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ABSTRACT 

Background: Tobacco smoking is a major risk factor for atherosclerotic disease and has 

been associated with DNA methylation (DNAm) changes in blood cells. However, whether 

smoking influences DNAm in the diseased vascular wall is unknown but may prove crucial in 

understanding the pathophysiology of atherosclerosis. In the this study we associated current 

tobacco smoking to epigenome-wide DNAm in atherosclerotic plaques from patients 

undergoing carotid endarterectomy (CEA). 

 

Methods: DNAm at commonly methylated sites (CpGs) was assessed in atherosclerotic 

plaque samples and peripheral blood samples from 485 CEA patients. We tested the 

association of current tobacco smoking with DNAm corrected for age, and sex. To control for 

bias and inflation due to cellular heterogeneity we applied a Bayesian method to estimate an 

empirical null distribution as implemented by the R package bacon. Replication of the 

smoking associated methylated CpGs in atherosclerotic plaques was executed in a second 

sample of 190 CEA patients, and results were meta-analyzed using a fixed-effects model.  

 

Results: Tobacco smoking was significantly associated to differential DNAm in 

atherosclerotic lesions of 4 CpGs (FDR < 0.05) mapped to 2 different genes (AHRR, ITPK1), 

and 17 CpGs mapped to 8 genes and RNAs in blood. The strongest associations were found 

for CpGs mapped to the gene AHRR, a repressor of the aryl hydrocarbon receptor 

transcription factor involved in xenobiotic detoxification. One of these methylated CpGs were 

found to be regulated by local genetic variation. 

 

Conclusions: The risk factor tobacco smoking associates with DNA methylation at multiple 

loci in carotid atherosclerotic lesions. These observations support further investigation of the 

relationship between risk factors and epigenetic regulation in atherosclerotic disease. 
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INTRODUCTION 

Tobacco smoking is a major risk factor for the development of atherosclerosis and 

subsequent cardiovascular disease (CVD), such as myocardial infarction and stroke. 

Tobacco smoke contains over 5,000 toxic chemicals which may jointly contribute to CVD 

risk1. Smoking activates the immune system, facilitates pro-atherogenic lipid profiles, and 

induces a prothrombotic state2,3. Moreover, smoking affects the vascular wall, leading to 

endothelial dysfunction and atherosclerosis4. Histological examination of plaques of smokers 

have shown increased atheroma, decreased fibrous volume5, more plaque hemorrhage6, and 

increased inflammation and tissue destruction7. All these changes contribute to a plaque 

composition that is more vulnerable to rupture and more likely to cause cardiovascular 

events.  

Yet, a detailed understanding of the pathophysiological mechanisms underlying these 

changes remains elusive. Such an understanding may help to identify patients at increased 

risk due to smoking and may contribute to cessation and preventative treatment strategies. 

Of equal importance, it may show common pathophysiological pathways of atherosclerosis, 

shared by multiple risk factors, which may be important for identification of new drug targets.  

Large-scale genetic association studies (GWAS) have proven instrumental in the 

investigation of many cardiovascular risk factors and susceptibility to CVD8. Smoking has 

been shown to directly impact CVD risk2,3, and indirectly by modulating the effect of genetic 

variants on cardiovascular risk factors9–13. Genome-wide genetic studies of smoking have 

mainly focused on behavioral traits of smoking14. Identification of the pathophysiology caused 

by environmental exposures, such as smoking-induced cardiovascular risk, may require 

other approaches.  

Epigenetics refers to the study of gene expression modifications not caused by changes in 

the DNA sequence but rather external factors15. Epigenetic alterations can be influenced by 

age, environment, and lifestyle, and aberrant modifications can lead to diseases like cancer 

and neurodevelopmental disorders. DNA methylation (DNAm) is a key mechanism of 

epigenetic regulation, whereby a methyl group is added to the cytosine (C) or adenine (A) 
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nucleotides in the DNA molecule; in humans, the most common DNA methylation is at 

cytosine in CpG dinucleotides.  

DNAm in blood cells has been associated to cardiovascular risk factors such as body mass 

index (BMI)16 and blood lipid levels17. Chemicals in tobacco smoke may change gene 

expression through DNAm, either adaptive or pathologic. Such epigenetic changes have 

predominantly been shown in circulating cells, in which CpGs were associated to smoking as 

identified through epigenome-wide association studies (EWAS)18–25. Conceivably, the most 

important insights in vascular pathology may be obtained by scrutinizing the effect of tobacco 

smoking on DNAm in the vascular lesion itself. To our knowledge, this has not been studied 

to this date.  

In the current study, we performed a two-stage EWAS of tobacco smoking in carotid 

atherosclerotic plaques of patients undergoing carotid endarterectomy (CEA), reporting 4 loci 

near AHRR and ITPK1 that are differentially methylated in plaques. Together our findings 

point to vascular epigenetic mechanisms of smoking-induced cardiovascular disease. 
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MATERIAL AND METHODS 

This study complies with the Declaration of Helsinki and all participants provided informed 

consent. The medical ethical committees of the respective hospitals approved these studies. 

Detailed Material and Methods are available in the Supplemental Material. 

 

The data, analytic methods, and study materials will be made available to other researchers 

for purposes of reproducing the results or replicating the procedure. The raw omics data are 

available through the European Genome-Phenome Archive (EGA). The main scripts used for 

the quality control and the (meta-)analysis of the data are available through GitHub 

(https://github.com/swvanderlaan/publications under doi:10.5281/zenodo.1069531). 
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RESULTS 

We performed a two-stage epigenome-wide association study of plaque-derived DNA 

methylation with current tobacco smoking in carotid endarterectomy patients from the Athero-

Express Biobank Study (AEMS450K1 discovery study and AEMS450K2 replication study, 

Table 1, Supplemental Figure 1). In the discovery study 10 CpGs across 6 genes (Table 2, 

Figure 1A, Supplemental Figure 2) were associated to tobacco smoking (at p ≤ 1.13x10-6 

(FDR ≤ 0.05)). To assess the validity of these associations we performed a second 

methylation experiment (Figure 1B, Supplemental Figure 3), and replicated 4 CpGs (at p = 

0.05 /10 = 0.005) (Table 3). We then performed a fixed-effects meta-analysis of these 

datasets and found 4 CpGs that were associated to current tobacco smoking in plaques at 

FDR < 0.05 mapping to 6 different genes (Table 4, Figure 1C, Supplemental Figure 4). All 

of these 4 CpGs showed reduced DNA methylation in current smokers as compared to 

former or never smokers (Figure 2). A sensitivity analysis on the number of estimated pack-

years of smoking showed two of these 4 nominally associated (cg05575921 near AHRR and 

cg05284742 near ITPK1, Supplemental Table 1). 

To study the possible effect of smoking-induced methylation changes on the carotid 

atherosclerotic plaque in more detail, we investigated histological features of the plaques. 

