During 74±35 months follow-up no arrhythmic deaths occurred. Five-year survival for the total study population was 78%. Twenty-eight patients (36%) experienced ≥1 VA. There were no differences in number and type of ICD therapies between groups: shocks p=0.699; Anti-tachypacing p=0.403. Five-year VA-free survival was 61% for the PES-group and 65% for the control group (hazard ratio 1.67, p=0.290). Conclusion The majority of patients referred for SVR without previously documented VA was inducible for aneurysm-related VA. During follow-up, more than one third of patients experienced sustained VA and 25% received appropriate ICD therapy. No difference in VA occurrence or ICD therapy was observed between groups.

	1	Programmed electrical stimulation guided encircling cryoablation concomitant to surgical
1 2 2	2	ventricular reconstruction for primary prevention of ventricular arrhythmias
3 4	3	
5 6 7	4	Short title: The occurrence of ventricular arrhythmias after surgical ventricular reconstruction
8	5	
10	6	
11 12 13	7	Carine F van Huls van Taxis ¹ ; Adrianus P Wijnmaalen ¹ ; Patrick Klein ² ; Olaf M Dekkers ³ ; Jerry Braun ² ;
14	8	Harriette F Verwey ¹ ; Martin J Schalij ¹ ; Robert J Klautz ² ; Katja Zeppenfeld ¹
15 16	9	
17 18	10	
19 20	11	Departments of Cardiology ¹ , Cardiothoracic surgery ² and Clinical Epidemiology ³ , Leiden University
21 22	12	Medical Center, Leiden, The Netherlands
23 24	13	
25	14	
27	14	
28 29	15	Corresponding address:
30 31	16	K. Zeppenfeld, MD, PhD
32 33	17	Leiden University Medical Center
34 35	18	Department of Cardiology, postal zone:C-05-P
36 37	19	P.O. Box 9600
38 39	20	2300 RC Leiden
40 41	21	Telephone: +31-71-5262020
42 43	22	K.Zeppenfeld@lumc.nl
44 45	23	
46 47	24	
48 49	25	Word count: 4917
50	26	
51 52		
53 54		
55		
56 57		
58		
59 60		
61		
63		
64		1

	27	ABSTRACT
1 2	28	Background
3 4	29	Surgical ventricular reconstruction (SVR) is an effective treatment to improve left ventricular (LV)
5 6	30	function in patients with ischemic heart failure and a LV anterior-apical aneurysm. Ventricular
7 8	31	arrhythmia (VA) is an important cause for morbidity and mortality in these patients. Encircling
9 10	32	cryoablation (EC) targeting the VA-substrate may therefore be required. Programmed electrical
11 12	33	stimulation (PES) can identify patients at risk for VA.
13 14	34	Objective
15 16	35	The objective of this study was to evaluate the incidence and type of VA during long-term follow-up
17 18	36	after PES-guided EC concomitant to SVR for primary prevention of VA.
19 20 21	37	Methods
21 22 23	38	Thirty-eight patients without spontaneous VA referred for SVR who underwent pre-operative PES
23 24 25	39	were included (PES-group); 27 patients inducible for aneurysm-related VA received cryoablation
26 27	40	(71%). A historical cohort of 39 patients without spontaneous VA, pre-operative PES and anti-
28 29	41	arrhythmic surgery served as control group. Patients were discharged with an implantable
30 31	42	cardioverter defibrillator (ICD).
32 33	43	Results
34 35	44	During 74±35 months follow-up no arrhythmic deaths occurred. Five-year survival for the total study
36 37	45	population was 78%. Twenty-eight patients (36%) experienced ≥1 VA. There were no differences in
38 39	46	number and type of ICD therapies between groups: shocks p=0.699; Anti-tachypacing p=0.403. Five-
40 41	47	year VA-free survival was 61% for the PES-group and 65% for the control group (hazard ratio 1.67,
42 43	48	p=0.290).
44 45	49	Conclusion
46 47	50	The majority of patients referred for SVR without previously documented VA was inducible for
48 49	51	aneurysm-related VA. During follow-up, more than one third of patients experienced sustained VA
50 51	52	and 25% received appropriate ICD therapy. No difference in VA occurrence or ICD therapy was
52 53	53	observed between groups.
54 55	54	
56 57	55	Key words: Ventricular Arrhythmias; Ischemic Heart Failure; Surgical Ventricular Reconstruction;
58 59	56	Cryoablation
60 61	57	
62 63		
64 65		

