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Abstract
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated,

its association with cancer risk remains controversial. In this study, we accurately quantified by

real-timePCRanddigital PCR (dPCR), theBRCA2 isoforms retaining ormissing exon 3. In addition,

the combined odds ratio for causality of the variant was estimated using genetic and clinical data,

and its associated cancer risk was estimated by case-control analysis in 83,636 individuals.

Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon

3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an

exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of

pathogenicity was 7.44 × 10−115. There was neither evidence for increased risk of breast cancer

(OR 1.03; 95% CI 0.86–1.24) nor for a deleterious effect of the variant when co-occurring with

pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity

of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the

threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal

cell function. These findings might be exploited to assess the relevance for cancer risk of other

BRCA2 spliceogenic variants.

K EYWORDS

BRCA2, digital PCR, multifactorial likelihood analysis, quantitative real-time PCR, spliceogenic

variants

1 INTRODUCTION

BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185) are tumor sup-

pressor genes and their inactivation promotes cancer development.

Carriers of germline pathogenic variants in these genes are at high

risk of developing breast and ovarian cancers, and BRCA1/2 gene test-

ing has become a widely used procedure in the clinical management

of families suspected of hereditary susceptibility to these malignan-

cies. The individuals within these families, identified as at-risk based

on their genetic profile, may benefit from risk-reduction options. How-

ever, the usefulness of genetic testing relies on the ability to ascer-

tain the pathogenic nature of the identified genetic variants, which

is not necessarily straightforward for small in-frame deletions and

insertions, variants in regulatory sequences, missense, synonymous

and intronic changes, and variants introducing premature protein-

truncating codons at the 3′ end of the coding sequence.

The Evidence-based Network for the Interpretation of Germline

Mutant Alleles (ENIGMA) has developed and documented criteria

aimed at determining the clinical significance of sequence variants in

BRCA genes (https://www.enigmaconsortium.org). The classification,

based on a five-class system (Plon et al., 2008), is intended to differ-

entiate high risk variants (risk equivalent to that of protein-truncating

pathogenic variants), including pathogenic and likely pathogenic vari-

ants (class 5 and 4, respectively), from variants with low or no risk,

including not pathogenic and likely not pathogenic variants (class 1 and

2, respectively). Variants for which clinical significance is unclear are

placed in class 3 and are referred to as variants of uncertain signifi-

cance (VUSs).

One controversial variant in BRCA2 is c.68-7T > A, which

lies upstream of the acceptor splice site of exon 3. This variant

(rs81002830) has been reported in several populations worldwide

with an allelic frequency ranging from 0.02% in East Asians to 0.5%

in non-Finnish Europeans (Lek et al., 2016). Several authors have

reported c.68-7T > A being spliceogenic, that is, able to alter normal

premRNA splicing. In particular, using semiquantitative approaches,

it has been documented that the variant leads to an increase of the

naturally occurring transcripts lacking exon 3 (∆3) (Houdayer et al.,
2012; Jarhelle, Riise Stensland, Maehle, & Van Ghelue, 2016; Sanz

https://www.enigmaconsortium.org
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et al., 2010; Thery et al., 2011; Vreeswijk et al., 2009). A competitive

quantitative PCR (qPCR) analysis estimated that the proportion of the

∆3 transcript compared to full length was approximately 25% in vari-

ant samples versus 4% in normal samples (Muller et al., 2011). More

recently, segregation analyses in two families indicated that the vari-

ant did not segregate in the affected branches (Santos et al., 2014).

Although a few of the above studies tentatively classified the variant

as benign or likely benign, they do not provide robust genetic evidence

to justify this conclusion. Conversely, a recent article asserted that the

variantwas associatedwith breast cancer, based on a relatively limited

case control association study in the Norwegian population (Møller &

Hovig, 2017).

As a consequence, to date the classification of c.68-7T > A

reported in databases aggregating information on genomic varia-

tions has remained inconclusive. In particular, ClinVar (https://www.

ncbi.nlm.nih.gov/clinvar/, last updated: Feb 1, 2018) reports con-

flicting interpretations classifying the variant as benign (seven

entries), likely benign (nine entries) and of uncertain significance

(four entries). Moreover, the BIC (Breast Cancer Information Core,

https://research.nhgri.nih.gov/bic/) database presently annotates

the variant as of unknown clinical importance, pending classifica-

tion, while the BRCA ShareTM (UMD-BRCA2 mutations database)

(https://www.umd.be/BRCA2/) classifies it as likely benign.

