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Abstract 

One of the principal neurotransmitters of the central nervous system is GABA. In the adult brain, 

GABA is predominantly inhibitory, but there is growing evidence indicating that GABA can shift to 

excitatory action depending on environmental conditions. In the mammalian central circadian clock 

of the suprachiasmatic nucleus (SCN) GABAergic activity shifts from inhibition to excitation when 

animals are exposed to long day photoperiod. The polarity of the GABAergic response (inhibitory 

versus excitatory) depends on the GABA equilibrium potential determined by the intracellular Cl- 

concentration ([Cl-]i). Chloride homeostasis can be regulated by Cl- cotransporters like NKCC1 and 

KCC2 in the membrane, but the mechanisms for maintaining [Cl-]i are still under debate. This study 

investigates the role of KCC2 on GABA-induced Ca2+ transients in SCN neurons from mice exposed to 

different photoperiods.  We show for the first time that blocking KCC2 with the newly developed 

blocker ML077 can cause a shift in the polarity of the GABAergic response. This will increase the 

amount of excitatory responses in SCN neurons and thus cause a shift in excitatory/inhibitory ratio. 

These results indicate that KCC2 is an essential component in regulating [Cl-]i and the equilibrium 

potential of Cl- and thereby determining the sign of the GABAergic response. Moreover, our data 

suggest a role for the Cl- cotransporters in the switch from inhibition to excitation observed under 

long day photoperiod. 
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1. Introduction 

The balance between neuronal inhibition and excitation is critical for proper brain functioning 

(Buzsaki et al., 2007; Haider et al., 2006). Accordingly, an imbalance is implicated in several 

neurological disorders, like epilepsy and autism (Marín, 2012; Nelson and Valakh, 2015; Sgadò et al., 

2011). One of the important factors for keeping this balance is γ-Aminobutyric acid (GABA), known as 

the major inhibitory neurotransmitter in the central nervous system (Costa, 1998; Sivilotti and Nistri, 

1991).  In the developing brain, however, GABA can act as an excitatory neurotransmitter (Ben-Ari, 

2002), and even in the mature brain, the phenomenon of GABAergic depolarization has recently 

been recognized and characterized in multiple areas (Chung, 2012). One of these brain areas is the 

mammalian central circadian clock, located in the suprachiasmatic nucleus (SCN) of the anterior 

hypothalamus (Choi et al., 2008; De Jeu and Pennartz, 2002; Wagner et al., 1997). GABA is the 

prevalent neurotransmitter in the SCN and involved in synchronization within the neuronal network 

and in processing photic as well as non-photic entrainment (Albers et al., 2017). While exogenous 

applied GABA causes an inhibitory effect on the firing rate in many SCN neurons, it has a distinct 

excitatory effect on a subset of neurons in the SCN. The excitation is typically found in the neurons of 

the dorsal part of the SCN and is especially present during the night (Choi et al., 2008). Interestingly, 

exposure to long day photoperiod changes the GABAergic excitation/inhibition ratio (E/I ratio) in SCN 

neurons towards more excitation compared to short day photoperiod (Farajnia et al., 2014). This 

demonstrates that GABAergic excitation can have a physiological function in the SCN of the mature 

brain, and that its effect is plastic, i.e. under the control of environmental conditions.  

The major ion that passes through the GABAA receptor is chloride (Cl-) (Macdonald and Olsen, 1994). 

The concentration gradient of Cl- (the difference between internal and external concentrations) 

determines the equilibrium potential of chloride (ECl). Depending on the relationship between the ECl 

and the membrane potential (Vm), GABA acts either excitatory or inhibitory when binding to its 

receptor (Ben-Ari, 2002; Kaila, 1994). 
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It has generally been assumed that cation-chloride-cotransporters (CCCs) play a crucial role in 

maintaining the intracellular chloride concentration ([Cl-]i). In neurons, mainly two types of CCCs 

regulate [Cl-]i; the Na+-K+-2Cl- cotransporter 1 (NKCC1) and the K+-Cl- cotransporter 2 (KCC2), which 

carry Cl- in and out of the cell, respectively (Blaesse et al., 2009; Deeb et al., 2011; Gamba, 2005). 