	58	INTRODUCTION	
1 2	59	Late sudden cardiac death due to ventricular arrhythmias (VA) constitutes 30-50% of mortality in	
3 4	60	patients with ischemic heart failure. ^{1,2} VA may be due to scar-related reentry typically involving the	
5	61	scar-borderzone or to heart failure related mechano-electric changes resulting in altered ion channel	
8	62	and transporter function. ³⁻⁵ Surgical ventricular reconstruction (SVR) is an effective treatment to	
9 10 11 12	63	reduce left ventricle (LV) volumes and improve LV function in ischemic heart failure patients with LV	
	64	anterior-apical aneurysm. ^{6,7} However, despite improved function and reduced wall stress patients	
13 14 15	65	remain at risk for VA. ^{3,8,9} These VA can be due to reentry in the scar-borderzone which is left in place	÷
15 16 17	66	and excluded by patch material during surgery. ¹⁰ Targeting aneurysm scar-borderzone without	
18 19	67	additional mapping by an encircling cryoablation (EC) has been proven safe and effective for	
20 21	68	recurrent slow VA in these patients. ¹¹⁻¹³ Programmed electrical stimulation (PES) can identify patients	3
22 23	69	at risk for VA after myocardial infarction as it indicates the presence of an arrhythmogenic	
24 25	70	substrate.14,15 Patients who undergo SVR for an LV anterior-apical aneurysm without prior VA who ar	e
26 27	71	inducible for aneurysm-related reentrant VA, may benefit from substrate modification by concomitant	
28 29	72	EC of the scar-borderzone referred to as PES-guided EC, to prevent spontaneous VA.	
30 31	73	The objective of this study was to evaluate the incidence, type and timing of VAs after PES-	
32 33	74	guided EC concomitant to SVR for primary prevention of VA during long-term follow-up.	
34 35	75		
36 37	76	METHODS	
38 39	77	Patient population	
40 41	78	In 2007 PES-guided EC of the scar-borderzone was added to the standard clinical protocol for	
42 43	79	patients without documented VA accepted for SVR. The studied population consisted of 38	
44 45	80	consecutive patients with ischemic heart failure and anterior-apical aneurysm, who underwent PES	
46 47	81	prior to elective SVR and PES-guided EC between 2007 and 2012 (PES-group). Thirty-nine patients	
48 49	82	who underwent SVR without PES-guided EC for the same indication from 2003 onwards served as a	
50 51	83	historical control group. This included a comprehensive preoperative evaluation with	
52 53	84	echocardiography and coronary angiography. The results were evaluated by a team of cardiologists	
54 55 56 57 58 59 60 61 62	85	and cardiothoracic surgeons.	
64			3

The Dutch Central Committee on Human-related Research allows use of anonymous data without prior approval of an institutional review board provided that the data are acquired for patient care. All data used for this study were acquired for clinical purposes and handled anonymously.

90 Preoperative electrophysiological evaluation

Before PES, anti-arrhythmic drugs were discontinued for ≥5 half-lives. None used amiodarone at time of PES. Two catheters were inserted through the right femoral vein, one placed at the His position and the second at the right ventricular apex and subsequently in the right ventricular outflow tract to perform PES. The PES protocol consisted of 3 drive cycle lengths (CL) (600,500,400ms) with 1-3 ventricular extra stimuli (down to 200ms or refractory period) and incremental burstpacing. An aneurysm-related VA substrate was assumed if PES induced a monomorphic VA, lasting >30s or requiring termination because of hemodynamic compromise, was re-inducible and the VA exit site was located at the aneurysm scar-borderzone. The presumed exit site was determined based on the VA 12-lead electrocardiogram morphology.¹⁶ All 12-lead VA electrocardiograms were analyzed by 2 independent observers. In case of discrepancy agreement was reached by consensus. Patients with aneurysm-related VA were candidates for EC concomitant to SVR. Patients without aneurysm-related VA underwent SVR only.

104 Surgical technique

Patients underwent SVR according to the previously described technique.⁷ Operations were performed using cardiopulmonary bypass, aortic cross-clamping and intermittent warm blood cardioplegia. The LV was opened through the infarcted area. At the transitional zone between viable and scarred myocardium, EC was performed using a 4mm diameter malleable cryoprobe (Cardioblate 47 109 CryoFlex,Medtronic,Minneapolis,USA) using argon gas. Overlapping linear applications, down to -150°C for 90s, were made to the aneurysm scar-borderzone.¹⁰ After EC, a Fontan-stich was placed at 49 110 51 111 the transitional zone. The residual LV cavity was shaped and sized using a manneguin balloon at 53 112 55ml/m²body surface-area (TRISVR,Chase Medical,Richardson,USA) and the remaining defect was 55 113 closed through an endoventricular Dacron patch plasty. Excluded fibrous scar-tissue was sutured over 57 114 the patch to improve hemostasis. Additional concomitant procedures were performed when indicated.

After weaning the patient from extracorporeal circulation, trans-esophageal echocardiography was 2 116 repeated to assess LV shape and function, patch integrity and valvular competency.

6 118 **ICD** settings

8 119 In patients without ICD before surgery one was implanted before discharge based on the preoperative 10 120 LV ejection fraction (EF) <30-35% according to current European Society of Cardiology guidelines. 12 121 Devices were programmed according to our standard institutional protocol for primary prevention; VA 14 122 monitor zone (VACL 321-400ms, no therapy), VA zone (VACL 261-320ms, anti-tachycardia pacing 16 123 (ATP) and if the VA continued ICD shocks), VF zone (VACL ≤260ms, ICD shocks). Settings were 18 124 adapted when clinically indicated.