In the present study, we combined genetic approaches, including a

large multicentre case-control study and segregation analysis in a siz-

able number of families, with qualitative and quantitative analyses of

the transcripts, and Mitomycin C growth inhibition test. Our findings

provide a robust classification of the BRCA2 c.68-7T > A variant with

respect to its effect on cancer risk, and add evidence that splicing pat-

tern alterations do not necessarily lead to pathogenicity.

2 MATERIALS AND METHODS

2.1 Nomenclature

The nucleotide numbering was based on the reference BRCA2 comple-

mentary deoxyribonucleic acid (cDNA) sequence NM_000059.3. For

the purposes of the study,wedefined as▼3allBRCA2 isoforms retain-

ing exon 3 and as∆3 all BRCA2 isoformsmissing exon 3, irrespective of

additional alternative splicing events.

2.2 Cell lines

Epstein-Barr virus (EBV)-immortalized human lymphoblastoid cell

lines (LCLs) were obtained as previously described (Colombo et al.,

2013). In this analysis 18 LCLs were considered, including six LCLs

obtained from women carrying the BRCA2 c.68-7T > A variant and 12

LCLs obtained from healthy female blood donors, recruited at the Isti-

tuto Nazionale dei Tumori (INT) of Milan. The c.68-7T>A carriers had

been screened in all coding exons and corresponding intron-exon junc-

tions of both BRCA1 and BRCA2. Excluding common polymorphisms,

none of them carried additional BRCA gene variants, with a single

exception where a protein-truncating variant was detected in BRCA1

(c.1380dupA). Only BRCA2 exon 3 was sequenced in the LCLs from

normal controls and no pathogenic variants or VUS were observed.

The two BRCA2-deficient cell lines, EUFA423 immortalized fibroblasts

(BRCA27691insAT/9900insA) (Howlett et al., 2002) and pancreatic cancer

cell line Capan1 (BRCA2−/6174delT) (Goggins et al., 1996) were cultured

as described elsewhere (Feng et al., 2011).

2.3 Cytoplasmic RNA isolation and first strand

cDNA synthesis

Cytoplasmic RNA was isolated from fresh LCLs using the Cytoplas-

mic & Nuclear RNA Purification Kit (NORGEN BIOTEK CORPORA-

TION, Canada), including the DNase I treatment according to manu-

facturer's instructions. The RNA purity and integrity was verified by

measuring the A260/A280 ratio and by electrophoresis on agarose gel.

For capillary electrophoresis (CE), allele-specific expression analysis

and reverse transcriptase quantitative PCR (RT-qPCR), first strand

cDNA was generated using 1 𝜇g RNA, random hexamer primers and

MaximaTM H Minus RT (Thermo Scientific), following the manufac-

turer's protocol in a final volume of 20 𝜇l. For digital PCR (dPCR),

1 𝜇g RNA was reverse transcribed with Prime-Script RT kit (TaKaRa

Biotechnology, Japan) according to the manufacturer's protocol using

amixtureof randomandOligo (dT) primers.No-RTcontrols, containing

all reagents for the reverse transcription but the enzyme, were carried

out.

2.4 Capillary electrophoresis analysis

Multiplex fluorescently-labeled PCRs were performed with primers

located upstream and downstream of exon 3, to simultaneously

amplify both▼3and∆3 transcripts, followedbyCEanalysis. A beta-2-

microglobulin (B2M;MIM#109700) cDNA fragment of 377 bpwas co-

amplified to normalize CE peaks and allow comparison between cases

and controls. The sequences of the primers are listed in Supp. Table S1.

PCR amplifications were performed in 20 𝜇l reaction volume contain-

ing 2 𝜇l of cDNA solution under end-point conditions. Cycling condi-

tionswere as follows: 95◦C for 7min, followed by 35 cycles at 95◦C for

30′′, 58◦C for 30′′ and 72◦C for 30′′. A final 7min elongation step was

performed at 72◦C. The fluorescent amplification products were run

on an ABI 3130 Genetic Analyzer (Applied Biosystems). GeneScanTM

500 ROXTM dye size standard was used as internal size-standard and

size calling was performed with GeneMapper software v4.0 (Applied

Biosystems).

