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Introduction: Complement activation plays a role in various organs in patients with diabetes. However, in

diabetic nephropathy (DN), the role of complement activation is poorly understood. We examined the

prevalence and clinical significance of complement deposits in the renal tissue of cases with type 1 and

type 2 diabetes with and without DN.

Methods: We measured the prevalence of glomerular C4d, C1q, mannose-binding lectin (MBL), and C5b-9

deposits in 101 autopsied diabetic cases with DN, 59 autopsied diabetic cases without DN, and 41

autopsied cases without diabetes or kidney disease. The presence of complement deposits was scored by

researchers who were blinded with respect to the clinical and histological data.

Results: C4d deposits were more prevalent in cases with DN than in cases without DN in both the

glomeruli (46% vs. 26%) and the arterioles (28% vs. 12%). C1q deposits were also increased in the

glomerular hili (77% vs. 55%) and arterioles (33% vs.14%), and were correlated with DN (P < 0.01). MBL

deposits were only rarely observed. C5b-9 deposits were more prevalent in the cases with diabetes

mellitus (DM) than in the cases without DM (69% vs. 32%; P < 0.001). Finally, glomerular C4d and C5b-9

deposits were correlated with the severity of DN (r ¼ 0.341 and 0.259, respectively; P < 0.001).

Conclusion: Complement activation is correlated with both the presence and severity of DN, suggesting

that the complement system is involved in the development of renal pathology in patients with diabetes

and is a promising target for inhibiting and/or preventing DN in these patients.

Kidney Int Rep (2018) 3, 302–313; https://doi.org/10.1016/j.ekir.2017.10.005
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D
iabetic nephropathy (DN), the leading cause of
end-stage renal disease worldwide, can occur in

patients with either type 1 or type 2 diabetes mellitus
(DM).1–3 DN is characterized by a gradual increase in
proteinuria and blood pressure, and a gradual decrease
in glomerular filtration rate that may result in the need
for renal replacement therapy. Prolonged hyperglyce-
mia can lead to the development of DN via a number
of pathways with complex interactions; however, the
precise cellular and molecular mechanisms that under-
lie this process are poorly understood.4–6

The first evidence for a possible role of the complement
system in the development of DN was provided by the
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finding that serum, urine, and renal samples obtained
from patients with diabetes often contained activated
complement proteins, and that these proteins are associ-
atedwithDN.7–14 Serum levels ofmannose-binding lectin
(MBL) are correlated with the severity of DN, which
suggest a role for the lectin complement pathway.15 In
addition, advanced glycation end-products can directly
bind C1q and activate the complement system,16 and DN
has been associated with increased renal expression of
complement factors C3, C4, andC9 (at the protein level), as
well as increased expression of C1q, C1s, and C1r (at the
mRNA level), which also suggest a role for the classical
complement pathway.8,17 Furthermore, hyperglycemia
can cause glycation-induced dysfunction and/or inacti-
vation of complement regulatory proteins, including
CD59, which inhibits C5b-9 under physiological
conditions11,18; this glycation-induced complement
dysregulation leads to increased C5b-9 levels in patients
with DN.11 In a rat model of type 2 diabetes, treating
diabetic rats with a C3a receptor antagonist improved
Kidney International Reports (2018) 3, 302–313
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renal function and reduced both albuminuria and the
deposition of extracellular matrix proteins.19

Recently, 2 groups reviewed the role of complement
activation in DM.7,14 They concluded that the relative
role of complement in the development of DM-related
complications, including DN, are unknown. More-
over, it remains unclear whether these mechanisms are
similar between type 1 DM and type 2 DM.7 To address
these questions, we examined whether complement
activation occurred in renal autopsy samples obtained
from a large cohort of cases with diabetes with and
without DN. Specifically, we measured the prevalence,
localization, and staining patterns of renal C4d and
C5b-9 deposits. Furthermore, because both the lectin
and classical complement pathways could lead to C4d
deposits, and because both pathways might be
involved in the development of DN, we also deter-
mined which complement pathway was associated with
the deposition of C4d in cases with DN. We validated
our findings in renal biopsy samples. Finally, we
correlated complement deposition with histopathology,
and examined differences in complement deposition
between cases with type 1 and 2 DM.