22 126 Follow-up

Patients were prospectively followed in an outpatient heart failure program and maintained on optimal 26 128 medical treatment for heart failure. ICDs were interrogated every 6 months. Printouts were reviewed for the occurrence of sustained VA, VACL and therapy mode. VA were classified as sustained when 30 130 lasting >30s in the ICD monitor zone or when initiated appropriate ICD therapy. Therapy was ³² 131 considered appropriate when occurring in response to any VA. Echocardiography was performed before discharge and afterwards annually.

Statistical analysis

Continuous variables are expressed as mean(standard deviation) or median(interquartile range [IQR]) and categorical variables as percentages(%), where appropriate. Student's T-test, Mann-Whitney U-test, Fishers exact or Chi²-test were used to compare variables between groups at baseline. For analysis purposes, for each patient the mean CL of all induced and/or spontaneous VAs was calculated. Intrapatient comparison for LVEF, NYHA-class and VACL was performed using the paired samples T-test or Wilcoxon paired-test as appropriate. Incidence rate ratio were estimated for counted data. Univariate and multivariate Cox regression models were constructed to study overall survival and VA-free survival. Selection of potential confounders was based on clinical knowledge and comparing baseline characteristics. Furthermore, overall survival and VA-free survival over time were analysed for the total study population by the method of Kaplan-Meier. All tests were 2-sided and a p-

	145	value of <0.05 was considered significant. Statistical analyses were performed using SPSS software
1 2	146	(version 22,SPSS Inc,Chicago,III,USA).
3 4	147	
5 6	148	RESULTS
7 8	149	Patient characteristics
9	150	Thirty-eight patients were included in the PES-group and 39 controls. Baseline patient's
1 2 2	151	characteristics are provided in Table 1. Patients were on optimal medical treatment for heart failure
3 4 5	152	before undergoing SVR.
5 6	153	
8	154	Preoperative electrophysiological evaluation
9 0 1	155	28/38 patients were inducible for 34 monomorphic sustained VAs. Based on the 12-lead
⊥ 2 2	156	electrocardiogram, 31/34 induced VAs in 27(71%) patients were classified as aneurysm-related.
4 5	157	These had a VACL of 259±54ms, 24 VAs (77%) a superior axis, and 19 VAs (58%) had a left bundle
5 6 7	158	branch block-type morphology; 17 VAs (55%) were hemodynamically not tolerated. In 2 patients 1
, 8 9	159	aneurysm-related and 1 non-aneurysm-related VA were induced and in 1 patient only a non-
0 1	160	aneurysm-related VA was induced.
23	161	
4 5	162	Surgical characteristics
6 7	163	All patients underwent SVR. EC was applied at the aneurysm scar-borderzone in all patients inducible
8 9	164	for aneurysm-related VA. No statistical differences in surgical data were observed between groups
0 1	165	(Table 1).
2 3	166	
4 5	167	Follow-up
6 7	168	Patients were followed for 74±35 months. 74/77 patients had an ICD during follow-up (96%); 3
8 9	169	patients in the PES-group did not receive an ICD at the preference of the referring cardiologist
0 1	170	(LVEF≥35% at discharge, negative PES). There was an improvement in NYHA-class from the
2 3	171	majority in 3 at baseline to 2 at 1 year follow-up (p<0.001). Mean LVEF improved from $27\pm8\%$ pre-
4 5	172	operatively to 36±9% after 1 year (p<0.001). No differences were observed between groups after 1
6 7	173	year (Table 2).
8 9	174	
0 1		

In 28/74 (38%) patients 99 VA episodes were recorded on ICD (VACL 310±58ms, 3[IQR 1-3]
VAs/patient), which prompted appropriate ICD therapy in 26/28 patients (93%); 19 patients (25%)
received ATP for 58 VAs and 11 patients (14%) received ≥1 shocks for 18 VAs. In 10 patients 15 VA
were registered in the VF-zone. No differences were found between groups regarding type of ICD
therapy (Table 2). Two patients in the PES-group had 2 VA registered only in the monitor zone of the
ICD and did not receive any ICD therapy. None of the patients without ICD had documented or
suspected sustained VA.

Median time to first VA was 11 months (IQR 2-27). 9/28 patients (32%) experienced a first VA while on anti-arrhythmic drugs. Anti-arrhythmic drugs were initiated because of postoperative spontaneous VA (n=4) or atrial fibrillation/flutter (n=5).

22 186 VA occurrence was similar between groups; 14/38 (37%) patients in the PES-group 24 187 experienced 45 VAs (CL 314±50ms; 3[IQR 1-3] VAs/patient), and 14/39 (36%) in the control group 26 188 experienced 54 VAs (CL 305±67ms, 3[IQR 1-3] VAs/patient). VA-free survival was 63% at 5 years for the entire cohort and similar between groups (Figure 1A); 61% for the PES-group and 65% for the control group (hazard ratio 1.13 [p=0.750]; after adjusting for confounders hazard ratio 1.67 [p=0.290], ³² 191 Table 3). At multivariate Cox regression analyses for VA occurrence LVEF at baseline demonstrated to influence VA occurrence: Lower LVEF increased the risk for VA during follow-up. VA characteristics did not differ between groups (Table 2). One patient in the control group underwent successful catheter ablation of 2 presumptive clinical VAs 46 months after discharge and was free from VA afterwards.