Considering data from the whole Athero-Express Biobank (n = 2,319), current tobacco 

smoking behaviour was associated with more calcification (OR = 1.42 [1.13-1.81], p = 

0.0034), and collagen deposition (OR = 1.47 [1.09-1.97], p = 0.0112) in atherosclerotic 

plaques (Supplemental Table 2). However, none of the 4 CpGs associated to smoking was 

associated to specific plaques characteristics (Supplemental Table 3).  

 

DNA methylation in Blood 

In addition to the analysis in plaque specimens, we performed an EWAS between blood-

derived DNA methylation and current tobacco smoking in 89 blood samples (Figure 3, 
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Supplemental Figure 5, Supplemental Table 4). We identified 17 significant (FDR ≤ 0.05) 

CpGs in blood, mapping to 8 genes, one long-non-coding RNA, and one miRNA (Table 5), all 

of which showed lower DNA methylation in current smokers compared to former or never 

smokers. Of these 17 CpGs, 8 have previously been associated with smoking in blood and 

other tissues (Table 5)18–21,23,26–29, confirming the relevance of previously reported loci in 

patients with severe atherosclerotic disease.  

 

Correlations to RNA 

To investigate possible effects of the tissue specific CpGs on local gene expression we 

performed a pilot RNA-sequencing experiment using plaque-derived whole-tissue RNA (n = 

21). None of the genes mapped to the 4 plaque-derived CpGs were significantly associated 

to current smoking status (Supplemental Table 5). However, when comparing the direction 

of effects of all nominal significant CpGs with the gene expression, the correlation was 

significant for CpGs mapped to 1,500 or 200 bp from the transcription start site, and for 

CpGs mapped to the first exon (Supplemental Figure 6).  

 

Genetic variation 

The susceptibility of CpGs to undergo epigenetic modifications due to environmental factors 

may be modified by genetic variation. Therefore, we associated DNA methylation at the 

smoking-associated CpGs in plaque with nearby common DNA sequence variation. We 

identified a common variant, rs4956991 (c.*1078A>G, effect allele frequency = 0.65) in the 3’ 

UTR of PLEKHGB4, that associated to methylation at the cg02385153 in AHRR (β = -0.020 ± 

0.003 standard error (s.e.), p = 1.52x10-9 which equals FDR = 6.51x10-8, Figure 4). This 

suggests that DNA methylation at the smoking-related CpG cg02385153 may also affected 

by genetic variation 221,251 bp upstream of the AHRR gene.  

To investigate if this methylation quantitative trait locus (mQTL) also indicate co-regulatory 

gene-gene interaction, we determined the relationships between common genetic variation, 
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CpGs, and the expression of the involved genes (PLEKHG4B and AHRR). Exploring data 

from GTEx Portal (https://www.gtexportal.org)31 we found rs4956911 also to be an 

expression quantitative trait loci (eQTL) of PLEKHG4B in multiple tissues but not of AHRR (β 

= -0.32, p = 2.1x10-11, Supplemental Figure 7). In addition, while exploring data from 

gnomAD32 we found one non-synonymous variant, rs4956987, that may alter the function of 

the PLEKHG4B protein (p.Arg1076Gln, β = -0.012 ± 0.003 standard error (s.e.), p = 2.40x10-

4 which equals FDR = 3.64x10-3). Finally, we show positive associations between expression 

of the genes AHRR and PLEKHG4B, in multiple CVD related tissues in the STAGE-cohort 

(Supplemental Table 6). In light of these results, we speculate that PLEKHG4B may be a 

co-regulatory gene of AHRR expression (Supplemental Figure 8). 
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DISCUSSION 

We performed a two-stage epigenome-wide association study on smoking in 664 carotid 

atherosclerotic plaque samples.  This study shows that smoking is strongly associated with 

differential DNA methylation in carotid atherosclerotic plaques. As far as we know, this is the 

first study reporting 4 CpGs differentially methylated in DNA derived from plaques due to 

tobacco smoking (Table 4). In addition, we could replicate 8 CpG loci known to associate 

with smoking in circulating cells (Table 5)18–21,23,26–29,33.  

This study provides supporting evidence for an effect of smoking on epigenetic regulation in 

atherosclerotic vascular tissue. This is strengthened by the partial similarity observed in DNA 

methylation patterns between blood and plaque. For example, multiple associations with 

smoking were observed at CpG loci near AHRR, a regulator of the aryl hydrocarbon receptor 

(AhR) transcription factor and its pathway. Differential DNA methylation at this locus has 

been associated with smoking on numerous occasions and various tissues, including 

pulmonary macrophages and neonatal cord-blood18–21,23–29,33. Furthermore, this relationship 

has also been shown in a mouse model in which lower DNA methylation at the AHRR gene 

was associated with higher AHRR expression21. The AhR transcription factor is a xenobiotic 

receptor, sensitive to some endogenous ligands as well as many exogenous toxins. These 

toxins include polycyclic aromatic hydrocarbons and dioxins both of which are important 

constituents of tobacco smoke34 and lead to upregulation of enzymes involved in the 

detoxifying metabolism of these substances.  

The other smoking associated CpG locus is located near ITPK1 (a gene encoding for 

inositol-tetrakisphosphate 1-kinase) and earlier studies had associated the same locus to 

differential methylation in circulating blood cells18,35,36. The ITPK1 enzyme functions as a key 

regulator of the rate limiting step in the inositol metabolic pathway pivotal in the formation of 

phosphorylated forms of inositol37. Inositol has been implicated in neural tube defects38 and 

has a role in transcriptional regulation39. Although differential methylation at ITPK1 has been 

implicated with smoking before, the exact biological implications and the role of ITPK1 or 

inositol in the response to smoking remains unknown. 
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Furthermore, smoking was associated with several CpGs in our discovery dataset, that were 

identified in literature before. For instance, we identified cg16650073 near NTHL1 encoding 

for endonuclease III-like protein 1, an enzyme that is involved in nucleotide base-excision 

repair of DNA. Interestingly, NTHL1 expression was shown to be reduced in lung tumor 

biopsies in humans40, and smoke exposure was shown to reduce NTHL1 protein expression 

in mice lung fibroblasts41. Our results suggest that smoke exposure may inhibit DNA-repair in 

vascular tissue through down-regulation of NTHL1 expression. This notion is further 

supported by a study showing that reactive oxygen species (ROS) can induce DNA 

oxidation, leading to aberrant regulation of NTHL142. Indeed, it is known that both tobacco 

smoking and ROS cause vascular endothelial dysfunction leading to endothelial activation 

and vascular smooth muscle cell proliferation, and ultimately atherosclerosis. Our data adds 

to this by supporting a role for epigenetic regulation in atherosclerotic lesions through 

demethylation of NTHL1, AHRR and other cellular maintenance genes. These data imply 

that epigenetic changes may adversely affect vascular tissue and thereby affect 

atherosclerotic lesion development and progression.  

In addition, it is remarkable that our results in blood-derived DNAm also indicate a significant 

association at cg03636183 in the F2RL3-gene (coagulation factor II receptor-like 3)20,43. 