METHODS
This study group includes a selection of a previously
described cohort.20 In brief, we retrospectively
searched the database of our pathology department
for native kidneys from adult cases with either type 1
or type 2 DM who were autopsied from 1984 to 2004.
We initially included 184 autopsied kidneys that
were prepared for light microscopy, electron micro-
scopy, and immunohistochemistry. We subsequently
excluded 25 cases due to poor tissue quality or missing
tissue for immunostaining. Thus, we included a total of
159 samples from cases with diabetes for whom we
confirmed the histopathological presence or absence of
DN according to the classification for DN.21 In addition,
we included a control group consisting of autopsy
samples obtained from 41 cases without diabetes
without renal pathology. We validated our findings
with autopsy tissue by examining 12 kidney biopsies
from patients with DN and 10 biopsies obtained from
healthy living transplantation donors.

Clinical Data

The clinical information was obtained retrospectively
via the medical records and autopsy reports available
at Leiden University Medical Center, and the general
practitioners of the patients. The following laboratory
parameters were collected from a period starting
1 year before the patient died: serum creatinine,
estimated glomerular filtration rate (eGFR) (calculated
using the Modification of Diet in Renal Disease
Kidney International Reports (2018) 3, 302–313
formula), microalbuminuria (defined as 30�300 mg/l),
proteinuria (defined as >300 mg/l) measured via a 24-
hour urine or dipstick test, systolic and diastolic
blood pressures, serum hemoglobin, serum choles-
terol, and serum glycosylated hemoglobin (HbA1c).

20

The clinical data were analyzed to reflect a stable
representation of the serum and/or urine levels,
thereby excluding data that were clearly affected by
an unstable clinical condition (for example, patients
who were clinically unstable in an intensive care unit
before death). Cause of death was categorized into the
following 5 general categories: cancer, cardiovascular,
infection and/or sepsis, multiple pathologies, and
other (e.g., high-impact trauma).

Histopathology and Transmission Electron

Microscopy

Renal tissue was fixed in 10% buffered formalin and
embedded in paraffin. Sections were cut and then
stained with hematoxylin and eosin, periodic-acid
Schiff, and silver using standard protocols. Glomer-
ular lesions, interstitial lesions, and vascular lesions
were scored according to the histopathological classi-
fication for DN.21 Discrimination between class 0 (i.e.,
no DN) and class I DN was determined using trans-
mission electron microscopy, as described previously.20

Immunohistochemistry and

Immunofluorescence

To measure renal complement activation, immunohis-
tochemistry was performed on adjacent kidney sections
using primary antibodies against the following pro-
teins: C4d (1:150; Biomedica Gruppe, Vienna, Austria),
which is a cleavage product of C4 that binds covalently
to the target tissue and can arise from both the classical
and MBL pathways; C1q (1:1200; DakoCytomation,
Glostrup, Denmark), which reflects activation of the
classical complement pathway; MBL (1:300; Sigma-
Aldrich Biotechnology, St. Louis, Missouri), which
reflects activation of the MBL pathway; and SC5b-9
(1:500; Quidel, San Diego, California), which is
formed by activation of any of the aforementioned
pathways. To investigate the presence of natural anti-
bodies, immunofluorescence was performed on sections
using a fluorescein isothiocyanate�labeled anti-IgM
antibody (1:20; DakoCytomation).

The immunostained tissue samples were scored
semiquantitatively as follows: staining of glomeruli was
scored as absent (representing either an absence of
staining or trace levels of staining in<5% of glomeruli)
or present (representing staining in$5% of glomeruli).
If present, the distribution of glomerular staining was
scored as focal (5%�50% of the glomeruli) or diffuse
(>50% of the glomeruli), and the staining pattern was
303
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scored as segmental (<50% of the glomerular tuft) or
global (>50% of the glomerular tuft). In addition, if
present, glomerular staining was scored as present in
the glomerular capillary walls, mesangial cells, or both.
Immunohistochemical staining in the glomerular hilus,
arterioles, and arterial branches, was scored as absent
or present (i.e., the presence of staining in $1
glomerular hilus, arteriole, and/or arterial branch
was scored as positive). Renal tissue specimens
containing $100 glomeruli were scored by 2
investigators who were blinded with respect to the
clinical data of the cases.
Statistical Analysis