Twenty-five patients (32%) died during follow-up; 16 patients (64%) died of heart failure. No arrhythmic deaths were reported. Nine patients died of non-cardiac causes. One patient in the PES-group received a LV assist device as destination therapy 58 months after SVR and 1 patient in the Control group underwent heart transplantation after 28 months; both were censored for further follow-up afterwards. Kaplan-Meier analysis revealed a 5-year overall survival of 78%. No significant difference in 5-year overall survival was observed between groups (PES-group 79% versus Control group 78%, Figure 1B): unadjusted hazard ratio 1.05, p=0.932; adjusted hazard ratio 1.62, p=0.514. When performing multivariate analyses, only older age remained significantly associated with worse overall survival (Table 4).

Encircling cryoablation and VA characteristics

Overall 11/27 patients (41%) with concomitant EC experienced 37 VA episodes (median 2 [IQR 1-3]
episodes/patient). VACL did not differ between patients with or without EC: 308±46ms versus 311±66,
p=0.919, respectively. Five VA (14%) were terminated by ICD shock and 19 VA (51%) by ATP. The
remaining 13 VA (35%) were registered in the ICD monitor zone. There were no differences in type of
ICD therapy between patients with or without EC.

DISCUSSION

The present study is the first to systematically evaluate the incidence, type and timing of VA in patients who underwent PES-guided EC concomitant to SVR for primary prevention of VA thereby targeting two potential VA mechanisms; scar-related reentry and wall stress. The main findings are: (1) the majority of patients referred for SVR without previously documented VA was inducible for aneurysm-related VA; (2) during follow-up more than one third of the patients experienced appropriate ICD therapy, despite concomitant EC targeting the scar-borderzone and significant hemodynamic improvement; (3) no difference in VA occurrence, VACL and ICD therapy was observed during longterm follow-up between patients with PES guided concomitant EC and those without preoperative evaluation and concomitant treatment.

Pre-operative VA inducibility

The current investigation comprised of a homogeneous patient group, with a large anterior scar after infarction, the majority in NYHA-class 3 and none treated with amiodarone. 71% of these patients were inducible for an aneurysm-related VA prior to surgery, using a standardized and complete PES protocol. Others have reported lower inducibility rates, ranging from 22-58%. However, included patients were more heterogeneous (with/without apical aneurysm; anterior/non-anterior infarction; NYHA-class 1-3; many on sotalol/amiodarone; LVEF >40%) and in several studies the induction protocol was less extensive which is likely to influence inducibility rates in scar-related VA.14,17-20 Induction of a monomorphic reentrant VA indicates the presence of an arrhythmogenic substrate and has been associated with VA occurrence and sudden death in patients after myocardial infarction, especially in patients with a LV aneurysm.^{14,15,21} Based on VA morphology all but 3 VAs had an exit

site at the aneurysm scar-borderzone in particular involving the inferior apical septal segments. 2 236 Therefore, targeting the scar-borderzone by cryoablation may abolish at least parts of the substrate 4 237 for these VA.

8 239 VA occurrence after SVR

б

10 240 Previous studies have demonstrated that the substrate for reentrant VA can persist after SVR and 12 241 may lead to VA occurrence during follow-up.^{11,22} This might be partly due to incomplete elimination of 14 242 VA substrate by SVR as a significant portion of myocardial scar is left behind the inserted patch for 16 243 stability and hemostasis. Excluded portion of the scar containing the VA reentry circuit can no longer 18 244 be approached by endocardial catheter ablation, which may further justify preventive substrate 20 245 elimination.¹⁰ In the historical control group without additional PES guided EC, 36% experienced 22 246 spontaneous VA during long-term follow-up supporting the importance of preventive methods to 24 247 identify and target possible VA substrates. Of importance, in the PES-group, 71% of which underwent 26 248 EC of the scar-borderzone, a similar high VA occurrence rate was registered (37%). Although not 28 249 randomized, patient groups were comparable in baseline and surgical characteristics suggesting that PES-guided concomitant EC does not prevent late VA. This is confirmed by the multivariate Cox ³² 251 regression analysis demonstrating that PES-guided EC did not influence outcome.

As VA were registered in 41% of patients who underwent EC of the scar-borderzone the technique seems insufficient to eliminate the VA substrate in our population. Catheter mapping studies of post infarct VA have shown that although reentry circuit exit sites are usually located at the scar-borderzone, which may also involve the mid-wall and subepicardial layers, the critical isthmus is often found in the electroanatomical dense scar.^{4,5,23,24} A prior animal study could demonstrate that endocardial cryoablation lesions reach a depth of approximately 4.8mm.²⁵ Endocardial cryolesions, in particular at the septal scar-borderzone may not create transmural or deep lesions and may not be sufficient to eliminate or exclude the VA substrate, allowing for circuits to remain or the reentrant circuit to exit.