Indeed, hypomethylation at this locus in blood cells has been reported to associate strongly 

with current and long-time tobacco smoke exposure44. This protease-activated receptor is 

involved in cardiovascular pathophysiological processes including thrombin-induced platelet-

aggregation45 as well as inflammation46. Also, methylation at F2RL3 in blood cells is shown to 

be a predictor for lung cancer47 and mortality48. 

 

Genetic variation may affect methylation status of specific genes. Using mQTL analysis, we 

found strong associations between lesion CpGs and nearby SNPs, showing that some of the 

smoking-associated CpG methylation may be affected by genetic variation. Therefore, these 

SNPs are of particular interest since they may reveal hereditary susceptibility to toxicity in the 
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vascular wall. Not much is known about the biological functions of the PLEKHG4B genes, 

and further research should focus on their relationship with smoking.  

 

Our observations in pilot data suggest that smoking affects the atherosclerotic vascular 

lesion at the epigenetic level, which may affect local gene expression levels (Supplemental 

Figure 6). Although the concept of transcriptional regulation by DNA methylation has been 

abundantly shown49, the effect of a particular CpG on local gene-expression is complex. 

Elucidation of the effects of CpGs on gene expression within the atherosclerotic vascular wall 

tissue in larger samples may offer important insights into the biological mechanisms by which 

tobacco smoking confers an increased cardiovascular risk.  

Most epigenetic smoking studies to date have focused on blood-derived DNA-methylation. 

To gain better insight in the tissue specificity of the methylation results obtained in 

atherosclerotic plaques and to verify consistency with pre-existing studies, we also 

performed an EWAS in blood samples from the same patients. Furthermore, we carefully 

scrutinized literature investigating blood or other tissues. The combined results of the 

literature search and our experimental data, suggest vasculature-specific methylation 

differences induced by tobacco smoking. This emphasizes the importance of investigating 

DNA methylation in the vascular lesion itself, as well as the need for further validation in 

external studies.  

 

Limitations of the current study. Our analyses are based on patients’ current smoking 

behavior, which will not reflect time-dependent effects of smoking on plaque methylation50, as 

patients may be light or heavy smokers in the past. Thus, our results may apply specifically 

to active or recent (< 1 year) smokers. Although we show strong associations and correct for 

inflation and bias using Bayesian modeling, it is impossible to exclude residual confounding, 

or misclassification bias as a consequence of self-reported smoking behaviour. This is 

complicated by the differences in DNA methylation between cell-types in the sample, indeed 

the limited replication (4 out 10 CpGs are significant) are indicative of cellular heterogeneity. 
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Future studies focused on single-cell methylation and tissue-specific spatial methylation can 

aid in determining the relevant cell types in tobacco smoking-induced epigenetic regulation in 

vascular lesions.  

Gene regulation and expression are thought to act on cellular and tissue function, and thus 

ultimately on intermediate phenotypes. Yet, we did not find an association between the 

smoking associated DNAm and plaque characteristics. This may be a reflection of low power 

due to the heterogeneity of the tissue in which we measured methylation. In addition, it is 

uncertain what the correlation is between methylation and protein levels that ultimately affect 

cellular function and intermediate phenotypes.  

Furthermore, it should be noted that the Athero-Express Biobank is a cohort of patients with 

advanced atherosclerotic disease. Therefore, it merits careful consideration to draw 

inferences on earlier stages of atherosclerotic disease. This selected group of atherosclerotic 

patients with advanced stages of disease may also explain the lack of association with 

plaque characteristics.   

Finally, our replication dataset was of limited sample size, reducing power in the meta-

analysis. Future studies should aim to include more samples for discovery and replication. 

 

In summary, we performed a two-stage epigenome-wide association study of current 

smoking in 664 atherosclerotic plaque samples and 89 peripheral blood samples derived 

from 668 carotid endarterectomy patients. We show that tobacco smoking is associated with 

DNA methylation at 4 loci in atherosclerotic lesions of carotid endarterectomy patients. 

Future studies should verify these findings, and focus on the underlying mechanisms of 

AHRR and ITPK1 methylation in the vasculature as a response to smoking. 
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Table 1: Patient characteristics of the discovery and replication datasets. Patient characteristics at time of inclusion in both datasets, 

stratified by smoking status. Patients without data on current smoking were excluded. *Symptoms at presentation, before carotid 

endarterectomy. Significance shown as p-values (P) without FDR adjustment. Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood 

pressure; eGFR, estimated glomerular filtration rate by MDRD-formula; BMI, body-mass index; LLDs, use of lipid-lowering drugs; Ocular, retinal 

infarction and amaurosis fugax. 

 
Discovery 

(AEMS450K1, n = 477) 
 

Replication 

(AEMS450K2, n = 187) 

Characteristic 
Former or never smokers 

[n = 283] 

Current smokers 

[n = 194] 
Missing % P  

Former or never smokers 

[n = 131] 

Current smokers 

[n = 56] 
Missing % P 

Age (years [s.e.]) 70.0 [9.0] 64.9 [8.3] 0.0% <0.001  70.2 [8.7] 65.2 [9.0] 0.0% 0.001 

Males (%) 71.7 67.5 0.0% 0.377  84.7 80.4 0.0% 0.601 

SBP (mmHg [s.e.]) 155.7 [24.7] 155.4 [27.9] 11.3% 0.917  153.9 [20.9] 149.7 [22.3] 17.1% 0.274 

DBP (mmHg [s.e.]) 82.2 [12.9] 83.0 [13.7] 11.3% 0.558  81.9 [12.4] 80.6 [11.7] 17.1% 0.537 

eGFR (mL/min/1.73m2[s.e.]) 69.5 [19.4] 76.6 [22.0] 2.5% <0.001  73.6 [19.2] 75.4 [23.5] 4.8% 0.587 

BMI (kg/m2[s.e.]) 26.8 [3.7] 26.2 [4.2] 3.4% 0.085  27.0 [3.8] 25.9 [4.3] 3.7% 0.095 

ePackyears (years [s.e.]) 22.1 [22.2] 26.5 [19.3] 57.2% 0.033  20.5 [22.4] 26.4 [19.6] 10.7% 0.101 

          

Comorbidities (%)          

Diabetes 21.9 22.2 0.0% 1  23.7 16.1 0.0% 0.335 
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Hypertension 91.9 80.9 0.0% 0.001  89.3 75 0.0% 0.022 

          

Medication use (%)          

Hypertensive drugs 83.7 69.1 0.0% <0.001  82.4 66.1 0.0% 0.023 

Anti-coagulants 13.1 10.3 0.0% 0.441  18.3 10.7 0.0% 0.280 

Anti-platelet drugs 90.1 90.7 0.0% 0.947  87.8 85.7 0.0% 0.881 

LLDs 75.6 77.3 0.0% 0.749  77.9 78.6 0.0% 1 

          

Symptoms† (%)   0.2% 0.444    0.0% 0.470 

Asymptomatic 17.4 14.9    13 5.4   

Ocular 11.7 16.5    17.6 26.8   

TIA 44 44.3    43.5 37.5   

Stroke 27 24.2    26 30.4   



 

 

Table 2: CpGs associated with current tobacco smoking in carotid plaque after 

discovery. Chr:BP: chromosome base-pair position of the methylation probes (CpG). 