Glykys et al. recently challenged this view by showing that immobile negative charges near the 

extracellular surface of the cell membrane and cytoplasmic impermeant anions may also play a 

prominent role in determining [Cl-]i (Glykys et al., 2014a).  

Investigating the  mechanism of [Cl-]i regulation requires specific blockers for CCCs and a recent study 

using an improved KCC2 antagonist suggests a primary role of KCC2 in [Cl-]i of SCN neurons (Klett and 

Allen, 2017). We used a recently developed and highly selective KCC2 antagonist; VU0255011; also 

known as ML077, which has over a hundredfold higher specificity for KCC2 over NKCC1 (Delpire et al., 

2009; Lindsley et al., 2010). With this pharmacological tool, we were able to investigate the role of 

KCC2 in the GABAergic response. Here, we show that blocking KCC2 with ML077 can cause a shift in 

the polarity of the GABAergic response by inducing excitatory responses in previously inhibitory 

responding neurons. These results indicate that KCC2 is an essential component  in regulating [Cl-]i 

and the ECl, thereby determining the sign of the GABAergic response. 
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2. Materials and methods 

2.1 Animals  

Male C57BL/6 mice (Envigo, Horst, the Netherlands; 8–10 wk. old; n = 35) were housed in a climate 

controlled environment (21˚C, 40-50% humidity) on an equinoctial photoperiod of 12h light-dark 

(12:12; LD12:12), a long photoperiod (LP; LD16:8), or a short photoperiod (SP; LD8:16). Food and 

water were available ad libitum. Before recordings, the mice were exposed to their respective 

photoperiod for a minimum of 30 days to ensure entrainment to the given light schedule. 

Experiments were performed within a 4-h interval centered around the middle of the light-phase of 

the photoperiod. All animal experiments were performed in accordance with the regulations of the 

Dutch law on animal welfare, and the institutional ethics committee for animal procedures of the 

Leiden University Medical Center (Leiden, The Netherlands) approved the protocol.  

2.2 Slice preparation 

After decapitation, brains were quickly removed and placed into modified ice-cold artificial 

cerebrospinal fluid (ACSF), containing (in mM): NaCl 116.4, KCl 5.4, NaH2PO4 1.0, MgSO4 0.8, CaCl2 1, 

MgCl2 4, NaHCO3 23.8, glucose 15.1, and 5 mg/L gentamycine (Sigma Aldrich, Munich, Germany) and 

saturated with 95% O2 – 5% CO2. Coronal hypothalamic slices containing the SCN (250 μm) were cut 

using a vibratome (VT 1000S, Leica Microsystems, Wetzlar, Germany) and sequentially maintained in 

regular, oxygenated ACSF (CaCl2 increased to 2 mM and without MgCl2). The slices were incubated in 

a water bath (37˚C) for 30 minutes and were then maintained at room temperature until the start of 

the recordings.  

2.3 Ca2+ imaging 

Neurons in brain slices were bulk-loaded with the ratiometric, membrane permeable Ca2+ indicator 

dye fura-2-acetoxymethyl ester (Fura-2-AM) as described previously (Michel et al., 2013). Briefly, the 

slices were submerged into a mix of ACSF containing 7 µM Fura-2-AM for 10 minutes at 37˚C. The 
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slices were then rinsed four times with fresh ACSF before being transferred to a recording chamber 

(RC-26G, Warner Instruments, Hamden, CT, USA) mounted on the fixed stage of an upright 

fluorescence microscope (Axioskop 2-FS Plus, Carl Zeiss Microimaging, Oberkochen, Germany) and 

constantly perfused with oxygenated ACSF (2.5 mL/min) at room temperature. The indicator dye was 

excited alternatively at wavelengths of 340 and 380 nm by means of a monochromator (Polychrome 

V, TILL Photonics; now FEI Munich GmbH, Munich, Germany). Emitted light (505 nm) was detected by 

a cooled CCD camera (Sensicam, TILL Photonics; now FEI Munich GmbH, Munich, Germany), and 

images were acquired at 2 second intervals (Fig 1). Using an eight-channel pressurized focal 

application system (ALA-VM8, ALA scientific instruments, NY, USA) GABA (200 μM, 15 s) was applied 

locally and neuronal responses were recorded as Ca2+ transients. After two GABA pulses, which were 

separated by 1 minute baseline recording, ACSF containing elevated levels of K+ (20 mM, 15 s) was 

applied to identify healthy, responding neurons. Cells with at least 10% increase in [Ca2+]i in response 

to high levels of K+ were considered as healthy cells. This protocol was repeated after 10 min 

incubation with either the drug ML077 (diluted in ACSF, 10 μM from 28 mM DMSO stock) or DMSO 

