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Abstract

The topic non-parametric estimation of transition probablities in non-Markov multi-state models has

seen a remarkable surge of activity recently. Two recent papers have used the idea of subsampling

in this context. The first paper, by de Uña Álvarez and Meira-Machado, uses a procedure based

on (differences between) Kaplan-Meier estimators derived from a subset of the data consisting of

all subjects observed to be in the given state at the given time. The second, by Titman, derived

estimators of transition probabilities that are consistent in general non-Markov multi-state models.

Here we show that the same idea of subsampling, used in both these papers, combined with the

Aalen-Johansen estimate of the state occupation probabilities derived from that subset, can also be

used to obtain a relatively simple and intuitive procedure which we term landmark Aalen-Johansen

(LMAJ). We show that the LMAJ estimator yields a consistent estimator of the transition probabilities

in general non-Markov multi-state models under the same conditions as needed for consistency of

the Aalen-Johansen estimator of the state occupation probabilities. Simulation studies show that

the LMAJ estimator has good small sample properties and is slightly more efficient than the other

estimators.
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Introduction

Multi-state models are finding increased application in medical research. They allow a detailed view of
the disease or recovery process of a patient, and they can be used to obtain prediction probabilities of
future events, after a given event history. A number of reviews on multi-state models are available in the
literature1–5. The relevant quantities for these prediction probabilities in multi-state terminology are the
transition probabilities, the probabilities to be in a statem at time t, given that the patient is in state ` at an
earlier time s. When the multi-state model is Markov, an elegant theory connects the transition intensities
of the multi-state model to the transition probabilities, leading to the Aalen-Johansen estimator6.

When the multi-state model is Markov, the Aalen-Johansen estimator gives consistent estimators of
the transition probabilities. When the multi-state model is non-Markov, this is no longer the case. Meira-
Machado et al.7 considered estimation of the transition probabilities for a non-Markov irreversible
illness-death model. Their procedure was based on expressing the transition probabilities of interest
in terms of expectations of transformations of the joint distribution of the time to absorption and the
sojourn time in the initial state, and replacing these expressions by weighted averages. They showed
superior performance of their non-Markov estimators over the Aalen-Johansen estimator in case of
strong violation of the Markov assumption. Allignol et al.8 defined a competing risks process (which
is by its nature always Markov) for which the cumulative incidences relate in a certain way to the
transition probabilities of interest. Both methods require that the support of the censoring distribution is
contained in the support of the lifetime distribution, an assumption that is unlikely to hold in most medical
applications, because of limited follow-up of patients. Two recent papers have improved on these results
by removing the restrictive support assumption. The paper by de Uña Álvarez and Meira-Machado9

considers an irreversible illness-death model and proposes – among others – a subsampling approach
where a selection is made of the data consisting of subjects occupying a given state at a particular time;
based on this subset an estimator proposed by Pepe10 consisting of a difference between two Kaplan-
Meier estimates is proposed for one of the transition probabilities. Titman11 extended and improved on8
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by also allowing extension to general multi-state models. Although not explicitly mentioned, Titman’s
estimators are also based on subsampling.

Although the non-parametric Aalen-Johansen estimator6 will not in general give consistent estimators
of the transition probabilities in non-Markov multi-state models, Datta and Satten12 have shown that,
even for non-Markov multi-state models, the estimator of state occupation probabilities derived from
the non-parametric Aalen-Johansen estimator is consistent. The paper by Glidden13 provides further
understanding of this result and presents asymptotic results and estimators of pointwise standard errors
and simultaneous confidence bands. In this paper we show that a relatively simple and intuitive procedure
that we call landmark Aalen-Johansen (LMAJ) will also provide consistent estimators of transition
probabilities for general multi-state models. As in9 and11, the procedure is based on subsampling; it
selects subjects fulfilling the requirements of being in a given state (or set of states). Within this subset,
estimates of the state occupation probabilities are obtained using the Aalen-Johansen estimator. Since
the idea of selecting subjects in a given state at a given (landmark) time is akin to landmarking14–16,
we refer to the new estimator as the landmark Aalen-Johansen (LMAJ) estimator. The LMAJ estimator
makes no assumptions on the support of the censoring distribution and is defined for arbitrary multi-
state models. We show how the LMAJ estimator compares with the other estimators9;11 by including the
LMAJ estimator in the same simulation set-up as Titman11, and two additional scenarios, and we apply
the LMAJ estimator in data from a randomized clinical trial in breast cancer. For easy comparison of the
LMAJ estimator with the aforementioned estimators, we refer to them with the same abbreviations as
used by Titman11: CP (conditional Pepe) for the subsampling estimator of de Uña Álvarez and Meira-
Machado9 and NM (non-Markov) for the estimator of Titman11.