The SPSS statistical software package (version 20.0;
IBM, Armonk, NY) was used for all statistical analyses.
Categorical variables were compared using the c2 test
or Fisher exact test, where appropriate. Continuous
variables were compared using the Student’s t-test or
the Mann-Whitney U test, where appropriate.
Spearman rank correlation coefficient was used to
analyze the correlation between diabetes class and the
presence of glomerular complement deposits. Differ-
ences with a P value < 0.05 were considered statisti-
cally significant. All tissue samples were coded, and
then handled and analyzed anonymously in accordance
with the Declaration of Helsinki. Approval for the
study was obtained from the medical ethics committee
of Leiden University Medical Center.
Table 1. Clinical characteristics of the control cases and diabetic cases

Clinical characteristics
Nondiabetic controls

(n [ 41)
Diabetic cases without DN

(n [ 58)

Age, yr 63.8 � 16.8 69.1 � 12.6

Female, n (%) 16 (39) 24 (41)

T1DM, n (%) NA 5/48 (10)

Duration of diabetes, yr NA 8.4 � 7.3

T1DM (median, IQR) NA 17.5 (2)

T2DM (median, IQR) NA 5.0 (5)

Creatinine serum, mmol/L NA 155 � 169

eGFR, ml/min per 1.73 m2 NA 59 � 36

HbA1C, % unit NA 7.5 � 1.8

Hypertension, n (%) NA 27/48 (56)

Systolic pressure, mm Hg NA 134 � 29

Diastolic pressure, mm Hg NA 75 � 14

Cause of death, n (%)

Cancer 4 (10) 9 (16)

Cardiovascular 16 (39) 20 (34)

Infection/sepsis 4 (10) 7 (12)

Multiple pathologies 13 (31) 14 (24)

Other 4 (10) 8 (14)

DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; HbA1C, glycosylated hemo
mellitus.
Data are presented as the mean � SD, unless stated otherwise.
aBetween nondiabetic controls without renal disease, diabetic cases without DN and diabetic
bBetween diabetic cases without DN and diabetic cases with DN.
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RESULTS
Clinical and Histological Characteristics

We included 159 diabetic cases; histologically confirmed
DNwas present in 101 cases (64%) and absent in 58 cases
(36%).We also included an age- and sex-matched control
cohort of 41 renal samples from autopsied nondiabetic
cases without renal pathology. The clinical characteris-
tics of the cases are summarized in Table 1. The duration
of diabetes was significantly higher in the cases with DN
than in the cases without DN (P ¼ 0.017); however, we
found no difference between these 2 groups with respect
to age, sex, diabetes type, presence of hypertension,
serum creatinine, eGFR, or HbA1c levels.

The histological features of the cases with diabetes
are summarized in Table 2. Among the 101 cases with
DN, DN was distributed as follows: 20% with class I,
20% with class IIA, 10% with class IIB, 45% with class
III, and 5% with class IV. Compared with the cases
without DN, the cases with DN had a significantly
higher prevalence of glomerular hyalinosis, glomerular
capsular drop, arteriosclerosis, and arteriolar hyalinosis
(P < 0.05). In addition, the cases with DN had more
interstitial fibrosis and tubular atrophy (IFTA)
compared with the cases without DN (P ¼ 0.028).

C4d Deposition Is Associated With DN

C4d deposits in the glomeruli, glomerular hili, and ar-
terioles were significantly more prevalent in cases with
diabetes than in the control cases without diabetes
Diabetic cases with DN
(n [ 101)

All diabetic cases patients
(n [ 159) P value

69.0 � 12.8 69.1 � 12,7 0.100a

47 (47) 71 (45) 0.754a

12/89 (14) 17/137 (12) 0.603b

15.3 � 13.1 13.3 � 10.0 0.003b

28.0 (33) 18.0 (28) 0.215b

10.0 (14) 8.0 (15) 0.004b

167 � 112 163 � 135 0.625b

50 � 33 54 � 34 0.184b

8.5 � 2.4 8.1 � 2,3 0.117b

44/85 (52) 71/133 (53) 0.618b

155 � 29 135 � 29 0.780b

75 � 12 75 � 13 0.961b

0.199a

5 (5) 14 (9)

49 (48) 69 (43)

12 (12) 19 (12)

17 (17) 31 (20)

18 (18) 26 (16)

globin; IQR, interquartile range; T1DM, type 1 diabetes mellitus; T2DM, type 1 diabetes

cases with DN.