2.5 Assessment of allelic expression of▼3 and∆3
transcripts

The allelic origin of the ▼3 and ∆3 transcripts were ascertained by

amplification and sequencing of the region containing the common

c.-26G > A variant (rs1799943) in the 5′-UTR of BRCA2. PCR reac-

tions were performed as described above. The forward primer was

designed to anneal to a region upstream of c.-26G> A and the reverse

primers to sequences in exon 3 and across the exon2-exon4 junction,

specific of the ▼3 and ∆3 transcripts, respectively (Supp. Table S1).

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://research.nhgri.nih.gov/bic/
https://www.umd.be/BRCA2/
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Sequencing conditions were as previously described (Colombo et al.,

2013).

2.6 Quantitative PCR analysis

Specific quantitative assays were designed to capture the expression

levels of the ▼3 and Δ3 transcripts. The primer sets (Supp. Table S1)

were validatedwith end-point PCR reactions, and the specificity of the

amplification products were confirmed by sequencing.

The qPCR analysis were performed on the Eco real-time PCR sys-

tem (Illumina) using SYBR R© Green I dye chemistry (KAPA SYBR R©

FAST qPCR Kit, Kapa Biosystems). All reactions were carried out in a

final volume of 10 𝜇l containing 1 𝜇l of cDNA and 200 nM of GUSB

and▼3 transcript specific primers, and 300 nM of Δ3 transcript spe-

cific primers. The efficiency of qPCR assays was evaluated based on a

relative standard curve, using threefold serial dilutions starting from

pooled control cDNAs in triplicate. The thermal profile was the same

for all assays (95◦C for 3 min, followed by 40 cycles of 95◦C for

3 sec and 62◦C for 20 sec). The melting curve analysis was performed

according to default conditions (95◦C for 15 sec, 55◦C for 15 sec

and 95◦C for 15 sec). All samples from both cases and controls were

individually analyzed in triplicate, and the corresponding average val-

ues were considered. No template controls and no-RT controls were

included in the analysis. The data, obtained in the form of quantifi-

cation cycle (Cq), were normalized using the beta-glucuronidase gene

(GUSB) (de Brouwer, van Bokhoven, & Kremer, 2006). The obtained

values were used to compute, in both normal and mutated samples,

BRCA2 exon 3 exclusion rate, that is, the percentage of BRCA2 mRNA

isoformsmissing exon 3 over the total amount of BRCA2 transcripts, as

follows:

[2−ΔCqΔ3∕(2−ΔCqΔ3 + 2−ΔCq▾3 )] x 100.

The distribution of transcript levels in control and mutant LCLs

was calculated by normalization to that of pooled control cDNAs

(reference sample) using the ∆ΔCq method (Livak & Schmittgen,

2001).

Statistical analysis was performed using GraphPad Prism software

(version 5.02). The significance of the results was established using the

F test.

2.7 Digital PCR

The dPCR experiments were performed on a QuantStudio 3D dPCR

20K platform according to the manufacturer's instructions (Applied

Biosystem, Foster City, CA). To detect BRCA2 Δ3 transcripts, we used

a FAM-labeled custom designed TaqMan assay (Applied Biosystems)

specific for the exon 2–4 junction (5′-CAAAGCAG-GAAGGAATG-3′).

To detect▼3 transcripts, we used a 2′-chloro-7′phenyl-1,4-dichloro-

6-carboxy-fluorescein labeled (VIC-labeled) predesigned TaqMan

assay (Applied Biosystems, Hs00609076) specific for the exon 3–4

junction (5-AATTAGACTTAG-GAAGGAATGTTCC-3′). All relative

quantification experiments were performed combining Δ3 and ▼3

assays in individual chips. dPCR chips were analyzed in the QuantStu-

dio 3D Analysis Suit Cloud software v2.0 (Applied Biosystem, Foster

City, CA), defining FAM as target. Default settings were used in all

cases. After reviewing automatic assessment of the chip quality by

the software, only green flag chips (data meet all quality thresholds,

review of the analysis result not required) and yellow flag chips (data

meet all quality thresholds, but manual inspection is recommended)

were considered for further analyses. We used the target/total ratio,

FAM/(FAM+VIC), calculated by the software as a proxy for BRCA2

exon 3 exclusion rate. Different amounts of each sample were individ-

ually tested in 20K chips, but only data from the chip with the highest

precision (according to the analysis software) was included in the

expression analysis shown in Figure 3.

