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ABSTRACT  

Uveal melanoma (UM) progression can be predicted by gene expression profiles 

enabling a clear subdivision between tumors with a good (class I) and a poor (class 

II) prognosis. Poor prognosis UM can be subdivided by expression of immune-

related genes, however it is unclear if this subclassification is justified; therefore, T 

cells in UM specimens were quantified using a digital PCR approach. Absolute T cell 

quantification revealed that T cell influx is present in all UM associated with a poor 

prognosis. However, this infiltrate is only accompanied by differential immune-related 

gene expression profiles in UM with the highest T cell infiltrate. Molecular 

deconvolution of the immune profile revealed that a large proportion of the T cell-

related gene expression signature does not originate from lymphocytes but is 

derived from other immune cells, especially macrophages. Expression of the 

lymphocyte homing chemokine CXCL10 by activated macrophages correlated with T 

cell infiltration and thereby explains the correlation of T cell numbers and 

macrophages. This was validated by in situ analysis of CXCL10 in UM tissue with 

high T cell counts. Surprisingly, CXCL10 or any of the other genes in the activated 

macrophage-cluster, was correlated with reduced survival due to UM metastasis. 

This effect was independent of the T cell infiltrate which reveals a role for activated 

macrophages in metastasis formation independent of their role in tumor 

inflammation.   
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INTRODUCTION 

Uveal Melanoma (UM) is the most common intraocular neoplasm in adults with an 

incidence of 6 to 8 per million annually in Caucasians (1). UM presents as a 

genetically homogenous disease in the sense that the vast majority shares the same 

driver mutations (GNAQ/11) (2,3). Downstream oncogenic signaling pathways 

include the ERK pathway via PKC and the Hippo pathway via YAP activation (4,5). 

For years, it has been known that UM that metastasize significantly differ both in 

their genetic and their phenotypic make up, from the ones that do not metastasize. 

Early studies showed recurrent genomic abnormalities that allowed clustering of 

tumors into prognostic classes (6-8). Monosomy of chromosome 3 and gain of 

chromosome 8q discriminate between good and poor prognosis (9-11). More 

recently, an advanced approach of classifying UM was revealed. Based on genome 

wide gene expression analysis, tumors were assigned to prognostic classes (class I 

and classII) that overlap largely with the genomic classification (12). The former 

classification is based on hundreds of differentially expressed genes that may also 

provide insight into the biology of UM. Recently we and others demonstrated that a 

part of the UM with a poor prognosis are characterized by an extensive immune 

infiltrate (6,13). Besides T cell markers also macrophage markers were recognized in 

the expression profiles of UM with metastatic potential. Macrophage activation has 

been shown to precede T cell infiltration in UM progression (14). To further 

investigate the mechanisms of UM inflammation, the expression profile was 

analyzed for the inflammatory compartment. For this purpose absolute T cell counts 

were integrated with UM expression profiles. The resulting T cell-related genes were 

compared to a range of immune cells to identify immune cells in the tumour 

microenvironment. By using profiles of both naïve and activated immune cells we 
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could infer that activated macrophages are pivotal in T cell infiltration. Combined we 

show that by using absolute T cell counts, expression profiles of heterogeneous 

tissue can be effectively dissected into different immune components.    
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MATERIAL & METHODS 

Tumor material was obtained from 64 enucleated eyes of UM patients that had been 

enucleated at the Leiden University Medical Center, Leiden, The Netherlands, 

between 1999 and 2008. This study was approved by the Medical Ethics Committee 

of the Leiden University Medical Center. Tumor material was handled according to 

the Dutch National Ethical Guidelines (‘Code for Proper Secondary Use of Human 

Tissue’), and the tenets of the Declaration of Helsinki (World Medical Association of 

Declaration 2013; ethical principles for medical research involving human subjects). 

None of the tumors had prior treatment and only tumors with a follow-up time of at 

least 5 years were used. The maximum follow-up was 14 years. The average age at 

enucleation was 60.6 years (range 13 to 88); 33 patients were male and 31 female. 

Tumor material was snap frozen using 2-methyl butane, and RNA and DNA was 

isolated using the RNeasy mini kit and QIAmp DNA minikit, respectively, (both 

Qiagen, Valencia, USA) from 20 sections of 20µm according to the manufacturer’s 

guidelines.  

Gene expression 

Gene expression analysis was performed as published before (6). In short, the 

Illumina HumanHT-12 v4 chip containing 47,000 probes across the whole genome 

was used. Supervised cluster analysis was used to identify which genes were 

responsible for the subdivision of the tumors in classes. For differences between 

subgroups, i.e. I versus II,  a correction was made for differences between IIa and IIb 

classified as a log fold change smaller than -0.5 or greater than 0.5 and a p-value 

smaller than 0.05. Since gene expression data have been obtained in two batches, a 

batch effect correction was applied. The R packages used were: ‘ber’ for batch 

correction and ‘lumi’ for unsupervised clustering.  
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Genetic T cell quantification 

In order to quantify T cells in tumor samples, a dPCR assay was developed directed 

at a specific locus of the TCR-β gene; located between gene segments Dβ1 and 

Jβ1.1, and from now on called ΔB. This particular part of the gene is biallelically 

deleted by T cell receptor rearrangements during T cell maturation. Consequently, 

peripheral T cells are lacking ΔB compared to other cell types (somatic loss of 

germline DNA). This genetic dissimilarity can be utilized in a basic copy number 

variation (CNV) dPCR assay in order to quantify T cells in the presence of other cell 

types, like UM (tumor) cells. Because a stable genomic reference is essential in this 

determination, 
[ΔB]

[REFERENCE]
 was calculated for 3 different reference genes: TTC5 

(chr. 14), TERT (chr. 5) and VOPP1 (chr. 7). The average of the two closest ratios 

was used in the following formula: 

[ΔB]
T-cell fraction  1  average 

[REFERENCE]
   

Although the target gene segment ΔB is located at a locus not frequently mutated in 

UM cells, copy number alterations in tumor cells may give rise to a distortion of our 

calculations. It is possible to correct for this by using the following formula: 

[VOPP1] [ΔB]
adjusted T-cell fraction  average   average 

[REFERENCE] [REFERENCE]
   

In those cases where chromosome 7 shows an obvious loss or gain (defined by a 

concordant copy number alteration > 0.075 seen in 
[VOPP1]

[TTC5]
 and 

[VOPP1]

[TERT]
), we chose 

to determine T cell fractions according to this formula. In those calculations, VOPP1 
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was not used as reference gene. Calculations per tumor are outlined in 

Supplementary Table 2 (Table S2). 

The ddPCR was performed using ddPCR Supermix for probes (Bio-Rad 

Laboratories, Hercules, CA, USA) in 20 µL with 50ng of DNA resulting in 0.75 copies 

per droplet (CPD) of haploid genomes after partitioning into 20,000 droplets. 

DNA restriction digestion was performed using HaeIII directly in the ddPCR reaction 

solution according to the protocol supplied by Bio-Rad. Droplets were generated 

using an AutoDG System (Bio-Rad) and droplet emulsion was transferred to a 96-

well PCR plate for amplification in a T100 Thermal Cycler (Bio-Rad). Cycle 

parameters were as follows: Enzyme activation for 10 minutes at 95°C; denaturation 

for 30 seconds at 94°C, annealing and extension for 1 minute at 60°C for 40 cycles; 

enzyme deactivation for 10 minutes at 98°C; infinite cooling at 12°C. Ramp rate for 

all cycles was 2°C/sec. Cycled droplets were stored at 4-12°C until reading. Positive 

and negative droplets were measured as a CNV1 experiment using a QX200 Droplet 

Reader (Bio-Rad). Primers and probes are proprietary of Bio-Rad except for the 

primers and probes for TRB, which have been published before (15). In 

Supplementary Table 3 the amplicon sequences are provided (Table S3).  