(diluted in ACSF, 4 ppm) via bath application (ML077: LP: n = 557 cells from eight animals; SP: n = 387 

cells from eight animals; 12:12: n = 499 cells from eight animals. DMSO: LP: n = 319 cells from four 

animals; SP: n = 149 cells from three animals; 12:12: n = 248 cells from four animals). Both 

experiments and analysis were accomplished using imaging software (TILLvision, TILL Photonics; now 

FEI Munich GmbH, Munich, Germany). Single-wavelength images were background subtracted, and 

ratio images (340/380) were generated. Region of interest-defined cells and mean ratio values were 

determined, from which the intracellular Ca2+ concentration was calculated.  

2.4 Chemicals 

GABA, DMSO and all salts were purchased from Sigma-Aldrich. The first badge of ML077 was 

generously provided by Dr. Craig Lindsley (Vanderbilt University, Nashville, TN, USA) and thereafter 
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purchased from AOBIOUS (Gloucester, MA, USA). Fura-2-AM was purchased from TEFlabs (Austin, TX, 

USA). 

2.5 Data analysis and statistics 

Neuronal Ca2+ responses were analyzed using IGOR Pro (WaveMetrics, Portland, OR, USA). The 

transient responses in Ca2+ concentration within the first seconds after the stimulation were 

evaluated, with responses smaller than ± 5% of baseline values defined as non-responding cells. 

GABA-evoked responses showing Ca2+ transients with a decrease in amplitude lower than 5% from 

baseline were considered inhibitory and responses with an increase higher than 5% from baseline 

were defined as excitatory. Cells that showed both excitatory and inhibitory responses after one 

GABA stimulation were defined as biphasic. Per animal, two to three SCN slices were analyzed and 

the Ca2+ responses to GABA application were measured in 50 – 80 cells. For each animal we 

calculated the distribution of the different types of responses and the E/I ratio. To calculate the E/I 

ratio, we divided the number of cells that responded excitatory by the number of cells that 

responded inhibitory, per animal. Subsequently, we took the average of all the E/I ratios of all 

animals per group. 

Statistical analysis was performed using SPSS (IBM, Armonk, NY, USA). We have used generalized 

estimating equations (GEE) to test if the average distribution of the GABA-induced responses 

(percentages of the 4 different types of responses) differs before and after treatment (ML077 or 

DMSO). We have used a multinomial regression model for the GEE and robust standard errors were 

calculated. We have used the number of cells per animal as a scale weight variable in the GEE to 

(extra) take into account the variability of the number of cells measured per SCN. Additional Wald 

tests shows whether the outcome of the GEE is significant. The effect of the treatment on the E/I 

ratio was tested with two-sided, paired t-tests, and the effect on baseline [Ca2+]i was tested with the 

Mann-Whitney test, because these data did not pass the Shapiro-Wilk normality tests. Differences 

with P ≤ 0.05 were considered significant. 
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3. Results/Discussion 

Using Ca2+ imaging, we tested the effect of the recently developed KCC2 blocker ML077 on 

GABAergic responses in SCN cells. Previous studies have shown that Ca2+ transients are a reliable 

estimate of the neuronal activity, with elevations and reductions in [Ca2+]i reflecting depolarization 

and hyperpolarization, respectively (Choi et al., 2008; Irwin and Allen, 2007; Irwin and Allen, 2009). 