Strand: strand position of the methylation site. Gene the gene mapped to the CpG. Beta: 

effect size. SE: standard error. P: p-value of association prior to bacon correction. Pcorr: p-

value of association after bacon correction.  

   
Discovery 

(AEMS450K1, n = 477) 

CpG Chr:BP Gene Beta SE P Pcorr 

cg25648203 chr5:395396 AHRR -0.294 0.032 2.24x10-25 5.37x10-20 

cg05575921 chr5:373378 AHRR -0.319 0.052 3.41x10-12 7.33x10-10 

cg03991871 chr5:368399 AHRR -0.346 0.059 3.70x10-11 4.63x10-9 

cg16650073 chr16:2089849 NTHL1 -0.519 0.077 2.28x10-14 1.53x10-11 

cg12806681 chr5:368346 AHRR -0.222 0.043 6.63x10-9 2.59x10-7 

cg05284742 chr14:93552080 ITPK1 -0.212 0.047 3.84x10-7 6.10x10-6 

cg02385153 chr5:404766 AHRR 0.228 0.048 2.99x10-8 2.56x10-6 

cg05951221 chr2:233284402 ALPI -0.258 0.055 1.33x10-7 2.67x10-6 

cg22702618 chr19:18705064 CRLF1 0.649 0.109 2.44x10-12 2.29x10-9 

cg19505196 chr3:128080273 EEFSEC 0.225 0.043 5.14x10-10 1.24x10-7 

 

Table 3: CpGs associated with current tobacco smoking in carotid plaque after 

replication. Chr:BP: chromosome base-pair position of the methylation probes (CpG). Gene 

the gene mapped to the CpG. Beta: effect size. SE: standard error. P: p-value of association 

prior to bacon correction. Pcorr: p-value of association after bacon correction.  

   
Replication 

(AEMS450K2, n = 187) 

CpG Chr:BP Gene Beta SE P Pcorr 

cg25648203 chr5:395396 AHRR -0.082 0.081 0.33 0.313 

cg05575921 chr5:373378 AHRR -0.333 0.082 2.97x10-5 5.13x10-5 

cg03991871 chr5:368399 AHRR -0.300 0.095 1.14x10-3 1.50x10-3 
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cg16650073 chr16:2089849 NTHL1 -0.062 0.144 0.713 0.666 

cg12806681 chr5:368346 AHRR -0.173 0.062 4.47x10-3 5.38x10-3 

cg05284742 chr14:93552080 ITPK1 -0.313 0.117 6.30x10-3 7.41x10-3 

cg02385153 chr5:404766 AHRR 0.200 0.102 0.031 0.050 

cg05951221 chr2:233284402 ALPI -0.223 0.118 0.058 0.059 

cg22702618 chr19:18705064 CRLF1 0.018 0.166 0.838 0.912 

cg19505196 chr3:128080273 EEFSEC 0.071 0.061 0.189 0.244 

 

Table 4: Methylation of CpGs in carotid plaques associated to current tobacco 

smoking status after meta-analysis of discovery and replication cohorts. Chr:BP: 

chromosome base-pair position of the methylation probes (CpG). Gene the gene mapped to 

the CpG. Beta: effect size. SE: standard error. P: p-value of association prior to bacon 

correction. Pcorr: p-value of association after bacon correction. FDR: the false discovery rate 

adjusted Q-value of association.  

     Meta-Analysis 

     discovery plus replication, n = 664 

CpG Chr:BP Gene CpG Island Relation to Island Beta SE Pcorr FDR 

cg05575921 chr5:373378 AHRR chr5:373842-374426 N_Shore -0.323 0.044 1.71x10-13 3.80x10-8 

cg03991871 chr5:368399 AHRR chr5:370185-370422 N_Shore -0.333 0.05 2.90x10-11 4.28x10-6 

cg12806681 chr5:368346 AHRR chr5:370185-370422 N_Shore -0.206 0.035 5.95x10-9 5.27x10-4 

cg05284742 chr14:93552080 ITPK1  OpenSea -0.226 0.044 2.05x10-7 0.015 

 

Table 5: Methylation of CpGs in blood associated to current tobacco smoking status in 

AEMS450K1. In bold the CpGs that were also significant in the final meta-analysis of plaque-

derived DNAm. Chr:BP: chromosome base-pair position of the methylation probes (CpG). 

Gene the gene mapped to the CpG. Beta: effect size. SE: standard error. P: p-value of 

association prior to bacon correction. Pcorr: p-value of association after bacon correction. 

FDR: the false discovery rate adjusted Q-value of association.  

   AEMS450K1 
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   blood, n = 93 

CpG Chr:BP Gene Beta SE P Pcorr FDR 

cg05575921 chr5:373378 AHRR -1.485 0.302 5.76x10-22 3.38x10-21 1.50x10-15 

cg03991871 chr5:368399 AHRR -0.93 0.377 4.53x10-14 1.02x10-13 2.26x10-8 

cg12806681 chr5:368346 AHRR -0.736 0.462 2.60x10-13 5.36x10-13 7.91x10-8 

cg21161138 chr5:399312 AHRR -0.529 0.630 8.14x10-13 1.59x10-12 1.76x10-7 

cg26703534 chr5:377358 AHRR -0.479 0.644 3.07x10-11 5.03x10-11 4.46x10-6 

cg03636183 chr19:17000537 F2RL3 -0.639 0.448 7.58x10-10 1.07x10-9 7.92x10-5 

cg23079012 chr2:8343662 LINC00299 -0.901 0.295 1.07x10-8 1.34x10-8 8.49x10-4 

cg03450842 chr10:80834947 ZMIZ1 -0.370 0.683 5.45x10-8 6.40x10-8 3.55x10-3 

cg23916896 chr5:368756 AHRR -0.905 0.278 6.25x10-8 7.29x10-8 3.59x10-3 

cg05951221 chr2:233284402 ALPI -0.454 0.527 2.72x10-7 2.99x10-7 0.013 

cg21566642 chr2:233284613 ALPI -0.597 0.397 3.54x10-7 3.85x10-7 0.016 

cg03358636 chr3:197473958 RUBCN -0.513 0.457 4.61x10-7 4.96x10-7 0.018 

cg17295878 chr17:77924665 TBC1D16 -0.982 0.234 7.42x10-7 7.83x10-7 0.027 

cg05284742 chr14:93552080 ITPK1 -0.445 0.512 9.42x10-7 9.86x10-7 0.030 

cg14817490 chr5:392920 AHRR -0.731 0.312 9.57x10-7 1.00x10-6 0.030 

cg11660018 chr11:86510915 OR7E2P -0.303 0.749 1.04x10-6 1.08x10-6 0.030 

cg03371962 chr12:1772275 MIR3649 -0.651 0.346 1.31x10-6 1.36x10-6 0.035 

 

 

FIGURE LEGENDS 

Figure 1. Manhattan plots of the association of DNA methylation in carotid 

atherosclerotic plaques with current tobacco smoking in A) the discovery 

(AEMS450K1), B) the replication (AEMS450K2) cohorts, and C) the meta-analysis (n = 

664). Each point represents an individual CpG, with the x-axis shows the genomic location of 

each CpG and the y-axis shows the observed –log10(p-value) of the association with current 

tobacco smoking after meta-analysis. Loci with CpGs that were epigenome-wide significant 

after replication at are shown in grey.  
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Figure 2. Top 4 replicated associations stratified by current tobacco smoking status in  

the discovery (AEMS450K1). Each boxplot shows the association of current tobacco 

smoking status (x-axis) with the methylation of a CpG (y-axis). 