Kidney International Reports (2018) 3, 302–313
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Table 2. Histological characteristics of the diabetic cases

Histological
characteristics

Diabetic cases
without DN
(n [ 58)

Diabetic cases
with DN

(n [ 101)

All cases
diabetic
patients

(n [ 159) P valuea

DN class

0 (no DN) 58 (100) 0 (0) 58 (37) NA

I 0 (0) 20 (20) 20 (13)

IIA 0 (0) 21 (20) 21 (13)

IIB 0 (0) 10 (10) 10 (6)

III 0 (0) 45 (45) 45 (28)

IV 0 (0) 5 (5) 5 (3)

Glomerular hyalinosis 19 (33) 85 (84) 104 (65) <0.001

Glomerular capsular drop 2 (3) 15 (15) 17 (11) 0.025

FSGS 2 (3) 12 (12) 14 (9) 0.071

IFTA

Absent 22 (38) 17 (17) 39 (25) 0.028

10%�25% 25 (43) 56 (55) 81 (51)

25%�50% 5 (9) 15 (15) 20 (13)

>50% 6 (10) 13 (13) 19 (12)

Arteriosclerosis 46 (79) 92 (91) 138 (87) 0.035

Arteriolar hyalinosis 46 (79) 92 (91) 138 (87) 0.035

Cholesterol emboli 3 (5) 3 (3) 6 (4) 0.483

DN, diabetic nephropathy; FSGS, focal segmental glomerulosclerosis; IFTA, interstitial
fibrosis and tubular atrophy.
aBetween diabetic cases without DN and diabetic cases with DN.
Data are presented as the number of cases (%).
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(P < 0.05) (Table 3), in contrast to C4d deposits in
arterial branches (P ¼ 0.171) (Figure 1). In the diabetic
cohort, C4d deposits were present in the glomeruli,
glomerular hili, and arterioles in 38%, 48%, and 22%
of the cases, respectively. In the nondiabetic control
cohort, C4d deposits were rarely observed in any
vascular structure.

In the cohort of caseswith diabetes, caseswith DNhad
a significantly higher prevalence of C4d deposits in the
glomeruli and arterioles than cases without DN (Figure 1)
(P ¼ 0.019 and P ¼ 0.022, respectively). The cases with
DN had a higher prevalence of C4d in the glomerular
capillary walls (45% vs. 26% of cases without DN; P ¼
0.019) and in the mesangial cells (26% vs. 12%, respec-
tively; P ¼ 0.041) than cases without DN. The distribu-
tion of glomerular C4d did not differ significantly
between the 2 groups. However, the global staining
pattern of C4d was significantly more prevalent in cases
withDN than caseswithout DN (15%vs. 5%;P¼ 0.044).

Within our cohort of cases with DN, eGFR was
significantly lower in the cases with glomerular C4d than
in the cases without glomerular C4d (39.8� 28.6 ml/min
per 1.73 m2 vs. 60.3 � 33.5 ml/min per 1.73 m2; respec-
tively; P ¼ 0.004). In contrast, we found no other cor-
relation between C4d deposits and clinical data (Table 4).

Evidence for Classical Complement Activation

in Cases With Diabetes

Next, to investigate which complement pathway(s) led
to the deposition of C4d in cases with DN, we stained
Kidney International Reports (2018) 3, 302–313 305
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Figure 1. Prevalence of C4d deposits in cases and controls. The
percentage of cases and controls with complement factor C4d is
shown for the indicated renal structures. Asterisks represent the
overall differences among the nondiabetic controls, the diabetic
cases without diabetic nephropathy (DN), and the diabetic cases
with DN. The P values shown between the 2 groups represent post
hoc analyses. **P < 0.01 and ***P < 0.001.
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renal tissue for MBL (to measure the lectin pathway)
and C1q (to measure the classical pathway).

MBL was only observed in 6% of the kidneys from
cases with diabetes and was not observed in the control
cases without diabetes. When present, the staining
pattern ofMBL in the glomeruli was predominantly focal
and segmental; MBL was not observed in the glomerular
hili, arterioles, or arterial branches. We found no sig-
nificant differences betweenMBL deposition in the cases
with diabetes and control cases without diabetes or be-
tween the cases with diabetes with DN and the cases
with diabetes without DN (Figure 2a and Table 3).