 

BIOGPS METHOD 

Obtained gene expression profiles from UM samples represent a mixture of cell 

types, i.e. melanoma cells and stromal cells. We developed a computational 

approach to dissect which cell types contribute to the expression signatures. 

At the basis of our in silico analysis lies the selection of genes of interest for which 

the expression level is positively correlated with increased T cell fraction in the class 
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II UM samples (n=38). Pearson’s correlation test was used and r > 0.5 and p < 0.001 

were considered to be significant.  

The publicly available datasets GeneAtlas U133A, gcrma (16) and Primary Cell Atlas 

(17) on the BioGPS-site were used to obtain cell-type specific gene expression 

patterns for our selected genes (18-20). Hierarchical cluster analysis and principal 

component analysis, revealed cell specific expression patterns in our gene selection. 

The following R packages were used: ‘mygene’ for obtaining gene information and 

‘pheatmap’, ‘dendsort’ and ‘ggplot2’ for visualizing data. 

Immunofluorescent staining 

Phenotypic characterization of lymphocytes was performed using triple fluorescent 

immunostaining. A previously developed technique for simultaneous 

immunofluorescence (IF) staining of different epitopes was applied to 4-µm formalin-

fixed, paraffin-embedded tissue sections. In brief, deparaffinized and EDTA antigen 

retrieval-treated sections were stained by a mixture of the following primary 

antibodies: anti-CD8 (mouse monoclonal IgG1; Dako-Agilent, Santa Clara, USA), 

melan A (mouse monoclonal, Novus Biologicals, LLC, Littleton, USA), CXCL10 

(rabbit polyclonal, Antibodies-online, Aachen, Germany), CD14 (mouse monoclonal 

IgG2a, Abcam, Cambridge, UK), CD163 (mouse monoclonal IgG1, Novocatra, Milton 

Keynes, UK). As secondary antibodies to visualize the lymphocytes, a combination 

of fluorescent antibody conjugates goat anti-rabbit IgG-Alexa Fluor 546, goat anti-

mouse IgG2b-Alexa Fluor 647, goat anti-mouse IgG1-Alexa Fluor 488 (all three from 

Molecular Probes, Invitrogen, Breda, the Netherlands), and goat anti-rabbit-Alexa 

Fluor 647, goat anti-mouse IgG2a-Alexa Fluor 546, and goat anti-mouse IgG1-Alexa 

Fluor 488 (all three from Life Technologies, Grand Island, USA) was used. 

Antibodies were used as described previously (21). Images were captured with a 
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confocal laser scanning microscope (LSM510; Carl Zeiss Meditec, Jena, Germany) 

in a multitrack setting. A microscope objective (PH2 Plan-NEOFluar 25x/0.80 Imm 

Korr; Zeiss) was used. T cells were manually counted using the LSM 5 Image 

Examiner software and represented as the number of cells per mm2 for each slide 

(average of five 250× images). 

 

Statistical analysis 

For gene expression, deconvolution and statistical analyses, the programming 

language R was used (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria.). 

Detailed methods for analysis are provided as supplemental methods.  
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RESULTS 

UM subclassification reveals an immune phenotype  

With gene expression profiles, UM can be easily subdivided into different prognostic 

classes (12,22). Class I mainly consists of tumors with a good prognosis while class 

II represent tumors with a poor prognosis (Figure 1A). Based on the most 

differentially expressed genes, we recognized two sub-classes (IIa/IIb) in class II UM 

(6). These subclasses however do not present with a survival difference (Figure 1A). 

High expression of immune related genes in class IIb UM suggests that these 

tumours are inflamed, while class IIa UM tumours do not include this phenotype 

(Figure 1B).  

Though gene expression profiles are helpful in exploring the immune infiltrate, they 

do not provide an immune cell count. The underlying reason may be that cell specific 

markers such as CD4 and CD8 are regulated during immune reactions. This makes 

CD4 and CD8 expression useful to describe the T cell populations, rather than for T 

cell quantification. CD3 expression is marginally regulated during immune responses 

compared to CD4 and CD8 and therefore more appropriate to enumerate the T cell 

infiltrate. In order to define the extent of the immune cell infiltration in UM more 

accurately, we quantified T cells in UM DNA specimens from which the gene 

expression profiles were also obtained.  

Digital PCR reveals T cell infiltration in the whole of class II UM 

Based on somatic rearrangements of the T cell receptor genes, T cells can be 

distinguished from other cells at the genomic and RNA level. The number of possible 

rearrangements is however innumerable and amplification of every possible T cell 

receptor requires many assays (23). The complexity of the TCR genes therefore 



 

11 
 

hampers accurate measurement and analysis at genomic level and the gene 

expression level. Instead of counting each individual rearrangement, we used an 

alternative amplification method for quantification that depends on a DNA sequence 

(ΔB). This sequence is deleted in both alleles of lymphocytes during early T cell 

maturation and therefore the marker of choice for counting T cells (15,24).  

With dPCR, T cell numbers were quantified in the tumor mass of 64 UM that were 

previously analyzed with gene expression arrays. Significantly higher T cell fractions 

were observed in class IIb tumors compared to class IIa and class I tumors (Figure 

2A). However, elevated T cell counts can also be found in class IIa, compared to 

class I UM. This is in contrast to gene expression analysis of CD3 which did not 

reveal significant differences between class I and class IIa (Figure 2B). The lack of 

differential expression of CD3 between class I and class IIa likely marks the reduced 

sensitivity and specificity of gene expression arrays compared to the DNA based T 

cell count.  Significant correlations between genomic T cell counts and gene 

expression of CD3 were nevertheless observed (Figure 2C). To assess the degree 

to which T cells contribute to the gene expression profile we systematically 

correlated T cell number and gene expression profiles of classifier genes. 

Integration of T cell count with the expression profile of UM reveals 

structure of the immune environment 

Instead of investigating the expression profile for immune cell markers, we 

investigated the degree to which T cells contribute directly or indirectly to the 

expression profile of class II UM. Therefore we reversed the analysis and performed 

supervised cluster analysis on the basis of the T cell count. The correlation with T 

cell count was determined for 1538 (logfold change >0.5) probe sets, which are 



 

12 
 

differentially expressed between class I and class II. This revealed that 60 genes of 

the class II classifier are positively correlated with T cell count (R>0.5, p<0.05) 

(Figure 3A, Table S1). Among these T cell classifier genes are obligate T cell 

markers such as CD3 and CD8. Also lymphocyte attracting chemokines like CCL5 

are expressed by T cells and found to be present in the T cell classifier (25). 

