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Summary
People with epilepsy need assistance and are at risk of sudden death when having

convulsive seizures (CS). Automated real-time seizure detection systems can help

alert caregivers, but wearable sensors are not always tolerated. We determined

algorithm settings and investigated detection performance of a video algorithm to

detect CS in a residential care setting. The algorithm calculates power in the 2-

6 Hz range relative to 0.5-12.5 Hz range in group velocity signals derived from

video-sequence optical flow. A detection threshold was found using a training set

consisting of video-electroencephalogaphy (EEG) recordings of 72 CS. A test set

consisting of 24 full nights of 12 new subjects in residential care and additional

recordings of 50 CS selected randomly was used to estimate performance. All data

were analyzed retrospectively. The start and end of CS (generalized clonic and

tonic–clonic seizures) and other seizures considered desirable to detect (long gener-

alized tonic, hyperkinetic, and other major seizures) were annotated. The detection

threshold was set to the value that obtained 97% sensitivity in the training set. Sen-

sitivity, latency, and false detection rate (FDR) per night were calculated in the test

set. A seizure was detected when the algorithm output exceeded the threshold con-

tinuously for 2 seconds. With the detection threshold determined in the training

set, all CS were detected in the test set (100% sensitivity). Latency was ≤10 sec-

onds in 78% of detections. Three/five hyperkinetic and 6/9 other major seizures

were detected. Median FDR was 0.78 per night and no false detections occurred in

9/24 nights. Our algorithm could improve safety unobtrusively by automated real-

time detection of CS in video registrations, with an acceptable latency and FDR.

The algorithm can also detect some other motor seizures requiring assistance.
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1 | INTRODUCTION

The importance of monitoring people who are at risk because
of their seizures has often been stressed.1–3 After convulsive
seizures (CS), defined here as generalized clonic and tonic–

clonic seizures, interventions such as repositioning, stimulation,
or clearing of the airway may have a protective effect in pre-
venting sudden unexpected death in epilepsy (SUDEP).4 The
person with seizures is often in need of assistance or first aid
due to (non–life-threatening) injury, but is not able to alert
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anyone. Alternative ways of alerting the caregiver are
needed.

Several devices for automated seizure detection are on
the market. Many seizure detection systems require sensors
or complete devices to be attached to the individual.5 Some
patient groups such as children or people with intellectual
disability may not tolerate wearable devices and may try to
dislodge them. Unless properly concealed, such devices
may also contribute to the social stigma associated with epi-
lepsy. Alternatively, unobtrusive wireless sensors could be
used, but these require regular charging and a reliable wire-
less connection to an alerting unit. Movement sensors that
can be attached to the bed are widely used in nocturnal sei-
zure monitoring and show fair detection performance for
CS.6,7 Such detectors, however, are only effective if the per-
son is in bed. An alternative solution is remote detection.

Automated online analysis of video recordings can
enable remote detection of the rhythmic vibratory or jerk-
like body movements in CS. Such a system would be pri-
vacy-friendly as there is no need for video storage or for
someone to monitor output. A number of studies have been
performed on detecting CS using video recordings.8–14

These studies were, however, proofs of principle, showing
detection feasibility in small datasets recorded in controlled
clinical settings. There is currently no working system
available that has been shown to have good performance in
real life settings.

Previously, we presented an algorithm aiming to discern
CS from normal behavior in video recordings.14 The algo-
rithm quantifies the oscillatory movements seen as vibra-
tions during the tonic phase, and clonic movements in the
clonic phase.15,16 The algorithm showed promising CS
detection performance in a video-electroencephalography
(EEG) training set and is suitable for real-time use. There
is, however, currently no information on the behavior of
our seizure detection algorithm in daily practice. A detec-
tion threshold is not yet established, and algorithm perfor-
mance has not been validated in new test data. This is
required to make the algorithm functional and to provide
practical guidelines to enable its use.

We aimed to determine a detection threshold and to
investigate the detection performance, and variables influ-
encing performance, of our noncontact seizure detection
algorithm. We pursued a realistic performance estimate by
analyzing long-term nightly video recordings in a residen-
tial care setting.