Glomerular C1q was present in 36% of the cases
with diabetes, and the staining pattern was predomi-
nantly focal and global. The prevalence of glomerular
C1q was not significantly different between the cases
with diabetes and control cases without diabetes (37%
vs. 49%, respectively; P ¼ 0.150) (Figure 2b and
Table 3). In contrast, the prevalence of C1q in the
glomerular hili, arterioles, and arterial branches was
significantly higher in the cases with diabetes than in
the control cases without diabetes (P # 0.001).
Furthermore, among the cases with diabetes, the cases
with DN had a significantly higher prevalence of C1q
in the glomerular hili and arterioles compared with the
cases without DN (P < 0.05), whereas the prevalence of
C1q in the arterial branches did not differ significantly
between these 2 groups (p ¼ 0.106). Finally, the pres-
ence of C1q deposits was correlated with the presence
of C4d deposits in the glomeruli (P ¼ 0.006), glomer-
ular hili (P ¼ 0.027), and arterioles (P < 0.001).
306 Kidney International Reports (2018) 3, 302–313



Figure 2. (a–c) Prevalence of mannose-binding lection (MBL), C1q, and C5b-9 deposits in cases and controls. The percentage of cases and
controls with complement factor MBL (a), C1q (b), and/or C5b-9 (c) is shown for the indicated renal structures. The P values shown between the
2 groups represent post hoc analyses. ***P < 0.001, c2 test between nondiabetic controls, diabetic cases without diabetes nephropathy (DN),
and diabetic cases with DN.
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C5b-9 Deposits Are Associated With Diabetes,

But Not With DN

In the cases with diabetes, glomerular C5b-9 staining
was predominantly diffuse and global. Although the
prevalence of C5b-9 deposits was significantly higher
in the glomeruli, glomerular hili, and arterioles of the
cases with diabetes compared with the control cases
without diabetes (P < 0.001) (Figure 2c and Table 3),
the prevalence of C5b-9 was still relatively high in the
control cases without diabetes. Only the prevalence of
C5b-9 deposits in the glomerular hili were significantly
higher in the cases with DN than in cases without DN
(P ¼ 0.047) (Figure 2c). The presence of glomerular
C5b-9 deposits was correlated with the presence of
glomerular C4d deposits (P ¼ 0.002).

The prevalence, location, distribution, and staining
patterns of complement proteins in the glomeruli,
Kidney International Reports (2018) 3, 302–313
glomerular hili, arterioles, and arterial branches of the
cases with diabetes are listed in Table 3. Representative
images of C1q, C4d, MBL, and C5b-9 staining in these
structures are shown in Figure 3. C4d and C5b-9
deposits are correlated with histological lesions and
DN class.

Among the cases with diabetes, the presence of
glomerular C4d was correlated with glomerular hyali-
nosis (P ¼ 0.020), IFTA (P < 0.001), arteriosclerosis
(P ¼ 0.017), and arteriolar hyalinosis (P ¼ 0.017)
(Supplemental Table S1A and S1B). Moreover, the
presence of C4d in the glomerular hili was correlated
with glomerular hyalinosis (P ¼ 0.002), and the pres-
ence of C4d in the arterioles was correlated with IFTA
(P < 0.001), arteriosclerosis (P ¼ 0.041), and arteriolar
hyalinosis (P ¼ 0.041). Although glomerular C1q was
not correlated with histological lesions, the presence of
307



Figure 3. Representative images of complement staining in patients. Kidney sections were immunostained for the indicated proteins, and
representative images containing the glomeruli, glomerular hili, arterioles, and arterial branches are shown. Mannose-binding lection
(MBL) staining was negative in the glomerular hilus, arterioles, and arterial branches. Bars ¼ 50 mm.
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C1q in the arterioles was correlated with the presence
of glomerular capsular drop (P ¼ 0.034), arteriolar
hyalinosis (P ¼ 0.048), and IFTA (P ¼ 0.027). The
presence of MBL in the glomeruli, arterioles, and
arterial branches was not correlated with any renal
lesion. In addition, the presence of glomerular C5b-9
was correlated with IFTA (P ¼ 0.008). Finally, with
respect to DN class, the prevalence of glomerular C4d
and C5b-9 was correlated with more severe classes of
Figure 4. Percentage of patients with glomerular C4d deposits and glome
presence of glomerular C4d (a) and C5b-9 (b) was correlated with diabetic n
coefficient (r) was 0.344 and 0.228, respectively (both P < 0.01). Cases w
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DN (p # 0.001) (Figure 4), particularly with class III
and class IV DN.