Comparison of the expression profiles with 35 expression profiles of naive and 

activated immune cells indicated that the majority of T cell-correlated genes is 

actually not expressed by T cells (Figure 3B). The myeloid lineage of immune cells 

was found to contribute considerably to the T cell classifier. This is illustrated by the 

correlation between T cell count and macrophage markers such as CD14 (R=0.484, 

P=0.002), CD86 (R=0.70, p<0.05) and CSF1R (R=0,606, P<0.001). However, the 

variability of the correlation between macrophage markers and T cell count, or even 

absence of a correlation (CD68, R=0.196, p=0.239), indicates that macrophage 

polarization is highly dynamic. Moreover, the variable correlation of macrophage 

marker expression with T cell count indicates that specific subtypes of macrophages 

are present in inflamed UM. With principal component analysis (PCA), the T cell 

classifier converged into 4 clusters that represent different cell populations (Figure 

3C). The most distinct gene-cluster contained expression profiles of macrophages 

that had been activated with classic immune activators like LPS and interferon 

gamma. Another prominent cluster corresponded to the profile of activated CD8-

positive T cells, as can be witnessed by high granzyme expression. The lymphocyte 

attracting chemokine CXCL10 was highly expressed in the activated macrophage 

gene cluster, and may be functionally related to T cell infiltration in UM (Figure 3B-

C). Expression of CXCL10 by macrophages was investigated in UM tissue with two 

triple staining procedures. Either T cell or macrophage markers were analyzed 
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alongside a melanocyte marker and CXCL10 expression. This confirmed high 

CXCL10 expression by macrophages in UM with high T cell counts. While staining 

with macrophage markers (CD14, CD163) revealed that macrophages are the origin 

of CXCL10 expression. Though UM cells also occasionally displayed CXCL10 

expression, strong staining was uniquely observed in macrophages that express 

CD163 (Table 1) (Figure 4A-B). Combined, this displays an active immune response 

in part of the UM and the question emerges whether this results in a clinical 

response. 

Clinical consequence of the immunologic phenotype 

Previously we reported that the class IIa and class IIb UM presented with similar 

prognosis (Figure 1A). Based on that, we claimed that presence or absence of an 

immune infiltrate did not influence disease outcome in UM (6). With two immune cell 

populations in UM defined, we evaluated the role of T cell count and activated 

macrophages in the development of UM metastasis separately. We analyzed this in 

a molecular UM risk model, to which we added T cell count as well as expression 

markers for T cell phenotype (CD4, CD8) and CXCL10 expression as marker for 

activated macrophages. In this model, monosomy 3 and chromosome 8q gain were 

significantly correlated with survival (Table 2). T cell count did not contribute to 

survival (Figure 5), and neither did the expression of the T cell markers (CD4, CD8). 

CXCL10 as marker for activated macrophages did surprisingly contribute to the 

survival risk of UM in this complex model. Thereby, it was shown to represent an 

independent risk factor that is not confounded by monosomy 3, gain of 8q or T cell 

count. 
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DISCUSSION 

Molecularly, UM can be easily divided into different prognostic classes (class I and 

class II) based on their genome wide gene expression (12,22). Recently, our gene 

expression analysis on 64 UM revealed an additional subdivision. With supervised 

cluster analysis of the classifier genes, class II UM was subdivided intoclass IIa and 

class IIb. Genes that were differentially expressed between these classes, and thus 

responsible for this subdivision, were functionally annotated to be related to the 

immune system. Expression of interferon signature genes like CD2, CD3D, CCL5 

and CXCL10 reflect an ongoing tumor inflammation (26). Moreover, expression of 

cytolytic genes (GZMA, GZMK, and NGK7) in the same cluster supported that the T 

cells are cytotoxic effector cells. Class IIa UM contained little involvement of the 

immune system as opposed to class IIb UM, in which an inflammatory phenotype 

was observed (6). This subdivision is reminiscent of the class 3 and class 4 

classification that the TCGA consortium recently described (13). It is however the 

question whether class II subclassification is warranted on molecular merits or that it 

is solely based on the degree of immune infiltration. The TCGA consortium 

estimated the leucocyte fraction with methylation profiles that were correlated to 

histopathologically determined leucocyte fractions (27). With this approach, 

leucocytes were found to be elevated in class 4, similar to what we observed with 

expression markers for T cells in class IIb UM (6). Though expression profiles and 

methylation profiles may be related to cell fractions, they do not represent absolute 

cell numbers. Expression and methylation profiles rather identify cell fractions that 

are present in the tumor tissue. Alternatively, absolute quantification of immune cells 

can be achieved by flow sort analysis of tumor material, but this is difficult and has 

not been applied to UM. T cell and macrophage counting in tissue with IHC has been 
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used as an accessible alternative and this confirmed wide ranging T cell and 

macrophage  infiltration in UM (28,29). In the inflamed tumors the T cells and 

macrophages are spread throughout the tumor and thereby show that immune cell 

invasion is not limited to a specific histologic structure or tissue (figure 4). Moreover, 

integration of T cell and macrophage staining with the molecular progression model 

of UM revealed that macrophage infiltration precedes T cell infiltration in tumor 

inflammation (6,14). We integrated absolute T cell counts with expression profiles of 

UM, in order to investigate the biologic mechanisms. We quantified T cells with a 

DNA based quantitative method that would otherwise require fresh cell homogenates 

and flow cytometry (15). Integration of RNA expression profiles and DNA based T 

cell counts in the same tissue revealed that T cell fractions can exceed way over one 

tenth of the tumor mass. The highest T cell fractions were observed in class IIb UM, 

and the median T cell fraction was almost twice as high as in class IIa (15.6% and 

8.0% respectively). Class I UM on the other hand presents the lowest T cell fraction 

(5.1%), and combined this suggests an accumulation of T cells during UM 

progression (Figure 2A). Remarkably, the elevated T cell numbers in class IIa were 

not reflected by an increase in T cell marker gene expression (Figure 2B). We 

suppose that dilution of the gene expression profiles of reduced T cell fractions 

(<10%) in class IIa obscured the contribution of T cells to the complete profile. 

Alternative explanation could be that CD3 is regulated during immune activation 

though this is not evident from the reference database that we use(17). In class IIa, 

8% T cells were found compared to 5% in class I and it is questionable whether 

expression array analysis can distinguish this difference. Because of the absolute 

quantification with digital PCR approach, a gradual increase of T cell infiltrate could 

now be recognized. Whereas the gene expression analysis initially suggested 
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immune infiltration in specifically class IIb UM, absolute T cell quantification now 

showed that T cell influx occurs in the whole of class II UM but is highest in class IIb. 

Therefore, subclassification of class II UM with expression profiles appears to be 

based on a quantitative difference in T cell infiltration.  

Earlier reports from our research group indicated that the immune system is involved 

in UM with poor prognosis (28,29). Our analyses revealed an extensive CD8 positive 

T cell infiltrate in UM and validated immune involvement in class II UM with a poor 

prognosis. However, both the gene expression based inflammatory phenotype of 

class IIb UM (Figure 1C), and T cell count in the whole of our UM panel (Table 2), 

did not correlate with survival. Indeed, class II UM contains more T cell infiltrate than 

class I UM, but when analyzed in a multivariate statistical model, including the known 

genetic risk factors, no added risk was revealed for T cell numbers. This also did not 

depend on T cell differentiation, as both CD4 expression as well as CD8 expression 

behaved neutrally in our risk model (Table 2). 

The question remains how the immune infiltrate in UM should be further interpreted. 

To investigate this, we combined T cell quantifications with the gene expression 

profile of each corresponding tumor. The result of this analysis, a list of correlated 

genes (directly or indirectly related to the T cell immune infiltration), was integrated 

with publicly available cell-type specific gene expression profiles. This led to the 

remarkable conclusion that most of these T cell count-related genes are actually 

expressed by other cells in the immune compartment, mostly monocyte derived.  