VA occurrence rate after EC in this population without prior VA was higher than previously described recurrence rates in patients who underwent EC for the treatment of recurrent VA.3.9.11-13 This may be in part explained by the large proportion of patients with an ICD (96%) in the current investigation allowing for reliable monitoring of VA recurrence. The high ICD implantation rate is

different from most prior studies with implantation rates of only up to 9.6% after SVR,^{3,11-13} except for 2 266 the investigation of O'Neill⁹ in which 48% of patients were discharged with an ICD. Differences in 4 267 surgical techniques and the frequent use of amiodarone in the prior studies may have also contributed to lower VA recurrence rates. б 8 269 Of importance, differences in VA substrate may exist between patients with, as in previous 10 270 studies, and without, as in the current study, spontaneous VA before surgery. While previous studies mainly included patients with hemodynamically tolerated and often slow VA.^{10,12,26} the observed VAs 12 271 14 272 in the present study were often fast, and an important number required ICD shocks to be terminated. 16 273 As the underlying substrate determines VA characteristics, like CL, the occurrence of fast VAs may 18 274 reflect differences in the VA substrate between the studied population and patients in previous 20 275 studies.²⁷ Fast VTs as observed in our cohort, may be due to small anatomical or even functional 22 276 reentry circuits. The substrate for these fast VAs may not be sufficiently targeted by EC of the scar-

borderzone.

The fact that late VA in both groups were similar regarding CL and response to ATP, supports the conclusion that EC had no sufficient impact on the VA substrate. Progressive remodeling and LV re-enlargement may occur after surgery contributing to arrhythmogenity, which is also supported by the high occurrence rate of atrial fibrillation in patients with VA.^{10,20}

Survival

We reported a good overall survival of 78% at 5 years follow-up for the total study population. This is comparable with other centers with a large experience in SVR (70-82% 5 years survival).^{3,11,28} Furthermore, no arrhythmic deaths occurred. However, the observed fast VAs terminated by ICD shock in 11 patients (14%), may be considered as aborted arrhythmic deaths. Of interest, two prior studies reported similar rates of arrhythmic deaths (17% and 20%).^{8,13} In contrast, in 1 study cardiac death constituted 19% of late mortality at follow-up, however sudden cardiac death rate was only 2.5%.³ Although not all ICD therapy equals aborted sudden death, most of the study period was during the time with relatively short detection times and prior to MADIT-RIT trial results were published, symptomatic and potential fatal VT do occur.29

Clinical implications

The majority of patients referred for SVR and without prior VA were inducible for aneurysm-related monomorphic VA prior to SVR. Although all pre-operatively inducible patients underwent concomitant EC targeting the scar-borderzone this was not sufficient to prevent VA in a considerable number of patients. Improvement in hemodynamics and concomitant EC in inducible patients appeared not to be sufficient to prevent VAs in this patient population. Considering the good long-term survival and high incidence of appropriate ICD therapies, other concomitant antiarrhythmic surgical approaches targeting the potential arrhythmogenic substrate like endocardectomy should be (re-)considered; techniques, which have been successfully performed with favorable results in the early days of arrhythmia surgery.³⁰

05 Limitations

Because of the retrospective nature of the study the number of patients included is limited. As a consequence of the inclusion of a historical control group, follow-up duration varied among patients. Furthermore, this study was non-randomized. No comparison between patients with inducible aneurysm-related VA but without concomitant EC was performed. However, because of the reported favorable results of non-mapping guided cryoablation to treat VA, not performing cryoablation in these high-risk patients was considered unethical. Although the treatment strategy was not allocated in a randomized fashion, groups were comparable and treated by the same team. The cohort was too small to evaluate a predictive value of a negative preoperative PES.

315 Conclusion

The majority of patients referred for SVR without previously documented VA was inducible for aneurysm-related fast monomorphic VA. Despite concomitant EC targeting the scar-borderzone, postoperative hemodynamic improvement and low all-cause mortality, 5 year VA-free survival was only 64%. No difference in VA occurrence or ICD therapy was observed between patients with or without PES-guided concomitant EC. Other strategies for targeting the substrate for VA in this patient population are required.

323 Funding

Carine F.B. van Huls van Taxis is supported by the Netherlands Heart Society (grand no: 2008B074).

	325	
1 2	326	Disclosures
3	327	Martin J. Schalij receives unrestricted departmental grants from Medtronic, Boston Scientific and
5	328	Biotronik.
$\begin{smallmatrix} 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	327 328 329	Martin J. Schalij receives unrestricted departmental grants from Medtronic, Boston Scientific and Biotronik.
61 62		
63 64		
65		