The landmark Aalen-Johansen estimator

We broadly follow notation of Glidden13 and define X̃(t) to be a random multi-state process, taking
values in the state space 1, . . . ,K, with K finite. The multi-state process has right-continuous paths, and
a finite number of transitions. For i = 1, . . . , n, and j, k = 1, . . . ,K, with j 6= k, the counting processes

Ñijk(t) = #{u ≤ t, X̃i(u−) = j, X̃i(u) = k}

count the number of direct transitions of subject i from state j to state k up to and including time t, and

Ỹij(t) = 1{X̃i(t−) = j}

Prepared using sagej.cls
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is the at-risk process of subject i corresponding to state j. The sigma-algebra generated by the counting
and at-risk processes defines the filtration

Ft = σ{Ñijk(u), Ỹij(u), 0 ≤ u ≤ t, i = 1, . . . , n, j, k = 1, . . . ,K, j 6= k}.

The transition hazards are defined by

λ̃jk(t |Ft−) = lim
∆t↓0

P (X̃(t+ ∆t) = k | X̃(t) = j,Ft−)/∆t. (1)

In general (non-Markov) multi-state models, these transition hazards will depend not only on the present
state j at time t, but also on the further past Ft−. When the multi-state process is Markov, (1) simplifies
to λ̃jk(t) = lim∆t↓0 P (X̃(t+ ∆t) = k | X̃(t) = j)/∆t. The transition probabilities are defined by

P`m(s, t |Fs−) = P (X̃(t) = m | X̃(s) = `,Fs−).

For Markov models, the transition probabilities simplify to P`m(s, t) = P (X̃(t) = m | X̃(s) = `).

When the multi-state model is not Markov, the transition probability P`m(s, t |Fs−) will depend on
the past before time s, Fs−. For instance, when the process is a Markov renewal process, P`m(s, t |Fs−)

will crucially depend on the time at which state ` was entered before time s, because that will determine
the duration in state `. We would like to emphasize at this point that in such a case one should always
try to take into account the extra relevant information (here the time of entry into state `), both in the
target of inference and in the estimation procedure; for instance in Markov renewal processes explicit
expressions for estimators of transition probabilities are also available17. Even when the multi-state
model is not Markov, however, the transition probability P`m(s, t) may be relevant as a summary of
different transition probabilities P`m(s, t |Fs−), in case 1) the extra relevant information in Fs− is not
available, or 2) when interest is in an average over the histories Fs− of P`m(s, t |Fs−), or 3) when it
is unknown how λ̃jk(t |Ft−) depends on the history; in practice it will often be uncertain whether or
not the multi-state model is Markov and in such cases an estimator that is robust against possible non-
Markovianity would be useful.

The sentence “average over the histories Fs− of P`m(s, t |Fs−)” is admittedly not very precise. In
particular instances, when the nature of violation of the Markov assumption is known, the statement can
be made precise. To give an example of what is meant, consider the irreversible illness-death (Markov
renewal) model, where the transition λ̃23(t |Ft−) from the illness to the death state depends (only) on the
duration in state 2. Then P23(s, t |Fs−) depends on Fs− only through the time of entry, say T2, in state
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2. In this instance, we have

P23(s, t) =

∫ s

0

P23(s, t |T2 = t2)f(t2 |X(s) = 2)dt2,

where f(t2 |X(s) = 2) represents the density of T2, given the subject is in state 2 at time s > t2. Other
types of violations of the Markov assumption will call for different dependencies of P`m(s, t |Fs−) on
Fs−, and hence different kind of averages.

For a Markov model, define the cumulative transition hazards Λ̃jk(t) =
∫ t

0
λ̃jk(u)du and gather all of

them in the K ×K matrix Λ̃(t) with (j, k)th off-diagonal element Λ̃jk(t) and (j, j)th diagonal element
Λ̃jj(t) = −

∑
k 6=j Λ̃jk(t). Similarly define the K ×K matrix P(s, t) with (`,m)th element P`m(s, t).