 

Deconvolution of the genes that are correlated with T cell count indicated that 

activated macrophages contribute considerably to the overall UM immune infiltrate 

as well as activated cytotoxic T cells. The fact that this activated immune infiltrate 
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does not result in an overt immune response, and consequently an improved 

prognosis, suggests that immune suppression is involved. Therefore, the eye is an 

immune privileged organ, making it a unique organ and a favorable location for 

allograft residence (30). Moreover, the blood-retina-barrier (BRB), which is 

characterized by tight junctions in the retinal pigmented epithelial layer, actively 

blocks the influx of immune cells from the surrounding tissue (31). Combined, this 

possibly reflects a negative selection pressure, as immune reactions in the eye could 

have detrimental effects on delicate structures, leading to impaired vision (32,33). 

The presence of activated immune cells in UM is therefore remarkable and may be a 

consequence of UM development. There is however no correlation to the 

development of metastases and this may suggest that immune infiltration can be 

regarded an epiphenomenon of progression that has no effect on survival of patients 

However, preliminary analysis indicates that activated macrophages, as marked by 

CXCL10 expression, may be involved in metastasis (Figure 5, Table 2).  

Interestingly, the role of CXCL10 in UM has been described before and this 

chemokine showed to be present in UM cells and upregulated in a T cell-rich 

environment (25,34,35). CXCL10 staining of UM sections in our cohort indicated that 

CXCL10 is present in some tumor cells but is predominantly found in macrophages 

(Figure 4B). Although the intensity levels of CXCL10 and macrophage marker gene 

expression varied in UM with high T cell counts, high levels of CXCL10 expression 

were restricted to the macrophages. Remarkably, though T cell count and CXCL10 

are highly correlated, in survival analysis CXCL10 expression was correlated with a 

considerably increased risk while T cell count was not correlated to an increased 

risk. This suggests that besides attracting T cells by expressing CXCL10, 

macrophages also contribute to UM progression in another way. Possibly by 
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stimulating UM cell proliferation and extravasation in the same way that skin 

melanoma cells with ectopic expression of the CXCL10 receptor CXCR3 are 

stimulated (36,37).  It is however unlikely that the same mechanism applies to UM, 

since CXCR3 was not differentially expressed between the UM classes (Table S1). 

Possibly other chemokine and chemokine receptor combinations drive tumor growth 

and progression in UM (38). 

 

With absolute T cell quantification, we managed to take the first step in 

deconvolution of the immune compartment in UM. Thereby we revealed increasing 

numbers of activated T cells and activated macrophages in UM with poor prognosis. 

With CXCL10 expression by macrophages in UM we revealed a possible underlying 

mechanism of T cell infiltration. Based on survival analysis, we hypothesize that T 

cell infiltration is an epiphenomenon of a macrophage driven metastatic process. A 

further deconvolution of the macrophage related expression profile will be the 

approach to reveal the cells and the involved mechanisms.  
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TABLES 

Table 1, histological T cell and CXCL10 counts 

UM Class T cell 

counts/mm2 

CXCL10 

Macrophages 

CXCL10 

Tumor cells 

05-005 IIb 5.61 Low Low 

05-020 I 18.00 Intermediate Intermediate 

05-046 IIa 5.55 Intermediate High 

05-061 IIa 8.31 Low Intermediate 

06-008 IIb 75.07 High Low 

06-009 IIa 2.77 Low High 

06-014 IIb 456.71 High High 

06-041 IIb 0.46 Low Low 

07-007 I 217.13 High High 

08-029 IIb 34.77 High  Low 

 

Table 2, survival analysis of UM 

 

Variables in the equation B p-value Exp(B) 

T cell fraction  ,008 ,726 1,008 

Chromosome 6p copy number ,239 ,529 1,269 

Chromosome 3 copy number -1,929 ,001 ,145 

Chromosome 8q copy number ,321 ,018 1,379 

CD8 expression -,282 ,209 ,754 

CD4 expression -,032 ,969 ,968 

CXCL10 expression ,578 ,017 1,782 
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Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. 
Journal of Biological Chemistry 2001;276:45098-105 



 

22 
 

38. Dobner BC, Riechardt AI, Joussen AM, Englert S, Bechrakis NE. Expression of haematogenous 
and lymphogenous chemokine receptors and their ligands on uveal melanoma in association 
with liver metastasis. Acta Ophthalmol 2012;90:e638-44 

 

  



 

23 
 

Figure legends 

Figure 1 

Classification of UM using gene expression analysis. (A)Unsupervised hierarchical 

clustering of genome wide expression levels, divides UM in two prognostic classes 

(class I and class II). By supervised clustering of the classifier genes, class II is even 

further subdivided into class IIa and class IIb. Subdivision in class IIa and classIIb 

does not result in a survival difference (6). (B) The genes that define class IIb reveal 

an immunologic signature. 

Figure 2  

Quantification of T cells in 64 UM divided over the three gene expression classes. 

(A) Significantly higher T cell fractions are found in class IIa and class IIb compared 

to class I and class IIa respectively. (B) CD3D expression (Y-axis) in the classes, 

with a significant expression difference between class IIa and class IIb but no 

significant expression difference between class I and class IIa. (C) Correlation of 

CD3D expression (Y-axis) with T cell count in the three expression classes.  

Figure 3 

Deconvolution of the immune phenotype of UM with T cell count. (A) Analysis of the 

UM classifier genes for T cell-related genes consisted of two additional steps; a 

correlation between T cell count and gene expression level and analysis of cell type 

distribution of differentially expressed genes. (B) Relative expression levels of the 60 

T cell-correlated genes in a range of immune cells. (C) T cell-related genes 

dispersed in 4 cell types after clustering for cell type distribution. In blue the 
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monocyte/macrophage cluster, in green the activated macrophages, in pink the 

activated cytotoxic T cells and in orange an undefined population of immune cells.  

Figure 4  

Multiplex immunofluorescent staining of UM samples with a high (06-014: 42%) and 

low (06-009: 0%) calculated T cell fraction. CXCL10 co-localization with T cells and 

macrophages in UM. (A) CXCL10 (red) does not co-localize with T cells (CD8: 

green) and hardly ever with melanoma cells (melanA: blue). Zoomed in picture insert 

indicates melanoma cells that express CXCL10. (B) CXCL10 (blue) co-localizes with 

macrophages (CD163: green, CD14: red) of varying polarization.   

Figure 5 

Survival analysis of UM containing high numbers of T cells did not show a benefit for 

T cell infiltrate. Class I (green) presents with a good prognosis while class II UM are 

correlated with a poor prognosis. Subdivision of class II in low and high T cell 

infiltrated UM does not make a difference in survival. 
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Molecular T cell quantification assisted deconvolution of the 
microenvironment in uveal melanoma 

Supplemental methods 

Table of Contents 
 

Initialize libraries 

Dependencies for this project are RColorBrewer, grid, a modified version of pheatmap and 
dendsort: 

# Load pheatmap, with support for text rotation in row and col names (stevepe
d/pheatmap commit 5dcb7f00e4ec64c0f61e500b40abab96567201c1) 
source("rpheatmap.R") 
 
# Load other libraries 
library("RColorBrewer") 
library("grid") 
library("dendsort") 
 
# Default heatmap settings 
hm_palette = colorRampPalette(c("#BF0080", "#CE6EAE", "#dddddd", "#6EAE6E", "
#008000", "white"))(n = 6) 
hm_breaks = c(-6, -3.6, -1.2, 1.2, 3.6, 6,9) 
hm_legend_breaks = c(-5.7,-3.8,-1.9,0,1.9,3.8,5.7,7.5,8.5) 
hm_legend_labels = c("     -6", 
                     "     -4", 
                     "     -2", 
                     "     0", 
                     "     2", 
                     "     4", 
                     "     6", 
                     "expression", 
                     "Relative") 
 
# Apply dendsort callback for pheatmap 
dendsort_callback = function(hc, ...) { dendsort(hc, type = "min") } 



Loading data 

Loading data (gene expression data of 1538 most significant class I/II classifier probes and 
T-cell fractions). 

load("../data/1538.RData") 
data[1,1:8] 

##        probeid  gene locus entrezid   01-042  01-074  02-158  02-167 
## 1 ILMN_2193980 ABCB6  2q36    10058 8.043216 7.60644 8.19975 7.34011 

Correlations with T-cell fraction 

T-cell fraction is available in 63/64 samples. 