TABLES

Table 1.Baseline characteristics

	All	PES-group	Control	P-value
	N=77	N=38	group	
			N=39	
Male, n(%)	60(78)	28(74)	32(82)	0.376
Age, years	60±10	63±9	58±11	0.051
Diabetes mellitus,n(%)	16(21)	10(26)	6(15)	0.237
Atrial fibrillation,n(%)	8(10)	6(16)	2(5)	0.125
MI-SVR duration,months(IQR)	36(9-144)	48(10-180)	28(7-132)	0.133
NTproBNP,pg/mL(IQR)	1358	1346	1369	0.518
	(572-2151)	(616-2253)	(459-1885)	
Primary reperfusion,n(%)	25(32)	8(21)	17(44)	0.035
NYHA,n(%)				<0.001
Class 2	19(25)	17(45)	2((5)	
Class 3	53(68)	21(55)	32(82)	
Class 4	5(6)	0	5(13)	
Euroscore,n(IQR)	6(4-14)	6 (4-14)	7(4-18)	0.537
LVEF,%	27±8	29±8	25±7	0.015
LVESV-index,ml/m ²	80±45	81±52	79±39	0.880
LVEDV-index,ml/m ²	111±53	110±63	112±44	0.894
ACE-I/ARB,n(%)	74(96)	37(98)	37(95)	0.571
Beta-blocker,n(%)	74(96)	37(98)	37(95)	0.571
MRA,n(%)	46(60)	26(68)	20(51)	0.125
CABG,n(%)	41(53)	21(55)	20(51)	0.915
MVR,n(%)	45(58)	21(55)	24(62)	0.576
TVR,n(%)	26(34)	11(29)	15(38)	0.377
AVR,n(%)	4(5)	2(5)	2(5)	0.979
Patch-size,cm ²	14±8	12±5	16±10	0.070

CPB-time,min	204±58	209±52	194±68	0.349
ACC-time,min	141±58	148±41	129±43	0.124
ACC=Aortic cross-clamp; A	CEi=angiotensin-conv	verting enzyme	inhibitor; ARB=	angiotensin
receptor blocker; CPB=Cor	ooral-pulmonary bypa	ss; AVR=Aortic	valve replacen	nent;
CABG=Coronary angiograp	hy bypass graft; EDV	=End-diastolic	volume; EF=Eje	ection
fraction; ESV=End-systolic	volume; LV=Left vent	ricle; MI=myoca	ardial infarction;	MVR=Mitral
valve repair; MRA=Mineralo	ocorticoid receptor ant	tagonists; NYH/	A=New York He	art
Association; SVR=surgical	ventricular reconstruc	tion; TVR=Tric	uspid valve repa	air

334 Table 2.Follow-up

	All	PES-group	Control	P-value*
	N=77	N=38	group	
			N=39	
Follow-up,months	74±35	61±25	87±39	<0.001
Death(all cause),n(%)	25(32)	12(32)	13(33)	0.869
Cardiac death,n(%)	14(18)	9(24)	7(18)	0.688
ICD,n(%)	74(96)	35(92)	39(100)	0.115
CRT,n(%)	44(57)	23(61)	21(54)	0.299
Anti-arrhythmic drug,n(%)	36(47)	17(42)	19(49)	0.726
Sotalol≥160mg/day	26(34)	13(34)	13(33)	0.953
Amiodarone	21(27)	10(26)	11(28)	0.852
New atrial fibrillation,n(%)	33(43)	15(39)	18(46)	0.544
NYHA 1 year follow-up,n(%)				0.052
Class 1	28(39)	19(54)	9(26)	
Class 2	33(47)	14(39)	19(53)	
Class 3	10(14)	3(8)	7(20)	
LVEF,%	36±9	36±8	35±9	0.845
LVESV-Index,ml/m ²	50±19	50±19	51±19	0.829
LVEDV-Index,ml/m ²	77±22	76±23	79±23	0.600
VA				
Total,n	99	45	54	0.982
Incidence rate, episodes/total	0.017	0.016	0.019	1.19
follow-up				(0.78-1.80)†
VA occurrence,patients(%)	28(36)	14(37)	14(36)	0.931
Time to first VA,months(IQR)	11(2-27)	8(2-26)	15(4-29)	0.511
VA episodes/patients(IQR)	3(1-3)	3(1-3)	3(1-3)	0.982
VA cycle length,ms	310±58	314±50	305±67	0.699

Ventricular fibrillation,n	15	8	7	0.841
ICD therapy,patients(%)	26(34)	12(32)	14(36)	0.222
ATP,patients(%)	19(25)	8(24)	11(28)	0.403
Episodes,n	58	19	39	
Shock,patients(%)	11(14)	6(16)	5(13)	0.699
Episodes,n	18	9	9	
Monitor zone, patients(%)	8(10)	6(16)	2(5)	0.092
Episodes,n	22	16	6	
AAD usage during first VA episode	9(12)	5(13)	4(10)	1.0
Sotalol≥160mg/day	6	4	2	
Amiodarone	3	1	2	

Abbreviations as in Table 1. CRT=cardiac resynchronization therapy. VA=ventricular arrhythmia

* p-value calculated between groups

[†] Incidence rate ratio (95% confidence interval)

337 Table 3.Cox Regression analyses:VA-free survival

		Univariate		Multivariate	
		HR(CI 95%)	P-value	HR(CI 95%)	P-value
Ag	ge	1.02(0.98-1.07)	0.28	1.03(0.99-1.08)	0.13
L۷	/EF baseline	0.97(0.92-1.02)	0.19	0.94(0.89-1.00)	0.03
N	YHA-class*	1.15(0.53-2.50)	0.72	1.28(0.51-3.18)	0.60
PES-group		1.13(0.53-2.41)	0.75	1.67(0.65-4.30)	0.29
Pr	imary reperfusion	0.81(0.35-1.84)	0.61	0.83(0.35-1.99)	0.68
Se	ex	1.81(0.62-5.23)	0.28	2.62(0.87-7.89)	0.09
9					