Differences in Complement Deposition Between

Type 1 DM and Type 2 DM

Data on diabetes type was available for 137 cases (86%
of cases with diabetes); 17 cases (12%) had type 1 DM
and 120 cases (88%) had type 2 DM. Compared with
cases with type 2 DM, cases with type 1 DM had a
rular C5b-9 deposits plotted against diabetic nephropathy class. The
ephropathy class. For C4d and C5b-9, the Spearman rank correlation
ithout diabetic nephropathy were classified as class 0.
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significantly higher prevalence of C4d in glomeruli
(64% vs. 33%; P ¼ 0.012), C4d in arterioles (47% vs.
18%; P ¼ 0.007), and C5b-9 in glomeruli (94% vs.
64%; P ¼ 0.013). Within the subgroup of cases with
DN, cases with type 1 DM also had a significantly
higher prevalence of C4d in glomeruli (75% vs. 35%;
P < 0.01), C4d in arterioles (50% vs. 22%; P ¼ 0.040),
and C5b-9 in glomeruli (100% vs. 68%; P < 0.05).

Evidence for the Activation of the Classical

Complement Pathway in Biopsies

To support our findings with autopsy tissue, we found
that the prevalence of glomerular C4d was significantly
higher in biopsies from cases with DN compared with a
control group of biopsies obtained from healthy living
transplantation donors (75% vs. 10%, respectively;
P ¼ 0.002); similar results were obtained with respect
to glomerular C5b-9 deposits (75% vs. 0%, respec-
tively; P ¼ 0.001) (Figure 5). In contrast, the preva-
lence of glomerular C1q deposits did not differ
significantly between these 2 groups (58% vs. 40%,
respectively; P ¼ 0.392), and glomerular MBL deposits
were not observed in either group. The prevalence of
glomerular IgM deposits was significantly higher in
the cases with DN compared with the control cases
(82% vs. 30%, respectively; P ¼ 0.017), and the
prevalence of glomerular IgM deposits were signifi-
cantly correlated with the prevalence of glomerular
C1q (P ¼ 0.003) and C4d (P ¼ 0.001) deposits. Finally,
glomerular IgM deposits co-localized with glomerular
C1q and C4d deposits (Figure 6), which suggested that
the classical complement pathway was activated in
cases with DN.

DISCUSSION
DN is a microvascular complication that affects 20% to
40% of patients with diabetes, making it the leading
cause of end-stage renal disease.1–3 An increasing body
Figure 5. Percentage of renal sections containing IgM, C1q,
mannose-binding lectin (MBL), C4d, or C5b-9 deposits. Biopsy
samples were obtained from living patients with diabetic
nephropathy (n ¼ 12) and healthy living renal transplantation donors
(n ¼ 10) and stained for IgM, C1q, MBL, C4d, and C5b-9. P values
were calculated using the c2 test.
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of evidence has suggested that complement activation
via the lectin and/or classical complement pathway
plays a role in the development of DN.4–7,14 We
investigated the deposition of complement proteins in a
relatively large cohort of cases with diabetes with DN
and without DN. We found that the complement acti-
vation marker C4d was correlated with DN, as well as
with the severity of DN, microvascular and interstitial
lesions, and lower eGFR in cases with DN, suggesting
that complement activation might play a role in the
development of DN.

Because C4d binds covalently to its target cells, C4d
can be observed long after the factors that activated the
pathway have dissociated, making it a commonly used
biomarker for complement activation.22 The prevalence
of C4d deposits in the glomeruli and arterioles was
significantly higher in cases with DN than cases
without DN and in cases without diabetes without
renal pathology, both in the autopsy cohort and in the
biopsy cohort. Moreover, glomerular C4d and arteriolar
C4d were more prevalent in the cases with vascular and
chronic renal lesions, and glomerular C4d was corre-
lated with the severity of DN. These data suggested
that complement activation, together with the renal
microvasculature, might be involved in the develop-
ment of DN. This notion was supported by the general
absence of C4d deposits among the control cases
without diabetes.