Then6 the matrix of transition probabilities can be written as a matrix product integral of the transition
hazards, as

P(s, t) =
∏

s<u≤t

(
I + dΛ̃(u)

)
.

The vector P(t) of state occupation probabilities, with mth element Pm(t) = P (X̃(t) = m), can be
retrieved through P(t) = π(0)P(0, t), with π(0) a 1×K vector with kth element πk(0) = P (X̃(0) =

k). Together, we have the relation

P(t) = π(0)
∏

0<u≤t

(
I + dΛ̃(u)

)
. (2)

Datta & Satten12 showed that also for non-Markov multi-state processes, the state occupation
probability vector follows a relation like (2), but with Λ(·) replaced by the partly conditional transition
rates Λ(·)18, where

λjk(t) = lim
∆t↓0

P (X̃(t+ ∆t) = k | X̃(t) = j)/∆t, Λjk(t) =

∫ t

0

λjk(u)du,

for the transition rate from state j to state k. In contrast to the transition rates in (1) the partly conditional
transition rates condition only on the current state, not on the further history Ft−, and can be thought of
as complex weighted averages of transition hazards over all possible histories.

The observed data consist of right censored versions of the multi-state process. Let Ci be a right
censoring time, for i = 1, . . . , n, assume that X̃i(·) and Ci are independent and identically distributed,
and define Hi(t) = 1{Ci ≥ t} and the censored multi-state, counting and at-risk processes Xi(t) =

Prepared using sagej.cls
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X̃(t ∧ Ci),

Nijk(t) = #{u ≤ t,Xi(u−) = j,Xi(u) = k,Hi(u) = 1},

Yij(t) = 1{Xi(t−) = j,Hi(t) = 1}.

To define Aalen-Johansen type estimators, it is convenient to gather the counting and at-risk processes
into K ×K matrices. Define Ni(t) to be the matrix with off-diagonal (j, k)th element Nijk(t) and
(j, j)th diagonal element Nijj(t) = −

∑
k 6=j Nijk(t), and define YiD(t) to be the diagonal matrix with

(j, j)th diagonal element equal to Yij(t). Estimators of the cumulative partly conditional transition rates
are obtained by defining N jk(t) =

∑n
i=1Nijk(t), Y j(t) =

∑n
i=1 Yij(t), their matrix versions N(t) and

YD(t), and finally

Λ̂(t) =

∫ t

0

Y
−1

D (u)dN(u).

With π̂(0) the 1×K vector containing the empirical proportions π̂k(0) = n−1
∑n
i=1 1{X̃i(0) = k},

under appropriate conditions the empirical counterpart of (2),

P̂(t) = π̂(0)
∏

0<u≤t

(
I + ∆Λ̂(u)

)
(3)

provides a consistent estimator of the state occupation probabilities P (X̃(t) = m)12.

We are ready to formulate our landmark Aalen-Johansen estimator of the transition probabilities
P`m(s, t) = P (X̃(t) = m | X̃(s) = `). For fixed s and `, the estimator is based on re-estimated partly
conditional rates obtained from selecting subjects with Xi(s) = `. We will use the superscript (LM) to
denote versions of counting and at risk processes and of estimators based on a landmark data set which
selects subjects who are at state ` at time s, suppressing in the notation that this selection depends on the
fixed ` and s. Thus, the landmark based versions of N jk(t), Y j(t) and Λ̂(t) are defined as

N
(LM)

jk (t) =

n∑
i=1

Nijk(t)1{Xi(s) = `},

Y
(LM)

j (t) =

n∑
i=1

Yij(t)1{Xi(s) = `}, (4)

Λ̂(LM)(t) =

∫ t

0

Y
(LM)

D

−1

(u)dN
(LM)

(u),
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where N
(LM)

(t) and Y
(LM)

D (t) are matrices containing as elements N
(LM)

jk (t) and Y
(LM)

j (t), arranged as
in N(t) and YD(t). Finally, the LMAJ estimator is given by

P̂ LMAJ
`m (s, t) = π̂(LM)(s)

∏
s<u≤t

(
I + ∆Λ̂(LM)(u)

)
, (5)

with π̂(LM)(s) a 1×K vector with π̂(LM)
` (s) = 1, and other values equal to 0.

In the appendix we prove consistency of P̂ LMAJ
`m (s, t), under the same assumptions as needed for

consistency of the Aalen-Johansen estimator of the state occupation probabilities12, plus the additional
assumption that P (X̃(s) = `) > 0.