 

Figure 3. Manhattan plot of the association of DNA methylation in whole-blood blood 

with current tobacco smoking in AEMS450K1. Each point represents an individual CpG, 

with the x-axis shows the genomic location of each CpG and the y-axes shows the observed 

–log10(p-value) of the association with current tobacco smoking. CpGs that were epigenome-

wide significant after false-discovery rate correction at  FDR ≤ 0.05 are shown in grey.  

 

Figure 4: The association of genetic variants near AHRR with methylation of 

cg02385153. The strongest association was for rs4956991 (G-allele, p = 5.2x10-9, see main 

text, purple). The x-axis shows the chromosomal position relative to 1000G (March 2012, 

Hg19). The lower panel shows the refSeq canonical genes from UCSC (the black arrow 

indicates the direction of transcription). The left y-axis shows the –log10(-value) of the 

association with the methylation of cg02385153 (in the body of AHRR). The right y-axis 

shows the recombination rate (grey line in the middle panel). The middle panel shows each 

associated variants colored by the linkage disequilibrium r2 relative to rs4956991; the legend 

in the upper right corner shows the r2 color scale. Made using LocusZoom version 1.330. 
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Supplemental Material and Methods 
Patient inclusion 
The Athero-Express Biobank Study (AE) is an ongoing longitudinal biobank study including 

patients that undergo arterial endarterectomy in two Dutch tertiary referral centers since 

2002. A detailed description of the cohort study design has previously been published1. For 

the present study, subsequent patients were included who underwent carotid endarterectomy 

(CEA) and of which genotyping data were available. Clinical data were extracted from patient 

medical files and standardized questionnaires. Current tobacco smoking (i.e. including [hand 

rolled] cigarettes, cigars, etc.) was defined as smoking within 1 year prior to admission for 

CEA and was assessed by questionnaire. We estimated the number of pack years smoking 

based on a categorical question regarding the number of cigarettes smoked and define the 

“estimated Pack Years Smoking” = (number of cigarettes smoked per day x number of years 

smoked)/20; where 1 pack is defined as 20 cigarettes.  

This study complies with the Declaration of Helsinki and all participants provided informed 

consent. The medical ethical committees of the respective hospitals approved these studies. 

 

Sample collection 
Blood samples were obtained prior to surgery and stored at -80℃. Carotid plaque specimens 

were removed during surgery and immediately processed in the laboratory. Specimens were 

cut transversely into segments of 5 mm. The culprit lesion (the region with most severe 

stenosis) was identified, fixed in 4% formaldehyde, embedded in paraffin, and processed for 

histological examination. Plaque histological features were routinely scored through 

chemical- and immunohistochemical techniques as described below. Remaining segments 

were stored at -80℃.  

 

Atherosclerotic plaque histology 
The carotid plaque segments containing the culprit lesions were processed according to a 

standardized protocol, as previously described2. In short, 10 micron cross-sections of the 

paraffin-embedded segments were cut using a microtome and examined under a 

microscope. Microscopy-slides were stained with hematoxylin and eosin for assessment of 

calcifications, atheroma, and plaque hemorrhage. Picro Sirius Red was used to stain for 

collagen. Immunohistochemical staining was performed for assessment of macrophages 

(CD68), smooth-muscle cells (alpha-actin), and microvessels (CD34). The presence of 

atheroma was classified as either more or less than 40% of the plaque area. The amount of 

collagen, calcifications, and plaque hemorrhage were classified as minor or major. Plaque 
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microvessels were quantitatively assessed as average number of vessels over three 

microscopy field. Plaque smooth-muscle cells and macrophages were quantitatively 

assessed as percentage of the microscopy field area by computerized analysis using 

AnalySIS 3.2 software (Soft Imaging Systems GmbH, Münster, Germany). All histological 

observations were performed by the same dedicated technician and interobserver analyses 

have been reported previously3. Associations of current tobacco smoking with histology were 

determined by linear or logistic regression modeling where appropriate, adjusting for age, 

sex, BMI, eGFR (based on the MDRD formula), diabetes, hypertension, history of coronary 

artery disease, history of peripheral artery disease, lipid levels and medication use.  

 

DNA extraction and methylation experiment 
DNA was extracted from stored plaque segments and stored blood samples of patients using 

standardized in-house protocols as described before in Van der Laan et al4. DNA purity and 

concentration were assessed using the Nanodrop 1000 system (Thermo Scientific, 

Massachusetts, USA). DNA concentrations were equalized at 600 ng, randomized over 96-

well plates and bisulfite converted using a cycling protocol, and the EZ-96 DNA methylation 

kit (Zymo Research, Orange County, USA). Subsequently, DNA methylation was measured 

on the Infinium HumanMethylation450 Beadchip Array (HM450k, Illumina, San Diego, USA), 

which was performed at the Erasmus Medical Center Human Genotyping Facility in 

Rotterdam, the Netherlands. Processing of the sample and array was performed according to 

the manufacturer's protocol. Following these protocols, we isolated DNA of 509 patients 

across 503 plaque samples and 97 blood samples in the discovery study, called Athero-

Express Methylation Study 1 (AEMS450K1). The replication study, called Athero-Express 

Methylation Study 2 (AEMS450K2), included 208 plaque samples (Supplemental Figure 1). 

 

Quality control of methylation data 
Quality control (QC) of the HM450k array data was performed following the workflow from 

the DNAmArray R-package5 (https://github.com/molepi/DNAmArray) using default settings, 

controlling for sample-dependent and probe-dependent parameters. Bisulfate conversion 

efficiency was determined using dedicated probes on the HM450k. We performed a principal 

component (PC) analysis for exploratory data analysis using the irlba R-package6 

(https://github.com/bwlewis/irlba) and to determine the number of PCs to use for 

normalization. ‘Functional Normalization’7 with 4 control-probe principal components was 

used for normalization and correction of batch effects. We computed sex based on sex-

chromosome beta-value distribution and compared this to the known sex-status in order to 
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determine possible sample mix-ups. We further assessed sample relations using beta-value 

extracted genotypes as calculated by the omicsPrint R-package 

(https://github.com/molepi/omicsPrint and 

https://bioconductor.org/packages/release/bioc/html/omicsPrint.html)8. Where available we 

also compared genotype data to the raw data of the 65 SNPs included on the HM450k array, 

to determine possible mix-up (as indicated by R ≤ 0.8 across these 65 SNPs). All samples for 

which sample mix-up could not be confidently ruled out were excluded from further analysis. 