To investigate which complement pathway could
underlie the deposition of C4d, we studied the preva-
lence and localization of C1q (to measure the classical
pathway) and MBL (to measure the lectin pathway)
deposits. The presence of C1q, IgM, and C4d deposits
were associated with each other, and co-localized in the
same renal vascular structures, whereas MBL was
detected rarely in our cohort. These findings suggested
that the presence of C4d reflected activation of the
classical complement pathway. However, because MBL
is not covalently bound and because other proteins
such as ficolins can initiate the lectin pathway, we
could not exclude the possibility that activation of the
lectin pathway led to C4d deposition.

C4d deposits were significantly more prevalent in
kidneys from cases with type 1 DM than in kidneys
from cases with type 2 DM, both in the total cohort of
cases with diabetes and in the subgroup of cases with
DN. The presence of DN was not a confounder in this
association because DN was not more prevalent in type
1 DM compared with type 2 DM. Rowe et al. showed
similar differences in pancreatic C4d deposition among
cases with type 1 DM, type 2 DM, and control cases
without diabetes.23 The higher C4d prevalence be-
tween cases with type 1 DM and type 1 DM could
possibly reflect a different pathogenesis. Nevertheless,
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Figure 6. Glomerular IgM deposits co-localize with glomerular C1q and C4d. Adjacent sections of an autopsied kidney from a case with diabetic
nephropathy were stained for C1q (a) or IgM (b). Adjacent sections of an autopsied kidney from a case with diabetic nephropathy were stained
for C4d (c) or IgM (d); the arrowheads indicate co-localization between C4d and IgM. The scale bars in (a) and (c) represent 50 mm; the scale
bars in (b) and (d) represent 25 mm.
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we could not exclude the possibility that the difference
observed in complement deposition might be attrib-
uted, at least in part, to the duration of diabetes rather
than the type of diabetes.
310
Glomerular C4d was a common finding in our cases
with class III DN. Paueksakon et al. suggested that
Kimmelstiel-Wilson lesions, which are a hallmark lesion
of DN and a diagnostic requirement for class III DN,
Kidney International Reports (2018) 3, 302–313
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might be a form of thrombotic microangiopathy. Spe-
cifically, they found that a subset of cases with DN had
fragmented red blood cells exclusively in Kimmelstiel-
Wilson lesions.24 Recently, we reported that comple-
ment factor C4d was a common denominator in several
thrombotic microangiopathies.25 Thus, our data further
supported the hypothesis that Kimmelstiel-Wilson
lesions might be a form of thrombotic microangiopathy
that arises from complement activation. The underlying
cause of C4d deposits in the arterioles, arteries, and
glomerular hilus (the junction between afferent and
efferent arterioles) is currently unknown. Because both
renal afferent arterioles and renal efferent arterioles
play a role in regulating renal blood flow, these vessels
can be exposed to extremely turbulent blood flow and
high shear stress conditions,26–29 which may increase
vulnerability to vascular injury, complement deposi-
tion, and/or the development of renal pathology.

We found that C5b-9 deposits were more prevalent
in our cases with diabetes than in the control cases
without diabetes; however, the clinical relevance of
these deposits in our cohort was difficult to interpret,
because C5b-9 was relatively frequently prevalent in
control cases without diabetes (albeit to a lesser extent
than in the cases with diabetes). This finding might be
related in part to our use of autopsy samples because
we did not observe these deposits in renal biopsies
obtained from living donors, which was consistent
with findings reported by Qin et al.11 Nevertheless, in
our cohort of cases with diabetes with DN, the presence
of glomerular C5b-9 was correlated with the severity of
DN, which suggested that C5b-9 might play a role in
the progression of renal damage. Our data suggested
that the process that leads to C4d deposition also leads
to C5b-9 deposition. However, C5b-9 could have also
been activated due to a direct effect of hyperglycemia
on regulatory proteins in the complement system.
Hyperglycemia can lead to the glycation of CD59,
which inhibits C5b-9 under physiological condi-
tions.11,18 This glycation-induced inactivation of CD59
could lead to the formation of C5b-9.