Standard errors

Glidden13 argues that the Greenwood estimators of the pointwise standard errors of the Aalen-Johansen
estimator of the state occupation probabilities remain valid also if the Markov assumption is violated. We
claim that the same is true for the LMAJ estimator. The simulation studies, reported below, corroborate
this claim. For simultaneous confidence bands more elaborate methods need to be used13.

Generalized conditional probabilities

Titman11 considers more generally estimators of PLM(s, t) = P (X̃(t) ∈M| X̃(s) ∈ L). It is not
difficult to see that the proof of consistency of the LMAJ estimator (see Appendix) can be extended
in a straightforward way to yield consistency of P̂ LMAJ

Lm (s, t) obtained by replacing 1{Xi(s) = `} by
1{Xi(s) ∈ L} in the definitions of (4). Also, π̂(LM)(s) in (5) should be replaced by the vector of relative
proportions of subjects in the states ` ∈ L at time s. Finally, a consistent estimator of PLM(s, t) follows
by defining P̂ LMAJ

LM (s, t) =
∑
m P̂

LMAJ
Lm (s, t).

Comparison with CP and NM for the irreversible illness-death model

If there is no censoring between s and t, both the CP (for irreversible illness-death models) and the NM
and LMAJ estimators of P`m(s, t) (for general multi-state models) reduce to the proportion (among those
in state ` at time s) in state m at time t. In fact this holds more generally for P̂NM

LM(s, t) and P̂ LMAJ
LM (s, t).

In the presence of censoring the three estimators may differ.

It is instructive to contrast the CP, NM and LMAJ estimators, in the case of an irreversible illness-
death model. It is not difficult to see that all three methods give identical estimates for P22(s, t) and
P23(s, t) = 1− P22(s, t), so we concentrate on estimates of P11(s, t), P12(s, t) and P13(s, t). We
consider a small example data set, shown in Table 1, and take s = 1.5. The table shows the times t2
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id t2 t3
1 2 5
2 3 4+
3 – 7
4 6 8
5 1 9

Table 1. A small data set used for illustration.

and t3 at which states 2 and 3 were entered. The 4+ for t3 of subject 2 means that the subject was
censored (in state 2) at time t = 4; the – for t2 of subject 3 means that state 2 was never reached because
the subject went directly to state 3.

All estimators only consider subjects 1–4, since subject 5 is in state 2 at time s = 1.5. Recall the
definitions ofN

(LM)

jk (t) and Y
(LM)

j (t) from Equation (4), taking ` = 1 and s = 1.5 to define the landmark
data set, and in addition, define

NiJ k(t) = #{u ≤ t,Xi(u−) ∈ J , Xi(u) = k,Hi(u) = 1},

YiJ (t) = 1{Xi(t−) ∈ J , Hi(t) = 1},

and

N
(LM)

J k (t) =

n∑
i=1

NiJ k(t)1{Xi(s) = `},

Y
(LM)

J (t) =

n∑
i=1

YiJ (t)1{Xi(s) = `}.

Then, with N
(LM)

1• (t) = N
(LM)

12 (t) +N
(LM)

13 (t), we can define the conditional Kaplan-Meier survival
functions

Ŝ1(t | s) =
∏

s<u≤t

(
1− dN

(LM)

1• (u)

Y
(LM)

1 (u)

)
,

Ŝ{12}(t | s) =
∏

s<u≤t

(
1−

dN
(LM)

{12}(u)

Y
(LM)

{12}(u)

)
,

Ŝ2(t | s) =
∏

s<u≤t

(
1− dN

(LM)

23 (u)

Y
(LM)

2 (u)

)
.
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The first estimates the conditional probability of remaining in state 1, the second of remaining in state 1
or 2, the third of remaining in state 2. With these definitions, we can see that estimators for P11(s, t) and
P13(s, t) are the same for CP and NM, given by

P̂CP
11 (s, t) = P̂NM

11 (s, t) = Ŝ1(t | s),

and
P̂CP

13 (s, t) = P̂NM
13 (s, t) = 1− Ŝ{12}(t | s).