2 | METHODS

2.1 | Video data

We retrospectively analyzed 2 separate video databases; a
training set to find a suitable detection threshold and a test

set to study detection performance. The training set is an
existing video database that was described previously.14,17

The detection algorithm was developed in 2012 using this
database,14 and in the present study we reused the database
to find suitable detection settings. The test set is a novel
video database consisting entirely of new subjects. Test set
data were collected under the LICSENSE trial (NTR4115),
by the Dutch TeleEpilepsy consortium, a collaboration
between University Medical Center Utrecht, Stichting
Epilepsie Instellingen Nederland, and Kempenhaeghe.18

The study protocol was approved by a regional ethics com-
mittee and written informed consent was given by all
participants or their guardians. All data were handled
anonymously.

2.2 | Training set

The training set consisted of 50 video-EEG recordings
selected randomly from an epilepsy monitoring unit (EMU)
database, recorded between 2003 and 2011. The training
set contained 72 CS from 50 individuals. Videos were
recorded with Bosch (Bosch Security Systems, B.V.)
Dinion-LTC 0610, and Ikegami (Tsushinki Co., Ltd., Ohta-
ku, Tokyo, Japan) B/W CCD ICD-47 E-type cameras. All
digitized recorded images were in mpeg2 format with a res-
olution of 352(H)9288(V) pixels and a fixed frame rate of
25 frames per second.

2.3 | Test set

The test set comprises a selection from the video data col-
lected in the LICSENSE trial, conducted in 2015 and 2016.
In this observational study, performance of the Nightwatch
(LivAssured BV), a wearable seizure detection system, was
tested in residential care settings, where most residents
have mild to severe intellectual disability. Those residents
with at least one monthly nocturnal CS were included and

Key Points

• Our algorithm calculates relative frequency con-
tent in the optical flow signal to detect convul-
sive seizures (CS) in video recordings

• Objective performance results were obtained by
automated processing of long-term nightly videos
and 50 CS in a residential care setting

• All CS in the test set were detected, with 78% of
latencies being ≤10 seconds, and the median
false detection rate was 0.78 per night

• The algorithm can also detect some other motor
seizures that may require assistance
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monitored at night for a period of 3 months. Caregivers
kept a seizure diary. In a random 10% sample of all nights,
the full video recording was reviewed by an experienced
epilepsy nurse (off-line analysis), and seizures were anno-
tated. Seizure annotations are limited to symptoms visible
on the video.

In this study, 2 nights were selected from the 10%
screening samples of 12 individuals—one night with one
or more annotated CS, and another night without. If no CS
were present, a night with CS was selected based on diary
entries, or a second night without CS was selected. These
nights were screened in the same way and by the same
observers as the 10% screening sample. Additional CS
recordings were included in the test set to enable accurate
estimation of the sensitivity and latency of the algorithm,
accounting for the low number of CS in the selected
nights. In total, 50 recordings with CS were selected ran-
domly from LICSENSE trial subjects. Overrepresentation
of data from a particular subject in the performance esti-
mates was prevented by incrementing the number of sei-
zures selected per subject, until 50 seizures were included.

Videos were recorded with FOSCAM (Shenzhen Fos-
cam Intelligent Technology Co., Ltd., Shenzhen, China)
FI9805E Outdoor 960P PoE IP cameras, with infrared illu-
minator for night-time recordings. Recordings were in mp4
format, with a resolution of 640(H)9480(V) pixels. Frame
rate was variable, but had a minimum of 25, and a stable
mean of ~30 frames per second over the 4-second windows
used in algorithm calculations. Each half hour the recording
system recorded a new video, resulting in video epochs of
up to 30 minutes.

2.4 | Seizure annotations

Two neurologists (RT, GV, or JA), blinded to the results,
independently determined seizure category to establish the
detection desirability of the seizures found. Any incongru-
ence was solved by consensus. Detection desirability of
specific seizure types was determined as (see Table 1):
essential—for CS (category I), as they are an important
SUDEP risk factor1,19,20; desirable—for long generalized
tonic, hyperkinetic, and other major seizures such as series
of short myoclonic/tonic seizures (categories IIa, b, and c,
respectively), as these seizures may be harmful or require
assistance; and nonclinically vital—for minor seizures (cat-
egory III). In the training set, only annotations of CS are
used, which were based on the video-EEG report.

The start and end times of category I and II (a, b, and
c) seizures in the test set were annotated by a trained tech-
nical physician (EG) who was blinded to detection algo-
rithm results. The moment when the first behavioral
change is observed, signifying clinical seizure onset, is
annotated as the seizure start. Timing was based on the

video and audio recording only. It is therefore possible that
seizure activity started before the onset of a seizure is
observable in the video. The end-of-seizure annotation is
placed where the last observable seizure symptom ends and
signifies the start of the postictal period. The start of the
oscillatory period of CS was also annotated. The first visi-
ble oscillatory movements may either be vibratory move-
ments during a tonic phase or the first clonic jerks of the
clonic phase. Five-second annotation margins were applied
before the seizure and oscillatory period start points to
allow for slightly earlier detections.