In the setting of DN, several factors could have led
to the deposition of C4d. For example, autoantibodies
can activate the complement system.30 This notion is
supported by the report of linear IgG staining along the
glomerular basement membrane in 60% of type 2 DM
cases with DN.31 In addition, high glucose levels in
cases with DM can lead to increased levels of glycated
proteins, including advanced glycation end-products
and oxidized proteins,32,33 which can activate the
classical and/or lectin pathways either directly or by
reacting with autoantibodies.16,34–36 The complement
system can also be activated by the binding of natural
(i.e., IgM) antibodies to either hypoxic or apoptotic
Kidney International Reports (2018) 3, 302–313
cells in the setting of DN.37–39 Natural antibodies play
an important role in clearing damaged cells via intra-
cellular antigens that are externalized during apoptosis
and/or hypoxic conditions.37–41 We found a signifi-
cantly higher prevalence of glomerular IgM deposits in
biopsies from cases with DN compared with healthy
living transplantation donors. Moreover, glomerular
IgM deposits co-localized with—and were significantly
correlated with—both C1q and C4d, which supported
the hypothesis that IgM antibodies activate the clas-
sical complement pathway in cases with DN.

It is currently unknown whether complement acti-
vation is a cause and/or consequence of microvascular
damage in DN. Our data suggested that complement
activation was involved in the progression of renal
damage in cases with diabetes mellitus because
complement activation was correlated with more severe
renal damage, including higher DN class and increased
IFTA levels. These findings were consistent with other
studies with regard to complement activation in the
development of DN and other diabetes-associated
microvascular and/or macrovascular complications.7,14

Furthermore, type 2 diabetic rats treated with a com-
plement inhibitor had improved renal function and
morphology compared with untreated rats,19 which
supported the notion that complement activation plays
a role in the progression of diabetes-associated kidney
disease. In the context of DM, hyperglycemia can both
directly and indirectly lead to complement deposition,
which can then lead to the increased production of
reactive oxygen species, activation of protein kinase C,
and upregulation of nuclear factor-kB, thereby
inducing the release of proinflammatory, pro-
thrombotic cytokines, and growth factors.7 Both
complement-dependent and complement-independent
mechanisms can then lead to inflammation, prolifera-
tion, and thrombosis, which together characterize the
diabetes-associated complications in target organs. In
contrast, complement activation may also be a conse-
quence of renal vascular damage, possibly following
activation via natural antibodies. This hypothesis is
consistent with our findings regarding the presence of
C4d and IgM antibodies in other renal micro-
angiopathies.25,42 Moreover, we previously reported
that C4d deposits were associated with remodeling of
the glomerular basement membrane,43 which was
consistent with cases with DN that presented with a
remodeled glomerular basement membrane. Neverthe-
less, despite our relatively large cohort and our ability
to examine >100 glomeruli per case, the autopsy-based
nature of this study precluded our ability to measure
causality. Therefore, future studies should be designed
to determine whether complement activation is a cause,
consequence, or mediator of DN.
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Our study had several limitations. First, the use of
autopsy samples precluded our ability to investigate
whether the prevalence of complement deposition in the
glomeruli, glomerular hili, and/or vessels was associated
with patient survival and/or renal survival. Second, our
study might have had a selection bias because not all
cases with diabetes had an autopsy; generally speaking,
most cases that are autopsied were in the hospital at the
time of death. Third, because autopsy samples were
used, we could not exclude the possibility that post-
mortem changes and/or cause of death might have
affected the tissue in terms of protein expression and/or
tissue morphology. However, to address this possibility,
we examined control samples obtained from autopsied
cases without diabetes or renal pathology. Furthermore,
because cause of death was not significantly correlated
with the prevalence of complement deposits, and
because our findingswere supported by examining renal
biopsy samples, we concluded that our data were not
likely affected by autopsy-related artifacts. In contrast,
the strength of our studywas the relatively high number
of cases combined with our ability to examine >100
glomeruli per case.

In conclusion, complement activation is associated
with DN, and both glomerular C4d and glomerular
C5b-9 deposits are correlated with the class of DN.
Furthermore, complement deposits in several renal
vascular structures are correlated with more severe
renal damage. Our data suggest that complement acti-
vation is involved with the development of renal
damage in cases with diabetes, and that inhibition or
modulation of complement activity could be a prom-
ising therapeutic strategy for patients with DN.
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Table S1. (A) C1q deposits and histologic lesions in all

diabetic cases. (B) mannose-binding lection (MBL)

deposits and histologic lesions in all diabetic cases. (C) C4d

deposits and histologic lesions in all diabetic cases. (D)

C5b-9 deposits and histologic lesions in all diabetic cases.
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