2.8 Genotyping and sample sets

Direct genotyping of BRCA2 c.68-7T > A was conducted as part

of the Collaborative Oncological Gene-environment Study (COGS)

detailed elsewhere (Michailidou et al., 2013). This study included

genotype results from breast cancer cases and controls participat-

ing in the Breast Cancer Association Consortium (BCAC; http://

bcac.ccge.medschl.cam.ac.uk/), and from the carriers of assumed

pathogenic variants in BRCA genes, participating in the Consor-

tium of Investigators of Modifiers of BRCA1/2 (CIMBA; http://

cimba.ccge.medschl.cam.ac.uk/). The BCAC and CIMBA datasets are

described in de la Hoya et al., (2016). Information on breast

tumor estrogen receptor and grade status were available for 189

variant carrier cases from BCAC. Via the Evidence-based Net-

work for the Interpretation of Germline Mutant Alleles (ENIGMA;

https://enigmaconsortium.org/) (Spurdle et al., 2012), we identified 16

families recruited through familial cancer clinics where at least one

member tested positive for BRCA2 c.68-7T>A, and test results (nega-

tive or positive) were available from at least one relative. All study par-

ticipants had been previously enrolled into national or regional studies

under ethically approved protocols.

2.9 Statistical methods

The association of the BRCA2 c.68-7T > A variant with breast cancer

risk was evaluated in BCAC using logistic regression models, as previ-

ously detailed (de la Hoya et al., 2016).

In addition, multifactorial likelihood analysis was conducted as

detailed in the Supp. Text. In brief, odds for causality were calculated

based on carrier frequency and ages at diagnosis/interview in cases

and controls, as previously described (Goldgar et al., 2004).

Bayes scores for segregation were derived as previously described

(Thompson, Easton, & Goldgar, 2003).

Pathology likelihood ratios (LRs) were applied as indicated in Spur-

dle et al., (2014). The segregation scores, pathology LRs and case-

control LRs are mutually independent and were combined to derive

a combined odds for causality as described previously (Goldgar et al.,

2004; Goldgar et al., 2008). Prior probability of pathogenicity was

assignedbasedonpredicted effect of the variant on splicing, as derived

in Vallee et al., (2016). Variant classification was based on the IARC 5-

tier scheme (Plon et al., 2008).

http:// bcac.ccge.medschl.cam.ac.uk/
http:// bcac.ccge.medschl.cam.ac.uk/
http:// cimba.ccge.medschl.cam.ac.uk/
http:// cimba.ccge.medschl.cam.ac.uk/
https://enigmaconsortium.org/
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F IGURE 1 Evaluation of the effects of the BRCA2 c.68-7T > A variant at mRNA level. (A) Capillary electrophoresis analysis of BRCA2 cDNA
showing the relative increase ofΔ3 transcript and decrease of▼3 transcript in c.68-7T > A carriers compared to normal controls B2M reference
transcript. Since the PCR assayswere performed under end-point conditions, the results of these assayswere not used to quantify the fold-change
ofΔ3 versus▼3 transcript ratio in cases compared to controls. (B) Assessment of allele-specific expression of the▼3 and∆3 transcripts in c.68-
7T>A carriers and normal controls by analysis of the common c.-26G>A variant. The sequencing of the RT-PCR products obtained by selectively
amplifying the ▼3 and ∆3 transcripts in separate reactions (left panels and right panels, respectively) shows that the variant allele, which is in
linkage with the A allele of the common variant, retained the ability to synthesize the▼3 transcript

2.10 Mitomycin C (MMC) growth inhibition test and

statistical analyses

A total of 3 × 106 cells/ml were seeded in triplicate in 25 ml flasks and

grown for 72 hr in the absence or in the presence of MMC (Sigma-

Aldrich) at a final concentration of 170 ng/ml. Percentage of viable

cells was determined using trypan blue dye exclusion assay, follow-

ing the manufacture's instruction (Sigma-Aldrich). Statistical differ-

ences in cell viability after exposure to MMC compared to controls

were determined by two-tailed Student t-test using GraphPad Prism

software.