# Which tumors should be correlated? All class II, without sample 07-005 (T-c
ell fraction NA) 
selection = c(26:36,38:64) 
tumordata = data[,5:68] 
tcf_selection = tcf[selection] 
 
# Multiple testing correction: divide alpha by number of tested probes (1538) 
alpha = 0.05/1538 
 
# Initialize overall results table 
results = NULL 
 
# For every selected probe 
for (i in 1:nrow(data)) { 
  # Get probe information 
  expression_selection = as.numeric(tumordata[i,selection]) 
  probeid = as.character(data[i,1]) 
  gene = as.character(data[i,2]) 
  entrezid = as.character(data[i,4]) 
   
  # Calculate pearson R 
  pearson_r = cor(x = tcf_selection,  
                  y = expression_selection,  
                  method = "pearson") 
   
  # Calculate pearson p-value 
  pearson_p = cor.test(x = tcf_selection, 
                       y = expression_selection, 
                       method = "pearson", 
                       alternative="two.sided")$p.value 
   
  # Check whether pearson p-value is below alpha (is correlation significant?
) 
  pearson_significant = pearson_p < alpha 



   
  # Bind probe results to overall results table 
  results = rbind(results, c(probeid, 
                             gene, 
                             entrezid, 
                             pearson_r, 
                             pearson_p, 
                             pearson_significant)) 
} 
 
# Add col names to overall results table 
colnames(results) = c("probeid", 
                      "gene", 
                      "entrezid", 
                      "pearson_r", 
                      "pearson_p", 
                      "pearson_significant") 

Results are saved in correlation.csv: 

write.csv(results,"../results/correlation.csv") 

Selection of significant probes 

We select unique genes from probes with a significant correlation: 

# Select probes with significant correlation 
significant_selection = results[which(results[,6] == TRUE),] 
 
# Find unique genes represented by these probes 
significant_genes = unique(significant_selection[,2]) 
significant_ids = unique(significant_selection[,3]) 

… which results in the following selection of 60 genes from 68 probes: 

significant_genes 

##  [1] "AIF1"     "APOL3"    "ARHGDIB"  "BTN3A3"   "C1QA"     "C1QB"     
##  [7] "C1QC"     "CCL5"     "CD2"      "CD209"    "CD247"    "CD3D"     
## [13] "CD74"     "CD86"     "CD8A"     "CECR1"    "CXCL10"   "TYMP"     
## [19] "EOMES"    "FCER1G"   "FGD2"     "FGL2"     "GBP1"     "GBP2"     
## [25] "GBP4"     "GIMAP4"   "GIMAP7"   "GZMA"     "GZMK"     "HAVCR2"   
## [31] "HCLS1"    "HLA-DMA"  "HLA-DMB"  "HLA-DOA"  "HLA-DPA1" "HLA-DQA1" 
## [37] "HLA-DRA"  "HLA-DRB6" "IRF1"     "IRF8"     "LAG3"     "LAPTM5"   
## [43] "LCP1"     "LGALS3"   "HLA-DQB1" "MS4A6A"   "MS4A7"    "NKG7"     
## [49] "PTPN6"    "RARRES3"  "RFTN1"    "RNASE6"   "SLC7A7"   "SLCO2B1"  
## [55] "STAT1"    "TMSB4X"   "TNFRSF1B" "TYROBP"   "WARS"     "WAS" 



Load BioGPS data 

We observe that some genes are very well correlating with T-cell infiltrate: the more T 
cells, the more of expression of these genes. From which cell types does expression of these 
genes come from? In order to answer this question, we use data from the Primary Cell 
Atlas, obtained via the BioGPS website. This service provide cell-type specific gene 
expression profiles, which we want to integrate with our list of correlating genes. 

# Initialize BioGPS results table 
biogps_results = NULL 
a_is = NULL 
na_is = NULL 
 
# For every significantly correlated, unique gene 
for (i in 1:length(significant_ids)) { 
  # Get data from URL based on gene_id 
  biogps_file = tryCatch({read.csv(paste0("http://ds.biogps.org/dataset/csv/B
DS_00013/gene/", 
                                          as.numeric(significant_ids[i]),"/")
,  
                                   header = TRUE,  
                                   sep = ",",  
                                   quote = "\"",  
                                   dec = ".",  
                                   fill = TRUE)},  
                         warning = function(w) {"NA"},  
                         error = function(e) {"NA"}) 
   
  # If BioGPS data is available for this gene 
  if (length(biogps_file) > 1) { 
     
    # If data from >1 probe for a gene is available 
    if (ncol(biogps_file) - 1 > 1) { 
      n_select = 2 
      n_select_mean = 0 
      # Check which probe has the highest range of expression 
      for (n in 2:ncol(biogps_file)) { 
        if (n_select_mean < max(biogps_file[,n]) - min(biogps_file[,n])) { 
          n_select_mean = max(biogps_file[,n]) - min(biogps_file[,n]) 
          n_select = n 
        }   
      } 
      # And use data from that probe 
      biogps_data = biogps_file[,n] 
    } 
     
    # If only data from 1 probe for a gene is available 
    else { 
      # Use data from that probe 



      biogps_data = biogps_file[,2] 
    } 
     
    # Normalize obtained data 
    biogps_data_normalized = log2(biogps_data / mean(biogps_data)) 
     
    # Attach normalized data to `biogps_results` 
    biogps_results = rbind(biogps_results, biogps_data_normalized) 
     
    # Mark this gene as `BioGPS data available` 
    a_is = c(a_is,i) 
  } 
   
  # If NO BioGPS data is available for this gene 
  else { 
    # Mark this gene as `BioGPS data NOT available` 
    na_is = c(na_is,i) 
  } 
} 
 
# Match column names with genes 
rownames(biogps_results) = significant_genes[a_is] 
colnames(biogps_results) = read.table("../data/groteset_template.csv",  
                                      sep = ",",  
                                      comment.char="#",  
                                      header=T,  
                                      dec=".")[,1]  

For 60/60 (=100%) genes BioGPS data is available. 