340 Table 4.Cox Regression analyses:Overall survival

		Univariate	Multivariate				
	P-value	HR(CI 95%)	P-value	HR(CI 95%)			
Age	0.02	1.10(1.02-1.18)	<0.01	1.12(1.03-1.22)			
LVEF baseline	0.59	0.98(0.91-1.05)	0.16	0.94(0.87-1.024)			
NYHA-class*	0.24	1.98(0.64-6.10)	0.15	2.54(0.72-8.91)			
PES-group	0.93	1.05(0.35-3.12)	0.51	1.62(0.38-6.85)			
Primary reperfusion	0.24	0.41(0.09-1.84)	0.33	0.45(0.09-2.25)			
Sex	0.35	2.05(0.45-9.25)	0.28	2.45(0.48-12.49)			
* NYHA-class as categorical covariate did not alter the outcome							

	343	FIGURE LEGENDS
1 2	344	Figure 1.Survival analyses
3	345	A: Kaplan Meier curves of 5 year ventricular arrhythmia (VA)-free survival, groups compared using
5	346	multivariate Cox regression model. B: Kaplan Meier curves of 5 year overall survival, groups
8	347	compared using multivariate Cox regression model. Curves are according to the different pre-
9 10	348	operative strategies of yes/no programmed electrical stimulation (PES).
$\begin{array}{c} 1\\ 1\\ 2\\ 1\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	349	
63 64 65		19

	353 354		REFERENCES	
1 2	355	1.	Goldberg RJ, Ciampa J, Lessard D, Meyer TE, Spencer FA. Long-term survival after heart	
3	356		failure: a contemporary population-based perspective. Arch Intern Med 2007;167:490-6.	
5	357	2.	Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, et al. The prognosis of	
.7 8	358		heart failure in the general population: The Rotterdam Study. Eur Heart J 2001;22:1318-27.	
9 10	359	3.	Di Donato M, Sabatier M, Dor V, Buckberg G. Ventricular arrhythmias after LV remodelling:	
11 12	360		surgical ventricular restoration or ICD? Heart Fail Rev 2004;9:299-306.	
14 15	361	4.	Hsia HH, Lin D, Sauer WH, Callans DJ, Marchlinski FE. Anatomic characterization of	
15 16	362		endocardial substrate for hemodynamically stable reentrant ventricular tachycardia:	
18 10	363		identification of endocardial conducting channels. Heart Rhythm 2006;3:503-12.	
20 21	364	5.	Arenal A, del Castillo S, Gonzalez-Torrecilla E, Atienza F, Ortiz M, Jimenez J, et al.	
22 23	365		Tachycardia-related channel in the scar tissue in patients with sustained monomorphic	
24 24 25	366		ventricular tachycardias: influence of the voltage scar definition. Circulation 2004;110:2568-74	•
26 27	367	6.	Athanasuleas CL, Buckberg GD, Stanley AW, Siler W, Dor V, Di Donato M, et al. Surgical	
28 29	368		ventricular restoration in the treatment of congestive heart failure due to post-infarction	
30 31	369		ventricular dilation. J Am Coll Cardiol 2004;44:1439-45.	
32 33	370	7.	Dor V, Saab M, Coste P, Kornaszewska M, Montiglio F. Left ventricular aneurysm: a new	
34 35	371		surgical approach. Thorac Cardiovasc Surg 1989;37:11-9.	
36 37	372	8.	Klein P, Bax JJ, Shaw LJ, Feringa HH, Versteegh MI, Dion RA, et al. Early and late outcome c	of
38 39	373		left ventricular reconstruction surgery in ischemic heart disease. Eur J Cardiothorac Surg	
40 41	374		2008;34:1149-57.	
42 43	375	9.	O'Neill JO, Starling RC, Khaykin Y, McCarthy PM, Young JB, Hail M, et al. Residual high	
44 45	376		incidence of ventricular arrhythmias after left ventricular reconstructive surgery. J Thorac	
46 47	377		Cardiovasc Surg 2005;130:1250-6.	
48 49	378	10.	Wijnmaalen AP, Roberts-Thomson KC, Steven D, Klautz RJ, Willems S, Schalij MJ, et al.	
50 51	379		Catheter ablation of ventricular tachycardia after left ventricular reconstructive surgery for	
52 53	380		ischemic cardiomyopathy. Heart Rhythm 2012;9:10-7.	
54 55	381	11.	Guiraudon GM, Thakur RK, Klein GJ, Yee R, Guiraudon CM, Sharma A. Encircling endocardia	al
56 57	382		cryoablation for ventricular tachycardia after myocardial infarction: experience with 33 patients	i.
58 59	383		Am Heart J 1994;128:982-9.	
60 61				
62 63				21
64 65				-1

12. Frapier JM, Hubaut JJ, Pasquie JL, Chaptal PA. Large encircling cryoablation without mapping 2 385 for ventricular tachycardia after anterior myocardial infarction: long-term outcome. J Thorac Cardiovasc Surg 1998;116:578-83.