3 RESULTS

3.1 Transcript analyses

3.1.1 Confirmation of𝚫3 transcripts increase in variant
carriers

The effect of the BRCA2 c.68-7T > A variant at the mRNA level

was evaluated by fluorescently-labeled end-point RT-PCR on cDNAs

derived from six LCLs obtained from women carrying the investigated

variant and from 12 nonvariant carrier females. The visual inspection

of the CE outputs confirmed the increase of the Δ3 transcripts and

the corresponding decrease of the ▼3 transcripts in variant carriers

compared to controls (a representative example is shown in Fig. 1A), in

agreement with previous studies (Houdayer et al., 2012; Jarhelle et al.,

2016; Sanz et al., 2010; Thery et al., 2011; Vreeswijk et al., 2009).

The allelic-specific expression of both the ▼3 and Δ3 transcripts

was assessed by investigating the c.-26G > A variant, verified to be in

linkage with the c.68-7T > A, in heterozygous samples (five controls

and three cases). Each transcript was selectively amplified in separate

reactions and sequenced. Even considering that transcript quantifica-

tion by sequencing analysis is not entirely accurate, it was apparent

that, while in normal samples the levels of the Δ3 transcripts originat-

ing from the two alleles were comparable, in carriers the contribution

of the variant allelewas higher than that of thewild-type allele. In addi-

tion, it was also observed that in carriers the variant allele retained the

ability to synthesize the ▼3 transcripts. A representative example is

shown in Figure 1B.

3.1.2 QuantitativemRNA analyses

To quantify the relative amount of BRCA2 ▼3 and ∆3 transcripts

in LCLs from both normal individuals (n = 12) and variant carriers

(n = 6), a qPCR analysis was performed. The analysis showed a 3.1-

fold increase in the relative level of∆3 transcripts (p<10−4) in carriers

(average 2.98; range 1.28–4.31) compared to controls (average 0.97;

range 0.79–1.23) and a 0.5-fold not statistically significant (p = 0.4)

decrease in the relative level of ▼3 transcripts in carriers (average

0.44; range 0.27–0.66) compared to controls (average 0.86; range

0.49–1.11), (Fig. 2).

The relative quantification of ∆3 and ▼3 transcripts in each sam-

ple allowed us to compare the exon 3 exclusion rates (see methods)

in carriers and controls and to obtain a quantitative score reflecting

the magnitude of the splicing alteration induced by the variant. The

exclusion rate in LCLs carrying the variant allele was 5.2-fold higher
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F IGURE 2 Relative expression of BRCA2 ▼3 and ∆3 transcripts in
six c.68-7T > A carriers and 12 normal controls by quantitative PCR.
The boxplots (displaying low, Q1, median, Q3, and high values) show
qPCR levels of▼3 and ∆3 transcripts in carriers and controls. Values
are normalized to GUSB mRNA and expressed as fold difference rela-
tive to pooled control cDNAs using the ∆ΔCq method (see Materials
and Methods). The analysis shows in carriers a statistically significant
increase of the relative level of ∆3 transcripts compared to controls
(2.98 vs. 0.97; p < 0.0001). Conversely, the decrease observed in the
relative level of▼3 transcripts (0,44 vs.0,86) is not statistically signif-
icant (p= 0.4)

F IGURE 3 BRCA2 exon 3 exclusion rate in LCLs from BRCA2 c.68-
7T>A carriers and controls. The boxplots (displaying low, Q1, median,
Q3, and high values) show qPCR (left panel) and dPCR (right panel)
measures of exclusion rate. The data is expressed as the fold-increase
relative to the average of 12 controls. Outliers (> 1.5 inter quar-
tile range, IQR) are displayed as small circles. On average, a 5.2-fold
increase is observed in carriers according to qPCR data and a 4.2-
fold increase according to dPCR data (3.8-fold increase if outliers are
included in the analysis)

than in normal LCLs (p = 3.9 × 10−4) (Fig. 3), with an average exclusion

rate of 12.4% (range 6.3%–16.0%) in carriers and 2.4% (range 1.8%–

3.4%) in controls (Supp. Figure S1).

Subsequently, an independent dPCR-based quantitative analysis

was performed to measure BRCA2 exon 3 exclusion rates directly

in the same sample set. After excluding two outliers, we found that

the exclusion rate in LCLs carrying the variant allele (15.5%; range

14.4%–17.2%) was 4.2-fold higher than in normal LCLs (3.7%; range

3.0%–4.5%; p< 10−4) (Fig. 3 and Supp. Figure S1).