2.5 | Convulsive seizure detection algorithm

The detection algorithm used in this study was described
previously.14 The algorithm consists of 4 steps: (1) optical
flow calculation,21 reconstructing the vector field of veloci-
ties from luminance changes, presumably resulting from
movements recorded by the camera; (2) reconstruction of
group velocity parameters, obtaining 6 time series repre-
senting the rates of spatial transformations; the translation
(horizontal and vertical), rotation, dilatation, and shear rates
(horizontal and vertical); (3) extraction of the “seizureness
spectrum,” representing the dominant component of the
time-frequency spectra of the 6 spatial group velocities.
Spectra are calculated using Gabor aperture functions with
central frequencies ranging from 0.5-12.5 Hz, in 1-s win-
dows; (4) calculation of the spectral contrast quantity,
defined as the power in the 2-6 Hz band relative to the
total Gabor power (0.5-12.5 Hz), in 4-s moving windows
with 75% overlap. The 2-6 Hz frequency range was identi-
fied as the “spectral footprint” of CS. In some seizures the
motion oscillations extend beyond this frequency range,
but the range was considered optimal to minimize overlap
with normal behavior. After the first 4 s of a registration,

TABLE 1 Seizure categories and the need for detection of these
seizures

Category Description
Detection
need

I Convulsive seizures (CS): Tonic–clonic
seizures (may start with a clonic
phase) or generalized clonic seizures

Essential

IIa Tonic seizures that last longer than 30 s Desirable

IIb Hyperkinetic seizures Desirable

IIc Other major seizures: These seizures
cannot be classified as tonic–clonic,
tonic, or hyperkinetic seizures and
may include a cluster of short tonic or
myoclonic seizures

Desirable

III Minor seizures: All other seizures Nonclinically
vital
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each second the algorithm generates a dimensionless output
value between 0 and 1. These values correspond to very
low (close to 0) to very high (close to 1) proportion of
oscillatory movement in the 2-6 Hz frequency range, and
with that the likelihood of registering a CS.

2.6 | Determination of algorithm settings

To construct a functioning detector from the algorithm out-
put, we implemented a detection threshold using the train-
ing set. A suitable threshold promotes detection sensitivity
for CS as high as possible while keeping the number of
false positives low. The detection threshold was set at the
third percentile of detection output maxima during all oscil-
latory phases, obtaining 97% sensitivity in the training set.
This was done to account for the possibility that not all CS
had good quality recording; for example, caregivers may
obstruct the view. A threshold resulting in 100% training set
sensitivity would produce significantly more false positives.

After finding the detection threshold, a delay parameter
was set to diminish the number of false positives caused
by short oscillatory movements in the video. Suprathresh-
old algorithm output is ignored when the output does not
stay above threshold for a duration equal to or longer than
the delay parameter. The delay parameter was incremen-
tally increased and set to the highest value where detection
sensitivity was maintained, and latency did not increase
more than the delay itself.

2.7 | Performance analysis

Detection performance was measured in terms of sensitivity
and latency for CS (category I) and false detection rate
(FDR) per night (8 hours). Detection performance for cate-
gory II seizures is not a goal but considered a helpful side-
line and is measured secondarily. Detection of category III
seizures implies a false detection.

The algorithm detects a seizure when its output exceeds
the threshold equal to or longer than the delay parameter
during the seizure event. The seizure event is defined as
the period between start and end annotations of the seizure.
Detection latency is defined as the time between the start
of the seizure and the detection. For CS, latency is also cal-
culated from the start of the oscillatory phase, as detection
of the seizure before the start of this period is not expected
due to the algorithm’s sensitivity to rhythmic movements.
Factors possibly influencing detection latency were investi-
gated visually.

When the algorithm output exceeds the threshold equal
to or longer than the delay parameter at times other than
during seizure events that were considered essential or
desirable for detection, a false detection is generated. If a
second false detection occurs within a 10-s blackout period

after the first detection, this second false detection is disre-
garded. After the blackout period, new false detections are
again taken into account. False detections were categorized
as the following: detections of category III seizures, detec-
tions during the postictal phase after a seizure, detections
with caregivers present (not during a postictal phase), and
other false alarms.