Estimators for P12(s, t) differ between CP and NM; for CP we simply have P̂CP
12 (s, t) = 1− P̂CP

11 (s, t)−
P̂CP

13 (s, t), while the definition of NM gives

P̂NM
12 (s, t) = Ŝ{12}(t | s)π̂2 | 1(t | s),

where π̂2 | 1(t | s) is the proportion of subjects, among those not yet absorbed in state 3 and under follow-
up at time t and having started in state 1 at time s, who are in state 2 at time t. Note that, in contrast
with CP, NM is not guaranteed to satisfy P̂NM

11 (s, t) + P̂NM
12 (s, t) + P̂NM

13 (s, t) = 1. Indeed, for t = 6, we
have P̂NM

11 (s, t) = 0.250, P̂NM
12 (s, t) = 0.333 and P̂NM

13 (s, t) = 0.333, which sums up to less than 1. The
CP estimator has P̂CP

12 (s, t) = 0.417. The LMAJ estimator has the same estimate of P11(s, t), namely
P̂ LMAJ

11 (s, t) = Ŝ1(t | s), and the more complicated estimators

P̂ LMAJ
12 (s, t) =

∑
s<u≤t

dN
(LM)

12 (u)

Y
(LM)

1 (u)
Ŝ1(u− | s)Ŝ2(t |u),

P̂ LMAJ
13 (s, t) =

∑
s<u≤t

dN
(LM)

12 (u)

Y
(LM)

1 (u)
Ŝ1(u− | s)

(
1− Ŝ2(t |u)

)

+
∑
s<u≤t

dN
(LM)

13 (u)

Y
(LM)

1 (u)
Ŝ1(u− | s).

Estimates of P̂ LMAJ
12 (s, t) and P̂ LMAJ

13 (s, t) at t = 5 for our example data set are given by 0.25 and 0.50,
respectively.

It is also of interest to see at which time points the different estimators can change value. The most
notable differences can again be seen for the estimates of P12(s, t). Considering only subjects who are in
state 1 at time s (for all three estimators), we see that P̂ LMAJ

12 (s, t) changes value only at time points t at
which a 1→ 2 transition is observed. In contrast, both P̂CP

12 (s, t) and P̂NM
12 (s, t) can change value at all

time points t at any transition time point, be it a 1→ 2, 1→ 3, or 2→ 3 transition.
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The computations from this small data set illustrate that P̂NM
11 (s, t) + P̂NM

12 (s, t) + P̂NM
13 (s, t) = 1 is not

guaranteed for Titman’s estimator. This unfavorable property originates from the construction of these
probabilities, which uses a possibly different competing risk process (depending on time s and the state
` that is occupied at time s, but also on the target state m) for each transition probability P`m(s, t) of
interest. From our simulation studies, reported in the next section, it became clear that replications for
which

∑
m P̂

NM
`m (s, t) 6= 1 were common (both smaller and larger than 1), but deviations from 1 were

usually very small. If interest is in one particular transition probability P`m(s, t), not in P`m(s, t) for
all states m, the fact that transition probabilities do not add up to one should not be a real problem in
practice.

Simulation results

Three sets of simulations were performed, comparing the landmark Aalen-Johansen estimator with the
CP and NM estimators.

Irreversible illness-death model

The objective of the first simulation study was to replicate the first simulation study of Titman11 and
to add the new landmark Aalen-Johansen estimator. The set-up is exactly as in Titman11. Briefly, data
were simulated from a three-state irreversible illness-death model (states numbered here as 1=healthy,
2=illness, 3=death). The same three processes, termed here Markov, Frailty, and non-Markov, were
considered. The Markov process was based on a time-homogeneous process with intensities α12 = 0.12,
α13 = 0.03 and α23 = 0.1. For the frailty model, all three intensities were multiplied by a common
gamma frailty Z with unit mean and variance 2. The other non-Markov process also has the same
intensities as the Markov process, except that λ̃13(t) depends on the state occupied at time 4; λ̃13(t) =