Merge BioGPS data of replicates 

Data from 745 cell types is available in the Primary Cell Atlas. Merge data (based on mean) 
of cell type replicates: 

biogps_results_merged = NULL 
 
# Determine which cell types are available and which are unique 
all_celltypes = colnames(biogps_results) 
unique_celltypes = unique(colnames(biogps_results)) 
 
# For every unique cell type 
for (i in 1:length(unique_celltypes)) { 
  to_merge = which(all_celltypes == unique_celltypes[i]) 
   
  # If >1 cell type `replicates` are available 
  if (length(to_merge) > 1) { 
    # Take the mean of those `replicates` 



    merged = rowMeans(biogps_results[,to_merge]) 
  } 
   
  # If only 1 cell type `replicate` is available 
  else { 
    # Take data from that `replicate` 
    merged = biogps_results[,to_merge] 
  } 
   
  # Merge results from all cell types 
  biogps_results_merged = cbind(biogps_results_merged,merged) 
} 
 
# Cell types as col names 
colnames(biogps_results_merged) = unique_celltypes 

… resulting in available BioGPS data for 188 cell types. 

Among these cell types less relevant ones, e.g. Gametocytes:spermatocyte, are also 
present, which should be excluded. Immune cell types are positively selected: 

# Make a selection of immune cell types 
selection_immunological = c(112:123,  
                            126,  
                            132:133,  
                            136,  
                            138:140,  
                            #146,  
                            155:157,  
                            162,  
                            166:169,  
                            171:174,  
                            175,  
                            178:180) 
 
biogps_selection_immunological = biogps_results_merged[,selection_immunologic
al] 

…resulting in the selection of the following 35 cell types: 

colnames(biogps_results_merged[,selection_immunological]) 

##  [1] "Monocyte-mixed"                             
##  [2] "Monocyte:cd14+"                             
##  [3] "Monocyte:cd16-"                             
##  [4] "Monocyte:cd16+"                             
##  [5] "Monocyte"                                   
##  [6] "Macrophage:monocyte-derived:il-4/cntrl"     
##  [7] "Macrophage:monocyte-derived:il-4/dex/cntrl" 
##  [8] "Macrophage:monocyte-derived+il-4/dex/tgfb"  
##  [9] "Macrophage:monocyte-derived+il-4/tgfb_24h"  



## [10] "Macrophage:monocyte-derived:cntrl"          
## [11] "Macrophage:monocyte-derived+m-csf"          
## [12] "Macrophage:monocyte-derived+m-csf/ifng"     
## [13] "Macrophage:monocyte-derived:ifng_24h"       
## [14] "Macrophage:monocyte-derived:ifna_4h"        
## [15] "Dc:monocyte-derived:cntrl"                  
## [16] "Dc:monocyte-derived:mature+lps/ifng"        
## [17] "Dc:monocyte-derived+lps"                    
## [18] "Dc:monocyte-derived:poly(i:c)"              
## [19] "Dc:monocyte-derived:cd40l"                  
## [20] "T_cell:cd4+_naive"                          
## [21] "T_cell:cd4+_central_memory"                 
## [22] "T_cell:cd4+_effector_memory"                
## [23] "T_cell:cd8+_central_memory"                 
## [24] "T_cell:cd8+_effector_memory"                
## [25] "T_cell:cd8+_naive"                          
## [26] "T_cell:gamma-delta"                         
## [27] "T_cell:treg:naive"                          
## [28] "Nk_cell:cntrl"                              
## [29] "Nk_cell+il2"                                
## [30] "Nk_cell:cd56hicd62l+"                       
## [31] "Nk_cell:cd56locd62l-"                       
## [32] "Neutrophil:cntrl"                           
## [33] "Neutrophil+lps_16h"                         
## [34] "Neutrophil+gm-csf_ifng_16h"                 
## [35] "B_cell" 

Heatmap on BioGPS data 

Create heatmap to visualize BioGPS data of selected immune cell types: 

pheatmap( 
  biogps_selection_immunological, 
  clustering_callback = dendsort_callback, 
  treeheight_row = 125,   
  cutree_rows = 7,  
  cutree_cols = 8, 
  breaks = hm_breaks, 
  color = hm_palette, 
  legend_breaks = hm_legend_breaks, 
  legend_labels = hm_legend_labels,) 



 

… which is also stored in ../results/heatmap.tiff in 600 dpi. 

tiff("../results/heatmap.tiff", 
     width=9, 
     height=12, 
     units="in", 



     res=600, 
     compression = "lzw") 
 
pheatmap( 
  biogps_selection_immunological, 
  clustering_callback = dendsort_callback, 
  treeheight_row = 125,   
  cutree_rows = 7,  
  cutree_cols = 8, 
  breaks = hm_breaks, 
  color = hm_palette, 
  legend_breaks = hm_legend_breaks, 
  legend_labels = hm_legend_labels) 
 
dev.off() 

## png  
##   2 

Principal component analysis 

Using PCA to visualize to BioGPS results with our gene selection. 

pca = prcomp((biogps_selection_immunological)) 

First two PCA components are plotted in a 2D scatterplot. Every dot represents one gene, 
genes clustered together show similar expression profile across different cell types. 

set.seed(1) 
kmeans = kmeans(biogps_selection_immunological, 4,nstart=1) 
col = c("#FC8D62","#8DA0CB","#E78AC3","#A6D854") 
 
par(mar=c(3,3,1,1)) 
plot(pca$x[, 1], pca$x[, 2], xlim = c(-16,18), ylim = c(-10,15), xlab="", yla
b="", bty='l',xaxt='n',yaxt="n",pch=16,cex=1.5, col=col[kmeans$cluster]) 
mtext("Principal component 1",side=1,line=1,font=1,cex=1.3) 
mtext("Principal component 2",side=2,line=1,font=1,cex=1.3) 
labels = rownames(pca$x) 
labels[which(kmeans$cluster<3)] = "" 
text(pca$x[, 1], pca$x[, 2], labels=labels, cex=0.7) 



 

… which is also stored in ../results/pca.tiff in 600 dpi. 

tiff("../results/pca.tiff", 
     width=6.5, 
     height=4, 
     units="in", 
     res=600, 
     compression = "lzw") 
 
 
par(mar=c(3,3,1,1)) 
plot(pca$x[, 1], pca$x[, 2], xlim = c(-16,18), ylim = c(-10,15), xlab="", yla
b="", bty='l',xaxt='n',yaxt="n",pch=16,cex=1.5, col=col[kmeans$cluster]) 
mtext("Principal component 1",side=1,line=1,font=1,cex=1.3) 
mtext("Principal component 2",side=2,line=1,font=1,cex=1.3) 
labels = rownames(pca$x) 
labels[which(kmeans$cluster<3)] = "" 
text(pca$x[, 1], pca$x[, 2], labels=labels, cex=0.7) 
 
 
dev.off() 

## png  
##   2 

Heatmap on BioGPS data with PCA annotations 

Create heatmap with PCA annotations: 



ann = data.frame(kmeans$cluster) 
rownames(ann) = rownames(pca$x) 
colnames(ann) = "cluster" 
 
pheatmap( 
  biogps_selection_immunological, 
  clustering_callback = dendsort_callback,  
  treeheight_row = 125,   
  cutree_rows = 8,  
  cutree_cols = 8, 
  breaks = hm_breaks, 
  color = hm_palette, 
  legend_breaks = hm_legend_breaks, 
  legend_labels = hm_legend_labels, 
  annotation_row = ann, 
  annotation_legend = FALSE,  
  annotation_colors = list(cluster = col), 
  clustering_method = "complete", 
  annotation_names_row = FALSE) 



 

… which is also stored in ../results/heatmap_pca_annotated.tiff in 600 dpi. 