A total of 42,428 probes were excluded based on above QC steps and the intersection of 

AEMS450K1 and AEMS450K2, with 443,084 probes (91.3 %) of good quality remaining. 

After QC, imputation of missing data (average 0.14% and 0.07% missing in AEMS450K1 and 

AEMS450K2, respectively) was performed using the knn algorithm in the impute R 

package (http://bioconductor.org/packages/release/bioc/html/impute.html). For analyses we 

also excluded probes containing SNPs or which mapped to multiple locations9. 

Samples with missing smoking status or covariates (i.e. age, sex, hospital of inclusion) were 

excluded. After quality control, 485 plaque samples and 93 blood samples obtained from 485 

unique patients were remaining in AEMS450K1. The replication dataset AEMS450K2 

consisted of 190 plaque samples from an equal number of patients, following quality control. 

A flow-chart summarizing quality control of samples is presented in Supplemental figure 1. 

 

Epigenome-wide (meta-)analysis of current smoking 
Epigenome-wide association analysis was done using logistic regression modeling with 

limma10 following the workflow as included in the DNAmArray R-package5; we used 

normalized beta-values (M-values) to ensure maximal power of regression modeling.  

Regression modeling was performed with covariates age, sex, and hospital of inclusion. The 

bias and inflation of the resulting test-statistics were controlled using a Bayesian method 

based on the empirical null distribution as implemented in the R package bacon that we 

recently developed11. We also used bacon to perform the fixed-effects meta-analysis of the 

discovery (AEMS450K1) and replication (AEMS450K2) samples.  

Given that the discovery and replication samples contain 443,084 overlapping CpGs, we 

conservatively set a p-value threshold at p ≤ 1.13x10-7 (0.05/443,084) to claim epigenome-

wide significance during discovery. Upon meta-analysis we controlled for multiple testing by 

correcting p-values using the Benjamini-Hochberg False-Discovery Rate (FDR), and 
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considered FDR Q-values ≤ 0.05 statistically significant12. We used the Bioconductor 

packages TxDb.Hsapiens.UCSC.hg19.knownGene (version 3.2.2, 

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.k

nownGene.html) and FDb.InfiniumMethylation.hg19 (version 2.2.0, 

https://bioconductor.org/packages/release/data/annotation/html/FDb.InfiniumMethylation.hg1

9.html) to map and annotate CpGs and genes to the genome (GRCh37, Hg19). Statistical 

analyses were performed with R (v3.4.1) in R Studio (v1.0.143, http://www.rstudio.com/).  

 

Genotyping 
DNA was isolated from stored samples and genotyping was performed in two series using 

commercially available genotyping arrays4. The first series (Athero-Express Genomics Study 

1, AEGS1) was genotyped using Affymetrix Genome-Wide Human SNP Array 5.0, the 

second (Athero-Express Genomics Study 2, AEGS2) was genotyped using the Affymetrix 

Axiom® GW CEU 1 Array. We adhered to community standard quality control and assurance 

procedures to clean the genotype data obtained in AEGS1 and AEGS213. We used phased 

haplotypes from the 1000 Genomes Project (phase 3, version 5)14 merged with haplotypes 

from the Genome of the Netherlands (GoNL5)15 as the reference panel for genotype 

imputation using IMPUTE216,17.  

 

RNA-sequencing and differential expression analysis 
We isolated RNA from 30 atherosclerotic plaques of the AE using in-house standardized 

protocols. The RNA-sequencing was performed on the polyadenylated mRNA fraction, which 

covers all protein coding genes and major part of non-coding RNAs. Sequencing libraries 

(median length of 350bp) were prepared using the Rapid Directional RNA-Seq Kit (NEXTflex) 

and sequenced at the Utrecht Sequencing Facility on Illumina NextSeq500 and produced 

single-end 75 base long reads with up to 15 million reads per library. RNA-seq reads were 

aligned to the reference genome using STAR (GRCh37, version 74). Transcript abundances 

were quantified with HTSeq-count using the union mode. Subsequently, reads per kilobase 

of transcript per million reads sequenced were calculated following the instructions in the 

Bioconductor workflow “RNA-seq workflow at the gene level” (version r131992, 

https://www.bioconductor.org/help/workflows/rnaseqGene/), thus DESeq2 was used for 

downstream analysis18. We excluded 9 samples that had low percentage of mRNA mapping 

to the reference (<5%), and <90% correct strand reads.  
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Methylation quantitative trait locus (mQTL) analysis 
We used fastQTLToolKit (https://github.com/swvanderlaan/fastQTLToolKit)19 which is based 

on fastQTL20 (http://fastqtl.sourceforge.net) to identify variants associated to methylation, i.e. 

methylation quantitative trait loci (mQTL). For the mQTL analysis we considered only high-

quality imputed variants (minor allele frequency (MAF) ≥ 0.05; imputation quality ≥ 0.9; 

Hardy-Weinberg Equilibrium (HWE) p value ≥ 1.0x10-6) in cis, i.e. within 500 kb of the CpG. 

For the mQTL analysis we only used overlapping imputed genotypes of 444 patients in the 

discovery study (AEMS450K1). A linear regression model as implemented in fastQTL20 was 

used for the mQTL analysis and corrected by age, sex, SNP array type, genotyping principal 

components 1 through 10, and current tobacco smoking status.  
 

The Stockholm Atherosclerosis Gene Expression (STAGE) Study 
General background on the STAGE Study 
In the STAGE Study, seven vascular and metabolic tissues of well-characterized coronary 

artery disease (CAD) patients were sampled during coronary artery bypass grafting 

(CABG)21. The samples from atherosclerotic arterial wall (AAW), internal mammary artery 

(IMA), liver, skeletal muscle (SM), subcutaneous fat (SF), visceral fat (VF), and fasting whole 

blood (WB) were obtained during CABG and used for DNA and RNA isolation. Patients were 

included if they were eligible for CABG and had no other severe systemic diseases (e.g. 

widespread cancer or active systemic inflammatory disease).  

 

Expression quantitative trait locus (eQTL) analysis in the STAGE Study 

In order to prepare inferred genotypes in STAGE for genotype imputation, SNPs were quality 

controlled for minor allele frequency (MAF ≤ 5%), Hardy-Weinberg equilibrium (HWE; p ≤ 

1.0x10-6), and call rate (100%). Thereafter, genotypes for the STAGE study were imputed 

using IMPUTE2 with 1000 Genomes EUR22 as the reference16,17. Quality control measures 

for imputed genotypes used an additional filter of IMPUTE2 Info score (≤ 0.3). This yielded a 

total of 5,473,585 SNPs. Thereafter, methylation quantitative trait loci (mQTLs) passing 

quality control were selected for expression quantitative trait locus (eQTL) analysis. eQTL 

analysis was performed for the mQTLs using the Matrix eQTL R package23, by adding age, 
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gender, smoking status, as covariates. Analysis was performed for eQTL effects on gene-

expression against all 17,952 gene-expression profiles available. The eQTL analysis as well 

as association of gene expression association among genes of interest, were done using 