3 | RESULTS

An example of the detection algorithm output is shown in
Figure 1. The algorithm output threshold that detected
97% of seizures in the training set (threshold: 0.51) and a
2-s detection delay was applied to the algorithm for use
in the test set. The test set consisted of recordings from
24 full nights (total duration ~253 hours) of 12 subjects,
with 5 hyperkinetic and 9 major seizures recorded in 7

FIGURE 1 Example of the algorithm output around the time
of a convulsive seizure. A, Gabor time frequency “seizureness
spectrum,” representing the dominant component of the time-
frequency spectra of the 6 spatial transformations of the optical flow
output. B, Convulsive seizure detection algorithm output (black solid
line), defined as the power in the 2-6 Hz spectrum relative to the
0.5-12.5 Hz spectrum. The colored boxes together represent the
timeframe of the seizure, where the gray box shows the start of
the seizure before the oscillatory phase, which is indicated with the
yellow box. In this case, the seizure detection threshold (dashed blue
line, at 0.51) is exceeded by the algorithm output just when the
oscillatory phase of the seizure starts
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different subjects. Fifty CS were included from 9 different
subjects (mean 5.5 seizures per subject, range 1-8). Six of
the included seizures occurred within the 24 full-night
recordings.

All CS were detected in the test set (100% sensitivity),
with latencies shown in Figure 2. Seventy-eight percent of
CS were detected within 10 seconds from the start of the
oscillatory period. Detection latencies for seizures in sub-
jects covered completely by a blanket (n = 19) were not

significantly different from latencies in those who were
uncovered (n = 7) or partly covered (n = 24) (2-sample
Kolmogorov-Smirnov test, P > .05). In cases where detec-
tion latency was longer than 20 seconds, either a fluctuat-
ing oscillation amplitude was seen in the tonic phase, or
caregivers were present, creating low-frequency “noise” in
the video with their movements. Category II seizures were
detected with a sensitivity of 57%. Detection latencies var-
ied between 7 and 35 seconds. No tonic seizures longer
than 30 seconds (category IIa) were registered in the test
set. Three of five hyperkinetic seizures were detected (cate-
gory IIb), and 5 of 9 other major seizures (category IIc).

False detection rates (FDRs) for all nights are shown in
Figure 3. Median FDR was 0.78 per night (95% confidence
interval [CI] 0-2.0 per night). No false detections occurred
in 9/24 nights, which applied to both nights for 2 patients.
In more than half of the cases, an FDR of one or less per
night occurred. FDR was high (>5 per night) in 4 cases,
corresponding to 3 subjects. Detection of category III sei-
zures caused 12% of false detections, which were all myo-
clonic jerks (frequent in case 9A). Eight percent of false
detections occurred during the postictal period, due to
physical restlessness (all after category I or II seizures). In
8% of false detections, the detection occurred when a care-
giver was in the room (not during a postictal period).
Examples of false detection causes in these cases were
movement of a flash light beam or patient manipulation.
Other false alarms (72%) were caused by patient behavior
(45%), such as scratching and fidgeting (frequently in case
1B), and video disturbances (27%), such as objects (eg,
cobwebs, curtain cord) moving due to airflow fluctuations.

4 | DISCUSSION

This study shows that our noncontact seizure detection
algorithm can perform well in a test set of new cases, when
applying detection settings that were optimized using a
training set. The algorithm detected all CS with an accept-
able latency in a test set of nightly video recordings in a
residential care setting. Seizures with a 2-6 Hz oscillatory
movement pattern, observed for 2 seconds or longer, are
detected, even when the subject is covered by a blanket.
Detection latency is minimally 2 seconds, plus the time it
takes for the seizure activity to manifest in a clear oscilla-
tory movement pattern. Hyperkinetic seizures and other
major seizures with a 2-6 Hz movement pattern can also
be detected. The algorithm’s calculations are computation-
ally light and use only the last registered 4 s of data, mak-
ing it suitable for real-time use.