0.05 if X̃(4) = 0, and 0.1 otherwise. Two different independent right-censoring mechanisms were
applied: Unif, where right-censoring times were uniform on (5, 40), and Exp, where right-censoring
times were exponential with rate 0.04. Each scenario used sample sizes n = 200 and n = 500, all starting
in state 1. Table 2 reports bias, root mean squared error (RMSE) and empirical coverage of nominal 95%
confidence intervals (all ×100) across M = 5000 replicated data sets for four methods of estimating
P12(τ0.15, τ0.45), where τ0.15 and τ0.45 are the 15th and 45th percentile, respectively, of the time-to-
absorption (state 3) distribution. Values of τ0.15 and τ0.45 were taken from the supplementary material11.
The four methods considered are the Aalen-Johansen estimator (AJ), the new subsampling method of de
Uña Àlvarez & Meira-Machado9 (CP), the method of Titman11 (NM) and the new proposed landmark
Aalen-Johansen method (LMAJ). The simulations also included the estimator proposed by Allignol et
al.8, but results were not included here, because they clearly underperformed. The same conclusions as
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in Titman11 apply. In addition, the landmark Aalen-Johansen estimator performs similarly to CP and
slightly outperforms NM.

Reversible Markov renewal illness-death model

The second set of simulations was based on a Markov renewal process, with a reversible illness-death
model, containing an additional recovery transition from illness (state 2) to healthy (state 1), compared
to the illness-death model in Section 3. The hazard rates λ̃jk(t, d), with t time from start, and d duration
in the state (sojourn time), were chosen as

λ̃jk(t, d) = αjkβj exp(−αjkdβj−1), j = 1, 2, k = 1, 2, 3, j 6= k,

i.e., a Weibull hazard with duration d as time scale and no dependence on t. The shape parameters
were chosen to be identical for both transitions from state 1 (β1) and for both transitions from state 2
(β2). When β1 = β2 = 1, hazards are exponential and the model is Markov. For β1 = β2 = 1, we chose
α12 = 0.12, α13 = 0.03, α23 = 0.09 and α21 = 0.06. Values chosen for β1 and β2 were 1, 1.5 and 1,
0.5, respectively. For β1 and β2 different from 1, the αjk’s were adjusted so that the expected sojourn
times in states 1 and 2 remained the same and the ratios between α12 ad α13 and between α21 and α23

also remained the same. Data of n = 200 and n = 500 subjects were generated, all starting from state 1.
Censoring was independent and uniform on (5, 40).

Table 3 shows bias, RMSE and coverage (all ×100) across 5000 replications of P`m(s, t) for s = 5

and t = 15, comparing the Aalen-Johansen estimator (AJ), the non-Markov estimator of Titman11 (NM)
and the landmark Aalen-Johansen estimator (LMAJ). The methods of Allignol et al.8 and de Uña Àlvarez
& Meira-Machado9 are not available for reversible illness-death models and were therefore not included
in this comparison. Table 3 shows results for P11(s, t) and P21(s, t). The Aalen-Johansen estimator
outperforms the non-Markov estimators when the model is actually Markov. Interestingly, in many cases
where departure from Markovianity is modest, the Aalen-Johansen estimator does show a moderate
bias, but the smaller variance still results in smaller RMSE. Coverage, however, is noticeably below
the nominal level of 95%, because of the bias. As in the first simulation study, both NM and LMAJ are
unbiased with good coverage, and the latter consistently shows a somewhat lower RMSE than the former.

Reversible four-state extended illness-death model

The third set of simulations assessed the performance of the same three estimators, AJ, NM and
LMAJ, in a reversible four-state extended illness-death model with frailty. States 1, 2 and 3 represent
progressively serious illness states with transitions back and forth between 1 and 2 and between 2 and
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3, and transitions between each of states 1, 2 and 3 and a death state 4. Transition intensities were
taken as αjkZ, with Z a gamma frailty with unit mean and variance 0 (no frailty, so Markov), 1 and 2,
with α12 = α23 = 0.20, α21 = α32 = 0.10, and α14 = 0.06, α24 = 0.09, α34 = 0.12. M = 5000 data
sets of size n = 500 were generated with independent right censoring from a uniform distribution on
(5, 40). Table 4 reports bias, root mean squared error (RMSE) and coverage for estimating P11(s, t),
P12(s, t),P21(s, t) andP22(s, t) for s = 5 and t = 15. The overall picture is similar to that of the previous
simulation studies. For the Markov model (frailty variance equal to 0) the Aalen-Johansen estimator
performs best, with considerably smaller RMSE compared to the other robust estimators. For the non-
Markov case (frailty variance 1 and 2), the Aalen-Johansen estimator is biased, leading to an increased
RMSE and unacceptable coverage, increasingly so for increasing frailty variance. Both NM and LMAJ
perform adequately in terms of bias and coverage, also in the non-Markov case. The LMAJ estimator
consistently has a somewhat smaller RMSE compared to NM.