MATLAB and R24. Significance of the associations were determined after correction for 

multiple testing based on the total number of associations over all tissues.  
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Supplemental Tables 
Supplemental Table 1: Correlation of the top 4 associated CpGs with the estimated 
number of pack years smoking. The top 4 CpGs (associated to current tobacco smoking) 

were associated to estimated number of pack years smoking, using a linear regression 

model corrected for age, sex and hospital. Chr:BP: chromosome base-pair position of the 

methylation probes (CpG). Strand: strand position of the methylation site. Gene the gene 

mapped to the CpG. Beta: effect size. SE: standard error. P: p-value of association prior to 

bacon correction. Pcorr: p-value of association after bacon correction. FDR: the false 

discovery rate adjusted Q-value of association. 
   Meta-Analysis ePackYearsSmoking 

   discovery plus replication, n = 595 

CpG Chr:BP Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 AHRR -0.0028 0.0008 8.88x10-4 0.340 

cg03991871 chr5:368399 AHRR -0.0011 0.0009 0.237 0.974 
cg12806681 chr5:368346 AHRR -0.0004 0.0007 0.575 1.000 

cg05284742 chr14:93552080 ITPK1 -0.0017 0.0008 0.039 0.758 
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Supplemental Table 2: Association of current smoking with carotid plaque histological 
features. Current tobacco smoking was associated to histological features of carotid 

plaques, using a linear- or logistic regression model where appropriate. Data are presented 

as model odds ratio (OR), 95% confidence interval (CI) and associated p-value. Smooth-

muscle cells (SMCs), macrophages, and vessel density were scored quantitatively; 

calcification, collagen, atheroma, and intraplaque hemorrhage (IPH) were dichotomized. 

Trait OR 95% CI P-value N 

Calcification 1.42 [1.13-1.81] 0.0034 1,840 

Collagen 1.47 [1.09-1.97] 0.0112 1,839 

Fat 40% 0.89 [0.68-1.16] 0.3860 1,843 

Fat 10% 1.10 [0.85-1.43] 0.4525 1,843 

IPH 1.11 [0.87-1.41] 0.3974 1,841 

     

 Beta 95% CI P-value N 

Macrophages -0.07 [-0.11- -0.02] 0.0109 1,791 

SMCs -0.04 [-0.11- 0.01] 0.1234 1,786 

Vessel density 0.06 [0.01- 0.19] 0.0244 1,655 

 

  



 

10 
 

Supplemental Table 3: Association of current tobacco smoking-associated CpGs with 
carotid plaque histological features. Methylation at current tobacco smoking-associated 

CpGs was associated to histological features of carotid plaques, using a linear- or logistic 

regression model where appropriate. Data are presented as model effect size (Beta), and 

standard error (SE) and associated p-value. Smooth-muscle cells (SMCs), macrophages, 

and vessel density were scored quantitatively; calcification, collagen, atheroma, and 

intraplaque hemorrhage (IPH) were dichotomized. 

    Calcification 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.060 0.031 0.051 0.618 

cg03991871 chr5:368399 + AHRR -0.053 0.035 0.126 0.738 

cg12806681 chr5:368346 + AHRR -0.065 0.024 0.007 0.306 

cg05284742 chr14:93552080 - ITPK1 -0.050 0.030 0.090 0.688 

     

    Collagen 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.028 0.060 0.633 0.893 

cg03991871 chr5:368399 + AHRR -0.079 0.068 0.242 0.795 

cg12806681 chr5:368346 + AHRR -0.058 0.046 0.208 0.780 

cg05284742 chr14:93552080 - ITPK1 -0.076 0.059 0.197 0.780 

     

    Atheroma 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.059 0.035 0.097 0.802 

cg03991871 chr5:368399 + AHRR 0.021 0.040 0.598 0.976 

cg12806681 chr5:368346 + AHRR -0.042 0.028 0.133 0.865 

cg05284742 chr14:93552080 - ITPK1 0.002 0.033 0.958 0.996 

     

    IPH 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.011 0.032 0.729 0.996 
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cg03991871 chr5:368399 + AHRR 0.025 0.037 0.494 0.996 

cg12806681 chr5:368346 + AHRR 0.044 0.025 0.078 0.844 

cg05284742 chr14:93552080 - ITPK1 0.005 0.031 0.880 0.996 

     

    Macrophages 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR 0.002 0.030 0.938 0.981 

cg03991871 chr5:368399 + AHRR -0.018 0.034 0.600 0.914 

cg12806681 chr5:368346 + AHRR -0.045 0.024 0.057 0.778 

cg05284742 chr14:93552080 - ITPK1 -0.029 0.029 0.315 0.883 

     

    SMCs 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.053 0.063 0.398 0.940 

cg03991871 chr5:368399 + AHRR -0.031 0.071 0.664 0.957 

cg12806681 chr5:368346 + AHRR 0.016 0.049 0.739 0.976 

cg05284742 chr14:93552080 - ITPK1 0.011 0.059 0.847 0.990 

     

    Vessel density 

CpG Chr:BP Strand Gene Beta SE Pcorr FDR 

cg05575921 chr5:373378 + AHRR -0.404 0.239 0.091 0.607 

cg03991871 chr5:368399 + AHRR -0.638 0.261 0.015 0.607 

cg12806681 chr5:368346 + AHRR -0.280 0.170 0.099 0.607 

cg05284742 chr14:93552080 - ITPK1 -0.264 0.257 0.305 0.712 
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Supplemental Table 4: Patient characteristics of 89 blood samples in the discovery 
dataset. Patient characteristics at time of inclusion in the dataset, stratified by smoking 

status. Patients without data on current smoking were excluded. †Symptoms at presentation, 

before carotid endarterectomy. Significance shown as p-values (P) without FDR adjustment. 

SBP: systolic blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular 

filtration rate by MDRD-formula; BMI: body-mass index; LLDs: use of lipid-lowering drugs; 

Ocular: retinal infarction and amaurosis fugax. 

 
Discovery 

(AEMS450K1 – blood, n = 93) 

Characteristic Former smokers [n = 53] Current smokers [n = 40] Missing % P 

Age (years [s.e.]) 69.1 [8.9] 65.2 [7.1] 0.0% 0.023 

Males (%) 66.0 67.5 0.0% 1.000 

SBP (mmHg [s.e.]) 155.7 [21.3] 155.9 [25.6] 6.5% 0.967 

DBP (mmHg [s.e.]) 84.2 [10.1] 79.7 [10.5] 6.5% 0.049 

eGFR (mL/min/1.73m2 [s.e.]) 74.9 [19.8] 79.2 [23.6] 1.1% 0.340 

BMI (kg/m2 [s.e.]) 27.2 [4.6] 25.3 [4.2] 5.4% 0.046 
ePackyears (years [s.e.]) 18.7 [16.8] 24.3 [15.6] 5.4% 0.117 

     

Comorbidities (%)     

Diabetes 18.9 10.0 0.0% 0.373 

Hypertension 94.3 77.5 0.0% 0.037 

     

Medication use (%)     
Hypertensive drugs 84.9 70.0 0.0% 0.140 

Anti-coagulants 13.2 12.5 0.0% 1.000 

Anti-platelet drugs 90.6 92.5 0.0% 1.000 

LLDs 71.7 72.5 0.0% 1.000 

     

Symptoms† (%)   0.0% 0.566 

Asymptomatic 22.6 12.5   

Ocular 9.4 15.0   
TIA 49.1 50.0   

Stroke 18.9 22.5   
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Supplemental Table 5: Association of current tobacco smoking with whole-tissue RNA 
expression in 30 plaques. Mean counts: average read count across all the samples. Total 

counts: total read counts across all samples. Log2FC: log2-fold-change in gene expression 

associated to current tobacco smoking status. SE: standard error of log2FC. P-value: 

associated p-value of association.  