GABAergic responses have been shown to be more excitatory during the night compared to the day 

(Choi et al., 2008; De Jeu and Pennartz, 2002), so we selected the mid-day for recordings to maximize 

the effect of ML077. Blocking KCC2 with ML077 caused an increase in excitatory responses after 

exogenous application of GABA (Fig 1 and Fig 2A; Wald chi2(1) = 23.61, p = 1 x 10-6, n = 8), leading to 

a change in E/I ratio from 0.95 to 3.41 (Fig 2B + 2C; t(7) = 3.45, p = 0.011, n = 8). To investigate which 

cells switched to the excitatory response type, we compared neurons before and after incubation 

with ML077. In 37% of all the cells, the type of the GABAergic response changed as a result of KCC2 

blockage. Of the cells that initially responded to GABA in an inhibitory manner, 26% (n=55) became 

excitatory after incubation with ML077. About half of the inhibitory cells stayed inhibitory (n = 107; 

51%) and the remaining inhibitory neurons became either biphasic (n = 14; 7%) or did not respond to 

GABA anymore (n = 35; 17%) Moreover, half of the neurons that initially did not respond to GABA (n 

= 48; 56%) and the majority of the biphasic responding neurons (n = 20; 69%) became excitatory as a 

result of ML077 application (Fig S1 + Fig 3A; Wald chi2(1) = 23.61, p = 1 x 10-6, n = 8). Since ML077 

was dissolved in DMSO, we’ve used DMSO as control experiments. The control slices, incubated in 

ACSF containing the solvent DMSO (4 ppm), did not show alteration in the GABAergic response types 

(Fig S2 + Fig 3B; Wald chi2(1) = 1.40, p = 0.24, n = 4) nor did it show a shift in the E/I ratio (0.68 to 

1.07, paired t-test; t(3) = 2.60, p = 0.08). Thus, the data demonstrate that the shift in E/I ratio is 

caused by inhibition of KCC2 by ML077. 

We next performed Ca2+ imaging experiments with slices from animals entrained to long- and short 

days to determine whether KCC2 may play a role in photoperiod-induced changes in E/I ratio 
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reported previously (Farajnia et al., 2014). ML077 increased the percentage of cells showing 

excitatory responses in short photoperiod from 24% to 43%, which is equivalent to the fraction found 

after adaptation to long photoperiod conditions (Fig 4A1, 4B1 and (Farajnia et al., 2014)). Note that 

even in the presence of the KCC2 blocker, a difference in the E/I ratio between photoperiods still 

remains. This is in line with the observation that the percentage of excitatory cells increased to a 

similar degree in slices from mice adapted to long photoperiod and 12:12 condition, suggesting that 

KCC2 activity is important for maintaining E/I balance under all photoperiods. From all neurons that 

were initially inhibitory, about 50% stayed inhibitory, approximately 20-25% turned excitatory, and 

the remaining 25-30% became either non-responsive or responded in a biphasic manner. Moreover, 

about half of the non-responders and a significant part of the biphasic cells turned excitatory (Fig 3A 

and Fig 4A4; Wald chi2(1) = 36.62, p = 1.44 x 10-9+ 4B4; Wald chi2(1) = 5.52, p = 0.019). From all the 

slices measured, regardless of the photoperiod of the animal, the E/I ratio increased after blocking 

KCC2 (SP: Fig 4A2 + 4A3; t(7) = 3.92, p = 0.006, n = 8, and, LP: Fig 4B2 + 4B3; t(7) = 4.40, p = 0.003, n = 

8). Together, these data show that, irrespective of their photoperiod, blocking KCC2 increases the 

amount of GABAergic excitation. 

To determine if the drug influences the baseline [Ca2+]i, we analyzed the baseline [Ca2+]i before and 

after application of either ML077 or DMSO. For all three photoperiods, we found an increase in 

baseline [Ca2+]i after administration of ML077, which was not different to treatment with DMSO (Fig 

S3). Consequently, we can conclude that the rise in baseline [Ca2+]i is not an effect of blocking KCC2 

with ML077.  

Furosemide and bumetanide are two pharmacological blockers that have been widely used to block 

the cotransporters KCC2 and NKCC1. Bumetanide has a higher affinity for NKCC1 than for KCC2 

(Gillen et al., 1996; Payne et al., 2003), but furosemide is known to block both NKCC1 and KCC2 with 

equal potency (Blaesse et al., 2009; Delpire et al., 2009). Moreover, furosemide inhibits N-methyl D-

aspartate (NMDA) and GABAA receptors (Staley, 2002). Blocking NKCC1 with bumetanide, and thus 
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the intrusion of Cl-, does have an effect on the GABAergic response, but not on the polarity of the 

response. Bumetanide lowered the amplitude of GABA-evoked elevations in [Ca2+]i, but could not 

substantially convert GABAergic excitation into inhibition (Choi et al., 2008; Farajnia et al., 2014). A 

recent study by Klett and Allen (2017) demonstrated a larger effect on [Cl-]i in SCN neurons due to 

application of the KCC2 blocker VU0240551 compared to bumetanide, suggesting a significant role of 