Application

We further compare the landmark Aalen-Johansen method with the Aalen-Johansen method in data
from a clinical trial in breast cancer patients, conducted by the European Organization for Research
and Treatment of Cancer (EORTC trial 10854). The objective of the trial was to study whether a
short intensive course of perioperative chemotherapy yields better overall survival than surgery alone.
The trial included 2795 patients with early breast cancer, who underwent either radical mastectomy or
breast conserving therapy before being randomized. Patients were randomized to either perioperative
chemotherapy or no perioperative chemotherapy. Results of the trial were reported in19;20. In this analysis
we consider the same 2687 eligible patients that were also studied in earlier analyses15;21;22. There it was
noted that patients with early local recurrence had a higher transition rate from local recurrence than
patients with later local recurrence, pointing to a possible violation of the Markov assumption.

We consider a multi-state model with states “Surgery” (state 1), “Local Recurrence” (state 2), and
“Death” (state 3). The multi-state model is an irreversible illness-death model, with transitions from
Surgery to Local Recurrence and Death, and from Local Recurrence to Death. Of 2687 patients, 84
patients died directly, without prior local recurrence; 1061 experienced a local recurrence, of which 645
died afterwards. The remaining patients were censored, 1542 in state 1 and 416 in state 2. The total
number of deaths observed was 729.

Figure 1 shows estimated curves of the conditional probabilities of being alive with local recurrence
at time t, and of having died by time t, conditional on being alive without local recurrence at 2 years,
for both randomized treatment groups. In the notation of this paper, these are the transition probabilities
P`m(s, t), t ≥ s, for ` = 1, m = 2 and 3, and s = 2 years. Two different estimates are considered; the
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Figure 1. Estimated transition probabilities P (X(t) = 2 |X(2) = 1) and P (X(t) = 3 |X(2) = 1) for the two
randomized treatment groups, with estimates based on (a) Aalen-Johansen, (b) the landmark Aalen-Johansen
estimator.

Aalen-Johansen (AJ) estimator that is valid only when the Markov assumption is satisfied, and the robust
landmark Aalen-Johansen (LMAJ) estimator. It is seen from Figure 1 that, conditional on being alive
without local recurrence at 2 years, both the probabilities of being alive with local recurrence and having
died are somewhat higher for the no perioperative chemotherapy group. Comparing the two different
estimators, it is seen that for both treatment groups the robust estimator results in a somewhat more
optimistic picture; the estimated probability of having died is lower for LMAJ compared to AJ, and
the estimated probability of being alive with local recurrence is higher for LMAJ compared to AJ. The
estimated probability of being alive without local recurrence (not shown) is very similar for LMAJ and
AJ.

Discussion

In this paper we showed that a simple and intuitive procedure combining landmarking (subsampling)
and the Aalen-Johansen estimator of the (conditional) state occupation probabilities yields a consistent
estimator of transition probabilities in general non-Markov multi-state models. The method is comparable
to the estimator of de Uña Àlvarez & Meira-Machado9 (conditional Pepe) with respect to bias and
RMSE, but can be used beyond the irreversible illness-death model. It shows a slight improvement in
terms of RMSE to the method of Titman11. In addition, unlike the non-Markov estimator of Titman11,
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the transition probability estimators P̂ LMAJ
`m (s, t), when summed over all states m, add up to one.

Interestingly, our simulation studies indicated that on occasion the Aalen-Johansen estimator outperforms
the non-Markov estimators when the multi-state model exhibits modest deviations from Markovianity. In
such cases the modest bias does not weigh against the smaller variance of the Aalen-Johansen estimator.
Coverage of the Aalen-Johansen estimator is too low, however. If departure from Markovianity increases,
the robust estimators clearly are to be preferred.

Titman11 proposes the use of pseudo-observations when interest is in the effect of covariates on
the transition probabilities. This indeed provides a useful alternative to fitting regression models to the
transition intensities in a multi-state model. The LMAJ estimator can also be used for this purpose. In
fact, this approach has been used to model the expected length of stay in a given state in a multi-state
models, based on the LMAJ estimator, also in non-Markovian models23.