3.2 Genetic analyses

BRCA2 c.68-7T > A was identified in 242/41,890 (0.58%) invasive

breast cancer cases and 216/41,746 (0.52%) controls of reported

European ancestry recruited through BCAC studies. Standard case-

control analysis adjusted for six principle components yielded an odds

ratio (OR) of 1.03 (95%CI0.86–1.24).However, some studies indicated

that they had performed BRCA1/2 mutation screening of cases and

might have excluded cases with BRCA1/2VUS. This could have created

a bias due to preferential exclusion of c.68-7T > A carrier cases but

not controls. However, the ORwas similar after exclusion of four stud-

ies that performed such genetic testing, (OR 1.09; 95% CI 0.89–1.33).

The odds for causality based on carrier frequency and ages at diag-

nosis/interview in these cases and controls was 9.44 × 10−93. There

was also strong evidence against causality from segregation analysis

(6.39 × 10−9) and breast tumor pathology (2.40 × 10−14). Consider-

ing all data together, and assigning prior probability of 0.34 based on

splicing prediction, the posterior probability of pathogenicity was cal-

culated to be 7.44× 10−115 (see Supp. Text for further details).

3.3 Co-occurrence of the c.68-7T>Awith

pathogenic variants

Overall 15 female individuals from 13 apparently unrelated families

with clear evidence of the c.68-7T>A being in trans with a pathogenic

variant in BRCA2were assessed. Thirteen individuals from 11 families

were detected through the genotyping of the CIMBA sample set, one

was reported via the ENIGMAconsortium, and another onewas ascer-

tained at INT (Supp. Table S2). None of these cases was included in the

RNA analyses described above.

3.4 Evaluation of the effect of the BRCA2
c.68-7T>A on cellular sensitivity tomitomycin C

Carriers of bi-allelic BRCA2 inactivating variants are affected with

Fanconi Anemia (FA), complementation group D1. FA is characterized

by congenital defects, including anatomical abnormalities, congenital

disabilities and increased risk of cancer, most often acute myeloge-

nous leukemia (Auerbach, 2009). In addition, the cells of FA patients

exhibit hypersensitivity to DNA interstrand cross-links (ICLs) caused

by agents such asmitomycin C (MMC) (Godthelp et al., 2006). A breast

cancer-affected woman, with no clinical signs of FA, was found by seg-

regation analysis to carry the truncating BRCA2 c.5722_5723delCT

variant in transwith the c.68-7T>Avariant (Supp. Table S2). Toexclude

an FA phenotype at the cellular level, we evaluated the sensitivity to

MMC of an LCL derived from this patient. An LCL carrying one copy

of the c.68-7T > A, without an additional BRCA2 pathogenic variant

or VUS (BRCA2wt/c.68-7T>A), the MMC hypersensitive EUFA423 and

Capan1 BRCA2-null cell lines and an LCL from a normal donor (BRCA2-

proficient) were included in the assay as controls. The sensitivity to

MMC was evaluated by comparing the viability of MMC-treated cells
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with that of the untreated cells. As shown in Supp. Figure S2, EUFA423

(FA-D1) and Capan1 cells showed a significant decrease of the cellu-

lar viability (p < 0.01) after exposure to MMC, while no differences

were observed in LCLs from normal donor and carriers of BRCA2 c.68-

7T>A, either in heterozygosity or in transwith the pathogenic variant.

4 DISCUSSION

In the present study, we analyzed the BRCA2 c.68-7T > A variant,

located in the proximity of the acceptor site of exon 3, in order to

establish its clinical relevance and association with breast cancer risk.

In accordance with previous studies (Houdayer et al., 2012; Jarhelle

et al., 2016; Sanz et al., 2010; Thery et al., 2011; Vreeswijk et al., 2009),

we observed that this variant leads to a modest increased expression

of the transcript lacking exon 3 (∆3) in carriers compared to controls.

Moreover, we found that in LCLs of carriers of the variant the exon

3 exclusion rate (i.e., the relative amount of BRCA2 ∆3 transcripts)

was approximately 4- to 5-fold higher than in LCLs of controls and

the total amount of▼3 transcripts in carriers was approximately 50%

compared to controls. The latter finding would seem to contradict the

observation that the variant allele maintains the ability to express a

transcript coding for a normal (full-length) protein. The apparent dis-

crepancymay be explained comparing the overall expression of BRCA2

transcripts in cases and controls. In fact, summing up in each sample

the amount of ▼3 and Δ3 transcripts assessed by qPCR, and setting

as 1 the average expression of BRCA2 mRNA observed in our cohort,

we observed notable inter-individual variability (ranging from 0.43 to

1.50), with many control samples clustering above the average (Supp.