KCCs in the regulation of [Cl-]i.  Our results show for the first time that a specific blocker for KCC2, 

ML077 (VU0255011), not only attenuates the GABAergic response in the SCN, but can even cause  a 

reversal of  the polarity of the GABAergic response from inhibition to excitation.  

GABA is a dominant neurotransmitter in the SCN and has important roles in synchronization and 

entrainment (Albus et al., 2005). Modeling approaches and experimental evidence show that GABA 

signaling has significant impact on network function determining basic properties and plasticity of 

the SCN clock (Azzi et al., 2017; DeWoskin et al., 2015). Modulation of SCN network underlies 

encoding seasonal day-length changes with clustering of neuronal activity in short-days and wider 

phase distribution of the pacemaker cells in the SCN during long-days (VanderLeest et al., 2007). 

While there is still some controversy on the potential excitatory action of GABA in the adult SCN (see 

(Albers et al., 2017)), there is mounting evidence for excitatory GABA responses and the role of KCCs  

to regulate Cl- concentration (Choi et al., 2008; Farajnia et al., 2014; Irwin and Allen, 2009; Myung et 

al., 2015). Functionally, the modulation of GABA response types and subsequent changes in E/I 

balance may affect SCN network plasticity. Our data show that just blocking  KKC2 can already 

change the E/I balance in the SCN from a short-day to a long-day phenotype. Whether the changes in 

GABAergic E/I balance are sufficient or necessary for photoperiodic encoding by the SCN still needs 

to be established. 

An imbalance between GABAergic excitation and inhibition is implicated in several neurological 

disorders (Marín, 2012; Sgadò et al., 2011) and because of its ability to reduce the level of GABAergic 

excitation, bumetanide is already used in several clinical trials for epilepsy and autism (Bruining et al., 
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2015; Du et al., 2015; Eftekhari et al., 2013; Lemonnier et al., 2012; Pressler et al., 2015). Still, there is 

a demand for improved pharmacological blockers for the cotransporters, since the kinetics of 

bumetanide and furosemide are not optimal due to short half-life time and bad passage of the blood-

brain barrier (Brandt et al., 2010). Our results already show the high effectiveness of ML077 for 

manipulating E/I balance in neuronal networks and this drug has been further optimized as  

VU0463271 (Delpire et al., 2012). Studies have shown that this new inhibitor leads to hippocampal 

hyperexcitability and seizure activity both in slices and in vivo (Kelley et al., 2016; Sivakumaran et al., 

2015). These new and optimized KCC2 blockers are important tools for fundamental research on the 

role of chloride homeostasis in regulating E/I balance in neuronal networks.   

While the mechanisms regulating and maintaining [Cl-]i are still under debate, previous studies have 

shown a prominent role for CCCs (for review: (Ben-Ari, 2002; Payne et al., 2003)). Reduction or 

absence of KCC2 or its functionality leads to decreased inhibitory GABAergic actions (Deeb et al., 

2011; Doyon et al., 2015; Hubner et al., 2001; Rivera et al., 1999; Zhu et al., 2005). Moreover, 

chloride dysregulation caused by reduced KCC2 expression or function is associated with numerous 

neurological disorders including epilepsy, chronic pain, and schizophrenia (Ben-Ari et al., 2012; Kelley 

et al., 2016; Miles et al., 2012; Price et al., 2005). Recently, Glykys et al. questioned the prominent 

role of KCC2 and NKCC1 by showing that blocking these cotransporters with VU0240551 and 

bumetanide did not change [Cl-]i , but that local intracellular and extracellular concentrations of 

anions determined [Cl-]i (Glykys et al., 2014a). Since the argument on the role of immobile anions in 

[Cl-]i regulation is not fully resolved yet (Glykys et al., 2014b; Luhmann et al., 2014; Voipio et al., 