tiff("../results/heatmap_pca_annotated.tiff", 
     width=9, 
     height=12, 
     units="in", 



     res=600, 
     compression = "lzw") 
 
 
pheatmap( 
  biogps_selection_immunological, 
  clustering_callback = dendsort_callback,  
  treeheight_row = 125,   
  cutree_rows = 8,  
  cutree_cols = 8, 
  breaks = hm_breaks, 
  color = hm_palette, 
  legend_breaks = hm_legend_breaks, 
  legend_labels = hm_legend_labels, 
  annotation_row = ann, 
  annotation_legend = FALSE,  
  annotation_colors = list(cluster = col), 
  clustering_method = "complete", 
  annotation_names_row = FALSE) 
 
dev.off() 

## png  
##   2 



Supplementary table 1 

probeid gene entrezid pearson_r pearson_p pearson_significant 
ILMN_1792473 AIF1 199 0,69 2,10E+08 TRUE 
ILMN_1756862 APOL3 80833 0,72 3,95E+07 TRUE 
ILMN_1678143 ARHGDIB 397 0,72 4,46E+07 TRUE 
ILMN_2373831 BTN3A3 10384 0,62 3,19E+09 TRUE 
ILMN_1737918 C1QA 712 0,71 5,14E+07 TRUE 
ILMN_1796409 C1QB 713 0,64 1,31E+09 TRUE 
ILMN_1785902 C1QC 714 0,67 4,22E+08 TRUE 
ILMN_1773352 CCL5 6352 0,73 1,48E+07 TRUE 
ILMN_2098126 CCL5 6352 0,73 1,73E+07 TRUE 
ILMN_1695025 CD2 914 0,78 1,02E+06 TRUE 
ILMN_1676372 CD209 30835 0,64 1,24E+09 TRUE 
ILMN_2377669 CD247 919 0,79 3,81E+05 TRUE 
ILMN_2261416 CD3D 915 0,74 1,29E+07 TRUE 
ILMN_2325837 CD3D 915 0,74 9,02E+06 TRUE 
ILMN_1736567 CD74 972 0,63 2,23E+09 TRUE 
ILMN_1761464 CD74 972 0,69 1,79E+08 TRUE 
ILMN_2379644 CD74 972 0,63 2,27E+09 TRUE 
ILMN_1714602 CD86 942 0,69 1,40E+08 TRUE 
ILMN_1768482 CD8A 925 0,74 9,33E+06 TRUE 
ILMN_2353732 CD8A 925 0,74 9,12E+06 TRUE 
ILMN_1751851 CECR1 51816 0,63 2,69E+07 TRUE 
ILMN_1791759 CXCL10 3627 0,62 2,96E+09 TRUE 
ILMN_2109708 TYMP 1890 0,67 5,21E+08 TRUE 
ILMN_1760509 EOMES 8320 0,76 4,13E+06 TRUE 
ILMN_2123743 FCER1G 2207 0,63 2,46E+09 TRUE 
ILMN_2115005 FGD2 221472 0,75 5,68E+06 TRUE 
ILMN_1693009 FGL2 10875 0,68 2,26E+08 TRUE 
ILMN_2148785 GBP1 2633 0,64 1,82E+09 TRUE 
ILMN_1701114 GBP1 2633 0,68 2,51E+08 TRUE 
ILMN_1774077 GBP2 2634 0,68 2,90E+08 TRUE 
ILMN_1771385 GBP4 115361 0,71 5,99E+07 TRUE 
ILMN_1748473 GIMAP4 55303 0,73 2,56E+07 TRUE 
ILMN_1776678 GIMAP7 168537 0,77 1,84E+06 TRUE 
ILMN_1779324 GZMA 3001 0,76 3,89E+06 TRUE 
ILMN_1710734 GZMK 3003 0,75 6,02E+06 TRUE 
ILMN_1693826 HAVCR2 84868 0,66 7,14E+08 TRUE 
ILMN_1727402 HCLS1 3059 0,78 1,01E+06 TRUE 
ILMN_1695311 HLA-DMA 3108 0,67 4,35E+08 TRUE 
ILMN_1761733 HLA-DMB 3109 0,64 1,28E+09 TRUE 
ILMN_1659075 HLA-DOA 3111 0,68 2,40E+08 TRUE 
ILMN_1772218 HLA-DPA1 3113 0,65 8,55E+08 TRUE 
ILMN_1808405 HLA-DQA1 3117 0,71 7,31E+07 TRUE 
ILMN_1689655 HLA-DRA 3122 0,68 3,11E+08 TRUE 
ILMN_2157441 HLA-DRA 3122 0,67 3,44E+08 TRUE 
ILMN_2066066 HLA-DRB6 3128 0,64 1,68E+08 TRUE 
ILMN_1708375 IRF1 3659 0,62 2,97E+09 TRUE 
ILMN_1666594 IRF8 3394 0,76 3,45E+06 TRUE 



ILMN_1813338 LAG3 3902 0,72 3,25E+06 TRUE 
ILMN_1772359 LAPTM5 7805 0,70 8,83E+07 TRUE 
ILMN_1662932 LCP1 3936 0,73 1,61E+07 TRUE 
ILMN_1803788 LGALS3 3958 0,68 2,62E+08 TRUE 
ILMN_3214389 HLA-DQB1 3119 0,67 4,59E+08 TRUE 
ILMN_1721035 MS4A6A 64231 0,68 3,09E+08 TRUE 
ILMN_1797731 MS4A6A 64231 0,73 2,25E+07 TRUE 
ILMN_2331087 MS4A7 58475 0,73 1,68E+07 TRUE 
ILMN_1682993 NKG7 4818 0,69 1,50E+08 TRUE 
ILMN_1738675 PTPN6 5777 0,73 1,96E+07 TRUE 
ILMN_1701613 RARRES3 5920 0,66 7,95E+08 TRUE 
ILMN_1800787 RFTN1 23180 0,66 8,10E+08 TRUE 
ILMN_1780533 RNASE6 6039 0,70 1,01E+08 TRUE 
ILMN_1810275 SLC7A7 9056 0,74 1,14E+07 TRUE 
ILMN_2087656 SLCO2B1 11309 0,70 8,40E+07 TRUE 
ILMN_1690105 STAT1 6772 0,63 2,48E+09 TRUE 
ILMN_3240316 TMSB4X 7114 0,73 1,82E+07 TRUE 
ILMN_1764788 TNFRSF1B 7133 0,65 8,85E+08 TRUE 
ILMN_1778977 TYROBP 7305 0,62 3,23E+09 TRUE 
ILMN_1727271 WARS 7453 0,65 1,12E+09 TRUE 
ILMN_1760027 WAS 7454 0,76 3,56E+06 TRUE 
 



 

TUMOR SAMPLE  CLASS [VOPP1]/[TTC5] [VOPP1]/[TERT] [TERT]/[TTC5] [ΔB]/[TTC5] [ΔB]/[VOPP1] [ΔB]/[TERT] T-CELL FRACTION METHOD 