13. Demaria RG, Mukaddirov M, Rouviere P, Barbotte E, Celton B, Albat B, et al. Long-term outcomes after cryoablation for ventricular tachycardia during surgical treatment of anterior 10 389 ventricular aneurysms. Pacing Clin Electrophysiol 2005;28 Suppl 1:S168-S171.

12 390 14. Daubert JP, Zareba W, Hall WJ, Schuger C, Corsello A, Leon AR, et al. Predictive value of 14 391 ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation 16 392 in Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J Am Coll Cardiol 18 393 2006;47:98-107.

20 394 15. Buxton AE, Lee KL, Di Carlo L, Gold MR, Greer GS, Prystowsky EN, et al. Electrophysiologic 22 395 testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 2000;342:1937-45.

16. Miller JM, Marchlinski FE, Buxton AE, Josephson ME. Relationship between the 12-lead electrocardiogram during ventricular tachycardia and endocardial site of origin in patients with coronary artery disease. Circulation 1988;77:759-66.

32 400 17. Piers SR, Wijnmaalen AP, Borleffs CJ, van Huls van Taxis CF, Thijssen J, van Rees JB, et al. Early reperfusion therapy affects inducibility, cycle length, and occurrence of ventricular tachycardia late after myocardial infarction. Circ Arrhythm Electrophysiol 2011;4:195-201.

18. Wolpert C, Kuschyk J, Aramin N, Spehl S, Streitner F, Suselbeck T, et al. Incidence and electrophysiological characteristics of spontaneous ventricular tachyarrhythmias in high risk coronary patients and prophylactic implantation of a defibrillator. Heart 2004;90:667-71.

19. Schmitt C, Barthel P, Ndrepepa G, Schreieck J, Plewan A, Schomig A, et al. Value of programmed ventricular stimulation for prophylactic internal cardioverter-defibrillator implantation in postinfarction patients preselected by noninvasive risk stratifiers. J Am Coll Cardiol 2001;37:1901-7.

20. Sartipy U, Albage A, Insulander P, Lindblom D. Surgery for ventricular tachycardia in patients undergoing surgical ventricular restoration: the Karolinska approach. J Interv Card Electrophysiol 2007;19:171-8.

б

413 21. lesaka Y, Nogami A, Aonuma K, Nitta J, Chun YH, Fujiwara H, et al. Prognostic significance of 1 2 414 sustained monomorphic ventricular tachycardia induced by programmed ventricular stimulation 3 4 415 using up to triple extrastimuli in survivors of acute myocardial infarction. Am J Cardiol 5 416 1990;65:1057-63. б 7 417 22. Babokin V, Shipulin V, Batalov R, Popov S. Surgical ventricular reconstruction with 8 9 10 418 endocardectomy along radiofrequency ablation-induced markings. J Thorac Cardiovasc Surg 11 2013;146:1133-8. 12 419 13 14 420 23. Kaltenbrunner W, Cardinal R, Dubuc M, Shenasa M, Nadeau R, Tremblay G, et al. Epicardial 15 16 421 and endocardial mapping of ventricular tachycardia in patients with myocardial infarction. Is the 17 18 422 origin of the tachycardia always subendocardially localized? Circulation 1991;84:1058-71. 19 20 423 24. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, et al. Identification 21 22 424 of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular 23 24 425 tachycardia late after myocardial infarction. Circulation 1993;88:1647-70. 25 26 426 25. d'Avila A, Aryana A, Thiagalingam A, Holmvang G, Schmidt E, Gutierrez P, et al. Focal and 27 28 427 linear endocardial and epicardial catheter-based cryoablation of normal and infarcted ventricular 29 30 428 tissue. Pacing Clin Electrophysiol 2008;31:1322-31. 31 ³² 429 26. Wellens F, Geelen P, Demirsoy E, van Preat F, De GR, Degrieck I, et al. Surgical treatment of 33 34 430 tachyarrhythmias due to postinfarction left ventricular aneurysm with endoaneurysmorrhaphy 35 36 431 and cryoablation. Eur J Cardiothorac Surg 2002;22:771-6. 37 38 432 27. Wijnmaalen AP, Schalij MJ, von der Thusen JH, Klautz RJ, Zeppenfeld K. Early reperfusion 39 40 433 during acute myocardial infarction affects ventricular tachycardia characteristics and the chronic 41 42 434 electroanatomic and histological substrate. Circulation 2010;121:1887-95. 43 44 435 28. Dor V, Sabatier M, Montiglio F, Civaia F, Di Donato M. Endoventricular patch reconstruction of 45 46 436 ischemic failing ventricle. a single center with 20 years experience. advantages of magnetic 47 48 437 resonance imaging assessment. Heart Fail Rev 2004;9:269-86. 49 50 438 29. Moss AJ, Schuger C, Beck CA, Brown MW, Cannom DS, Daubert JP, et al. Reduction in 51 52 439 inappropriate therapy and mortality through ICD programming. N Engl J Med 2012;367:2275-53 54 440 83. 55 56 441 30. Miller JM, Kienzle MG, Harken AH, Josephson ME. Subendocardial resection for ventricular 57 58 442 tachycardia: predictors of surgical success. Circulation 1984;70:624-31. 59 60 61 62

63