2014), this alternative or additional mechanism deserves further study. With our data, we show a 

significant increase in GABAergic excitation after blocking KCC2 with the new antagonist ML077. This 

GABA-mediated neuronal excitation presumably results from an increased [Cl-]i  and a correlated 

shift in GABA reversal potential. While impermeable anions may still contribute to the maintenance 

of [Cl-]i, our results support the hypothesis that cation-chloride-cotransporters play an important role 

in regulating the chloride homeostasis . 
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The question remains how photoperiod can affect chloride cotransporters to induce a change in E/I 

balance. Myung et al. recently demonstrated an increase in [Cl-]i in the SCN cells after entrainment to 

long photoperiod. Moreover, application of furosemide to long photoperiod entrained SCN slices 

increased synchronization and lengthened the period of the circadian rhythms in Bmal1-Eluc in 12:12 

entrained SCN explants to levels shown for the short photoperiod entrained SCN (Myung et al., 

2015). Combined, these results suggest that modulation of the chloride levels in the cells can play a 

role in day-length encoding in the SCN. At the transcript level, the expression of both KCC2 and 

NKCC1 were upregulated in long photoperiod, when compared to short photoperiod, and the relative 

expression ratio between NKCC1 and KCC2 was significantly higher under long photoperiod in the 

dorsal SCN (Myung et al., 2015). Because these results only show the increase at mRNA level, one 

cannot conclude that NKCC1 causes the higher [Cl-]i  under long photoperiod. More important than 

mRNA or even protein expression is the functional expression and/or regulation of KCC2 vs NKCC1. 

The functionality of KCC2 is modulated by both transcriptional and post-transcriptional routes. 

(De)phosphorylation, recycling, and intracellular trafficking are, amongst others, examples of how 

KCC2 can be modulated and its function can be influenced (Kahle et al., 2013; Kahle and Delpire, 

2016; Kaila et al., 2014; Lee et al., 2011; Mahadevan and Woodin, 2016). Therefore, the decrease in 

functional KCC2 and/or increase in functional NKCC1 in long photoperiod may contribute to elevated 

[Cl-]i and consequently to the rise in GABAergic excitation. From our data we conclude that KCC2 

plays an important role in the hyperpolarizing effect of GABA and thus in maintaining a low [Cl-]i. 

These data have potential societal impact as use of artificial light in modern society leads to “longer 

day length”. Moreover, GABAergic function is essential for sleep, anxiety, and depression. Whether 

day length also affects GABAergic function in other brain areas through this mechanism remains to 

be investigated.  
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Fig. 1 SCN neurons can change GABAergic response after blocking KCC2 with ML077 

(A) Examples of Fura-2-AM loaded SCN neurons from mice entrained to LD12:12. Color 

scale indicates fluorescence intensity at 380 nm excitation in arbitrary units. (Scale bar, 10 

µm) (B) On top, a sketch of the experimental protocol is depicted. SCN slices were 

continuously superfused with ACSF and Ca2+ transients were recorded  in response to focal 

applications of GABA (200 µM) given before and after a 10-minute incubation with ML077. 

Below example traces of Ca2+ transients of 4 neurons are shown demonstrating the changes in 

GABAergic response after blocking KCC2 with ML077. (Scale bars, 50 nM, 30 s)  

Fig. 2 Blocking KCC2 with ML077 caused an increase in GABA-mediated excitation in 

SCN neurons of mice entrained to LD12:12. (A) Pie charts depicting the distributions of 

response types of the same SCN neurons on GABAergic stimulation before and after 

incubation with ML077 (number of cells: n = 499; measured in 23 slices of 8 animals). (B) 

Ratios of excitatory to inhibitory GABAergic signaling before and after incubation with 

ML077. Each value indicates the ratio of all the cells measured from one animal. (C) Increase 

in E/I ratio for each experiment after incubation with ML077 (B + C: (paired t-test; p = 

0.011). 