In more than half of cases, an FDR of one or less per
night was observed. In a small number of cases, however,
a high FDR was observed. False detections were most

FIGURE 2 Detection latencies for the 50 convulsive seizures in
the test set, sorted according to detection latency. The circles indicate
the moment in time when the detection was made, calculated from
the start of the oscillatory phase (at time = 0 seconds). The dotted
lines indicate the duration of the convulsive seizures before the
oscillatory phase. This duration may include symptoms of a focal
onset of the seizure
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frequently caused by active behavior of an awake or postic-
tal patient, that is, scratching or fidgeting. Myoclonic jerks
were in some cases also detected despite their short

duration, as oscillatory movements occurred when limbs
bounced on the bed after an event. In some cases, video
disturbances by objects moving in airflow caused false
alarms. Combining detection output from video with other
noncontact inputs (eg, sound) might diminish the chance of
false positives, but possibly at the cost of sensitivity and
latency. In light of the favorable sensitivity and latency
findings with the current algorithm, such a tradeoff to
improve the FDR could be considered. Alternatively,
awake users could be empowered to disable false detec-
tions manually, although giving a user time to disable a
false alarm will inevitably lengthen detection latency.
Which FDR is acceptable may depend on the individuals
involved and their living conditions. If the subject can be
observed from a distance via video connection in case of
an alarm, like in a residential care setting, a higher FDR
could be acceptable compared to a home setting where
caregivers are awakened by alarms.

In this phase 2 study (according to the standards for sei-
zure detection studies proposed in the current issue22) an
extensive dataset with randomly selected long-term record-
ings was used, where data was not clipped, edited, or fil-
tered before automated processing. Bias was prevented by
concealing the algorithm output from the experts annotating
seizures. Prior to this, only feasibility of detection has been
demonstrated, and the generalizability of detection results,
particularly to real-life situations, remained unclear.8,10,12–14

Performance was often calculated on the same data that
was used to select appropriate detector settings, with short
video fragments recorded in a controlled clinical environ-
ment and only the subject in view.

Most remote CS detection methods reported in literature
are, like ours, targeted on movement periodicity (the exception
being methods targeted on seizure sounds23,24 and muscle
activity25–27). CS have been detected in video recordings by
calculating periodicity in the luminance signal10–12 and with
neural networks trained on optical flow motion tracking out-
put.8,9 In another study, colored pyjamas were used to facili-
tate movement quantification for CS detection.13 Compared to
other algorithms targeted on periodicity, the detection delay
we used (2 seconds) is shorter than generally applied (10 sec-
onds),6,10–12 while maintaining a low false detection rate. This

FIGURE 3 A, Test set false detection rates (FDRs) per night
(8 hours) for each case. The colors in the stacked bars indicate the
situation in which the false detection occurred. Green bars indicate
detections of nonclinically vital seizures (category III, see Table 1),
blue bars indicate detections during the postictal phase after a seizure,
yellow bars indicate detections when a caregiver was present (not
during a seizure or postictal phase), and orange bars indicate other
false alarms. B cases 2-6, 8, and 11 included a category I seizure.
B, Histogram of FDR results per night, where each case is an
observation
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can be attributed to the application of spectral contrast (op-
posed to power) and the output-smoothening effect of the 4-
second calculation window.

We used an extensive test set, but all recordings were
made during the night and all events of interest derived from
a small number of subjects. Detector settings were, however,
based on a much larger sample in the training set, which
contains 72 CS from 50 individuals in day- and nighttime
recordings. It is likely, therefore, that detector sensitivity and
latency in practice will be close to the sensitivity and latency
in the training set (97% and <10 seconds in 81% of detected
seizures, respectively). Realistic FDR results during daytime
could not be derived from the fragmented video registrations
in the training set. We expect false detections to be more fre-
quent during the day in individuals with a tendency for false
detection–causing behavior. False detection rates might be
different in other target groups that were not in the test set,
such as children or adults outside of residential care.

The detection settings of our algorithm are presumably
generic, as they were chosen using a data set from different
subjects and video data from different hardware than the
data used for validation. Although personalized detection
settings would possibly have improved detection perfor-
mance, this requires long (supervised) training sessions,
making it less practical for direct deployment. Lengthening
the detection delay could, for example, prevent false detec-
tions caused by short rhythmic movement patterns, while
retaining sensitivity for CS if they have rhythmic movement
patterns with a longer duration. If needed, personalization
should be attempted only by professionals in a controlled
setting, where video and EEG recordings enable checking
and analysis of missed seizures and false detections.

Our detection algorithm could be used in a real-time
automated noncontact monitoring system to increase the
safety of people with epilepsy at home, without intruding
on privacy, as no video storage or monitoring is necessary.
The algorithm is highly sensitive to CS and false detection
rates are low in most cases. For some subjects, application
of our algorithm could be unsuitable in practice; that is,
subjects with many false detections, who are unable to dis-
able false alarms themselves. Future work should focus on
prospectively evaluating real-time detection performance of
the algorithm in a broad target group of users.
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