Figure S3). Hence, it is very much possible that the strong reduction in

the amount of▼3 transcripts observed in carriers simply reflects ran-

dom inter-individual variability in BRCA2 gene expression levels.

Although the above findingswere confirmed using two complemen-

tary assays (qPCR and dPCR), it must be noted that the outcomes of

transcript quantification analyses may be influenced by the nature of

examined biological material. Therefore, the magnitude of changes in

transcript ratio associated with the c.68-7A> T should be verified also

in samples other than LCLs.

The pathogenic implication of BRCA2 exon 3 deletion has been long

debated. Exon 3 is 249-bp long and its deletion does not alter the open

reading frame. In addition, the ∆3 isoform has been described as one

of the major naturally occurring alternatively splicing events in BRCA2

(Fackenthal et al., 2016). However, the predicted protein product is

expected to be lacking important functional activities. In fact, this exon

codes for BRCA2 amino acids 23 to 106, including the C-terminal por-

tion of a primary transactivating domain (PAR, amino-acid residues

18–60) and an auxiliary transactivating domain (AAR, residues 60–

105) (Milner, Ponder, Hughes-Davies, Seltmann, & Kouzarides, 1997),

whose activity may be regulated by phosphorylation (Milner, Fuks,

Hughes-Davies, & Kouzarides, 2000). Interestingly, the region span-

ning residues 21–39 mediates the interaction with PALB2, a nuclear

protein that promotes the stable intranuclear localization and accu-

mulation of BRCA2, making possible its DNA recombinational repair

and checkpoint functions, eliciting tumor suppression (Oliver, Swift,

Lord, Ashworth, & Pearl, 2009; Xia et al., 2006). Moreover, the PALB2-

binding site directly overlaps that of EMSY, another nuclear pro-

tein that has endogenous transcriptional repressor activity (Hughes-

Davies et al., 2003).

Several BRCA2 alterations causing the complete loss of exon 3

and the exclusive synthesis of ∆3 transcripts have been ascertained,

including c.316 + 5G > C (Bonnet et al., 2008), c.316 + 3delA and

c.68-925_316 + 2889del (Muller et al., 2011) and c.156_157insAlu,

a variant reported as a founder Portuguese mutation (Peixoto et al.,

2009).

The characterization of the above variants supports the hypothesis

that the exclusive synthesis of the ∆3 transcripts from one allele has

a pathogenic effect. On the contrary, the association with cancer risk

of variants that, like the c.68-7T > A, increase the relative amount of

∆3 isoforms but maintain the ability of transcribe a full-length mRNA,

is presently unclear. Indeed, the classification of the variants with

incomplete effects at the transcript level represents an important and

challenging question. According to current ENIGMA criteria, splicing

variants leading to in-frame deletions, but maintaining the ability to

produce mRNA transcript(s) predicted to encode intact full-length

protein, cannot be assumed as pathogenic or likely pathogenic, even

if targeting clinical relevant domains. Such alterations require further

investigation to assess pathogenicity.

To address the issue, we performed amultifactorial-likelihood anal-

ysis combining the odds for causality derived from a large case-

control study, using the datasets of BCAC, pathology likelihood based

on breast tumor phenotype, and co-segregation data from ENIGMA.

Overall, the posterior probability of c.68-7T> A being pathogenic was

7.44 × 10−115. This value is well below the threshold established by

ENIGMA for a BRCA1/2 variant to be classified as class 1, that is, not

pathogenic (probability of pathogenicity < 0.001), when considered

against characteristics of the average truncating pathogenic variant.

In addition, the confidence interval of the odds ratio estimate (OR

1.09: 95%CI 0.89–1.33) excludes even moderate breast cancer risk

(Hollestelle,Wasielewski, Martens, & Schutte, 2010).