Fig. 3 GABAergic response type in SCN neurons (LD 12:12) changes after blocking 

KCC2 with ML077. (A) Distribution of GABAergic response types after incubation with 

ML077 grouped per initial GABAergic response type (number of cells per initial response 

type shown on the x-axis). The fraction of cells for each response type resulting from the 

ML077 treatment is depicted on the y-axis and shows a significant effect of the drug on 

response type distribution (total number of cells: n = 499; measured in 23 slices of 8 animals, 

Wald Chi square test; p = 1 x 10-6). (B) Distribution of GABAergic response types after 

incubation with control solution (4 ppm DMSO in ACSF) grouped per initial GABAergic 

response type (number of cells per initial response type shown on the x-axis). The fraction of 
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cells for each response type resulting from the DMSO treatment is depicted on the y-axis and 

shows no significant effect of the solvent (total number of cells: n = 248, measured in 11 

slices of 4 animals, Wald Chi square test; p = 0.24). 

Fig. 4 Changes in response type in SCN neurons after blocking KCC2 with ML077 is 

similar for all photoperiods. (A) Pie charts depicting the distributions of response types on 

GABAergic stimulation before and after incubation with ML077 (number of cells: n = 387; 

measured in 19 slices of 8 SCN) for SP entrained neurons. (B) Ratios of excitatory to 

inhibitory GABAergic signaling before and after incubation with ML077 for SP entrained 

neurons. Each value indicates the ratio of all the cells measured from one animal. (C) Increase 

in E/I ratio for each experiment after incubation with ML077 (B + C: (paired t-test; p = 

0.006)). (D) Distribution of GABAergic response types after incubation with ML077 grouped 

per initial GABAergic response in SCN cells of mice entrained to SP (number of cells per 

initial response type shown on the x-axis). The fraction of cells for each response type 

resulting from the ML077 treatment is depicted on the y-axis and shows a significant effect of 

the drug on response type distribution (Wald Chi square test; p = 1.44 x 10-9). (E) Pie charts 

depicting the distributions of response types on GABAergic stimulation before and after 

incubation with ML077 (number of cells: n = 557; measured from 24 slices of 8 SCN) for LP 

entrained neurons. (F) Ratios of excitatory to inhibitory GABAergic signaling before and after 

incubation with ML077 for LP entrained neurons. Each value indicates the ratio of all the 

cells measured from one animal. (G) Increase in E/I ratio for each experiment after incubation 

with ML077 (F + G: (paired t-test; p = 0.003). (H) Distribution of GABAergic response types 

after incubation with ML077 grouped per initial GABAergic response in SCN cells of mice 

entrained to LP (number of cells per initial response type shown on the x-axis). The fraction 

of cells for each response type resulting from the ML077 treatment is depicted on the y-axis 
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and shows a significant effect of the drug on response type distribution (Wald Chi square test; 

p =0.019).  

Fig S1 Changes in response type in SCN neurons after blocking KCC2 with ML077. 

Number of cells that change response type after incubation with ML077 grouped per initial 

GABAergic response in SCN cells of mice entrained to (A) LD12:12, (B) SP, and (C) LP. 

The number of cells for each response type resulting from the ML077 treatment is depicted on 

the y-axis and shows a significant effect of the drug on response type distribution (number of 

cells per initial response type shown on the x-axis) (LD12:12: Wald Chi square test; p = 1 x 

10-6 SP: Wald Chi square test; p = 1.44 x 10-9 LP: Wald Chi square test; p =0.019).  

Fig S2 DMSO treatment does not affect GABAergic responses. On top, a sketch of the 

experimental protocol is depicted. SCN slices were continuously superfused with ACSF and 

Ca2+ transients were recorded  in response to focal applications of GABA (200 µM) given 

before and after a 10-minute incubation with DMSO in ACSF (4ppm). Below example traces 

of Ca2+ transients of 5 neurons are shown demonstrating the GABAergic responses before and 

after incubation with control solution (4 ppm DMSO in ACSF). (Scale bars, 50 nM, 30 s) 

Fig. S3 Rise in baseline [Ca2+]i is not an effect of blocking KCC2 with ML077. Bar graphs 

show average increase (means ± SEM) in baseline [Ca2+]i after application of ML077 and 

DMSO from all cells of animals entrained to LD12:12 (Mann-Whitney test: p = 0.069, 

ML077: n = 499, DMSO: n = 269), SP (Mann-Whitney test: p = 0.0141, ML077: n = 387, 

DMSO: n = 149), and LP (Mann-Whitney test: p = 0.153, ML077: n = 557, DMSO: n = 319).  
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