The landmark Aalen-Johansen method has been implemented (function LMAJ) in the latest version
(0.2.9) of the mstate package24 in R.
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Appendix: Consistency of the landmark Aalen-Johansen estimator

Here we show that if P (X̃(s) = `) > 0 and the same conditions as needed for consistency of the Aalen-
Johansen estimator of the state occupation probabilities12 are satisfied, the landmark Aalen-Johansen
estimator will also be consistent.

Fix ` and s. From the original multi-state process X̃(t) with state space {1, . . . ,K} define the coupled
multi-state processX?(t) with enlarged state space {−K, . . . ,−1, 1, . . . ,K} byX?(t) = X̃(t) for t < s

and X?(t) = (2 · 1{X̃(s) = `} − 1) · X̃(t), for t ≥ s. In words, X?(t) follows the original multi-state
model X̃(t) until just before time s, while for t ≥ s, X?(t) follows either X̃(t), if X̃(s) = `, or diverges
to −X̃(t), if X̃(s) 6= `. Note that the process X?(·) is not Markov even in case X(·) is Markov: for any
t > s, X?(t) depends on the past through X?(s). Since state m ≥ 1 at time t > s can be reached only if
X̃(s) = `, this artificial multi-state model has, for t > s, m ≥ 1:

P ?m(t) = P (X?(t) = m) = P (X̃(t) = m, X̃(s) = `),

so that the transition probability of interest can be written as

P`m(s, t) = P (X̃(t) = m | X̃(s) = `) =
P ?m(t)

P ?` (s)
,

a ratio of two state occupation probabilities of the coupled multi-state process. By the results in Datta
& Satten12, the Aalen-Johansen estimators P̂ ?m(t) and P̂ ?` (s) of the state occupation probabilities P ?m(t)

and P ?` (s) are consistent, and hence their ratio consistently estimates the transition probability of interest
if P ?` (s) > 0.

The ratio of the Aalen-Johansen estimates of state occupation probabilities can be written as

P̂ ?m(t)

P̂ ?` (s)
=

[
π̂?(0)

∏
0<u≤t

(
I + dΛ̂?(u)

)]
m[

π̂?(0)
∏

0<u≤s

(
I + dΛ̂?(u)

)]
`

=

∑
j

[
π̂?(0)

∏
0<u≤s

(
I + ∆Λ̂?(u)

)]
j

[∏
s<u≤t

(
I + ∆Λ̂?(u)

)]
jm[

π̂?(0)
∏

0<u≤s

(
I + ∆Λ̂?(u)

)]
`

=

[
π̂?(0)

∏
0<u≤s

(
I + ∆Λ̂?(u)

)]
`

[∏
s<u≤t

(
I + ∆Λ̂?(u)

)]
`m[

π̂?(0)
∏

0<u≤s

(
I + ∆Λ̂?(u)

)]
`

=

 ∏
s<u≤t

(
I + ∆Λ̂?(u)

)
`m

,
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where π̂?(0) and Λ̂? are, respectively, the initial state proportions and the estimated cumulative hazards
matrix of X?, and all matrix products are over the observed transition times u. The third equality follows
because for all j 6= `,

[∏
s<u≤t

(
I + ∆Λ̂?(u)

)]
jm

is zero, because just before the first event time after

s, everyone is either at state `, or has been redirected to a negative state, from which state m ≥ 1 cannot
be reached.

The last step we need for proving the theorem is to show that ∏
s<u≤t

(
I + ∆Λ̂?(u)

)
`m

= π̂(LM)(s)
∏

s<u≤t

(
I + ∆Λ̂(LM)(u)

)
.

This follows by noting that the matrices I + ∆Λ̂?(u) on the left hand side are 2K × 2K diagonal
block matrices, consisting of two blocks representing the positive states and the negative ones, with
no interaction between them for u > s. The only relevantK ×K sub-matrices are those representing the
positive states. For these sub-matrices, note that the counting and at-risk processes N?

ijk(t) and Y ?ij(t),
defining the Λ̂?(t) used in the Aalen-Johansen estimator, are given by

N?
ijk(t) = Nijk(t)1{Xi(s) = `}, and Y ?ij(t) = Yij(t)1{Xi(s) = `},

because if Xi(s) 6= `, then X?
i (t) would be negative for t ≥ s. So for t > s, we have that N

(LM)

jk (t) =

N
?

jk(t), Y
(LM)

j (t) = Y
?

j (t), and hence ∆Λ̂(LM)(t) =
[
∆Λ̂?(t)

]
1,...,K;1,...,K

. This concludes the proof.
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