Gene ENSEMBLID Mean Counts Total Counts log2FC SE P-value 

AHRR ENSG00000063438 1.38 41.52 1.26 1.20 0.293 

ITPK1 ENSG00000100605 55.89 2432.15 -0.41 0.25 0.100 

 

Supplemental Table 6: Gene-Gene expression associations in STAGE. Comparison of 

gene expressions between AHRR and PLEKHG4B, adjusted for age, sex and smoking 

status. Beta: effect size; FDR: false discovery rate of association; AAW, atherosclerotic 

arterial wall; IMA, internal mammary artery; SM, skeletal muscle; SF, subcutaneous fat; VF, 

visceral fat; WB, whole blood. 

Tissue Beta FDR 

AAW 0.23 0.13 

IMA 0.39 3.30x10-4 

Liver 0.17 0.16 

SF 0.70 7.00x10-3 

SM 0.07 0.47 

VF 0.06 0.45 

WB 0.15 0.03 
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Supplemental Figures 
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Supplemental Figure 1: Flowchart of samples used in the analysis after quality control. 
Flow-chart depicting the number of input samples, and quality control and analysis sample 

removal. Technical outliers were identified using DNAmArray5 which includes MethylAid25. 

Sample relationships were identified through correlation of methylation data derived 

genotypes based on work by Chen et al.26 and Zhou et al.9; where available we also 

compared the raw data of the 65 SNPs included on the HM450k array with those of SNP-

chip derived data using the --genome function in PLINK27, and samples with poor 

correlation (pi-hat ≤ 0.8, indicative of possible mix-up) across these 65 SNPs were excluded. 

In addition, sex mismatches were identified by comparing sex-chromosomes (X and Y) beta-

value distribution with the sex status derived from the medical records. Matching shows 

number of patients with both plaque and blood data in AEMS450K1 (n = 89).  
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Supplemental Figure 2: Quantile-quantile plots of EWAS on current tobacco smoking 
with plaque-derived DNA methylation in discovery study (AEMS450K1). Left: QQ-plot of 

prior to bacon correction; Right: QQ-plot after bacon correction. Points show the relation 

between observed and expected –log10 (p-values) for each CpG. The solid red line shows 

expected p-values under the normal distribution. The blue dots show the analysis results in 

the discovery study (AEMS450K1). Inflation (λ) prior to correction = 1.433; after correction λ 

= 1.307). 
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Supplemental Figure 3: Quantile-quantile plots of EWAS on current tobacco smoking 
with plaque-derived DNA methylation in replication study (AEMS450K2). Left: QQ-plot 

of prior to bacon correction; Right: QQ-plot after bacon correction. Points show the relation 

between observed and expected –log10 (p-values) for each CpG. The solid red line shows 

expected p-values under the normal distribution. The blue dots show the analysis results in 

the replication study (AEMS450K2). Inflation (λ) prior to correction = 1.433; after correction λ 

= 1.307). 
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Supplemental Figure 4: Quantile-quantile plots of meta-analysis of the discovery and 
replication EWAS on current tobacco smoking with plaque-derived DNA methylation. 
Left: QQ-plot of prior to bacon correction; Right: QQ-plot after bacon correction. Points show 

the relation between observed and expected –log10 (p-values) for each CpG. The solid red 

line shows expected p-values under the normal distribution. The blue dots show the meta-

analysis results. Inflation (λ) prior to correction = 1.717; after correction λ = 1.228). 

 

 
Supplemental Figure 5: Quantile-quantile plots of EWAS on current tobacco smoking 
with blood-derived DNA methylation. Left: QQ-plot of prior to bacon correction; Right: QQ-

plot after bacon correction. Points show the relation between observed and expected –log10 

(p-values) for each CpG. The solid red line shows expected p-values under the normal 

distribution. The blue dots show the results from AEMS450K1 (n = 93). Inflation (λ) prior to 

correction = 1.199; after correction λ = 1.097). 
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Supplemental Figure 6: The correlation in direction of effects between differential 
methylation and gene expression in 21 plaques. A. For an arbitrary gene, the 7 different 

regions are indicated to which CpGs are mapped in the Illumina Methylation 450K Annotation 

File (IlluminaHumanMethylation450kanno.ilmn12.hg19)14. B. For each gene region 

the number of mapped CpGs, nominally associated to smoking in carotid plaques after meta-

analysis (p-value ≤ 0.05), are given. C. For each region, CpGs are mapped to genes and 

associated to the expression of the same genes. For this we calculated the median M-value 

per CpG of all nominal CpGs (associated to current tobacco smoking after the meta-analysis) 

across the 21 samples of which we also had RNAseq data. We also calculated the average 

read count for each gene across all 21 samples. We then mapped each CpG to a gene and 

subsequently grouped those CpGs per gene-region (5’UTR, body, etc.), for each of these 

groupings we calculated the median M-value. Thus, we obtained a per-gene-per-region CpG 

M-value and dichotomized these into demethylated and methylated. We performed a Wilcox-

rank test to calculate the p-value (p) of association with the average gene read count, and 

calculated the correlation using Spearman’s rho (r). 
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Supplemental Figure 7: eQTL analysis of rs4956991 with PLEKHG4B expression 
multiple tissues from the GTEx Project. A. The forest plot shows the per-tissue correlation 

of rs4956991 with PLEKHG4B expression (ENSG00000153404.9) in various tissues 

(random-effects meta-analysis p-value = 6.37x10-16 across all tissues)28. B. Shows the 

METASOFT28,29 based posterior probability that an eQTL exists in each tissue, i.e. a large m-

value indicates that the variant is predicted to be an eQTL for PLEKHG4B in that tissue. Data 

obtained from GTEx Portal30. 
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Supplemental Figure 8: Schematic view of smoking-associated CpGs with putative 
epigenetic gene regulation. Shows association of common variants in PLEKHG4B, one of 

which is non-synonymous encoding predicted to alter the PLEKHG4B protein, and the 

association of these variants with DNA methylation at AHRR (top). It also shows the 

association between PLEKHG4B expression and AHRR expression (bottom). In both 

situations, this may indicate gene-regulation through epigenetic mechanisms. Positive- and 

negative signs indicate positive- or negative direction of effect. mQTL, methylation 

quantitative trait locus; eQTL, expression quantitative trait locus. 
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