01-042 I 0.979 1.040 0.941 0.969 0.989 1.029 2.1% 1 

01-074 I 1.041 1.068 0.975 0.971 0.933 0.997 1.6% 2 

01-091 IIb 1.019 1.040 0.979 0.935 0.918 0.955 7.3% 1 

01-129 IIb 1.105 1.010 1.095 0.663 0.600 0.606 39.7% 3 

01-131 IIa 1.003 1.076 0.932 0.922 0.919 0.989 7.9% 1 

02-158 I 1.028 1.070 0.961 0.963 0.936 1.002 5.1% 1 

02-167 I 1.027 1.029 0.998 0.987 0.961 0.988 1.2% 2 

02-174 IIa 1.874 1.037 1.808 1.817 0.970 1.006 1.2% 3 

02-199 I 0.976 1.125 0.867 0.943 0.967 1.088 4.5% 1 

03-086 I 1.046 1.120 0.934 0.934 0.893 1.000 8.6% 1 

03-087 I 1.033 0.757 1.364 1.000 0.968 0.733 1.6% 1 

03-120 I 1.052 1.050 1.002 0.980 0.932 0.979 2.1% 2 

03-129 I 0.986 1.015 0.972 0.901 0.913 0.927 9.3% 1 

04-018 IIa 1.008 1.060 0.951 0.893 0.887 0.940 11.0% 1 

04-035 IIb 1.000 0.970 1.031 0.750 0.750 0.728 25.0% 1 

04-074 I 1.015 0.976 1.040 0.985 0.970 0.947 2.2% 1 

04-075 I 1.057 1.011 1.045 0.956 0.905 0.915 9.0% 3 

04-103 I 1.029 1.022 1.006 0.996 0.969 0.990 0.7% 2 

04-112 IIb 1.062 0.982 1.081 0.902 0.850 0.835 15.8% 3 

05-005 IIb 1.110 1.098 1.011 0.985 0.887 0.974 12.5% 4 

05-020 I 1.066 1.050 1.015 0.917 0.860 0.903 9.0% 2 

05-033 IIa 0.974 1.128 0.863 0.903 0.927 1.046 8.5% 1 

05-034 IIa 1.042 1.106 0.943 0.942 0.903 0.999 7.8% 1 

05-046 IIa 1.057 1.042 1.014 0.996 0.942 0.982 1.1% 2 

05-058 I 0.960 0.960 1.000 0.930 0.969 0.930 7.0% 2 

05-061 IIa 1.156 1.096 1.055 0.976 0.844 0.925 17.6% 4 

06-004 IIb 1.125 1.042 1.080 0.948 0.843 0.878 14.0% 3 

06-008 IIb 1.057 1.136 0.930 0.859 0.813 0.923 16.4% 1 

06-009 IIa 1.027 1.030 0.997 1.022 0.995 1.025 -2.4% 2 

06-010 I 1.020 0.996 1.024 0.986 0.967 0.963 3.5% 3 

06-011 I 1.022 1.060 0.964 0.985 0.964 1.022 2.5% 1 

06-014 IIb 1.072 1.127 0.951 0.566 0.528 0.595 41.9% 2 

06-015 IIb 1.010 1.084 0.932 0.880 0.871 0.944 12.5% 1 

06-023 IIb 1.084 1.038 1.044 0.828 0.764 0.793 22.2% 3 

06-033 I 1.057 0.987 1.071 1.014 0.959 0.947 4.7% 3 

06-036 I 1.527 1.528 0.999 1.460 0.957 1.462 6.6% 4 

06-038 IIb 1.071 1.053 1.017 0.966 0.902 0.950 4.2% 2 

06-041 IIb 1.045 1.095 0.955 0.982 0.939 1.028 4.0% 1 

06-042 IIa 1.094 1.019 1.074 0.931 0.851 0.867 14.1% 3 

06-045 IIb 1.077 1.129 0.954 0.802 0.745 0.841 28.2% 4 

06-046 I 1.030 0.839 1.228 0.935 0.907 0.761 7.9% 1 

06-047 IIb 1.099 1.127 0.975 0.952 0.866 0.976 14.9% 4 

07-003 I 0.990 1.023 0.968 1.086 1.096 1.122 -9.1% 1 

07-004 I 0.968 1.009 0.960 0.950 0.981 0.990 1.5% 3 

07-005 IIa 1.109 4.060 0.273 0.680 0.613 2.488 n/a 5 

07-007 I 1.052 1.000 1.052 0.972 0.924 0.924 7.6% 3 

07-012 IIb 1.049 1.128 0.930 0.640 0.610 0.688 37.5% 1 

07-030 IIa 1.036 1.160 0.893 0.933 0.901 1.045 8.3% 1 



07-034 I 1.034 0.990 1.044 1.008 0.975 0.966 3.0% 3 

07-047 IIa 1.045 1.073 0.974 0.907 0.868 0.931 8.1% 2 

07-050 IIb 1.024 1.065 0.962 0.944 0.921 0.981 6.8% 1 

08-004 IIb 1.093 1.106 0.988 0.878 0.803 0.888 21.7% 4 

08-005 IIb 1.075 1.070 1.005 0.881 0.820 0.877 12.1% 2 

08-008 IIb 1.028 1.048 0.981 0.932 0.907 0.950 5.9% 2 

08-029 IIb 0.978 1.081 0.905 0.782 0.800 0.864 20.9% 1 

20-005 IIa 1.031 1.084 0.951 0.962 0.934 1.012 5.2% 1 

20-042 IIb 0.923 1.079 0.856 0.810 0.877 0.946 15.6% 1 

20-125 I 0.984 1.092 0.901 1.003 1.019 1.112 -1.1% 1 

20-128 IIb 1.112 1.130 0.984 0.908 0.816 0.922 20.6% 4 

20-173 IIa 0.967 1.061 0.912 0.887 0.917 0.972 9.8% 1 

20-178 IIb 1.137 1.059 1.073 1.079 0.949 1.005 2.3% 3 

99-184 IIb 1.081 1.119 0.966 0.882 0.816 0.913 20.2% 4 

99-187 I 0.985 1.117 0.881 0.995 1.011 1.129 -0.3% 1 

99-239 IIb 1.105 1.003 1.102 1.049 0.949 0.952 5.0% 3 

 

Legend 

1: T-cell fraction calculation based on average 
[ΔB]

[REFERENCE]
 using reference genes VOPP1 and TTC5. 

2: T-cell fraction calculation based on average 
[ΔB]

[REFERENCE]
 using reference genes TERT and TTC5. 

3: T-cell fraction calculation based on average 
[ΔB]

[REFERENCE]
 using reference genes VOPP1 and TERT. 

4: Adjusted T-cell fraction calculation based on average 
[ΔB]

[REFERENCE]
 using reference genes TERT and 

TTC5. 

5: T-cell fraction not calculable. 



Supl Table 3: amplicon sequence context 

Assay MiQE Context Sequence 

TERT  CACCCCTTGGTGGCGGCTCACCTGTACGCCTGCAGCAGGAGGATCTTGTAGATGTTGGTGCACACCGTCTGGAGGCTGTTCACCTAGAGTCGCCAAGAAAGAGTGAGAAACGGTAGAAACCTC 

TTC5 TGGTCGCGATGCCACTGTGGCAACAGCCTGGCTGCTGGATCCCTGAGGCT 

TCCCATTCACCACTAGCAGGAGGGGCGTCTCCACTCGAACACTGGAAAAG 

GAATAGTCCTAGAAAAGACAGAC 

VOPP1 TATGGAGAGGGCCCGCACACAGCACCTGGAGCCACAGCAGTCCTCGTAGG 

AGCGGCATCTGTGGAGAGAGGCACAGGCTGGTCAGCACTGAATTGGAAGC 

AGCCACCGGACCAGCCATGCGGC 

TRB CCTGCCATCCTCTGCAGGCCATGCACTTTCCCTTTCGATGGACCCTCACAGAGGGAGCATCTGAATGGGGCATCCTTTGAAAAAGGAACCTAGGACCCTGTGGATGGACTCTGTCATTCTCCATG 
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