Additional evidence of the non-pathogenicity of c.68-7T > A was

provided by the observation of its occurrence in trans with a BRCA2

pathogenic variant in 15 unrelated individuals, including 13 from 11 of

5,284 families recruited by CIMBA and genotyped for the variant. If

c.68-7T > A were pathogenic, the frequency of unrelated FA affected

individuals among CIMBA BRCA2mutation carriers would be approxi-

mately 2.1 in 1,000, which is inconsistent with the frequency observed

in the general population, that is, two to six in 1,000,000 (Bogliolo &

Surralles, 2015). Finally, no evidence of hypersensitivity to DNA ICL

agents, a characteristic of FA patients, was detected in an LCL derived

from one of the individuals carrying a pathogenic variant in trans with

the c.68-7T > A. Together, these findings indicate that carriers of the

BRCA2 c.68-7T > A variant should not be counseled to undergo the

clinical interventions recommended to carriers of high risk BRCA gene

variants.

While the present article was under review, a study was published

claiming that the BRCA2 c.68-7T > A variant was associated with

breast cancer (Møller & Hovig, 2017). This conclusion was based on
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the detection of the variant in 17 out of 714 (2.4%; 95%CI 1.4%–

3.8%)Norwegian unrelated breast cancer kindreds, a frequency signif-

icantly higher (p < 0.0001) compared to the prevalence of the variant

in a sample of the Norwegian population (3/1588= 0.2%). Segregation

data based on a single family was inconclusive (LR 0.36), and the esti-

mate of prospective incidence rate in 24 variant carriers overlapped

that for the general population. The authors concluded (assumedly

based on their case-control findings alone) that carriers of the BRCA2

c.68-7T > A variant have increased risk for breast cancer in families

selected due to aggregation of breast cancer, and state in their discus-

sion “…carriers of the variant should be informed that they probably have a

clinically actionable pathogenic variant and referred to health care accord-

ingly”. We believe that the conclusion of Moller and Hovig (2017) is

unjustified, and disagree with their recommendation on clinical action.

Our much larger study (sample size 59x for cases and 26x for con-

trols) including individuals from multiple different countries provide

no evidence for increased risk of breast cases in familial cases carrying

this variant: the OR was 1.03 (95% CI 0.86–1.24) including all studies,

and the risk estimate was nominally greater although not significantly

different (OR 1.09, 95% CI 0.89–1.33) after excluding familial breast

cancer cohorts.

The difference between the findings from our much larger case-

control study and that of Møller & Hovig, (2017) need for caution

when utilizing case-control data for clinical interpretation of rare vari-

ants, such that significant differences in frequency can nonetheless

be unreliable due to random error and bias arising from small sample

size, incomplete matching of cases and controls, and when considering

familial cases, co-occurrence of (other) risk-related genetic factors as

acknowledged by the authors themselves.

Different hypotheses, not necessarily mutually exclusive, can be

proposed to explain the lack of pathogenicity of c.68-7T > A despite

it being spliceogenic. First, the reduction in full-length BRCA2mRNAs

in variant carriers compared to normal controls, which was not sta-

tistically significant, might not be enough to affect cellular tumor sup-

pressor ability. Second, the ∆3 transcripts are predicted to lead to the

synthesis of an unstable and nonfunctional protein product and, there-

fore, unlikely to interfere with the activity of the normal protein due

to the loss of the PALB2 interaction domain, whose binding stabilizes

the BRCA2 protein (Xia et al., 2006). Assuming that in the examined

samples, the overall BRCA2 expression level from both alleles is simi-

lar, and that in carrier samples the accompanying normal alleles con-

tribute on average an exclusion rate of approximately 3% as assessed

by our quantitative analyses, we estimated, based on an average cumu-

lative exclusion rate of both alleles in variant carriers of 13%, that the

average exclusion rate (x) for the c.68-7T > A allele is close to 23%

[(x% + 3%)/2 = 13%.]. Therefore, the present study strongly suggests

that BRCA2 spliceogenic alleles demonstrating up to approximately

20% exon 3 exclusion rates are not associated with high or even mod-

erate risk of cancer.

The classification of variants based on mRNA splicing data alone is

problematic for spliceogenic variants that lead to equivocal or “leaky”

transcript profiles. The quantitative in vitro transcript and genetic

analyses conducted for BRCA2 c.68-7T > C provide important data

to inform the threshold for ratio between functionally proficient and

altered BRCA2 isoforms compatible with normal cell function. These

findings might facilitate the future classification of rare spliceogenic

variants whose relevance for cancer risk cannot easily be ascertained

throughmultifactorial likelihood analyses.
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